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ABSTRACT: The formation of a thin film electrode exhibiting high capacity and high rate capabilities is challenging in
the field of miniaturized electrochemical energy storage. Here, we present an elegant strategy to tune the morphology and
the properties of sputtered porous Nb2O5 thin films deposited on Si-based substrates via the magnetron sputtering
deposition technique. Kinetic analysis of the redox reactions is studied to qualify the charge storage process, where we
observe a non-diffusion-controlled mechanism within the porous niobium pentoxide thin film. To improve the surface
capacity of the Nb2O5 porous electrode, the thickness is progressively increased up to 0.94 μm, providing a surface
capacity close to 60 μAh·cm−2 at 1 mV·s−1. The fabrication of high energy density miniaturized power sources based on
the optimized T-Nb2O5 films could be achieved for Internet of Things applications requiring high rate capability.
KEYWORDS: Nb2O5, sputtering, thin film, lithium intercalation, fast kinetics

Powering wireless nodes is one of the major challenges
within society for the future Internet of Things (IoT),
where embedded electronics devices and sensors are

connected together to collect and exchange data.1 Indeed,
continuous development and further miniaturization of
electronic devices such as smartphones, GPS, and tablets greatly
stimulate research on the fabrication of small and compact
electrochemical energy storage (EES) sources. These small
footprint area EES sources have to be efficient in terms of
energy, power density, cyclability, and lifespan and should be
directly integrated on chips to allow the development of
autonomous, sustainable, and connected IoT devices.2,3 To
significantly improve the energy density of miniaturized
electrochemical capacitors (micro-supercapacitor, MSC) while
keeping the power capability of such small devices high,4 a

specific class of microdevices with high energy and power
densities able to charge and discharge at high cycling rates has to
be developed. To reach this goal, the micro-supercapacitor
topology moves from a symmetric configuration (carbon/
carbon, RuO2/RuO2, etc.)taking into account capacitive or
pseudocapacitive electrodesto a hybrid one. Combining the
advantage of a capacitive electrode with that of a high-power
battery electrode (microbatteries, MB) in an organic electrolyte
is an attractive solution to fulfill the requirements. In fact, the
energy density of electrochemical capacitors changes with the
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voltage squared; as a result, an increase from 1 V (typical cell
voltage value when operating in aqueous electrolyte) to 3 V leads
to a 9-fold increase in the energy density. This is the reason that
one important challenge for supercapacitors and micro-super-
capacitors is to use high (pseudo)capacitive materials operating
in a large potential window. However, transferring the
hybridation concept,5 which combines a faradic electrode with
a capacitive-like electrode, from the macroscale down to the
microscale is challenging. Such a combination allows improving
the energy density thanks to the faradic contribution of the
battery-type electrode and higher cell voltage. Recently,
numerous Li-ion battery (LIB) materials for high-power
applications have been investigated where nanosized, highly
conductive, and porous-shaped particles are the three key
parameters allowing producing high cycling rate and high energy
density electrodes. As a matter of fact, materials achieving fast
lithium ion intercalation via non-diffusion-controlled reaction
kinetics have been prepared, such as MoO3,

6,7 TiO2,
8−12

MoO2,
13 LiMnO2,

14 and Nb2O5.
15−17

Charge storage in Nb2O5 occurs through the intercalation of
lithium ions with concomitant reduction of Nb5+ to Nb4+

expressed as

+ + →+ −x xNb O Li e Li Nb Ox2 5 2 5 (1)

where x = 2 corresponds to the maximum theoretical capacity18

of 200 mAh·g−1. To improve the energy density of the carbon-
based MSC, the use of Nb2O5 as electrode active materials is
promising, as already reported for a classical electrochemical
capacitor (EC).19

Nb2O5 is an insulating material (σelec ≈ 3 × 10−6 S·cm−1)20,21

and exhibits 16 polymorphs, which can be obtained mainly
through thermal treatments.15 The formation of each Nb2O5
polymorph depends on the initial precursors, synthesis methods,
and heat treatment conditions. The crystalline pseudohexagonal
TT-Nb2O5 and orthorhombic T-Nb2O5 phases exhibit Li+

intercalation where a continuous change of potential with
state of charge indicates that the lithium intercalation occurs
with a single-phase material since their crystalline structure
offers suitable transport pathways. B. Dunn et al.16,17,22 have
shown that the orthorhombic form of Nb2O5 (T-Nb2O5) could
deliver high capacitance at high rate (up to 1000C), confirming
the fast lithium ion intercalation/deintercalation processes in
such a bulk porous and nanostructured material.16

Integrating Nb2O5 material into small IoT devices requires
the miniaturization of the EES source; in that aim, the use of thin
film electrodes synthesized by vapor deposition techniques
offers attractive opportunities. The fabrication process on silicon
chips has to be compatible with the facilities used in the
microelectronic industry. Among existing thin film deposition
technologies to produce binder-free electrodes,24 magnetron
sputtering is a powerful tool where the film structure and
properties can be tuned according to the deposition parameters
(sputtering power, gas pressure, deposition temperature,
deposition time).
The present study aims at depositing porous Nb2O5 thin films

by a dc sputtering technique from a metallic niobium target
under an Ar/O2 atmosphere. To reach this goal, the pressure is
tuned to study the evolution of the film morphology from
compact to porous shape. The as-deposited film is then annealed
to transform the amorphous Nb2O5 (a-Nb2O5) thin films into
porous crystallized TT-Nb2O5 or T-Nb2O5 films exhibiting high
capacity at high cycling rate. Once the optimization of the
electrochemical properties is reached, the electrode perform-
ance has to be maximized: hence, we study the increasing of the
film thickness while keeping porous the film morphology to
promote the fast lithium interaction process in the crystallized
Nb2O5 layers.

Figure 1. (A) Overview of the electrode design for hybrid microdevices: an amorphous layer is deposited by dc-MS and annealed to form the
desiredNb2O5 polymorphs (TT-Nb2O5 or T-Nb2O5). (B) Evolution of theNb2O5 crystalline phase as a function of the annealing temperature in
high-resolution parallel beam configuration. High-temperature XRD patterns of Nb2O5 film deposited on a Si wafer as a function of the
annealing temperature, from 500 up to 1050 °C under an air atmosphere. (C) Focus on the diffraction peaks at 2θ = 28.5° and 36.7°
corresponding to the (180), (200) and (181) (201) planes of the orthorhombic phase, respectively, and (100), (101) of the hexagonal one.



RESULTS AND DISCUSSION

Optimization of the Annealing Temperature. As
mentioned previously, the purpose of this study is thus to
prepare sputtered and crystallized Nb2O5 porous thin films able
to favor the fast Li-ion transport along specific crystallographic
pathways (Figure 1A). In this regard, in situ high-temperature X-
ray diffraction (HT-XRD) analysis is performed on the as-
deposited sample to determine the crystallization temperatures
of the Nb2O5 polymorphs. Nb2O5 (0.1 μm thick) thin films
deposited at 10−2 mbar on a silicon wafer resulted in the
formation of amorphous Nb2O5 (a-Nb2O5). XRD patterns are
recorded during an annealing process every 25 °C from 50 to
1100 °C in order to determine the annealing temperatures
required to reach the formation of the different Nb2O5
polymorphs. Figure 1B shows clearly a three-step process.
From room temperature (RT) to 550 °C, the niobium pentoxide
thin film is amorphous (a-Nb2O5). Starting from 575 °C, the
pseudohexagonal structure TT-Nb2O5 is identified (JCPDS 00-
028-0317). A splitting of the diffraction peaks (Figure 1C) at 2θ
= 28° and 36.5° is observed when the annealing temperature is
higher than 650 °C, resulting from the formation of the
orthorhombic polymorph T-Nb2O5 (JCPDS 00-030-0873).
From 650 to 700 °C, a mix between the TT-Nb2O5 and the T-
Nb2O5 phases is observed, and at temperature higher that 700
°C the pure T-Nb2O5 expected phase is obtained.
Based on these structural conclusions, sputtered Nb2O5 thin

films deposited on an Al2O3/Pt current collector are ex situ
annealed during 2 h under an air atmosphere at 700 °C to obtain
the expected orthorhombic phase.23 Scanning electron micros-
copy (SEM) cross section imaging, ex situ X-ray diffraction
analyses, and cyclic voltammetry between 1 and 3 V vs Li/Li+ are
shown in Figure SI1. The film morphology is found to be highly
dense and homogeneous. From the corresponding XRD pattern,
a preferential orientation is observed since only the diffraction
peak of the (181) plane is visible (Figure SI1-B). From an
electrochemical point of view, the observed signature is the
expected one. A drastic loss of current during the first cycle and a
delamination of the thin film from the substrate is observed
(Figure SI1-C). Such delamination is classically observed when
the mechanical stress in the film is high and/or when the thin
film crystalline network does not offer suitable transport
pathways required for Li+ intercalation. In these T-Nb2O5
films (100 nm thick), the stress is known to be high regarding
both the film density (4 g·cm−3) and the absence of columnar
morphology with intra- and intercolumnar porosities.24−26

Moreover, as already pointed out, our thin film exhibits a strong
preferential orientation along only one direction plane without
the [001] crystallographic direction, the most energetically
favorable pathways for facile Li.27 To avoid these problems, the
Nb2O5 microstructure has to be porous, stress free, without any
cracks or failures, and polycrystalline. Such morphology is
similar to the T-Nb2O5 nanoparticles synthesized by B. Dunn et
al.22 and also enhances the material/electrolyte interface area.
To produce such a porous T-Nb2O5 film by a sputtering

technique, a tuning of both the sputtering deposition conditions
within the chamber and of the thermal treatment is achieved to
fulfill the electrochemical performance requirements.
Tuning of the Film Morphology with the Deposition

Pressure. Table 1 summarizes the deposition parameters of as-
deposited Nb2O5 obtained at different pressures, deposition
times, and annealing temperatures (samples 1 to 10). Figure 2A
shows the SEM cross section of sputtered Nb2O5 thin films

obtained at different pressure conditions and annealed at T =
700 °C under N2 (samples S1−S4). The melting point of the
Nb2O5 compound is Ta = 1793.15 K. For depositions at room
temperature, the T

Tm
ratio is lower than 0.2 and the film

morphology is found to be in zone T from the Thornton
structure zone model (SZM). Indeed, at low pressure (samples
S1 and S2) thin films exhibit dense granular-like structure, and
the surface roughness is very low (∼2 nm). The film
densification at low pressure is a consequence of the peening
effect and can induce mechanical stress of the thin film. When
the pressure is increased (S3 and S4), the morphology moves to
a porous granular-like structure with a surface roughness that is
still low (∼4.5 nm).
To obtain a stable Nb2O5 microstructure without cracks and

failures, the stress induced by the Nb2O5 films grown on the
silicon wafer has to be investigated. For that purpose, the
curvature radius before and after the sputtering deposition has
been measured and the film stress evaluated using the Stoney
formula (Figure 2B). The mechanical stress is minimized at 0.75
× 10−2 and 2.5 × 10−2 mbar deposition pressure. Nevertheless,
to deposit Nb2O5 thin films without cracks and failures, the
higher pressure (2.5 × 10−2 mbar) offers the best compromise
between the roughness and the mechanical stress.
In addition, the kinetics of the lithium ion intercalation

process as a function of pressure for T = 700 °C is examined.
Figure 2C shows the cyclic voltammetries (CVs) of the four
samples (S1 to S4) at 1 mV·s−1 in 1M LiClO4 in ethyl carbonate
(EC)/dimethyl carbonate (DMC) (1:1) between 1.0 and 3.0 V
vs Li/Li+. The four cyclovoltamograms are different due to the
type of Nb2O5 polymorphs obtained according to the deposition
pressure. As a matter of fact, if the pressure is higher than 2.5 ×
10−2 mbar, the film exhibits a T-Nb2O5 orthorhombic structure,
as depicted in the diffractograms reported in Figure SI2. Two
strong (180) and (200) diffraction peaks occurring at 28.5° are
observed, suggesting fast lithium ion transport in such
crystallographic pathways. When the pressure is lower than 2.5
× 10−2 mbar, the TT-Nb2O5 polymorph is clearly highlighted:
only one peak is observed at 28.5°. Therefore, the CVs of
samples S3 and S4 are different from the CVs of samples S1 and
S2 regarding the number of reduction peaks. A similar
observation was reported by B. Dunn et al.16 in 2012. The
Nb2O5 film deposited at 2.5 × 10−2 mbar exhibits higher
capacitance and rate capability, demonstrated by the reversible
electrochemical signature and the largest current response. The
porous microstructure of the sputtered Nb2O5 films at high
pressure is assumed to be responsible for the fast intercalation
process of the lithium ion within the bulk material.

Table 1. Deposition and Annealing Conditions of the
Samples under Test

pressure
(mbar)

thickness
(nm)

time
(min)

annealing
(°C)

sample
name

7.5 × 10−3 100 20 700 S1
1 × 10−2 100 24 700 S2
2.5 × 10−2 100 30 700 S3
5 × 10−2 100 30 700 S4
2.5 × 10−2 100 30 600 S5
2.5 × 10−2 100 30 650 S6
2.5 × 10−2 100 30 750 S7
2.5 × 10−2 290 90 650 S8
2.5 × 10−2 580 180 650 S10
2.5 × 10−2 940 270 650 S11

http://pubs.acs.org/doi/suppl/10.1021/acsnano.9b01457/suppl_file/nn9b01457_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsnano.9b01457/suppl_file/nn9b01457_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsnano.9b01457/suppl_file/nn9b01457_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsnano.9b01457/suppl_file/nn9b01457_si_001.pdf


Then, the influence of annealing treatment was studied. For
that purpose, Nb2O5 films deposited at 2.5 × 10−2 mbar have
been annealed during 5 min under a N2 atmosphere at 600, 650,
700, and 750 °C (rapid thermal annealing process).
The XRD of the S3, S5, S6, and S7 samples is shown in Figure

3A and confirms that all the thin films are polycrystalline (no
preferential orientation is observed whatever the annealing
temperature is). Here also, the formation of the TT-Nb2O5
polymorph is observed between 550 and 650 °C, a mix between
the TT-Nb2O5 and T-Nb2O5 phases is achieved at 650 °C, while
the synthesis of the T-Nb2O5 occurs beyond 650 °C.
Figure 3B shows the CV analysis of the TT-Nb2O5, T-Nb2O5,

and mixed phase films at 1 mV·s−1 in 1 M LiClO4−EC/DMC

(1:1). Based on the potential difference (inset) between the
oxidation/reduction peaks at 1.7 V vs Li/Li+, the fast lithium
intercalation/deintercalation process is more reversible in the
TT-Nb2O5/T-Nb2O5 mixed phase at 650 °C compared to the
others.
Based on these optimizations, the deposition pressure and

annealing temperature are fixed at 2.5 × 10−2 mbar and at 650
°C under N2 during 5 min, respectively: in that case, a mixed
phase is obtained.
Figure 4A shows cyclic voltammetries for sweep rates between

1 and 100 mV·s−1. For sample S8 (300 nm thick) deposited at
2.5× 10−2 mbar two broad cathodic peaks at about 1.5 and 1.8 V
vs Li/Li+, corresponding to Li-ion intercalation into Nb2O5, are

Figure 2. Study of 100 nm thick Nb2O5 thin films deposited at different pressures (0.75, 1, 2.5, and 5× 10−2 mbar). All the layers are annealed at
700 °C under N2 during 5 min. (A) SEM cross section analyses as a function of the deposition pressure. (B) Evolution of the intrinsic stress and
the roughness regarding the deposited pressures. (C) Cyclic voltamperometry at 1mV·s−1 between 1 and 3 V vs Li/Li+ of the four studiedNb2O5
layers. The inset reports the surface capacity as a function of the pressure at different sweep rates. From this study, a deposition pressure at 2.5×
10−2 mbar provides the optimal electrochemical performance.

Figure 3. (A) X-ray diffraction analysis of Nb2O5/Pt/Al2O3/Si samples regarding the annealing temperature (P = 2.5 × 10−2 mbar kept
constant), from 600 up to 750 °C (the diffractograms are normalized to the (111) peak of Pt at ∼40°). All the samples are annealed under N2
during 5min. (B) Cyclic voltammetry at 10mV·s−1 between 1 and 3 V vs Li/Li+ of the four samples, demonstrating the dependent redox activity
with the crystalline polymorphic structure. The inset reports the potential difference between the oxidation and reduction peaks as a function of
the annealing temperature at different sweep rates. From this study, an annealing temperature of 650 °C provides the optimal electrochemical
performance (more reversible CV and lower ΔE).



observed. During the reverse scan, the set of broad anodic peaks
around 1.75 and 1.5 V vs Li/Li+ corresponding to Li-ion
deintercalation from the LixNb2O5 host structure are also
observed but a noticeable peak shift and peak separation are

shown when the sweep rate increases. Moreover, the capacity
remains reversible.
Constant current charge and discharge cycles of the sample

are shown in Figure 4B. A capacity of 160 mAh·g−1 is achieved at

Figure 4. Electrochemistry analysis of sample S8 (thickness = 290 nm, P = 2.5 × 10−2 mbar, and T = 650 °C under N2 during 5 min). The
electrolyte used is 1M LiClO4 in EC/DMC (1:1). (A) Cyclic voltammetries between 1 and 3 V vs Li/Li+ as a function of sweep rate (1 up to 100
mV·s−1). (B) Galvanostatic cycling of the sample at 1C rate.

Figure 5. Study of the Nb2O5 performance as a function of the film thickness (P = 2.5× 10−2 mbar,T = 650 °C under N2 during 5min). (A) SEM
cross section analysis of the three Nb2O5 layers S9, S10, and S11. (B) Cyclic voltammetry of S8, S9, and S10 at 1mV·s−1 between 1 and 3 V vs Li/
Li+.

Figure 6. (A) Evolution of the surface capacity as a function of the film thickness at different sweep rates (1, 5, and 10mV·s−1) and (B) evolution
of the normalized capacity delivered by the Nb2O5 electrodes.



1C rate, with a quasi-linear change of the potential with the
charge Q.
Improvement of the Electrode Performance for a

Miniaturized Power Source. To fulfill the energy require-
ment of miniaturized IoT devices, the surface capacity of the
electrode has to be improved. An attractive solution to increase
the areal capacity of a mixed phase annealed at 650 °C under N2
during 5 min and deposited at 2.5 × 10−2 mbar is to increase the
thickness of the Nb2O5 layers. For this purpose, deposition times
are varied (Table 1). From the SEM cross section imaging
(Figure 5A), samples S8, S9, and S10 show a porous granular-
like structure, while the charge of the CVs (Figure 5B) increases
with the active mass loading (i.e., the thickness) of the Nb2O5
electrodes. However, as shown in Figure 6A, the areal capacity
measured between 3 and 1 V vs Li/Li+ reaches 60 μAh·cm−2 at 1
mV·s−1 for a 0.94 μm thick Nb2O5 film (63.8 μAh·cm−2.μm−1).
The surface capacity does not increase linearly with the film
thickness, leading to a small decrease of the volumetric capacity
(Figure 6B) for thicker layers. Nevertheless Figure SI3-A
presents a plot of the cathodic and anodic peak currents
observed from the voltammograms of Figure 4B as a function of
sweep rate between 1 and 100 mV·s−1. It is commonly accepted
that in a sweep voltammetry experiment the current obeys a
power-law28 relationship with eq 2:

=I avb (2)

where I is the current (A), v is the potential sweep rate (mV·s−1),
and a and b are specific coefficients related to the diffusion
process. The b-coefficient of sample S8 is close to 0.9 for
cathodic and anodic currents, indicating that the kinetics is
surface-controlled, and thus the charge storage process is fast.
For S10, the b-value decreases to 0.7 and 0.75 for anodic and
cathodic currents, respectively, showing the emergence of
diffusion constraints or an increase of the ohmic contribution
at high sweep rate (>25 mV·s−1). This limitation is
fundamentally different from battery materials, which are
generally characterized by b = 0.5, indicative of a semi-infinite
diffusion process.
The Nyquist plots (Figure SI3-B) of samples S8, S9, and S10

at 1.6 V vs Li/Li+ exhibit an increase of the high-frequency loop
and equivalent series resistance with the film thickness. This
behavior can be attributed to the low electronic conductivity of
the Nb2O5 material together with the thin film morphology that
consists of large agglomerated clusters of particles with only
intercolumnar porosity (spacing between columns).

CONCLUSION
The present work deals with the synthesis and electrochemical
optimization of Nb205 electrodes deposited by dc magnetron
sputtering on an Al2O3/Pt-coated silicon wafer. Amorphous
Nb2O5 thin films are sputtered on a Pt-coated silicon wafer and
crystallized into a Nb2O5 mixed phase by annealing at 650 °C
under N2 during 5 min. The sputtering deposition pressure is
tuned to promote the formation of porous niobium pentoxide
films. Such synthesis conditions favor the formation of a
polycrystalline structure exhibiting a porous microstructure
required for efficient and fast Li-ion intercalation. The
electrochemical analysis demonstrates the absence of diffusion
limitations and highlights fast Li-intercalation at 1 mV·s−1.
Further studies dealing with the improvement of the Nb2O5
electronic conductivity as well as the evolution of the crystal
structure upon cycling using in situ/operando X-ray diffraction
analyses on thin film electrodes will be achieved in the near

future. Such work clearly validates the important role of the
electrode morphology for the fabrication of fast electrochemical
energy storage devices for IoT applications.

METHODS
Thin Film Synthesis. Niobium pentoxide (Nb2O5) thin films are

deposited by reactive direct current magnetron sputtering (dc-MS) in a
CT 200 cluster from Alliance Concept using a metallic niobium target
(99.9%, 10 cm diameter, 6 mm thick) under an argon and oxygen
atmosphere. The distance between the target and the substrate holder is
fixed to 60 mm. Depositions have been carried out on a (100) silicon
substrate (diameter = 7.6 cm) coated by layers of Al2O3 (thickness =
100 nm) and platinum (thickness = 50 nm). The Pt layer, acting as the
current collector, is evaporated using a Plassys MEB 550S apparatus,
while the Al2O3 layer, deposited by atomic layer deposition (ALD) in a
Picosun R200 reactor, acts as a diffusion barrier to prevent the Pt−Si
interdiffusion responsible for the formation of a PtSi alloy, which is
likely damaging the current collector.24,25

Before sputtering, the CT 200 cluster is pumped down to 10−6 mbar.
The power density is kept at 1 W·cm−2 during the sputtering
deposition, while the deposition was achieved at room temperature.
Four operating pressures have been studied: 7.5 × 10−3, 1× 10−2, 2.5×
10−2, and 5 × 10−2 mbar. The argon and oxygen flow rates are kept
constant at 60 and 10 sccm, respectively. The thickness of the sputtered
Nb2O5 layers is governed by both the deposition time and the working
pressure. After synthesis, the as-deposited stacked layers (Nb2O5/Pt/
Al2O3/Si) are annealed at 600, 700, or 750 °C under N2 during 5 min in
an RTA JIPELEC furnace to reach the formation of the TT-, mixed-, or
T-Nb2O5 polymorphs, respectively. The deposition time is then
increased to deposit different thickness Nb2O5 films.

Morphological, Structural, and Electrochemical Character-
izations. The morphology and the thickness of the thin films are
determined by SEM) with a Zeiss Ultra electron microscope. The
surface roughness is measured by atomic force microscopy (AFM
Dimension 3100). To investigate the structure and the crystalline
orientation of obtained films, a Rigaku Smartlab multipurpose 6-axis
diffractometer (9 kW rotating anode) is used in a high-resolution
parallel beam mode (with Soller slits of 5° and a PSD 1D detector
DTEX) delivering Cu Kα radiation (lambda = 1.5406 Å). In situ X-ray
diffractionmeasurements are performed in a temperature range from 25
to 1000 °C using a DHS 1100 air-filled chamber.

Electrochemical characterizations of the thin films were conducted in
cells operated in an Ar-filled Fibox. The cells are assembled in a
glovebox under an Ar atmosphere, using a Nb2O5 thin film as working
electrode and pure lithiummetal (Sigma-Aldrich) as both reference and
counter electrodes. A mixture of 1 M lithium perchlorate salt (LiClO4
Sigma-Aldrich) dissolved in EC and DMC, in 1:1 proportion, is used as
the liquid electrolyte. Cyclic voltammetry, electrochemical impedance
spectroscopy (EIS), and galvanostatic cycling with potential limitations
were performed using a multichannel Biologic VMP3 potentiostat in a
two-electrode configuration. EIS measurements are conducted after
cycling by applying a 5.0 mVRMS sinusoidal signal amplitude from 100
kHz to 10 mHz at the open-circuit potential at different voltages (from
2 down to 1.1 V vs Li/Li+).
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(28) Lindström, H.; Södergren, S.; Solbrand, A.; Rensmo, H.; Hjelm,
J.; Hagfeldt, A.; Lindquist, S.-E. Li+ Ion Insertion in TiO2 (Anatase). 2.
Voltammetry on Nanoporous Films. J. Phys. Chem. B 1997, 101, 7717−
7722.

mailto:simon@chimie.ups-tlse.fr
mailto:Christophe.lethien@univ-lille.fr
http://orcid.org/0000-0001-7243-7293
http://orcid.org/0000-0002-0461-8268
http://orcid.org/0000-0001-8906-8308


1

Fast Electrochemical Storage Process In Sputtered Nb2O5 

Porous Thin Films
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Figure SI1: A. SEM cross section analysis of the Nb2O5 thin film deposited at 2.5 x10-2 

mbar and annealed under air at 700°C during 2h. B. X-ray diffraction analysis after air 

annealing showing a preferential orientation at 36.7°. C. First two cycles of cyclic 
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voltammetry at 1 mV.s-1 showing the current leakage, consequently the thin film 

delamination.
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Figure SI2: Diffractogramms of the S1-S4 samples as a function of the deposition 

pressures (700 °C).
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Figure SI3: Nb2O5 thin films deposited with different thicknesses annealed at 650 °C under 

N2 during 5 minutes. A. Cathodic and anodic currents as a function of sweep rate. B. 

Nyquist plots spectra between 100 KHz and 10 mHz at 1.6 V vs Li/Li+. C. Focus on the 

high frequency.
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Figure SI4: A. Nyquist plots spectra between 100 KHz and 10 mHz as a function of the 

applied potential vs Li/Li+. B. Focus on the high frequency.

Electrochemical impedance spectroscopy (EIS) study is achieved to get a better 

understanding of the lithium ion transport process into the Nb2O5 electrode. EIS 

measurements are made at constant potentials between 2.0 and 1.2 V vs Li/Li+, i.e. in the 

redox active region of the crystallized Nb2O5 electrode. Nyquist plots presented in figure 

SI4A and SI4B show a small loop in the high frequency region (about 10 ohm.cm²) which 

does not change with the bias potential applied. Such a high frequency loop is connected 

to the contact impedance at the substrate / Nb2O5 film interface. The high frequency 

resistance (Equivalent Serie Resistance ESR) are measured at 40 ohm.cm², which stays 
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low, thanks to the small thickness of the Nb2O5 film. When the frequency is decreased, 

the Nyquist plot shows the typical features of a pseudocapacitive charge storage 

mechanism with a fast, quasi-vertical increase of the imaginary part of the impedance, 

resulting from the fast, pseudocapacitive Li intercalation reaction mechanism in the Nb2O5., 

as previously reported27




