N

N

Transferring Stability Proof Obligations from Model
Level to Code Level
Michael Dierkes, Daniel Kastner

» To cite this version:

Michael Dierkes, Daniel Késtner. Transferring Stability Proof Obligations from Model Level to Code
Level. Embedded Real Time Software and Systems (ERTS2012), Feb 2012, Toulouse, France. hal-
02263402

HAL Id: hal-02263402
https://hal.science/hal-02263402
Submitted on 4 Aug 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02263402
https://hal.archives-ouvertes.fr

Transferring Stability Proof Obligations from
Model Level to Code Level

Michael Dierkes! and Daniel Késtner?

1 Rockwell Collins France, 6 avenue Didier Daurat, 31701 Blagnac, France
mdierkes@rockwellcollins.com
2 AbsInt GmbH, Science Park 1, 66123 Saarbriicken, Germany
kaestner@absint.com

1 Introduction

Bounded-input bounded-output (BIBO) stability is a fundamental requirement
for filtering and signal processing systems, ensuring that the system output can-
not grow indefinitely as long as the system input stays within a certain range. In
general, it is necessary to identify and to prove some system invariant in order to
prove BIBO stability. The objective of this work is to prove the BIBO stability
of the floating point implementation in C of a signal processing unit which has
been generated based on a specification in MATLAB Simulink@©). This proof
uses a system invariant which has been found by analyzing the Simulink model.
A stability proof on code level, using a high confidence analysis tool like Astrée,
is interesting since it might be taken into account for certification.

In model-based development, a model of a system is defined using a modeling
language like Simulink before the possibly automated coding of the software is
done. In order to ensure that the system behaves correctly, it can be used for
simulation, and useful information like system invariants can be found using
formal analysis or domain knowledge. As soon as the model is considered as
sufficiently mature, the coding phase begins. Even if a correct automated coder
is used, more analysis is in general necessary on the code level as the execution of
the code may lead to runtime errors which are not detectable on the model level,
or the precision of the computations may be lost due to accumulated rounding
errors of floating point arithmetic.

The information which was obtained at the model level can be very useful for
the code analysis, since it might be very difficult for code analysis tools to find
them by themselves. Properties which hold on model level do not necessarily
hold on code level when floating point numbers are used, but it is likely that a
property which is only slightly different can be proven. For example, we might
prove on model level that the absolute value of a variable x is always less than a
constant C| i.e. |z| < C. Then, on the code level, it might hold that |z| < C' 4§
for a small § which is due to the rounding error.

2 The RC Analysis Framework

For several years, Rockwell Collins has been developing and using a verification
framework for MATLAB Simulink@© and SCADE Suite™ models which allows
to translate these models into equivalent descriptions expressed in the input
languages of different model checking and theorem proving tools. The usefulness
of this industrial application of formal methods has been shown in different case
studies [8], [9]. Thanks to recent advances in SMT solving, it is now possible to
analyze aerospace domain models containing arithmetic computations on real
variables. It is important to note that on model level, real arithmetic is assumed
to have infinite precision, i.e. rounding errors or overflows are not considered.

The translation flow from MATLAB Simulink to different formal analysis
languages is shown in figure 1. In order to develop its analysis capabilities,
Rockwell Collins is closely working together with different research teams at
the universities of lowa and Minnesota, and the French Office national d’études
et de recherches aérospatiales (ONERA).

NuSMV
ACL2
Simulink/
— Lust PVS
StateFlow ustre
Kind
Design
Verifier
— Rockwell Collins/U of Minnesota Stuff
— Esterel Technologies Symbolic
—— SRI International ¥ Model Checker
Bounded
SAL
—— Rockwell Collins/U of lowa Model Checker
— Rockwell Collins France/ONERA Infinite
Model Checker

Figure 1. The translation flow of the Rockwell Collins analysis framework

The verification framework is used as a debugging tool: model checking may
find erroneous behavior which requires the modification of the model. When
all relevant properties are proven, the model can be considered as mature, and
the coding phase can start in which the code might be generated automatically.
However, the knowledge obtained by the model analysis (like for example invari-
ants) is usually not exploited on the code level in any way, also because formal
code analysis is not yet applied systematically. This might change thanks to the

availability of powerful code level analysis techniques like abstract interpretation,
including support for qualification under relevant industry standards.

Currently, we are working on a technique to generate invariants automati-
cally [4], which might significantly increase the degree of automatization of the
model level analysis in our framework. This technique also benefits from recent
advances in SMT solving and other areas like quantifier elimination. For a system
similar to the case study presented in this article, the prototype implementation
of our technique (called Stuff) was able to generate automatically the invariants
which are necessary to prove the stability of the system.

3 The Astrée Tool

Astrée [2] is a parametric static analyzer based on abstract interpretation that
aims at proving the absence of run-time errors of programs written in C, ac-
cording to “ISO/IEC 9899:1999 (E)” (C99 standard) [3]. The class of errors
reported includes out-of-bound array accesses, erroneous pointer manipulations
and dereferencing, integer and floating-point division by zero, floating point over-
flows and invalid operations. Astrée also can address functional program proper-
ties by checking user-defined static assertions. In addition, Astrée warns about
accesses to uninitialized variables and can detect code which is guaranteed to
be unreachable. An important property of Astrée is that it takes floating-point
rounding errors into account, conservatively assuming the worst-case of all pos-
sible rounding modes. This makes it very attractive to investigate the stability
of floating-point algorithms.

For industrial use an important goal is to produce the fewest possible number
of false alarms. An automatic proof of the absence of runtime errors is only
possible if the analysis terminates without any alarm. Any alarm has to be
manually checked by the developers — and this manual effort should be as low
as possible. If there is a true error, it has to be fixed and the analysis should be
restarted. A false alarm can possibly be eliminated by a suitable parametrization
of Astrée: if the error cannot occur due to certain preconditions which are not
known to Astrée, they can be made available to Astrée via analyzer directives.
These directives make the side conditions explicit which have to be satisfied for a
correct program execution. Furthermore, users can locally tune the precision of
Astrée to analyze critical program parts with high precision, and improve speed
by lowering the precision for uncritical program parts. This is further illustrated
in Sec. 6.

4 The Case Study: Triplex Sensor Voter

The case study we used in this work is a triplex sensor voter, i.e. a redundancy
management unit for three sensor input values. Our voter does not compute
an average value, but uses the MiddleV alue(x,y, z) function, which returns the
input value which is between the minimum and the maximum input values (for
example, if y < z < x, it would return z). Other voter algorithms which use a

http://www.iso.ch/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=29237&ICS1=35

(possibly weighted) average value are more sensitive to one of the input values
being out of the normal bounds. The Simulink model of the voter is shown in

figure 2.

Inputa

InputB

Inputc

in2

in3

outl

tiddle Walue1

in2

outl

»in3

Middle Yalue2

b4

b4

ghaka

b4

Figure 2. MATLAB Simulink model of the triplex sensor voter

)

VoterOutput

A slightly more complicated version of this voter has been analyzed in [5]. It
differs from the version presented in this article by the use of saturation operators

which limit the change rate of the output.

The following recursive equations describe the behaviour of the voter:

FEqualizationAy = 0.0
FEqualizationBy = 0.0
EqualizationCy = 0.0

EqualizedA; = InputA; — EqualizationA;
FEqualizedB; = InputB; — Equalization By
FEqualizedCy = InputCy — EqualizationCl

FEqualizationAi11 = 0.9 x Equalization A+

0.05 % (InputAs + ((EqualizationA; — VoterOutput,) — Centeringt))
FEqualizationByy1 = 0.9 x Equalization By+

0.05 % (InputB; + ((EqualizationBy — VoterOutput,) — Centeringy))
EqualizationCyy1 = 0.9 x EqualizationCy+

0.05 * (InputC; + ((EqualizationCy — VoterOutput,) — Centeringy))

Centering; = middleV alue(Equalization Ay, Equalization By,
EqualizationCy)

VoterOutput, = middleV alue(Equalized A, Equalized By, EqualizedCl)

5 Model Level Analysis

On model level, we want to prove the stability of the system, i.e. we want to prove
that the voter output is bounded as long as the input values differ by at most
the maximal authorized deviation MazDev from the true value of the measured
physical quantity represented by the variable TrueValue. In our analysis, we
fixed the maximal sensor deviation to 0.2, a value that domain experts gave us
as typical value in practical applications.

The voter output is equal to one of the three equalized values, i.e.

VoterOutput = Equalized X
= InputX — EqualizationX
< (TrueValue + MaxDev) — EqualizationX

with X in {A, B,C}. Therefore, if we can prove that the equalization values
are bounded, the system must be stable. Furthermore, since the equalization
values depend only on the differences between the input values and not on their
absolute value, we can assume without loss of generality that the true value is
0.0. This means that if we can prove the stability for TrueValue = 0.0, then the
system is also stable for all other possible values of TrueValue.

As mentioned before, we assume MaxzDev = 0.2, so we constrain the input
values by

[InputA| < 0.2 and |InputB| < 0.2 and [InputC| < 0.2

Using a model checker like for example Kind [7], we can prove by induction that
the following expression is an inductive invariant:

|EqualizationA| < 0.4 and |EqualizationB| < 0.4 and |EqualizationC| < 0.4

The value of 0.4 can be found by trial and error, or automatically using the
invariant generation approach described in [5]. In general, it turned out that the
absolute value of the equalization variables is bounded by 2 x MaxDew.

Note that for this version of the voter, no further invariants are necessary for
the stability proof. This is different in the case of the voter analyzed in [5], where
additional invariants are necessary which give an upper bound for the pairwise
sum resp. difference of the equalization values. However, it is likely that these
invariants can be generated automatically by future versions of our analysis tool

Stuff.

6 Code Level Analysis

The code we analyzed has been generated automatically from the Simulink
model. The three input sensor values are assumed to be fully volatile with ranges
between —0.2 and +0.2. This can be directly represented by Astrée directives:

__ASTREE_volatile_input ((SensorA, [-0.2, 0.2]));
__ASTREE_volatile_input((SensorB, [-0.2, 0.2]1));
__ASTREE_volatile_input((SensorC, [-0.2, 0.2]1));

Our proof obligation is formulated by Astrée assertions:

__ASTREE_assert((state.Eql_memory <= 0.4));

__ASTREE_assert((state.Eql_memory >= -0.4));
__ASTREE_assert((state.Eq2_memory <= 0.4));
__ASTREE_assert((state.Eq2_memory >= -0.4));
__ASTREE_assert ((state.Eq3_memory <= 0.4));
__ASTREE_assert ((state.Eq3_memory >= -0.4));

In contrast to dynamic assertions that are checked during program runtime,
Astrée assertions are checked statically. If Astrée does not report a violation of
such an assertion, its correctness has been formally proven. While the focus of
Astrée is on non-functional properties — absence of runtime errors — the assertion
mechanism makes it possible to also prove functional program properties by an
Astrée analysis.

The main function contains an infinite loop which reads the sensor inputs
and executes the voting algorithm which are encapsulated in an own function
voter_nosat2_compute:

int main(){
voter_nosat2_init(&state);
while(1)
{
io.Inl = Sensorl;
io.In2 = SensorB;
io.In3 = SensorC;

__ASTREE_assert((state.Eql_memory <= 0.4));
__ASTREE_assert((state.Eql_memory >= -0.4));
__ASTREE_assert((state.Eq2_memory <= 0.4));
__ASTREE_assert((state.Eq2_memory >= -0.4));
__ASTREE_assert((state.Eq3_memory <= 0.4));
__ASTREE_assert((state.Eq3_memory >= -0.4));
voter_nosat2_compute (&io, &state);
}
}

The implementation of the function voter nosat2_compute is shown below in
abbreviated form (variable declarations have been omitted):

void voter_nosat2_compute(t_voter_nosat2_io *_io_,
t_voter_nosat2_state *_state_) {
/* Variable declarations */

Inl = _io_->Inl; In2 = _io_->In2; In3 = _io_->In3;
Constant = 0.05;

voter_nosat2_Eql = _state_->Eql_memory;

Sum = Inl - voter_nosat2_Eql;

voter_nosat2_Eq2 = _state_->Eq2_memory;

Suml = In2 - voter_nosat2_Eq2;
Relational_QOperator_1 = voter_nosat2_Eql > voter_nosat2_Eq2;
Relational_QOperator_2 = Sum > Suml;

voter_nosat2_Eq3 = _state_->Eq3_memory;
Sum2 = In3 - voter_nosat2_Eq3;

Relational_QOperator2_2 = Sum2 > Sum;
Relational _Operator2_1 = voter_nosat2_Eq3 > voter_nosat2_Eql;
Relational_Operatorl_2 = Suml > Sum2;
Relational_QOperatorl_1 = voter_nosat2_Eq2 > voter_nosat2_Eq3;

Relational_QOperator3_1
Relational_Operator_1 == Relational_Operatorl_1;
Relational_Operator3_2 =
Relational_Operator_2 == Relational_Operatorl_2;

Relational_QOperator4_1 =

Relational_QOperatorl_1 == Relational_Operator2_1;
Relational_Operator4_2 =

Relational_Operatorl_2 == Relational_Operator2_2;

if (Relational_Operator4_2 >= 1) {
Switch_2 = Sum2;
} else {

Switch_2 = Sum;
}

if (Relational_Operator3_2 >= 1) {
Switchl_2 = Sumil;
} else {
Switchl_2 = Switch_2;

io->VoterOutput = Switchl_2;

if (Relational_Operator4_1 >= 1) {
Switch_1 = voter_nosat2_Eq3;

} else {
Switch_1 = voter_nosat2_Eqil;

}

if (Relational_Operator3_1 >= 1) {
Switchl_1 = voter_nosat2_Eq2;

} else {
Switchl_1

Switch_1;
}

Productb = 0.9 * voter_nosat2_Eq2;

Sum4 = voter_nosat2_Eq2 - Switchl_2;

Sum7 = Sum4 - Switchl_1;

Suml3 = In2 + Sum7;

Product2 = Constant * Suml3;
voter_nosat2_Suml0 = Product2 + Productb;
Product6 = 0.9 * voter_nosat2_Eq3;

Sumb = voter_nosat2_Eq3 - Switchl_2;

Sum8 Sumb - Switchl_1;

Suml4 = In3 + SumS8;

Product3 = Constant * Sumlé4;
voter_nosat2_Sumll = Product3 + Product6;
state->Eq3_memory = voter_nosat2_Sumlil;
state->Eq2_memory = voter_nosat2_SumlO;
Sum3 = voter_nosat2_Eql - Switchl_2;

Sum6 = Sum3 - Switchl_1;

Suml12 = Inl + Sum6;

Productl = Constant * Suml2;

Product4 = 0.9 * voter_nosat2_Eql;
voter_nosat2_Sum9 = Productl + Product4;
state->Eql_memory = voter_nosat2_Sum9;

To enable a high analysis precision it is important to precisely analyze the con-
dional statements where the variables Switch_1, Switch 2, and Switchl 2 are
defined. While Astrée can automatically perform partitioning of if-statements
such that the effects of the then- and else-parts are disambiguated during the fur-
ther analysis of the program, the conditions already encoded in the Relational -
Operator variables are not automatically disambiguated.

An important design feature of Astrée is that it allows users to tune the
precision of the analysis to the software under analysis at a fine-grained level.
One such mechanism is the __ASTREE_partition_control directive which can
instruct Astrée to partition also on the values of a boolean variable. This directive
is inserted for all the definitions of the Relational _Operator variables as shown
in the following example:

__ASTREE_partition_control Relational_Operator_2 = Sum > Suml;

While this transformation has been done manually in our experiment, it could
easily be done by the code generator or a pre-peprocessor in an automated way.
Furthermore it is important to note that the Astrée directives do not have to
be placed in the generated code, but can also be specified externally without
modifying the generated code. Externally specified directives are relocated by
using a dedicated annotation language AAL, which allows to specify any specific
program point but does not rely on line number information [1].

When running the analysis on the transformed code, the inserted assertions
fail. The value analysis of Astrée shows that due to rounding errors the com-
puted variable ranges can be slightly above 0.4, resp., below —0.4. Based on the
reported rounding error we replaced the bounds by 0.400001, resp., —0.400001.
After this modification, the Astrée analysis terminates with zero alarms, yielding
a proof of absence of runtime error, and a proof of the bounds on the equalization
values.

7 Conclusion and Future Work

We were able to prove an invariant that allows to conclude for bounded-input
bounded-output stability of a redundancy management unit. This invariant was
found on model level using model checking, and then transfered to the auto-
matically generated code. From a methodological perspective this process is a
combination of results of model-checking and abstract interpretation. Invariants
which have been proven at the modeling level by model-checking are transferred
to the code level and mapped to static assertions on value ranges which are
amenable to abstract-interpretation-based static analysis. The static analysis
done by Astrée allows to find new invariants which hold at the C code level and
take potential rounding errors into account.

Model checking and abstract interpretation are techniques with different
scopes. In general, we cannot hope that properties which have been proven by
model checking may be confirmed by abstract interpretation. However, we are
looking for the most useful way to combine these techniques. In the course of the

ARTEMIS project MBAT we are planning to further generalize and automate
this approach.

We intend to apply this approach on control systems. However, the use of
model checking tools may be limited since such systems are typically nonlinear.
In this case, invariants would be found based on control theory as described
in [6].

Acknowledgement

We would like to thank Antoine Miné, Jérome Feret and Xavier Rival from the
Ecole Normale Supérieure in Paris for supporting us in the Astrée analysis of
the voter software.

References

1. AbsInt GmbH. The Static Analyzer Astrée. User Documentation for AAL Annota-
tions, Dec. 2011.

2. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. A Static Analyzer for Large Safety-Critical Software. In Proceedings
of the ACM SIGPLAN 2003 Conference on Programming Language Design and
Implementation (PLDI’03), pages 196-207, San Diego, California, USA, June 7-14
2003. ACM Press.

3. JTC1/SC22. Programming languages — C, 16 Dec. 1999.

4. A. Champion, R. Delmas, and M. Dierkes. Backward property directed reachability
analysis based on quantifier elimination. 2011. Submitted for publication.

5. M. Dierkes. Formal analysis of a triplex sensor voter in an industrial context. In
G. Salaiin and B. Schétz, editors, Proceedings of the 16th International Workshop
on Formal Methods for Industrial Critical Systems, FMICS 2011, volume 6959 of
LNCS. Springer, 2011.

6. E. Feron. From Control Systems to Control Software. IEEE Control Systems Mag-
azine, 30(6):50-71, Dec. 2010.

7. G. Hagen and C. Tinelli. Scaling up the formal verification of Lustre programs with
SMT-based techniques. In A. Cimatti and R. Jones, editors, Proceedings of the 8th
International Conference on Formal Methods in Computer-Aided Design (Portland,
Oregon), pages 109-117. IEEE, 2008.

8. S. P. Miller, M. W. Whalen, and D. D. Cofer. Software model checking takes off.
Commun. ACM, 53(2):58-64, 2010.

9. M. W. Whalen, D. D. Cofer, S. P. Miller, B. H. Krogh, and W. Storm. Integration
of formal analysis into a model-based software development process. In FMICS,
pages 68-84, 2007.

	Transferring Stability Proof Obligations from Model Level to Code Level

