
HAL Id: hal-02263433
https://hal.science/hal-02263433

Submitted on 4 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model Quality Assessment in Practice: How to Measure
and Assess the Quality of Software Models During the

Embedded Software Development Process
Ingo Stürmer, Hartmut Pohlheim

To cite this version:
Ingo Stürmer, Hartmut Pohlheim. Model Quality Assessment in Practice: How to Measure and Assess
the Quality of Software Models During the Embedded Software Development Process. Embedded Real
Time Software and Systems (ERTS2012), Feb 2012, Toulouse, France. �hal-02263433�

https://hal.science/hal-02263433
https://hal.archives-ouvertes.fr

Model Quality Assessment in Practice: How to Measure and Assess
the Quality of Software Models During the Embedded Software

Development Process

Ingo Stürmer, Hartmut Pohlheim
Model Engineering Solutions GmbH, Friedrichstr. 55, 10117 Berlin, Germany

Abstract: In this paper we present an approach for assessing the quality of model-based
software projects. We demonstrate this approach in embedded software projects in the
automotive domain. Our methodology can however be extended to other fields of
software development. In general, the quality assessment of software projects is often
based on quality criteria such as maintainability, testability, readability of the software or
the software model. Our approach expands this basic assessment in that we assess the
quality of a project on the basis of the success or degree of realization of quality
operations (testing, reviews, etc.) respectively. Furthermore, we do not focus on single
artifacts of the development process (e.g. model or code); rather we take all relevant
development artifacts into account and use their interrelations to obtain metrics and key
figures. We demonstrate our approach using our tool, Model Quality Assessment Center
(MQAC), which was expressly developed for this purpose.

1 Introduction
In the automotive domain as well as in the avionics sector, the approach to developing embedded
software has changed in recent years. Executable graphical models are now used at all stages of
development: from the initial design phase to implementation. Model-based design is now recognized
in process standards such as the upcoming ISO 26262 standard for the automotive domain and the
DO-178C standard for the avionics sector. Software models are used in different stages of embedded
software development. They are used for verifying functional requirements as an executable
specification, and also as so-called implementation models used for controller code generation. The
models are designed with common graphical modeling languages, such as Simulink and Stateflow
from The MathWorks [1] in combination with automatic code generation with TargetLink by
dSPACE [2] or the Real-Time Workshop/Embedded Coder by The MathWorks. Simulink models are
growing increasingly large and complex. Large models in the automotive domain can contain up to
15,000 blocks, 700 subsystems and 16 hierarchical levels. This makes quality assurance of models an
ever more daunting undertaking. An automated approach has become necessary in order to assess
and rate model quality without an exorbitant effort. Quality assurance must be an integral part of the
entire development process from start to finish. The goal is to detect errors as early as possible in the
development process, as corrections applied at this stage only involve a limited number of
development phases. The question as to whether the quality of the software model used for code
generation is sufficient is important during the whole software development cycle. Also the question as
to which metrics and measures need to be applied to assess the quality of the models is of paramount
importance.

In this paper we discuss methods and metrics for assessing the quality of software models used in
serial production code generation in the automotive domain. We introduce our tool MQAC (Model
Quality Assessment Center), which aggregates different metrics and measures from different tools,
e.g. from requirements engineering, testing tools, code and model coverage tool, etc. An automatic
assessment of the quality metrics aggregated is also given. Finally, we will show how the developer,

the quality manager, and the project manager can be supported by the tool with automatic model
quality analysis and assessment.

1.1. Model and Code Verification

In model-based development, it is quite common to place the focus of quality assurance on the
Simulink models themselves, as well as on the generated code once the code is available. A survey of
quality assurance methods in model-based development is given in [4] and will therefore not be
discussed here in greater detail.

Figure 1: Model and code verification in model-based development

The basic principal behind model verification and code verification in model-based development is
illustrated in Fig. 1. In an early development stage, models are created on the basis of the textual
requirements specification with the goal of validating the functional behavior of the model, i.e. proving
that the execution behavior is equivalent to the specified behavior of the function to be developed.
This is characteristic for model-based development, since the function behavior can already be verified
on model level before any implemented code is available. Here, constructive as well as analytical
quality assurance methods are applied such as (1) use of modeling guidelines; (2) manual review of
the requirements specification and the model; (3) simulation and testing of the model. In a later
development stage, the ‘requirements model’ is manually converted into a so-called ‘implementation
model’, i.e. the model is augmented with implementation details for automatic code generation such as
(fixed-point) data types, scaling, function distribution, etc. The implementation model is then used for
production code generation purposes. The generated C code as well as the object code on the
embedded system is safeguarded on different test levels such as unit testing, integration testing,
system testing, etc. The quality assurance methods on code level are mainly adopted to ensure that
(1) code behavior is equivalent to model behavior; and (2) code behavior is equivalent to
implementation behavior, e.g. maximal execution time, as specified in the requirements specification.

1.2. Artifacts of Model-based Software Development

In the process of model and subsequently code development and the safeguarding thereof, different
artifacts are developed which are relevant for the quality assessment of the model, the code, and the
whole development process. These important artifacts include: (1) textual requirements specifications;
(2) the model itself (requirements and implementation model); (3) test specification and test
implementation; (4) test reports; (5) review reports for the requirements, the model, and the code; (6)
issues, i.e. bug tracking reports; etc. Additionally, different tools generate reports containing metrics

and key figures for quality assessment. Examples of these kind of reports include reports on (1) the
compliance of modeling guidelines; (2) model coverage and code coverage; (3) test coverage of the
requirements; (4) complexity measurement of the model and the code; etc.

However, model quality cannot be sufficiently assessed by only looking at the model itself; other
artifacts in the development process must also be considered. Even when all modeling guidelines are
fulfilled, complexity per subsystem is low, and the model fulfills all other statically verifiable quality
criteria, there is still no guarantee that the model possesses the desired functionality. The functionality
can only be verified through a manual model review or functional test. This is why other artifacts must
also be considered in model quality assessment. For the quality assessment of a project, it is common
practice to focus on the implementation (i.e. the software) of the function to be developed, with the
goal of measuring the success of a project. However, often appropriate methods are lacking for
assessing the actual quality of a project, e.g. at a specific time t1. One reason could be that the
implementation is not yet available at that specific point in time. This is particularly true for early
development stages. Another reason could be that the degree of function realization is not yet high
enough to obtain significant results at time t1 or tn.

2 Quality Assessment of Software Projects
No general procedure has thus far been established for the quality assessment of model-based
software projects. The factors that influence quality assessment can be delineated by means of the
typical questions that arise in the course of quality assessment. These include:

 How many test cases are specified?
 How many of the specified test cases are implemented?
 How many test cases are passed or failed?
 How many requirements are covered by test cases?
 How many requirements are realized within the model?
 How many safety-requirements are realized within the model and tested?
 How many modeling guidelines are passed or failed?
 How many model parts are easy to maintain and not too complex?
 How many model parts are covered by test cases?
 How many issues result from the model review?

Other questions may arise from different perspectives depending on the role of the people involved in
the development process:

 Developers: What is still open? Where is quality not yet sufficiently given? What has already been
accomplished?

 Integrators: What is the actual quality of modules to be integrated? What is the quality of the
integrated system?

 Project managers: How is the planning of tasks and milestones proceeding? I need a compact
overview of all project areas (development status, quality assurance status, etc.). How can I get a
fast and compact overview of problem areas?

2.1. Basic Principles of Quality Assessment in Software Projects

The basic principles of how the quality assessment of a software project can be carried out are shown
in Fig. 2. Artifacts, which are developed during the development process, are categorized by means of
specific criteria (model, code, document, etc.) and used as a basis for quality assessment.

Figure 2: Basic principles of quality assessment in software projects

The next step is to define the quality model of the project. This quality model is used as a reference on
the basis of which the artifacts are analyzed and assessed. One approach for how to develop and
adopt a quality model for Simulink models is described in [6]. In general, quality models are often
based on quality criteria such as maintainability, testability, readability of the software or the software
model. Our approach expands this basic assessment in that we assess the quality of a project on the
basis of the success or degree of realization of quality operations (testing, reviews, etc.) respectively.

Definition: Quality operations are any means which are adopted in order to obtain metrics and
(quality) key figures such as reviews of the requirements specification or test specification, execution
of a model review, execution of the model test, etc.

Furthermore, we do not focus on single artifacts of the development process (e.g. model or code);
rather we take all relevant development artifacts into account and use their interrelations to obtain
metrics and key figures. Success criteria are needed to calculate the required metrics for any of the
quality operations. In the simplest case, success criteria could be criteria such as pass/fail results.
Quality operations could also calculate the traceability of safety requirements to the software on unit
level. A respective metric could then provide key figures on how many requirements are realized and
covered within the model. Quality operations such as complexity measurement are finally used to
calculate metrics and key figures, which provide statements about modeling depth, model structure,
library concept, etc.

2.2. Quality Assessment of Model-based Software Projects

Many different factors influence the quality of model-based software projects. We will illustrate the
most important of these below (cf. Fig. 3).

Figure 3: Key factors influencing model quality

The quality of a model used in software design and code generation is determined by four main
factors:

(1) The quality of the requirements specification

(2) The scope and intensity of the model analysis, which includes complexity measurement, guideline
checking, reviews, and further static analysis methods

(3) The scope and intensity (i.e. depth) of testing

(4) The tracking and traceability of issues, which might also include software errors (bugs)

These four factors cannot be assessed individually, because their interrelation also has to be an
integral part of the quality assessment. For example, it is important to know the degree to which the
requirements are realized within the model with the goal of realizing 100% of the functional
requirements. If 80% of the functional requirements are realized, this statement might make a project
manager happy. However, it is worth bearing in mind that ‘easy’ requirements are often realized at the
start before more complex problems are addressed due to efficiency reasons and lack of time. In this
sense, the quantification of requirements is an essential factor in order to gain significant results with
regard to the degree of realization on model level. A simple method that takes this case into account is
to weight the individual requirements using numerical values or to categorize them into classes such
as easy, medium, or difficult to implement. This can also be applied to the other factors listed above.

Model analysis (cf. Fig. 3, left) focuses on the following aspects:

(1) Complexity measurement: complexity calculation and assessment of modeling depth
(subsystem hierarchy) by means of metrics. Relevant metrics are here pass/fail criteria, number of
subsystems with pass/fail. An extension to this is to weight subsystems with regard to their
complexity. An approach for this is described in [5].

(2) Adherence to modeling guidelines: here a guideline checking tool checks to which extent the
model complies with company or project-specific modeling guidelines [7]. The number of reported
pass/fail/not executed violations and messages is important here. We can expand this approach
by measuring the guideline violations for each subsystem in relation to the complexity of the
subsystems respectively.

Test management (cf. Fig. 3, right) has to answer a range of questions, such as: (1) How many tests
are specified? (2) How many specified tests are implemented? (3) How many tests are successfully
executed (goal: 100% passed)? (4) How many tests have revealed an error (fail)? (5) How many test
cases cover (i.e. test) how many requirements?

2.3. Tool Support for Quality Metrics and Key Figures

Figure 4: Tools delivering data for quality assessment

In Fig. 4 we see which tools and processes provide data for quality assessment of the software model.
First of all it, we need to track how many functional requirements are fulfilled within the model, i.e.
what proportion of requirements are implemented in the model?

Several metrics are necessary to answer these questions:

 Implemented requirements / requirements overall

 Goal: 100% of requirements to be implemented

 How far has model implementation progressed?

 An extension would be the weighting of individual requirements according to priority and the
degree of requirements implementation

2.4. Quality Values and Weighting

A comprehensive quality assessment requires quality values, which are provided by different tools that
are part of the model-based development tool chain. Based on this, the quality values need to be
aggregated and evaluated in order to provide an overall assessment of the quality. This procedure
takes place as follows:

Figure 5: Aggregation of metric values of a quality operation

In Fig. 5 we show our approach for calculating and aggregating quality values for individual artifacts as
realized by our MQAC tool. The quality value of an artifact or a quality operation is calculated using the
mean value of the metrics provided by a quality operation. The metrics can provide numerical values
for different metric values such as unknown, bad, acceptable, or good. The metrics are then mapped
to numerical values respectively: unknown=0, bad=0.2, acceptable=0.8, and good=1. This results in
the discrete (solid) line shown in Fig. 5. Continuous deviation can be adapted if required (dotted and
dashed line). Quality values for the quality operations are then calculated on the basis of the arithmetic
mean value of the individual quality operations (cf. Fig. 5, top right formula). The metric value
MetricValuei can also be weighted if necessary with weighti ≥ 0 and ≤1. This results in what is known
as the weighted mean value.

Figure 6: Aggregation of metric values of a quality operation

The approach for calculating quality values is now illustrated by assessing the quality of a project in
which a Simulink and TargetLink Odometer model is developed (cf. Fig. 6). An Odometer is a driver
assistance function from the automotive domain. This model contains different functions, which
support the driver by giving him information about the actual distance driven, mileage, and overall
travel time. In this example, only two quality operations are carried out for this model: model testing
and modeling guideline checking. The model testing is carried out using the tool MTest classic1, which
performs functional testing (MiL, SiL) on model level. A TargetLink-implemented model (test object) is
tested in a back-to-back test against the Simulink requirements models (test reference). Guideline

1 http://www.mtest-classic.com

checking is carried out using MES’ Model Examiner2 [7]. The Model Examiner checks the TargetLink
model against MAAB, MISRA AC TL, and TargetLink known problems, as well as MES functional
safety-specific guidelines [8].

Table 1: Mapping of quality values to metric values

Metric value Quality operation: model testing Quality operation: guideline checking

Result Value Result Value

Unknown Unknown 0 Not executed 0

Bad Failed 0.2 Failed 0.2

Acceptable - - Warning 0.8

Good Passed 1 Passed 1

The results of both quality operations are as follows:

(1) Model testing: 87 test cases were executed. 80 test cases provided a pass, 5 a failed, 2 an
unknown3 result. The results are mapped to the quality values and numerical values in Fig. 5
respectively: passed=good (1), failed=bad (0.2), unknown=unknown (0). The mapping is also
shown in Table 1. The overall quality value for the quality operation model testing was calculated
using the formula in Fig. 5, resulting in a value of 0.93 for model testing.

(2) Guideline checking: A project-specific selection of 109 modeling guidelines was checked. 68
guidelines provided a pass, 7 a warning, 34 a failed, and 0 were not executed. The results are
also mapped to the quality values and numerical values in Fig. 5 respectively: passed=good (1),
warning=0.8, failed=bad (0.2), unknown=unknown (0) resulting in a quality value of 0.73 for
guideline checking.

To assess the project overall, the decision was made to weight model testing with 0.8 and the results
of guideline checking with 0.2. This results in a total quality of the Odometer model (project) at time ti
of 0.89. In this case, model testing was given a higher weight than the guideline checking for project-
specific reasons. It is, however, quite common that all quality operations are weighted with the
identical weight of 1. In safety-relevant projects it can be necessary to weight specific quality
operations higher than others, e.g. coverage of safety requirements.

The methodology shown above can be expanded to aggregate the quality of individual artifacts or
versions of a model over the duration of the project to provide an overall assessment of the project.
The basic principle of aggregation is simplified and illustrated in Fig. 7 (cf. Fig. 2). The 1..n software
models (artifacts), which are part of a software project, are safeguarded by the quality operations
model testing and guideline checking. Other quality operations such as reviews, code analyses, and
other artifacts such as the generated code, the requirements specification, etc. are not shown in Fig. 7.
However, the basic principle for aggregating quality values is identical and need not be described here
in any greater detail.

As shown in the example for the Odometer model above (cf. Fig. 6), metrics of the individual quality
operations are aggregated in one assessment. In so doing, not only the quality of artifacts, but also the
quality of a quality operation itself can be assessed (e.g. quality of model testing). The quality

2 http://www.model-engineers.com/en/our-products/model-examiner.html
3 Unknown results may occur e.g. when a reference signal is not available.

assessment results from the weighted mean value of the individual quality operations. An assessment
of many versions of an artifact can be used for tracking project quality during all the project phases (cf.
Fig. 7, top right, project versions v54 ... v67 respectively).

Figure 7: Aggregation of quality values for the quality assessment

2.5. Coverage of Artifacts

Metrics calculation and the quality assessment of the quality operations are however only one side of
the story. One other factor must be considered for the purpose of assessing the overall quality of the
project. From our point of view, the relation (i.e. coverage) of the artifacts to one another is essential
for quality assessment. By coverage, we mean coverage of individual artifacts by quality operations. In
order to do this, it is important to know how many requirements are covered by how many test
specifications, how many requirements are realized within the model, etc. All this is relevant to getting
an overview of the relationship between the artifacts. Moreover, coverage shows the percentage of
(function) realization. As already discussed, it is essential to know how many requirements are actually
implemented and tested for the purposes of quality assessment.

Figure 1: Coverage view of artifacts (here: relation between requirements and test specification)

Fig. 8 shows the coverage view realized by our MQAC tool. The view shows how many requirements
are covered by test specifications. In this case, 6 requirements are covered by 4 test specifications out
of a total of 7 requirements. The IDs of the requirements and test specifications are automatically
collected from external artifacts4. This view makes it easy to see that one requirement is not covered
by a test case and that two test cases are not used in order to achieve the full requirements coverage.

3 Conclusions
In this paper we presented an approach for assessing the quality of model-based software projects.
This approach is based on artifacts from the development process being safeguarded by quality
operations. These operations provide (weighted) metrics, which are then used for the quality
assessment of the artifacts. Apart from the quantitative collection of data from the quality operations,
our approach also employs qualitative measures as part of the quality assessment. These measures
include the degree of realization of requirements and the coverage of requirements by test cases. The
Model Quality Assessment Center (MQAC) is capable of aggregating these metrics and providing a
compact overview of all selected quality goals. The tool is already in use by selected German
automotive OEMs for evaluation in serial production projects.

4 References
[1] MathWorks, (product information) http://www.mathworks.com/products, 2011.
[2] dSPACE: TargetLink – Production Code Generator at http://www.dspace.com, 2011.
[3] Broy, M., Kirstan, S., Krcmar, H., Schätz, B.: “What is the Benefit of a Model-Based

Design of Embedded Software Systems in the Car Industry?”, in Rech, J., and Bunse,
C. (Hrsg.) Emerging Technologies for the Evolution and Maintenance of Software
Models, pp. 343-369, 2011.

[4] Fey, I., and Stürmer, I.: “Quality Assurance Methods for Model-based Development: A
Survey and Assessment”, SAE World Congress, SAE Doc. #2007-01-0506, Detroit,
2007. Also appeared in SAE 2007 Transactions Journal of Passenger Cars:
Mechanical Systems, V116-6, Aug. 2008.

[5] Stürmer, I., Pohlheim, H., Rogier, T.: „Calculation and Visualization of Model
Complexity in Model-based Design of Safety-related Software“, (in German) in Keller,
B. et. al. (Hrsg.), Automotive - Safety & Security, Shaker, pp. 69-82, 2010.

[6] Scheible, J., Kreuz, I.: „A Quality Model for the Automated Assessment of Model
Quality for Embedded Systems“, (in German) in Proc. of the 8. GI Workshop,
Automotive Software Engineering, Leipzig, Germany, 2010.

[7] Stürmer, I., Stamatov, S., Eisemann, U.: “Automated Checking of MISRA TargetLink
and AUTOSAR Guidelines”, Proc. of SAE World Congress 2009, SAE Doc. #2009-
01-0267, Detroit (USA), April, 2009.

[8] Model Engineering Solutions GmbH, „MES Strong Data Typing Toolbox – Guidelines
and Checks”, V 1.3, available at: http://www.model-engineers.com/en/our-
products/model-examiner/sdt-toolbox.html

4 Requirements are specified in IBM Rationale DOORS; the test specification in MS Excel.

	1 Introduction
	2 Quality Assessment of Software Projects
	3 Conclusions
	4 References

