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Testing for high frequency features in a noisy signal

Mathieu Mezache* Marc Hoffmann® Human Rezaeif Marie Doumic?

Abstract

Given nonstationary data, one generally wants to extract the trend from the noise by
smoothing or filtering. However, it is often important to delineate a third intermediate cat-
egory, that we call high frequency (HF) features: this is the case in our motivating example,
which consists in experimental measurements of the time-dynamics of depolymerising protein
fibrils average size. One may intuitively visualise HF features as the presence of fast, possibly
nonstationary and transient oscillations, distinct from a slowly-varying trend envelope. The
aim of this article is to propose an empirical definition of HF features and construct esti-
mators and statistical tests for their presence accordingly, when the data consists of a noisy
nonstationary 1-dimensional signal. We propose a parametric characterization in the Fourier
domain of the HF features by defining a maximal amplitude and distance to low frequencies
of significant energy. We introduce a data-driven procedure to estimate these parameters,
and compute a p-value proxy based on a statistical test for the presence of HF features. The
test is first conducted on simulated signals where the ratio amplitude of the HF features
to the level of the noise is controlled. The test detects HF features even when the level of
noise is five times larger than the amplitude of the oscillations. In a second part, the test is
conducted on experimental data from Prion disease experiments and it confirms the presence
of HF features in these signals with significant confidence.

Keywords: Discrete Fourier transform, hypothesis testing, spectral analysis, Monte Carlo
methods, signal detection and filtering, Static Light Scattering, Prions.
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Introduction

Motivation

In a one-dimensional nonstationary signal, it is often of key importance to delineate not only the
trend of the signal from its noise components - which is an extensively studied subject, see e.g.
[1, 2, 3, 4] or the classical textbooks [5, 6] and the references therein - but also to delineate high-
frequency features from low frequency characteristics. As an example, and original motivation
for our study, fast oscillations have been visually observed in experimental measurements of the
infectious agent in Prion diseases, see Figure 1 B and C; they are however not easily quantified
or distinguished from zones where only noise is present, as in Figure 1, D and E.
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Figure 1: Human PrP amyloid fibrils (Hu fibrils) depolymerisation monitored by
Static Light Scattering (see Appendix for details). A: The overall view of the 0.35uM Hu-
fibrils depolymerisation at 55°C. B-E correspond to a zoom-in on different time-segments of
the depolymerisation curve A. As shown in B, from time 4h to time 5h oscillations have been
observed when for time segment corresponding to time 15.3 to 15.5h only noise has been detected
(D). (Figure taken from [7])

There are two main difficulties in order to infer such oscillations and evaluate their
significance: first, they are mixed up with noise and second, they need to be separated from



the trend of the signal. It is therefore of major interest to rely on a systematic procedure that
estimates quantitatively high frequency (HF) features - amplitude, frequency - in real signals
and thus delineates these features of the signal from both pure noise and trend.

Studies on spectral analysis of a signal are usually based on stationary or weakly stationary
models, see e.g. Chapter 4 in [8], or [9]. The Singular Spectrum Analysis (SSA) introduced
in [10] allows one to visualize qualitative dynamics from noisy experimental data. The SSA
is based on the decomposition of a time series or signal into several additive components
interpreted as trend components, oscillatory components, and noise components. It is then
widely used to identify intermittent or modulated oscillations in time series, see e.g. [11, 12, 13].
A statistical test of hypothesis to discriminate between potential oscillations and noise has been
introduced in [14] and [15]. This test is called the Monte Carlo SSA and has been applied
almost exclusively to meteorological data. Since SSA transforms the original data in a complex
way, no theoretical result has yet been proved on the Monte Carlo SSA. Prior knowledge on the
signal (such as the trend or assumptions on the noise) are also needed in order to calibrate the
procedure and improve the result of the statistical test. The Monte Carlo SSA is by construction
a non-parametric procedure and the oscillations detected by this test are not characterized
quantitatively but qualitatively.

However, the experimental signals studied in this paper have local oscillations and exhibit a
nonstationary behaviour. Hence, classical methods seem inappropriate for our class of signals.
In this paper, we propose a new method, relying on nonlinear analysis of the Fourier transform
of the signal that enables one to infer a data-driven parametric characterization of HF features,
based on their amplitude and frequency detection without any a priori knowledge of their shape
or location. The main idea is to make use of the lowest frequency features, which are the ones
with highest amplitude in the signals studied, and to detect the peak with highest amplitude
situated at some distance of them in the frequency axis. This method is detailed in Section 1.
We introduce a statistical test to discriminate HF features from noise in Section 2, apply our
methodology to a simulated example in Section 3, and then to the experimental measurements
of depolymerising PrP protein fibrils displayed in Figure 12 in Section 4.

Model and assumptions

For some (large) n > 1, we have measurements y;* of a noisy signal localized around i/n, so
that 7 is a location parameter and n a frequency parameter. We may idealise our data via a
representation of the form

V=l bogl, =01, M)



where (27')o<i<n—1 is the true (unknown) signal of interest and the & are independent and
identically distributed noise measurements, that we assume here to be standard Gaussian. The
quantity ¢ > 0 is a (fixed) noise level. In this nonparametric regression setting, we aim at
detecting from the data (y}')o<i<n—1 whether (z]")o<i<n—1 exhibits high-frequency features (HF
features) such as oscillations, a term that still needs to be defined properly. Since we do not know
in advance whether such high-frequency features are present and where they are located, we need
to investigate the shape of (z]")o<i<n—1, which requires some smoothing in order to get rid of the
noise (£")o<i<n—1. However, any smoothing procedure tends to wipe out high-frequencies in the
data, which is adversarial to our goal, therefore the choice of the smoothing method is crucial.

Results and organisation of the paper

The statistical test to differentiate HF features from noise in a signal is data-driven and is based
on the study of the projection of the signal in the Fourier domain. We propose in Section 1 a
parametric characterization of the HF features of a signal. This characterization also provides
with an algorithmic procedure for the computation of the HF features, implemented in the
Python language at

https://github.com/mmezache/HFFTest

see Appendix B. The construction of the statistical test of hypothesis and the computation of
a p-value proxy is described in Section 2. The numerical examples are performed in Section 3
on simulated signals. They are constructed around parameters which control their trend, their
high frequency feature component and their noise. We vary the ratio of the amplitude of the HF
features over the noise level (i.e. its standard deviation), which sheds light on the robustness of
the procedure: the transient oscillations are detected by the procedure even if the noise level is
significantly high. The procedure is then applied to static light scattering (SLS) experiments of
PrP5¢ fibrils, in Section 4. They are characterised by their singular slow-varying components
(non-monotonous trend) and their fast-varying components (isolated discontinuous jumps, high
frequency features, noise). We compute the HF features parameters of SLS signal experiments
for different initial concentration of PrPS¢. We conclude that these signals have significant HF
features, i.e. the signals display transient oscillations coming from biochemical reactions and not
from the experimental noise.



1 Characterisation of high frequency features

Notation, graphical definition and guidelines of the procedure

Let (2})o<i<n—1 be a real-valued discrete signal of length n, and let us denote (ﬁnvk)0<k:<n—1 its
discrete Fourier transform (DFT), classically defined by o
n—1
_ —j2mki _
DFT,, [(z})o<i<n—1] = <¥x?e J l/n)ogkgn—l = (29n7k;)0§kgn71. (2)
1=

Recommended reference on applied Fourier analysis is the textbooks of [16, 17] or [8] in a time
series context. Our experimental signals have a specific low frequency trend combined with HF
features that shall persist beyond denoising. The presence of a trend implies that there are large
Fourier coefficients 1, ;, on the scale corresponding to the lowest frequency information, whereas
HF features can be characterised by relatively large coefficients in higher frequencies As displayed
by the test signal in Figure 2, a typical signal displaying oscillations would thus consist, in the
frequency domain, of large coefficients in the lowest frequencies, a decay to a local minimum,
then one or more peaks in higher frequencies, and a final decay or plateau corresponding to
the noise amplitude in the highest frequencies. In order to discreminate between significant and
nonsignificant peaks (straightforward to detect visually in Figure 2), we also need a preliminary
smoothing step: we then obtain an amplitude spectrum that looks similar to the scheme displayed
in Figure 3.

Given a discrete signal (2]")o<i<n—1, with DFT 9, = (9,, x)o<k<n—1 defined by Equation (2),
we are thus led to characterise a HF feature by two nonnegative parameters:

1. A location parameter G, ,,(¥,) defining a distance between the highest peak and the range
of lowest frequencies,

2. an amplitude parameter D,, ,,,(¥,,), measuring the relative amplitude of the peak and the
first local minimum.

We have displayed their graphical definition in Figure 3. The parameters G, n,(Yy,) and Dy, p, (95,)
depend on a smoothing parameter m and represent two distances: Gy, (05, is a distance on the
frequency axis and Dy, ,,(¢) on the amplitude axis. For each signal, the parametric characteri-
zation is unique: it describes the peak with the highest distance between its amplitude and the
minimum amplitude of the Fourier coefficients of lower frequencies (with D, ,,(U5)). The pa-
rameter G, ,,,(¥,) gives the distance in frequency indices between the peak and the components
in the low frequencies with the same intensity.

The algorithmic definition of G,, 1, (¥,) and Dy, y, (y,) is provided in the following subsection,
Definition 1 below. As already said, it depends not only on n but also on a pre-regularization
parameter m. As classical in many other smoothing situations (see e.g. [3, 4] or the textbook
[18]), the choice of this parameter is crucial, since it has to be large enough to smooth the
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Figure 2: Graph of a test signal with HF features and its single-sided amplitude spectrum. Top:

Plot of z; = f(0.12i) for ¢ = 0,...,1024 where f(z) = = + 0.5sin (%) L130,90) () + 5. Bottom: Plot of the

amplitude spectrum of (z;)o<i<1024 (logarithmic scale for the y-axis).

lowest frequency range into a monotonously decaying curve, and small enough to avoid altering
too much the HF features. A data-driven procedure to define m is explained in Section 3,
Equation (19).

Algorithmic procedure

We have explained so far the guidelines of the procedure and provided a graphical definition of
the HF parameters. Let us now detail the algorithmic procedure. In order to be fully rigorous (for
instance to be certain of selecting a unique peak in case of several peaks of the same amplitude),
this algorithm contains technical details which may seem cumbersome at first sight; it is possible
to omit it at first reading. The first step of the procedure is a preliminary smoothing step; the
second step consists of the detection and localization of all peaks of amplitude which follow the
first local minimum; finally, the peak of highest amplitude is selected.
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Figure 3: Idealised scheme of the parametrization of the HF features of a signal in the Fourier
Domain. The parameter Gy mn (%) is the location parameter in the frequency scale which corresponds to the
distance of the HF features from the low-frequency components of the signal. The parameter Dy m(95) is the

intensity parameter which corresponds to the relative amplitude of the HF features.

First step: Pre-processing the signal

Replacing z]' by «} 4+ C for some arbitrary constant C, with no loss of generality, we may (and
will) assume that

|'l9n,0

> k|- 3
opax | [Vn il (3)

Condition (3) is in force from now on. We transform 9, = (¥, k)o<k<n—1 into a non-decreasing

sequence ,u,(lm) = (Mfﬁ))mgkgn,m,l that depends on a smoothing parameter m (with 0 < m <

”T_l) defined as follows:

(m) (m)

M%mm = m}jn 19532 < ufﬂlH S Sy S M;’Z)_m = ml?x ﬂn’k (4)
where
k+m 1/2
19%):<ﬁ Z |19n,12) , m<k<n-—-m-—1 (5)
l=k—m

2

In other words, the sequence uy, ~ is the order statistics of a 2m-regularised version of 19,,.

Remark 1. The smoothing parameter m is needed as soon as the signal observed displays
singularities e.g. a jump discontinuity or a fast transition of monotonicity of the trend. These
phenomena are approximated by the harmonic sequence (ej%k',k € Z), and when projected in
the Fourier domain, the amplitude spectrum displays a serie of spikes (cf Figure /). These
phenomena are related to Gibbs phenomenon ([19], Chapter 2) and give rise to spikes in the



Fourier domain which can be falsely interpreted as HF features. The reqularization with an
adequate choice of the parameter m solves this issue (cf Figure 4 and Section 3). Moreover,
any regqularization of the signal hinders the detection of the HF features since it smoothes the
signal. The regularization method defined in (5), is certainly not the only possible one, but it
has the advantage of giving the right trade-off between smoothing and not altering too much the
original signal in order to detect the HF features of the experimental data studied. In Section 3,
Equation (19), we also detail a procedure for a data-driven choice of m.
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Figure 4: Graph of a test signal with a jump and a change of monotonicity and its single-sided
amplitude spectrum. Top: Graph of the signal with a decreasing, increasing and stationary part. Middle:
Zoom on the low frequency of the amplitude spectrum for n = 10000 samples of the signal. The dot markers
emphasize one over ten samples of the signal. Bottom: Plot of the amplitude spectrum of the test signal (plain
line). The dash line corresponds to the plot of (19233@) <k<n—a defined by (5) with m = 3.

Remark 2. The reqularization of order 2m transforms the sequence 9, of n terms into a se-

quence of n — 2m terms in order to avoid boundary effects. We label the indices of the series
from m to n—m —1 in so that the parameter k in 19272) is reminiscent of a frequency parameter

and we formally have 19((?3g = |Un -

n



Second Step: Detection and Localization of significant features in the Fourier do-
main; choice of the peak of highest amplitude

Define, for x > 0

a(m):a%m)(:n):min{k‘|m§k§n—m—1, ﬁiﬁ)gm} (6)

and
b(z) = b{™ () = max { arg max {197(:2) la(z) <k<n—m-— 1}} (7)
Remark 3. The algorithm (see the summary below) starts to compute a and b at x = N%B—m—l

and then makes it decrease to x = uglm,,% For large values of x, we have a = b, situated in the

decreasing part of the signal in the lowest frequency range. Then it reaches amplitudes which
are attained at more than one place, and we get a(x) < b(z). The index a(x) is the minimal
frequency at which searching for HF features starts, getting rid of the potentially high energy
levels arising from the low frequency part of the signal. The index b(x) is a mazimal frequency
for which the energy level x is reached in the search zone {a(z),a(z) +1,...,n —m — 1}. See
also Figure 5.

|ﬁn¢k‘

t

Hi f— .

a(m)  alp)  b(pi) = b(m) k

Figure 5: Illustration of the procedure where y; is the largest level of amplitude for which b(y) is large enough
to quit the low amplitude range (for u, > p, we have a(up) = b(pp)); we have i < I, p; =  min o)

m<k<b(p) "F’
a(pi) > a(p) and b(p:) = b(uu).

Define the sets

A = Ly gm) <k <n—m — 1} 8)
e e n,b(,un’k)
and
S = {u) € A [ b(ul)) > a(uy), m <k <n—m—1}. (9)

9



Remark 4. The set A%m) represents potential candidates for mazimum energy levels of a HF
feature, while S,(lm) represents the set of amplitudes of the spikes of ¥.,.

To define the HF features, we now select in the set ST(Lm) the feature with maximum relative
amplitude. Let us define

dz) =d™ (@) =2 — min 9" (10)
m<k<b{™(z)

and we obtain a maximum intensity of HF feature as

max 4 argmax__gom dq(qm) (:U)} if ngm) is non empty, (11)

0 otherwise.

if S is non empty and ) (¥5) = 0 otherwise. Moreover, if the set arg max, g dglm)(ac) is not

reduced to a singleton, taking its maximum ensures us to obtain a unique element for L%m)(ﬁn)
i.e. the feature of maximum relative amplitude and maximum intensity. We are ready to give a
quantitative definition of a HF feature:

Definition 1. To any discrete signal ¥, = (Unr)o<i<n—1 given in the Fourier domain, we
associate a high-frequency feature (HF feature) (Gpm(Un), Dym (V) at discretisation leveln > 1
and smoothing level m < ”7_1 as follows:

Gn,m(ﬂn) = bgzm)(bgzm) (”Qn)) - a%m)(b%m) (ﬁn))

and
Drm (Un) = dgzm) (L7(1m) (ﬂn)) )

where al™, b{™, d\™ and {™ are defined in (6), (7), (10) and (11) respectively.

Summary of the algorithm

We assume here that we are given a signal (y;') for 0 < i < n — 1 and a smoothing parameter
m.

1. Define (¥p k)o<k<n—1 by (2).

2. Define 9", m < k <n-—m-—1, by (5).

n,k
3. Define ,u(m) m<k<n-—m-—1, by (4).

n,k?

4. For k=n—m,--- ,m, define a(ufﬁ)) by (6) and b(uf:?) by (6).

10



5. Define the sets A{™ by (8) and sy by (9).
6. Define o\ by (11).

7. Define Gy, (Vy,) and Dy, 1 (9,) by Definition 1.

2 Testing for HF features

For any given signal (y!'), we have defined two HF parameters Gy, ,,(¢,) and Dy n(9y) in a
unique way. The question to answer is then: are these two parameters high enough to really
characterise significant HF features, or are they insignificant compared to the noise level of the
signal considered? The difficulty is to know whether the amplitude of the peak selected and its
distance to the range of the lowest frequencies are significant or not, so that we may conclude
that the signal does display or does not display HF features. The aim of this section is to define
a statistical test in order to give a quantitative answer to this question.
We continue with the statistical setting introduced in Equation (1): we observe

Yy =xy +0o&', i=0,...,n—1,

where (2]")o<i<n—1 is the signal of interest and (0€!")<i<p are independent centred Gaussian
random variables with noise variance o2, for some (large) n > 1, interpreted as a maximal
discretisation resolution level or equivalently a maximal frequency of observation. Applying the
discrete Fourier transform DFT,, on both sides of (1), we equivalently observe

§n7k2§n7k+ggk’n, kzov"'vn_]-)
where the aE,m are independent centred Gaussian random variables with variance o2 as well,
thanks to the fact that DFT,, is an orthogonal linear mapping. From data (y;")o<i<n—1 or rather
(Vn.k)o<k<n—1, we wish to construct a statistically significant test of the absence of HF feature
as the null, against a set of local alternatives where some HF features are present.

We first formulate the hypothesis of the test based on the HF parameters according to
Definition 1. We then construct the statistical test and define the test statistics. We define
empirically the risk region under the null thanks to a Monte Carlo method. This method is also
assimilated to bootstrap hypothesis testing, see e.g. [20], [21], and it is motivated by its simplicity
and the fact that the theoretical distribution is unknown. Moreover it is a straightforward way
to generate the empirical distribution of the test statistics under the null hypothesis. Finally,
we compute the test statistics of the observations, its p-value proxy and obtain a decision rule
of the statistical test.

11



2.1 Construction of a statistical test

Thanks to the characterisation of HF features via (Dpm(Un), Gnm(Un)) given in Definition 1,
we test the null
Hy e Grm(Un) <v, Dnm(¥n) <c,

against the local alternatives
H et Gum(Un) = v and Dym(9n) > c,

where v > 0, ¢ > 0 are thresholds to determine significant HF features. The null hypothesis #°
is that there is no significant HF feature in the signal tested. On the contrary, the hypothesis H'
implies that the signal has significant HF feature. For the test to be powerful, the main problem
is to define (v, c): for too small values any signal shall reject H? whereas for large values, any
signal shall accept H". We obtain a test statistics for (Gmm(ﬁn), Dn,m(ﬂn)) by setting

Grm = G (U) = b (L™ () — al™ (L™ (,,))

and N - ~
Dn,m = Dn,m(ﬂn) = dng) (Lng) (ﬁn))

In order to compute the p-value proxy of the test, we design a Monte Carlo procedure simulating
a proxy of the data (y;)o<i<n—1 under the null H". Using the proxy, we define a reject region of
our test for a risk level o and the p-value proxy of the data (y;)o<i<n—1-

Rejection zone at risk level «

We first simulate N times yg\OZL defined in (17) below, which is a simulated proxy of the data
(Y7 )o<i<n—1 with HF features removed from the signal (2I')o<i<n—1. Repeating independently
N times the procedure, we obtain a Monte Carlo sequence

0)k 5 _
Yan k=1,...,N.

In a second step, we denote by E?V the cloud of points representing the HF features parameters
of these simulated signals (with HF features removed but with Gaussian noise):

B = { (G (DFTI") . D (OFTI)) 1 =1, N} (12)

We define the function P: R% — F C [0;1]:

- Z l{Gn m DFT[y(O) ’“}>>g, Drim (DFT 4Ok >>d} (13)

An

12
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Figure 6: Cloud of points (G*,0%) = (Gum (DFT[)"]) . D (DFTI"]) ) for k= 1,2,3.

Hence P(g,d) is an empirical probability that corresponds to the proportion of points in E?V
located in the North-East quarter of the plane centered on (g, d) (cf Figure 6). In order to reduce
the computation cost, we only consider the restriction of P to the set E?V. Thus if E?V contains
N disjoint points then the minimal bound on P(EY) is 3. For a risk level a € P(EY,), the
rejection zone of our test is defined as

Rmn (H?, ng‘) = {(@/i)lgign defined by (1) s.t. Gnm > kY, 5nm > /@g‘} (14)

where (émm, Bnm) is the test statistics and (H?, mg‘) € E?V are such that
P(kT,K3) = a. (15)

Remark 5. The risk level o is imposed by the Monte Carlo sequence, o € P(E%) C [%, 1]. For
example, Figure 6 represents an arbitrary set E?\, for N = 3. We note that we need % <a<lin
order to obtain candidates k$, kS . For a < % no candidate can be obtained by this procedure and
its associated reject region is not defined. Moreover there can be multiple reject regions defined
for the same risk level a (in the example whe have two reject regions for o = %)

The main idea behind the computation of the couples
<Gn7m (DFT[yE\OL’k]) D (DFT[yE\OL’k])) is to generate random outcomes under the null
#(© that enable us to compute an empirical risk level. The couples correspond to the relative
amplitude and the frequency gap for a non-oscillating signal with noise. We also get reject

region(s) of level o thanks to the threshold(s) (x¢, k%). We do not need uniqueness of the reject
region in order to define and compute the p-value proxy, see below.

13



Definition of the p-value proxy

We define, for observations (y!")o<i<n—1:
p-value proxy((yf)ogign,l) = min {a € P(E?V) | Gom > KT, Dpm > @} (16)
An equivalent definition of the p-value proxy of the observations (y;")o<i<n—1 is given by

p-value proxy (7' )o<i<n—1) = inf {a € P(E)| (yM)o<i<n—1 € Rinn (KT, k%) }.

Nk
Dn,m

A~k
Gn,m

Figure 7: Cloud of points (G Dk ) for £ = 1,2,3 (black dots) and HF feature

parameters of the observations (the test statistics) (énm, [A)nm) (grey dot).

n,m?

Remark 6. The computation of the p- value prozxy is illustrated schematically in Figure 7. We
observe the point cloud formed by (Gflm, ) (the black dots) for k = 1,2,3. On the vertical
axis we have the relative amplitude and on the horizontal azis we have the gap in frequency
between the oscillations and the trend in the Fourier domain. The grey dot illustrates the HF
features parameters subject to the test. We use the (ijm, Dflm) as our grid to compute the
p-value proxy. Using (15), we compute the level o and obtain consequently the (k$,KkS) for each
element of the grid. The p-value proxy is % in this example.

In order to conclude, we first need to define a* corresponding to the probability threshold
below which the null hypothesis H(?) is be rejected. Using (12) and (15), we define the significance
level o™ as

o = min{P(E%)}.

14



In particular, o® = % will stand true in the numerical examples and in the analysis of

the experimental signals (cf. Section 3). Hence, we reject the null hypothesis in favor of
the alternative hypothesis if and only if the p-value proxy defined in (16) is less or equal
to (equal to, in Section 3) a*. The interpretation of this decision rule is schematized in
Figure 7. The decision to reject H(? is equivalent to the fact that the couple formed by the

test statistics <Gn,m, Dmm) is located in the north-east quarter of the plane centered on a

boundary point of the cloud of points defined by (12). In the example in Figure 7, the deci-
sion is to not reject the null #(? since the test statistics couple is ”located in” the cloud of points.

The p-value proxy gives a confidence index for non-rejecting the null. This index is meaningful
provided the test has a good power, i.e. if the probability of making a type II error is small.
Hence the p-value proxy of ((y?)ggign_l) is our measure of confidence in non-rejection of the
null #°. The main difficulty however lies in solving (14) since ¥J,, remains unknown under the
null and that there are no reason that Gn,m or [A)n,m are pivotal statistics under the null. We
describe below a numerical procedure based on Monte Carlo simulation that estimates yf\ozl a
proxy of the data with HF features removed but with noise.

2.2 A Monte Carlo procedure for the simulation of the null

In order to evaluate (14) and (16), we first build a low-frequency estimator fE\OZL from the data
(y!")o<i<n—1 that removes the potential HF features. The estimator depends on a regularisation
parameter A. We next define

y/(\(,]l),n :5§\?2,n+3n6?7 = 0,,1’L— 17 (17)

where the €] are independent centred Gaussian random variables that we simulate and &, is an
estimator of the standard deviation of the noise. The simulated signal (yg\oz? n)ogz’gn—l obtained
by estimating a proxy of f with HF features removed with additional simulated noise serves as

a proxy of the data (y]')o<i<n—1 under the null HO.

Numerical computation of f/@t

Trend estimation or filtering for mimicking a signal with HF features removed has many appli-
cations and hence it has been extensively studied.

In the following, the trend is considered as the underlying slowly varying component of
the signal and we choose the /¢i-trend filtering method described in [22] to estimate it (see
Appendix C for details on this method and the reasons of our choice). The estimator of f&ozl as
a n-dimensional vector is then the solution of the following optimisation problem: 7

R . 1 n—1 n—2
xg\ozl € argegnn 3 Z(yzn — x?)Q + A Z |l — 2] + a4, (18)
zekr i=1 i=1
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where A > 0 is a regularisation parameter which controls the trade-off between the smoothness of
n—2

55&0; and the residual >~ (3?5\0211 — yf)2. We note that the second term | 1 |z — 227 x|
1=

is the /!-norm of the second order variations of the sequence (z") (i.e. the discretization of

the corresponding L!'-norm of the second derivative of a function). Since there is no optimal

criterium to choose A, the choice of the parameter is qualitative and motivated empirically (see

Section 3 and Appendix C).

Numerical estimation of the noise level 7,

The estimator of the standard deviation of the noise is the second ingredient needed in order
to compute f)(\or)L in (17). The methods to estimate the level of noise are closely linked to the
methods of signal denoising and have been extensively studied. The method chosen here is the
median absolute deviation and the denoised signal is obtained thanks to the wavelet shrinkage
methods, see e.g. [23, 4, 24, 3]. We detail the method in Appendix D.

3 A simulation example for a proof of concept

Pre-processing: a data-driven choice of m

We first address the delicate issue of choosing the smoothing parameter m. Define a sequence
(m;)1<i<k such that
1:m1<m2<...<mK§”T_1'

We can take for instance m; =i for i = 1,..., K. Note that K € {1,..., ”T_l} is the parameter
defining the length of the finite sequence (m;)1<i<k. This parameter can be fixed by the user in
order to reduce the number of iterations of the procedure to compute the HF features. However,

a standard choice of K to obtain a data-driven procedure is K = "771, since averaging the signal

over more than half of the sample size is obviously meaningless. A good rule of thumb is K = n%,
since it reduces the number of computations and remains relevant compared to the range of the
signal. Let R R

i* € argmax |Gpm, — Gnm,_, |

1<i<K
and we choose m as m defined by
= mix if . Gn,mi* > Gn,mi*_l (19)
m;«_1 otherwise.

As previously stated in Remark 1, the empirical signals observed are non-monotonous, contain
singularities and transient oscillations. Their amplitude spectra display a series of spikes in the
low-frequencies and in the mid or high frequencies. Hence without a pre-processing step, the
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HF feature parameters (Definition (1)) characterize the low frequencies features (i.e. the trend
represented in the amplitude spectrum by spikes in the low frequencies, see Figure 4).

In order to solve this problem, we regularize the Fourier coefficients as defined in (5). The
sequence (my)i1<g<k gradually smoothes the Fourier amplitude spectrum: the spikes in the low
frequencies merge together whereas the isolated spikes in the mid or high frequencies (corre-
sponding to transient oscillations) slightly decrease in amplitude but remain significant. The
data-driven choice of m is well adapted to regularize the empirical signals since it chooses the
parameter m from the sequence (my)1<k<x which maximizes the difference between the local-
isation parameters G for two consecutive smoothing parameters. Thus the spikes located in a
close frequency range have been smoothed and the remaining spikes of significant amplitude for
the regularization parameter m are isolated in the Fourier amplitude spectrum.

Defining a test signal

To study numerically the validity of the procedure and the statistical test, we first compute a
simulated signal where all the parameters are known. To do so, we superimpose three signals:
one for the general trend of the curve, one for the HF features, and one for the noise. The signal
obtained is the vector (S;)o<i<n—1:

S; =T + O; + 0¢&;, (20)

where o > 0 is the parameter corresponding to the level of noise and &; are realisations of indepen-
dent and identically normally distributed random variables. Moreover (T;)o<i<n—1 corresponds
to the trend and (O;)o<i<n—1 to the HF features (cf Figure 8) We postpone to Appendix E the
full definition of the signal, which involves three characteristic parameters:

e o the standard deviation of the normal distributed noise,
e ¢, the parameter corresponding to the amplitude of the oscillations,

e s the parameter corresponding to the frequency of the oscillations (since the time scale
is in hours, ¢;/3600 is expressed in Hz).

Numerical computations and robustness of the procedure. We want to understand the
robustness of the numerical procedure when the frequencies and the amplitudes of the oscillations
are fixed but the level of noise varies. Other said, for which parameters of the oscillations and for
which level of noise does the test return that the signal oscillates (or not)? In order to answer this
question, we propose the following sensitivity analysis. The smoothing parameter m is chosen
thanks to the data-driven procedure described previously (19). The relevant output of our model
is the p-value proxy of the signals computed thanks to the numerical procedure. A natural way
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Figure 8: Simulation of the test signal defined by (20).The x-axis is the time in hours. (Up) Plot of
(Ti)o<i<105 With parameters (see Appendix E for details) ¢1 = 0.4, co =c3 =ca =2, § = ¢ =3, jo = 1700, j1 =
3400. (Middle) Plot of (T; + Oi)o<i<105 With the same parameters and c, = 0.05, ¢; = 10. (Down) Plot of

(Si)o<i<i05 Wwith the same parameters and o = 0.025.

to study the sensitivity of the p-value proxy to the parameters is to fix all parameters but one
and observe the effect on the p-value proxys obtained. In this example the varying parameter is
the level of noise o € {%ca, %ca, Ca, 2Cq, 10ca} .

First test

Since we are working with a constructed test signal, we obtain (G’;; P 6’; ~) in Figure 10 by
applying the procedure of detection of the HF feature parameters’settin’g cq = cf = 0 (it
corresponds to S; = T; + 0&; in (20)). Thus the simulation of the null in Section 2.2 is performed
using the real trend of the signal in (17). Then the signals tested (Figure 10) are constructed
signal with parameters c, = 0.05, ¢y = 10 and o € {%ca, %ca, Cas 2Cq, 10cq} in (20). The
results of the detection of HF features and the statistical test are in Table 9. We note that
for standard deviations of the noise between a tenth and the double of the amplitude of the
oscillations, the p-value proxy of the test is equal to 5e — 5. Hence, we are inclined to reject
the hypothesis #" which corresponds to the hypothesis that the signal displays no oscillations.

Moreover we note that the signals with standard deviations of the noise between 1—100a and 2¢,

o~

have almost the same HF feature parameters where (G,, 7, Bn,ﬁl) ~ (2e—3,1.8e—4). In contrast,
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o 15Ca % Ca Ca 2¢cq 10c¢,

m 6 6 6 6 24
Gm (Hz) 2.069e—3 2.044e—3 2.14be—3 1.943e—3 8.437e—2
Bn,m 1.73e—4  1.807e—4 1.807e—4 1.844e—4 2.768e—3
p-value proxy 5e—>H 5e—5 oe—5H 5e—5H 4.023e—1

Figure 9: Table of estimators and p-value proxys of the simulated signals. The simula-
tion of the null is performed with the real trend of the signals.
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Figure 10: Numerical results of the procedure on the test when the simulation of the null is
performed with the real trend. (Left column) Plot of (Si);<;<105 (20) with the parameters c; = 0.4, c2 =
c3 =c4 = 2, % =q=3,t0 =143, t1 =3.30, ¢, =0.05, ¢y =10 and 0 € {%Oca, %ca, Ca, 2Cq, IOCa} from top to
bottom. The x-axis is the time in hours. (Right column) The black dots are the cloud of points of the simulation
of the null, for N = 20000. The grey diamond corresponds to the HF features parameters of the corresponding
signal on the left column. The x-axis is the localization parameters @n,m and the y-axis is the relative amplitude

~

Do

for the signal with the standard deviation of the noise of 10c¢,, the p-value proxy is equal to 0.4,
hence we are inclined to accept that the signal has not significant enough HF feature.

19



Second test

The second step is to test the procedure on the same signals but using the trend estimate
given by (18) and the noise estimation procedure described in the first step of Section 2.2.
As displayed in Figure 15 of Appendix C, although the trend estimation quality decreases as
the standard deviation of the noise increases, it remains qualitatively correct to estimate the
trend of a signal displaying jumps or spikes. Therefore we compute the procedure to obtain
the HF features parameters for the simulated signals using (20) with standard deviation level
o€ {%Ca, %ca, Ca, 2Cq, lOca} . The p-value proxys are computed using the ¢1-trend estimators

in order to obtain the couples (aﬁ P 6’; ) where k = 1,...,20000. The results are in Table 11.

o lioca %ca Ca 2¢q 10¢,
m 3 3 3 3 18
Gy (Hz) 2.095e—3 2.095e—3 2.044e—3 2.12e—3 1.18le—1
Dy.m 1.768e—4 1.784e—4 1.918e—4 2.394e—4 3.593e—3
p-value proxy 5e —5 5e—5H 5e—> 5e—5 5.32e—2

Figure 11: Table of estimators and p-value proxys of the simulated signals. The simula-
tion of the null is performed with the ¢;-estimate of the trend (18) of the signals.

Similarly to the first simulation, the p-value proxys for the signals with a level of noise from
%Oca to 2¢, is equal to 5e — 5. Hence the procedure detect significant HF features where Gm ~
(2e — 3,2e — 4). Also for a standard deviation of the noise of 10¢,, the p-value proxy is 5.32e—2,
so that HF feature parameters are not significant enough.

4 Empirical analysis on biological data

The Prion diseases, also known as transmissible spongiform encephalopathies (TSEs), are a group
of animal and human brain diseases. The neurodegenerative processes are poorly understood and
hence fatal. However the largely accepted hypothesis suggests that the infectious agent (PrPsc) is
the misfolded form of the normal Prion protein (PrPc). The PrPsc forms multimeric assemblies
(fibrils) which are the prerequisite for the replication and propagation of the diseases, see [25].
To follow the aggregation kinetics of these fibrils, compare it to mathematical models and get a
better understanding of these diseases, several experimental and measurement devices are used,
among which the Static Light Scattering (SLS). The Static Light Scattering (SLS) signal is an
experimental measurement which describes the temporal dynamics of PrP amyloid assemblies
formed in vitro, see [26] - see Fig. 1 taken from [7] (see Appendix A).These signals correspond
to an affine transformation of the second moment of the size distribution of protein polymers or
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fibrils through time, see [27]:

Z i2ei(t) + o,

€T
where Z denotes the set of the sizes of the fibrils, ¢; the concentration of fibrils of size ¢ which
is varying with the time ¢ and o > 0 is the experimental noise (o can be time-dependent). At
the beginning of the experiment the fibrils are large, containing in average several hundreds
of monomers, which undergo an overall depolymerization process and leads to a decay in
the signal. The experiment is carried out with six initial concentrations of fibrils (Figure 12)
ranging from 0.25pmol to 3pmol; at higher initial concentrations (0.5umol and higher), a
re-polymerisation process can be observed, which may be viewed by the fact that the trend of
the signal increases again before reaching a plateau. Moreover the SLS signals differ in terms
of variance of noise and amplitude of oscillations (noticed by sight). We thus study each signal
independently.

In order to test whether the signals display HF features, we submit the observations to the
statistical test described above. The denoised signal and hence the standard deviation of the
noise are estimated thanks to the VisuShrink method and the median absolute deviation (cf [3],
[4]) using the symmlet wavelet with 8 vanishing moments and the library Wavelab, see [28] (the
same results have been obtained with the homemade python library, see Appendix B). The
trend of the signal is estimated with the ¢;-trend filtering method with the parameter A = 31
(X is fixed qualitatively in order for the trend to include the discontinuous jumps of the SLS
experiments). The results of the statistical test are summarized in Table 13. We note that
all signals display oscillations more or less pronounced (cf. Figure 14). The relative amplitude
of the oscillations Bnm differs from one signal to another for three reasons. First of all, each
signal corresponds to an experiment with a specific initial concentration. The calibration of
the experiments is not identical for experiments with different initial concentrations. Secondly,
the signals are not on the same scale. The signal with initial concentration of 0.25umol goes
from 0.5 to 2.2 in amplitude, and the signal of initial concentration of 3umol goes from 16 to
28 in amplitude. Finally, they do not have the same regularization coefficient m. However the
frequency localization parameters are comparable. In Table 13, we note that the parameters
G, m are in the same range of value with a factor of less than 4 between the minimum and

maximum Gm Finally all the p-value proxy of the tests are equal to 5e — 5, the tests confirm
that the signals display significant HF features.

Through this study, we demonstrated the existence of oscillatory behavior in the SLS experi-
ments. The immediate biochemical consequences are the coexistence of structurally distinct PrP
assemblies within the same media and the unstable behavior, i.e. out of the thermo-dynamical
equilibrium, of the chemical system formed by theses assemblies. Indeed the observation of oscil-
lations in these light-scattering experiments has shed light on the existence of a complex chemical
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Figure 12: SLS experiments and trend estimates. The x-axis is the time in hours. The parameter in the
£1-trend filtering is A = 31. (Top left) Plot of n = 32768 samples of SLS outputs with initial concentration (Iy)
of 0.25umol of Pr PS¢ fibrils.The dashed line is the £;-trend estimator. (Middle left) Iy = 0.35umol (Bottom left)
Iy = 0.5umol. (Top right) Iy = 1lumol. (Middle right) Iy = 2umol. (Bottom right) Iy = 3umol.

Concentration (pmol) 0.25 0.35 0.5 1 2 3
o 3.553e —3 4.72e—2 1.1le—2 3.09e—2 844e—2 1.287e—1
m 4 3 5 7 9 7
@mm (Hz) 4.954e—3  7.53e—3 5.656e—3 8.375.e—3 2.698e—3 4.971e—3
Bn,ﬁz 9.649e—6 1.863e—5 1.012e—4 6.526e—4 3.345e—4  1.0le—3
p-value proxy 5e — 5 5e—>5 5e—>b 5e—>b 5e—>b 5e—5

Figure 13: Estimators and p-value proxys for the test of presence of HF features in
the SLS experiments

reaction network beyond the existing aggregation-fragmentation models. This has paved the way
for new mechanistic models, e.g. a system of reactions which possibly involve several conforma-
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Figure 14: HF features of the SLS experiments and numerical results of the estimation of the HF
features parameters.(Left column) Zoom on the SLS experimentation signals with initial concentration in gmol
from the top to the bottom of Iy € {0.25, 0.35, 0.5, 1, 2, ,3} The x-axis is the time in Hours. (Right column) The
black dots are the cloud of points (/G\i,;ﬁ, beﬁ) corresponding to the simulation of the null for £ = 1,...,20000.
The grey diamond corresponds to the HF features parameters (anﬁl,ﬁnﬁ), defined by Definition 1, of the
corresponding signal on the left column. The x-axis is the localization parameter of the HF features and the

y-axis is the relative amplitude of the HF .

tions of PrP assemblies, see [7], capable of explaining such phenomena. Also it has been reported
that the existence of multiple conformations of PrP assemblies within an isolate contributes to
the adaptation and evolution of Prion as a pathogen to a new environment and a new host,
see [29]. Further biochemical characterizations are required to explore the dynamics of these
oscillations and to establish more precise kinetic models. The methodology developed in the
present work will lead to analyze and characterize with specific parameters transient oscilla-
tions. These parameters will lead to evaluate physico-chemical conditions as well as the dynamic
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of the present complex system.

5 Conclusion

In this study, we have introduced a novel method, based on a certain nonlinear analysis of
the discrete Fourier transform of a nonstationary signal, in order to quantify high frequency
features and then test whether the parameters characterizing these features may be considered
as significant or not. We then tested the performance of our method on simulated and exper-
imental data. We obtained numerical evidence of its efficiency: HF features may be detected
even with a noise of comparable amplitude. Moreover, the two parameters estimated from
the data that characterize the HF are informative per se: they can be used by practitioners
in order to compare different experimental conditions and their influence on such transient
phenomena in the signals. They may also reveal useful in the search for quantitative comparison
between mechanistic models, such as the one proposed in [7], and experimental data. Our
testing procedure for detecting HF feature is based on the projection of the signal in a discrete
Fourier basis. A further step, in order to localize them, would be to define them in terms of
wavelet bases [23, 4, 24, 3]. The number of parameters will then be equal to three (one for the
resolution, one for the amplitude and one for the localisation on the time-scale), and the test of
hypothesis has to be extended to this framework. This is a direction for future work.

A Materials and methods of the depolymerisation experiment

Formation of amyloid fibrils: PrP amyloid fibrils were formed using the manual setup protocol
described previously in [30]. Fibril formation was monitored using a ThT binding assay, see [30].
Samples were dialysed in 10 mM sodium acetate, pH 5.0. Then fibrils were collected by ultracen-
trifugation and resuspended in 10 mM sodium acetate, pH 5.0. A washing step was performed
by repeating the ultracentrifugation and resuspension steps in 10 mM sodium acetate, pH 5.0.
Static light scattering: Static light scattering kinetic experiments were performed with a ther-
mostatic homemade device using a 407-nm laser beam. Light-scattered signals were recorded at
a 112° angle. Signals were processed with a homemade MatLab program. All experiments have
been performed at 55°C in a 2mmX10mm cuve.

B Library in python to implement the numerical simulation

The numerical simulations have been made with the Python library accessible at
https://qgithub.com/mmezache/HFF Test. The functions of the library are explicitely commented
in the file ”"README.md”. The functions are organized in four categories in the library:
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1. the procedure to compute the HF features parameters,

2. the procedure to simulate the null hypothesis,

3. the Monte Carlo procedure to compute the p-value proxy,

4. the procedure to compute test signals such as the ones displayed in Figures 2, 4, 8.

The file ”ExampleHFF.py” is a python program which computes the complete procedure for a
test signal. The users may change at will the following parameters:

e the length of the signal,

the standard deviation of the noise,

the amplitude of the oscillations,

the parameter of the ¢!-trend filtering,

e the number of iteration of the Monte Carlo procedure,
e the choice of the test signal.

The program displays the test signal obtained, the trend estimate, the cloud of points corre-
sponding to the HF features of the null (blue dots) and the point corresponding to the HF
features of the tested signal (grey dot), and the single-sided amplitude spectrum of the sig-
nal which emphasizes the points where the computations of the HF features are performed (cf
Figure 3).

The computational time may be significantly long if the number of iterations of the Monte
Carlo procedure is large (over 100). However the Monte Carlo procedure can be computed in a
parallelized framework which reduces drastically the computational time.

Moreover the automatic choice of the smoothing parameter m is efficient for signals which
display oscillations of ”high” frequency, i.e. if the spike corresponding to the oscillations in
the single-sided amplitude spectrum is located away from the low-frequency components (cf
Section 3 and Example 2 in ”ExampleHFF.py”). The procedure was designed to identify os-
cillations “hidden” in the noise, a situation which corresponds to the experimental signals. If
the signal tested has oscillations located in the low frequencies, the users are advised to fix the
smoothing parameters (see Example 1 in ”ExampleHFF.py”).

C Trend estimation

We detail here the reasons for the choice of ¢! trend filtering method to estimate the trend of
the signal.
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Trend estimation or filtering for mimicking a signal with HF features removed has many
applications and hence it has been extensively studied. It has given rise to the smoothing and
filtering methods such as the moving average [31], smoothing splines [32], Hodrick-Prescott
filtering [33], ¢1-trend filtering [22] and so on. The trend is considered as the general shape
of a signal or a time series. Although the trend is often understood and perceived intuitively,
its estimator relies on the definitions given to the trend. The differences between the various
definitions of the trend are a matter of interpretation. Considering the different definitions of
the trend, the choice of the method to estimate this component is more likely qualitative. In the
following, the trend is considered as the underlying slowly varying component of the signal and
we choose the ¢1-trend filtering method described in [22] to estimate it. The estimator of ffg\?zl as
a n-dimensional vector is then the solution of the following optimisation problem (Equation (18)
above):

-1 n—2
~ 1
70 € argmin = Yy — a2+ XD [aly — 20 + 2l ),
’ ackr 24 i=1

where A > 0 is a regularisation parameter which controls the trade-off between the smoothness

~(0)

n—2
of f&ozl and the residual 377} (Z3), —y[”)Q. We note that the second term ) |z | — 2z} + 27|

i=1
is the £!-norm of the second order variations of the sequence (z") (i.e. the discretization of the
corresponding L!-norm of the second derivative of a function). Moreover, for any sequence (z™),
we have |z} | — 2z} + 2}, | = 0 for every i if and only if ! = ai + 8 for two real parameters
« and 3. Thus only an affine function has its #'-norm equal to 0. Hence this method gives an
estimator of the trend such that:

(i) 53\&0% is computed numerically in O(n) operations,

(ii) as A = 0, maxp<i<n—1 |§§OZL —y'| — 0, the estimator converges to the original data,

(iii) as A — oo, the estimator converges to the best affine fit of the observations. This conver-
gence happens for a finite value of .

~(0)

(iv) ), is piecewise linear, i.e. there are indices 0 = j; < jo < ... < jg = n — 1 for which:

~(0 . . . .
ng\ﬂ)m:OékZ‘f‘Bk, Ik << Jg+1, k=1,...,K—1

The ¢1-trend filtering method is well suited to extract the trend components of the signals
studied in Section 3. Since the signals display singularities such as discontinuous jumps, the
trend extracted is well approximated by a piecewise linear function. Moreover the HF features
in the signals are components looking like sine waves and varying at an intermediate pace.
However interpolating a sine wave by a piecewise linear function requires a fine scale and thus
the parameter A has to be close to 0. Rising slightly the value of A allows us to capture the trend
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without the HF features. Moreover there exists a nonnegative threshold Ay ax such that fg\?r)la)nn
is the trend estimator corresponding to the best affine fit, see [22]. It implies that the choice of
A is restricted to the bounded open interval (0, Apax). Since there is no optimal criterium to
choose A, the choice of the parameter is qualitative and motivated empirically (see Section 3).

As displayed in Figure 15, when noise increases, the trend is less robustly estimated.
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Figure 15: Numerical estimation of the trend on the test signals. The x-axis is the time in hours.The
parameter in the ¢1-trend filtering is A = 301. (Up) Plot of (P; +0:)g<;<105 in (20) with parameters c1 = 0.4, c2 =
, 5 =q=3,to =143, t1 = 3.30 ¢, = 0.05, ¢y = 10. The dashed line is the £;-trend estimator
when o = {5ca. (Middle) The dashed line is the £1-trend estimator when o = ¢,. (Down )The dashed line is the

{1-trend estimator when o = 10c¢,.

C3=C4=2

D Noise estimation

In this appendix, we detail the method and the parameters we chose to estimate the noise of
the signal. Noise estimation is linked to signal denoising and has been extensively studied. The
method chosen here is the median absolute deviation and the denoised signal is obtained thanks
to the wavelet shrinkage methods, see e.g. [23, 4, 24, 3].

We assume that our data y = (yi)o<i<n—1 are such that n = 2741 for J > 0. We then consider
an orthogonal wavelet transform matrix W for a given filter. Choosing wavelets (e.g. Coiflet,
Daubechies, Haar) and varying the combinations of parameters M (number of vanishing mo-
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ments), S (support width) and jy (low-resolution cut-off) one may construct various orthogonal
matrices W (see for details [34], chapter 7). In this paper we use the Symmlet with parameter
8 which has M = 7 vanishing moments and support length S = 15. The wavelet coefficients of
y are denoted by w and B

w = Wz + o€,

where E = W¢ is a standard Gaussian random vector by orthogonality of WW. For convenience,
we index dyadically the vector of the wavelet coefficients

wip §=0,....,J, k=0,...,2 —1.

We make the legitimate assumption that empirical wavelet coefficients at the finest resolution
level J are essentially pure noise. Hence the standard deviation estimator &, is the median

absolute deviation ]
. median(wy,.)

= a1/

where ®~!(-) is the inverse of the cumulative distribution function for the standard normal distri-
bution. Thus &, is a consistent estimator of o. It is interesting to note that further computations
give the VisuShrink estimator z,, of the signal (z")o<i<n—1

(21)

Tn = WTamOW, (22)
where jo denotes a low resolution cut-off and @™7° is the estimator in the wavelet domain

sign(w;,.) (Jwj,| —Fa(2logn)'/?), jo<j<J

The first reason that motivates this choice is that shrinkage methods attempt to remove
whatever noise is present and retain whatever signal is present regardless of the frequency, see [3].
The goal of this paper is to estimate HF features in noisy signals. However other methods of
noise removal such as low-pass filters are based on frequency-dependent estimators, and this
can also impact and distort the results of the HF feature procedure. The second reason is that
these methods are data-driven and no specific assumptions on the signal are required. Wavelet
shrinkage is spatially adapted and the method is efficient for a wide variety of signals even
when the signals exhibit spatial inhomogeneities. Moreover, these methods are proven to be
nearly optimal for the mean squared error criterion when the smoothness of the original signal
is unknown, see [24].

E Definition of the test signal

For the general trend, we choose the Lennard Jones potential, see [35], since we notice that
its DFT is not monotonously decreasing in the low frequency range (see Figure 2) and that it

28



displays a similar shape as the experimental signals presented in Section 4. The Lennard Jones
potential is defined by F;:

Since this potential is not defined at 0, we link the potential to an affine function. Hence we
introduce the index j (0 < 7 < m — 1) which connects the potential to the affine function. We
denote the trend by the vector (T;)o<i<n—1:

P, 14— P;.

The HF features in the test signal correspond to sine waves and are located at a specific time
interval. Hence we introduce the indices 0 < jo < j1 < n — 1 which localize the oscillations in
the signal, and we define the oscillations by the vector (O;)o<i<n—1:

N . 4
0i = ca(i = jo)(j1 — @) sin(2meyi) <(]1_]0)2> Lijo<i<iny (23)

where ¢, (resp. cf) is the parameter for the amplitude ( resp. the frequency) of the oscillations.

References

[1] M. S. Pinsker, “Optimal filtration of square-integrable signals in Gaussian noise,” 1980.

[2] O. V. Lepski, E. Mammen, and V. G. Spokoiny, “Optimal spatial adaptation to inho-
mogeneous smoothness: an approach based on kernel estimates with variable bandwidth
selectors,” Ann. Statist., vol. 25, no. 3, pp. 929-947, 1997.

[3] D. L. Donoho and J. M. Johnstone, “Ideal spatial adaptation by wavelet shrinkage,”
biometrika, vol. 81, no. 3, pp. 425-455, 1994.

[4] D. L. Donoho, I. M. Johnstone, et al., “Minimax estimation via wavelet shrinkage,” The
Annals of Statistics, vol. 26, no. 3, pp. 879-921, 1998.

[5] E. Giné and R. Nickl, Mathematical foundations of infinite-dimensional statistical models.
Cambridge Series in Statistical and Probabilistic Mathematics, [40], Cambridge University
Press, New York, 2016.

[6] W. Hardle, G. Kerkyacharian, D. Picard, and A. Tsybakov, Wavelets, approximation, and
statistical applications, vol. 129 of Lecture Notes in Statistics. Springer-Verlag, New York,
1998.

29



[7]

[13]

[14]

[15]

M. Doumic, K. Fellner, M. Mezache, and H. Rezaei, “A bi-monomeric, nonlinear Becker-
Doéring-type system to capture oscillatory aggregation kinetics in prion dynamics.” preprint,
Aug. 2018.

R. H. Shumway and D. S. Stoffer, Time series analysis and its applications: with R examples.
Springer, 2017.

L. H. Koopmans, The spectral analysis of time series. Elsevier, 1995.

D. S. Broomhead and R. Jones, “Time-series analysis,” Proc. R. Soc. Lond. A, vol. 423,
no. 1864, pp. 103-121, 1989.

R. Vautard, P. Yiou, and M. Ghil, “Singular-spectrum analysis: A toolkit for short, noisy
chaotic signals,” Physica D: Nonlinear Phenomena, vol. 58, no. 1-4, pp. 95-126, 1992.

M. Palus and D. Novotné, “Detecting oscillations hidden in noise: Common cycles in atmo-
spheric, geomagnetic and solar data,” in Nonlinear Time Series Analysis in the Geosciences,
pp- 327-353, Springer, 2008.

N. Golyandina, V. Nekrutkin, and A. A. Zhigljavsky, Analysis of time series structure: SSA
and related techniques. Chapman and Hall/CRC, 2001.

M. R. Allen and L. A. Smith, “Monte carlo ssa: Detecting irregular oscillations in the
presence of colored noise,” Journal of climate, vol. 9, no. 12, pp. 3373-3404, 1996.

M. Palus and D. Novotnd, “Detecting modes with nontrivial dynamics embedded in colored
noise: Enhanced monte carlo ssa and the case of climate oscillations,” Physics Letters A,
vol. 248, no. 2-4, pp. 191-202, 1998.

E. M. Stein and R. Shakarchi, Fourier analysis, vol. 1 of Princeton Lectures in Analysis.
Princeton University Press, Princeton, NJ, 2003. An introduction.

G. B. Arfken and H. J. Weber, Mathematical methods for physicists. Harcourt/Academic
Press, Burlington, MA, fifth ed., 2001.

A. B. Tsybakov, Introduction to nonparametric estimation. Springer Series in Statistics,
Springer, New York, 2009. Revised and extended from the 2004 French original, Translated
by Vladimir Zaiats.

A. Zygmund, Trigonometric series, vol. 1. Cambridge university press, 2002.

B. Efron, “Bootstrap methods: another look at the jackknife,” in Breakthroughs in statistics,
pp- 569-593, Springer, 1992.

30



[21]

22]

23]

[24]

[25]

[26]

[27]

[29]

[30]

[31]

[32]

[33]

N. L. Fisher and P. Hall, “On bootstrap hypothesis testing,” Australian Journal of Statistics,
vol. 32, no. 2, pp. 177-190, 1990.

S.-J. Kim, K. Koh, S. Boyd, and D. Gorinevsky, “¢; trend filtering,” SIAM review, vol. 51,
no. 2, pp. 339-360, 2009.

D. L. Donoho and I. M. Johnstone, “Threshold selection for wavelet shrinkage of noisy
data,” in Engineering in Medicine and Biology Society, 1994. Engineering Advances: New
Opportunities for Biomedical Engineers. Proceedings of the 16th Annual International
Conference of the IEEE, vol. 1, pp. A24-A25, IEEE, 1994.

D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, and D. Picard, “Wavelet shrinkage:
asymptopia?,” Journal of the Royal Statistical Society. Series B (Methodological), pp. 301—
369, 1995.

S. B. Prusiner, “Prions,” Proceedings of the National Academy of Sciences, vol. 95, no. 23,
pp. 13363-13383, 1998.

G. Legname, 1. V. Baskakov, H.-O. B. Nguyen, D. Riesner, F. E. Cohen, S. J. DeArmond,
and S. B. Prusiner, “Synthetic mammalian prions,” Science, vol. 305, no. 5684, pp. 673676,
2004.

S. Prigent, A. Ballesta, F. Charles, N. Lenuzza, P. Gabriel, L. M. Tine, H. Rezaei, and
M. Doumic, “An efficient kinetic model for assemblies of amyloid fibrils and its application
to polyglutamine aggregation,” PLoS One, vol. 7, no. 11, p. e43273, 2012.

J. Buckheit, S. Chen, D. Donoho, I. Johnstone, and J. Scargle, “Wavelab reference manual,”
Version 0.700, December, 1995.

J. Li, S. Browning, S. P. Mahal, A. M. Oelschlegel, and C. Weissmann, “Darwinian evolution
of prions in cell culture,” Science, vol. 327, no. 5967, pp. 869-872, 2010.

L. Breydo, N. Makarava, and 1. V. Baskakov, “Methods for conversion of prion protein into
amyloid fibrils,” in Prion Protein Protocols, pp. 105-115, Springer, 2008.

L. Xu, P. C. Ivanov, K. Hu, Z. Chen, A. Carbone, and H. E. Stanley, “Quantifying signals
with power-law correlations: A comparative study of detrended fluctuation analysis and
detrended moving average techniques,” Physical Review E, vol. 71, no. 5, p. 051101, 2005.

C. H. Reinsch, “Smoothing by spline functions,” Numerische mathematik, vol. 10, no. 3,
pp. 177-183, 1967.

M. O. Ravn and H. Uhlig, “On adjusting the hodrick-prescott filter for the frequency of
observations,” Review of economics and statistics, vol. 84, no. 2, pp. 371-376, 2002.

31



[34]

[35]

[40]

[41]

[42]

S. Mallat, A wavelet tour of signal processing. Elsevier, 1999.

J. E. Jones, “On the determination of molecular fields.—ii. from the equation of state
of a gas,” Proceedings of the Royal Society of London. Series A, Containing Papers of a
Mathematical and Physical Character, vol. 106, no. 738, pp. 463-477, 1924.

A. Moghtaderi, P. Flandrin, and P. Borgnat, “Trend filtering via empirical mode decompo-
sitions,” Computational Statistics & Data Analysis, vol. 58, pp. 114-126, 2013.

A. Harvey, “Trends, cycles and autoregressions,” The Economic Journal, vol. 107, no. 440,
pp- 192201, 1997.

J. Collinge, “Prion diseases of humans and animals: their causes and molecular basis,”
Annual review of neuroscience, vol. 24, no. 1, pp. 519-550, 2001.

W.-F. Xue, S. W. Homans, and S. E. Radford, “Systematic analysis of nucleation-dependent
polymerization reveals new insights into the mechanism of amyloid self-assembly,” PNAS,
vol. 105, pp. 8926-8931, 2008.

J. Collinge and A. R. Clarke, “A General Model of Prion Strains and Their Pathogenicity,”
Science, vol. 318, no. 5852, pp. 930-936, 2007.

M. Mezache, M. Doumic, V. Béringue, and H. Rezaei, “Structural polydispersity of Prion
assemblies governs their constitutional dynamic.” work in progress.

M. Bishop and F. Ferrone, “Kinetics of nucleation-controlled polymerization. A pertur-
bation treatment for use with a secondary pathway,” Biophysical Journal, vol. 46, no. 5,
pp. 631-644, 1984.

P. M. Tessier and S. Lindquist, “Unraveling infectious structures, strain variants and species
barriers for the yeast prion [PSI+],” Nature Structural and Molecular Biology, vol. 16, no. 6,
p. 598, 2009.

J. B. Rayman and E. R. Kandel, “Functional prions in the brain,” Cold Spring Harbor
perspectives in biology, vol. 9, no. 1, p. a023671, 2017.

M. Jucker and L. C. Walker, “Self-propagation of pathogenic protein aggregates in neu-
rodegenerative diseases,” Nature, vol. 501, no. 7465, p. 45, 2013.

A. Tgel-Egalon, M. Moudjou, D. Martin, A. Busley, T. Knépple, L. Herzog, F. Reine, C.-A.
Richard, V. Béringue, H. Rezaei, et al., “Reversible unfolding of infectious prion assemblies
reveals the existence of an oligomeric elementary brick,” PLoS pathogens, vol. 13, no. 9,
p. €1006557, 2017.

32



[47] D. C. Bolton, M. P. McKinley, and S. B. Prusiner, “Identification of a protein that purifies
with the scrapie prion,” Science, vol. 218, no. 4579, pp. 1309-1311, 1982.

[48] R. N. Bracewell and R. N. Bracewell, The Fourier transform and its applications,
vol. 31999. McGraw-Hill New York, 1986.

[49] A. Moghtaderi, P. Borgnat, and P. Flandrin, “Trend filtering: empirical mode decompo-
sitions versus £ — 1 and hodrick—prescott,” Advances in Adaptive Data Analysis, vol. 3,
no. 01n02, pp. 41-61, 2011.

[50] L. R. Rabiner and B. Gold, “Theory and application of digital signal processing,” Englewood
Cliffs, NJ, Prentice-Hall, Inc., 1975. 777 p., 1975.

[51] I. Daubechies, Ten lectures on wavelets, vol. 61. Siam, 1992.

33



	Characterisation of high frequency features
	Testing for HF features
	Construction of a statistical test
	A Monte Carlo procedure for the simulation of the null

	A simulation example for a proof of concept
	Empirical analysis on biological data
	Conclusion
	Materials and methods of the depolymerisation experiment
	Library in python to implement the numerical simulation
	Trend estimation
	Noise estimation
	Definition of the test signal

