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ABSTRACT
Let N0 denote the set of all non-negative integers and P(N0) be
its power set. An integer additive set-labeling (IASL) of a graph
G is an injective function f : V (G) → P(N0) such that the
induced function f+ : E(G)→ P(N0) is defined by f+(uv) =
f(u)+f(v), where f(u)+f(v) is the sumset of f(u) and f(v).
An IASL f is said to be an integer additive set-indexer (IASI) if the
associated edge-function f+ is also injective. An IASL f of a given
graph G is said to be a weak integer additive set-labeling (WIASL)
of G if the cardinality of the set-label of every edge of G is equal
to the cardinality of the set-label of at least one end vertex of it.
In this paper, we study the admissibility of weak integer additive
set-labeling by different graphs.
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1. INTRODUCTION
For all terms and definitions, not defined specifically in this paper,
we refer to ([2]), ([6]) and ([16]). For graph classes, we further refer
to ([3]). Unless mentioned otherwise, all graphs considered here are
simple, finite and have no isolated vertices.

Let N0 ne the set of all non-negative integers and let P(N0) be its
power set. Define the sumset of two non-empty subsets A and B of
N0, denoted by A+B, is the set A+B = {a+ b : a ∈ A, b ∈ B}
(see ([7])). If either A or B is countably infinite, then their sumset
is also countably infinite. Hence, all sets we consider in this paper
are non-empty finite sets of non-negative integers. We denote the
cardinality of a set A by |A|. The power set of a set A is denoted
by P(A).

Using the terminology of sumsets of two finite sets of non-negative
integers, the notion of an integer additive set-labeling has been in-
troduced as follows.

DEFINITION 1. An integer additive set-labeling (IASL) of a
graph G is an injective function f : V (G) → P(N0) such
that the induced function f+ : E(G) → P(N0) is defined by
f+(uv) = f(u) + f(v), where f(u) + f(v) is the sumset of

f(u) and f(v). A graph which admits an integer additive label-
ing is called an integer additive set-labeled graph (IASL-graph).
An IASL f is said to be an integer additive set-indexer (IASI) if
the associated edge-function f+ is also injective (see ([4])).

The cardinality of the set-label of an element (a vertex or an edge)
of an IASL-graph G is called the set-indexing number of that ele-
ment. An IASL f of a graph G is said to be a uniform IASL if all
the edges of G has the same set-indexing number. If set-indexing
number of all edges of an IASL-graph is a positive integer k, then
G is called a k-uniform IASL-graph.

The question whether the set-indexing number of an edge can be
equal to the set-indexing number of its end vertices inspired us to
establish the following result.

LEMMA 2. ([8]) Let f : V (G) → P(N0) be an IASL defined
on a graph G. Then, for an edge e = uv of G, |f+(uv)| = |f(u)|
if and only if |f(v)| = 1. More over, |f+(uv)| = |f(u)| = f(v)| if
and only if all the three sets are singleton sets.

An edge e of G, which has the set-indexing number 1 is called a
mono-indexed edge of G. Invoking the above notions, we have the
following definition.

DEFINITION 3. ([9]) An integer additive set-labeling f of a
graphG is said to be a weak integer additive set-labeling (WIASL)
of G if the set-indexing number of every edge of G is the same as
that of one or all its end vertices. A graph G that admits a weak
integer additive set-labeling is called a weak integer additive set-
labeled graph (WIASL-graph).

The following results are a necessary and sufficient condition for a
graph to admit a WIASL.

LEMMA 4. ([9]) An IASL f : V (G) → P(N0) of a given
graph G is a WIASL of G if and only if with respect to f , at least
one end vertex of every edge of G has singleton set-labels.

THEOREM 5. ([9]) A graph G is a WIASL-graph if and only if
G is bipartite or it has some edges having singleton set-labels.

In view of the above theorem, we have the following notion.

DEFINITION 6. ([9]) The minimum number of edges having
singleton set-labels required for a graph G to admit a WIASL is
called the sparing number of G, which is denoted by ϕ(G).
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2. NEW DIRECTIONS
In this paper, we discuss certain properties and characteristics of
certain WIASL graphs and their corresponding sparing numbers.
The following result is on the sparing number of an arbitrary graph
G.

THEOREM 7. Let G be a given WIASL-graph and I be an in-
dependent set in G which has highest incidence in G. Then, the
sparing number of G is the |E(G− I)|.

PROOF. LetG be a non-bipartite graph which admits a WIASL,
say f . By Theorem 5, G has some mono-indexed edges. Also, by
Lemma 4, at least one end vertex of every edge of G has a single-
ton set-label. That is, no two adjacent vertices in G can have non-
singleton set-labels. Therefore, all the vertices of G which have
non-singleton set-labels form an independent set in G. Let I be an
independent set of G having maximal incidence in G. Hence, the
maximum number of vertices in G which are not mono-indexed is
the number of vertices in I . An edge, whose one end vertex has a
non-singleton set-label, can not have a singleton set-label and hence
every edge ofG with one end vertex in I , does not have a singleton
set-label and every edge of G having a non-singleton set-label has
one end vertex in I . Therefore, all edges inG−I are mono-indexed
edges.

An alternate statement to the above problem is as follows.

THEOREM 8. Let G(V,E) be a connected WIASL-graph and
let EI be the maximal set of edges of G whose one end vertex is in
an independent set of G. Then, the sparing number of G is |E| −
|EI |.
In the following discussions, we denote an independence set of a
graph G, which has the highest incidence in G by I∗. Then, we
have the following theorem.

THEOREM 9. If G(V,E) be a non-empty graph and I∗ be an
independent set having maximum incidence in G. Then ϕ(G) =
|E| −

∑
vi∈I∗

d(vi).

PROOF. First, recall that number of edges incident on a vertex v
in G is the degree of that vertex d(v). Any vertex vi ∈ I∗ can have
a non-singleton set-label which gives non-singleton set labels to
d(vi) edges incident on it. Since I∗ is an independent set, the edges
thus gain non-singleton set-labels by distinct vertices in I∗ are all
distinct. Therefore, the number of edges having non-singleton sets
induced by the vertices in I∗ is

∑
vi∈I∗

d(vi). Hence, the number of

mono-indexed edges in G is |E| −
∑

vi∈I∗
d(vi).

If G is an r-regular graph, then ϕ(G) = rα, where α is the inde-
pendence number of G.

PROOF. Let G be an r-regular graph. Then, d(v) = r∀ v ∈
V (G). Hence, any maximal independent set I is an independent set
of G with maximal incidence. Then, the number of edges incident
on the vertices in I is αr, where α = |I|, the independence number
of G. Therefore, by Theorem 9, ϕ(G) = |E| − αr.

Figure 1 establishes a WIASL for Petersen Graph G. A maximal
independent set of the 3-regular graph G is I = {v1, v4, v7, v8}.
The dotted line lines in G′ = G − I represent the edges which
have one end vertex in I . The dotted edges in the corresponding
WIASL-graph G represent the mono-indexed edges in G.
As the consequences of Theorem 9 and Corollary 2, we immedi-
ately have the following remarks.

Fig. 1. An illustration to Theorem 7

Let G be a bipartite graph G with bipartition (X,Y ). Then, both
|X| and |Y | are two independent sets of G such that all edges of
G incident on both. Then, the subgraphs G − X and G − Y are
edgeless graphs. Therefore, for any bipartite graph G, ϕ(G) = 0.
Let Cn be a cycle graph on n vertices. Therefore, the maximal
independence set I of Cn contains bn

2
c vertices. Then, Cn − I is

edgeless if n is even and has exactly one edge if n is odd. Therefore,

ϕ(Cn) =

{
0 if n is even
1 if n is odd

Any independence set of a complete graph Kn contains a single
vertex of Kn. Therefore, for any independent set I = {vi} of Kn,
the subgraph Kn − I = Kn − {vi} = Kn−1. Hence, ϕ(Kn) =

|E(Kn−1)| = (n−1)(n−2)
2

.
Next, we consider a particular class of graphs class called split
graphs, defined as below. A split graph, denoted by S(n, r), is a
graph that can be partitioned in to a clique Kn and an indepen-
dent set S having r vertices. The following theorem establishes the
sparing number of a split graph S(n, r).

THEOREM 10. Let G = S(n, r) is a split graph contain-
ing a clique Kn and an independent S such that V (Kn) =
{u1, u2, . . . , un} and S = {v1, v2, . . . , vr}. Then,

ϕ(G) =

{(
n−1
2

)
+min{n− 1, s} if N(S) = V (Kn)(

n−1
2

)
if N(S) ( V (Kn)

where s = min{
∑

ui∼vi
(dS(vj)− 1)}, for all 1 ≤ i ≤ n.

PROOF. Let G = S(n, r). If N(S) ( V (Kn), then there exist
some vertices of Kn which are not adjacent to any vertex in S.
without loss of generality, let v1 be a vertex of Kn which is not
adjacent to any vertex in S. Since only one vertex in Kn can be
independent, I = s ∪ {v1} is a maximal independent set in G.
Then, G − I = Kn − v1 = Kn−1. Then, by Theorem 7, ϕ(G) =

|E(Kn−1)| = (n−1)(n−2)
2

.

If N(S) = V (Kn), then every vertex of the clique Kn of G is
adjacent to some vertex of the independent set S. Then, the max-
imal independent set I in G containing the end vertices of max-
imum edges of G contains at most one vertex of Kn. If a ver-
tex ui of Kn belongs to I , then the vertices of S that are adja-
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cent to ui will become mono-indexed and the edges incident one
these vertices, other than those incident on ui also become mono-
indexed. The number of such newly mono-indexed edges will be
s = min{min{

∑
ui∼vi

(dS(vj)−1)}. Therefore, the minimum num-

ber of mono-indexed edges in G is
(
n−1
2

)
+ min{n − 1, s}. This

completes the proof.

Figure 2 illustrates the two cases mentioned in the above theorem.

Fig. 2. WIASLs of two types of Split Graphs

In view of Theorem 7, we shall now determine the sparing number
of certain graph operations.

The union of two graphs G1(V1, E1) and G2(V2, E2), denoted by
G1 ∪ G2, is the graph with vertex set V1 ∪ V2 and the edge set
E1∪E2. The sparing number of graph unions have been determined
in [9]. We provide a better alternate proof for the following theorem
on the sparing number of the union of two graphs using Theorem
7.

THEOREM 11. Let G1 and G2 be two graphs and let G =
G1 ∪G2. Then, ϕ(G1 ∪G2) = ϕ(G1) + ϕ(G2)− ϕ(G1 ∩G2).
If G1 and G2 are edge-disjoint graphs, then ϕ(G1 ∪ G2) =
ϕ(G1) + ϕ(G2).

PROOF. Let I1 and I2 be the maximal independence sets in G1

and G2 respectively. Then, I = I1 ∪ I2 is a maximal independent
set of G = G1 ∪ G2. Now, the set of edges of G with one end
vertex in I is EI = EI1∪I2 = EI1 ∪EI2 . Then, by Theorem 8, we
have

ϕ(G) = |E(G)| − |EI |
= |E(G1 ∪G2)| − |EI1 ∪EI2 |
= [|E(G1)|+ |E(G2)| − |E(G1 ∩G2)|]
− [|EI1 |+ |EI2 | − |EI1 ∩EI2 |]

= [|E(G1)| − |EI1 |] + [|E(G2)| − |EI2 |]
− [|E(G1 ∩G2)| − |EI1 ∩EI2 |]

= ϕ(G1) + ϕ(G2)− ϕ(G1 ∩G2).

IfG1 andG2 are edge-disjoint graphs, thenG1∩G2 is an edgeless
graph. Then, EI1 ∪ EI2 is a null set. Therefore, we have ϕ(G) =
ϕ(G1) + ϕ(G2).

The admissibility of WIASLs by graph join has also been studied
in ([9]) and have established the following theorem, using the fact
that every vertex of G1 is adjacent to all vertices of G2.

THEOREM 12. ([9]) The join of two WIASL-graphsG1 andG2

admits a WIASL if and only if either G1 or G2 is 1-uniform.

In view of the above theorem, we now determine the sparing num-
ber of the join two given graphs in the following theorem.

THEOREM 13. The sparing number of the join of two arbitrary
graphs G1(V1, E1) and G2(V2, E2) is min{ϕ(G1) + |E2|(β1 +
1), ϕ(G2)+|E1|(β2+1)}, where β1, β2 are the covering numbers
of G1 and G2 respectively.

PROOF. For any graph G which admits a WIASL, by Theorem
7, the maximum number of vertices that are not mono-indexed is
α, where α is the independence number of G. Then, the minimum
number of mono-indexed vertices in the graph G is |V (G)| − α =
β, the covering number of G.

Now, let the graph join G1 +G2 admits a WIASL. Then, by Theo-
rem 12, either G1 or G2 is 1-uniform. Hence, we proceed by con-
sidering the following cases.

Case-1: Let G1 be 1-uniform. Then, all edges of G1 are mono-
indexed. As stated earlier, the number of mono-indexed vertices in
G2 is β2, its covering number. Since each vertex of G1 is adjacent
all vertices of G2, the number of mono-indexed vertices between
G1 and G2 is β2 |E2|. More over, the number of mono-indexed
edges in G2 is ϕ(G2). Therefore, total number of mono-indexed
edges in this case is |E1|+ β2.|E1|+ ϕ(G2).

Case-2: Let G2 be 1-uniform. Then, as explained in Case-1, the
number of mono-indexed edges in G1 + G2 is |E2| + β1.|E2| +
ϕ(G1).

Therefore, the sparing number of G1 +G2 is min{ϕ(G1)+ (β1 +
1)|E2|, ϕ(G2) + (β2 + 1)|E1|}.

Figure 3 illustrates the above theorem on the sparing number of
graph joins.

Fig. 3. A WIASL for the graph join G1 +G2.

In view of Theorem 7, an alternate method to determine the spar-
ing number of the join of two arbitrary graphs is established in the
following theorem.
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THEOREM 14. LetG1(V1, E2) andG2(V2, E2) be two graphs
with independence numbersα1 andα2 respectively. Then, the spar-
ing number of the graph joinG1+G2 is is |E1|+|E2|+|V1| |V2|−
max{(|V2|(|I1|−1)+ |EI1 |), (|V1|(|I2|−1)+ |EI2 |)}, where, for
j = 1, 2, Ij is an independence set of the graph Gj with maximal
incidence in Gj and EIj is the set of edges in G1+G2 which have
one end vertex in Ij .

PROOF. Consider two arbitrary graphs G1(V1, E2) and
G2(V2, E2). Note that the number of edges in G1 +G2 is |E1|+
|E2|+ |V1| |V2|. Let I1 be an independence set ofG1 with maximal
incidence inG1 and I2 be an independence set ofG2 with maximal
incidence in G2. If I1 has more incidences than |I2|, then the max-
imum number of edges having non-singleton set-label in G1 +G2

is |E2|+ |I1| |V2|+
∑

vi∈I1
d(vi). Hence, in this case, the number of

mono-indexed edges inG1+G2 is |E1|+|E2|+|V1| |V2|−[|E2|+
|I1| |V2|+

∑
vi∈I1

d(vi)] = |E1|+ |V1| |V2|− |I1| |V2|−
∑

vi∈I1
d(vi).

Similarly, if I2 has more incidences than I1, then the number of
mono-indexed edges in G1 +G2 in this case is |E2|+ |V1| |V2| −
|I2| |V1| −

∑
uj∈I2

d(uj). Therefore, the sparing number of G1 +G2

is |V1| |V2|+min{(|E1|−|I1| |V2|−
∑

vi∈I1
d(vi)), (|E2|−|I2| |V1|−∑

uj∈I2
d(uj))}.

The next theorem is on the sparing number of the join of two given
regular graphs.

THEOREM 15. Let G1 be an r-regular graph of order n1 and
G2 be an s- regular graph of order n2. Then, the sparing num-
ber of the graph join G1 +G2 is 1

2
[min{(n1(r + 2β2) + s(β2 −

α2)), (n1(s+ 2β1) + r(β1 − α1))}].
PROOF. Let G1 be an r-regular graph of order n1 and G2 be

an s-regular graph of order n2. Then, the total number of edges
in G1 and G2 are 1

2
rn1 and 1

2
sn2 respectively. Let I1 and I2 be

two independent sets, respectively in G1 and G2 with maximum
incidences and let α1 and α2 be the independence numbers of G1

andG2 respectively. Then, |I1| = α1 and |I2| = α2. Therefore, the
maximum number of vertices that can have non-singleton set-labels
in G1 and G2 are α1 r and α2 s respectively.

If α1 r ≤ α2 s, then α2 is the number of vertices in G1 +G2 hav-
ing non-singleton set-labels. Therefore, the number of edges having
non-singleton set-labels inG1+G2 is α2(s+n1). Hence, the num-
ber of mono-indexed vertices in G1 +G2 here is 1

2
(rn1 + sn2 +

n1n2)− α2(s+ n1) =
1
2
[n1(r + 2n2 − 2α2) + s(n2 − 2α2)] =

1
2
[n1(r + 2β2) + s(β2 − α2)]. Similarly, if α1 r ≥ α2 s, then

the number of mono-indexed vertices in G1 + G2 is 1
2
[n1(s +

2β1) + r(β1 − α1)]. Hence, the sparing number of G1 + G2 is
1
2
[min{(n1(r + 2β2) + s(β2 − α2)), (n1(s + 2β1) + r(β1 −

α1))}].
In the coming discussion, we discuss the sparing number of certain
graph classes using the above proved results.

THEOREM 16. The sparing number of a wheel graphWn+1 =
Cn +K1 is

ϕ(Wn+1) =

{
n
2

if n is even
n+3
2

if n is odd

PROOF. A wheel graph Wn+1 is the graph Cn + K1 with 2n
vertices. The independence set containing maximal incidences con-

tains bn
2
c vertices, the degree of each of which is 3. Therefore, the

sparing number of Wn+1 is

ϕ(Wn+1) = 2n− 3bn
2
c =

{
n
2

if n is even
n+3
2

if n is odd

This completes the proof.

A helm graph, denoted by Hn, is the graph obtained by attaching
pending a pendant edge to all the vertices of Wn+1, except its cen-
tral vertex. Then, we have

THEOREM 17. For a helm graph Hn, ϕ(Hn) ={
n
2

if n is even
n+3
2

if n is odd.

PROOF. Note that the size of a helm graph Hn is 2n. The in-
dependence set containing maximal incidences contains n vertices
including bn

2
c independent vertices of the wheel graph Wn+1 each

of which have degree 4 and dn
2
e pendant vertices. Therefore, the

sparing number of Hn is given by

ϕ(Hn) = 3n− [4bn
2
c+ dn

2
e] =

{
n
2

if n is even
n+3
2

if n is odd.

This completes the proof.

A closed helm graph, denoted by CHn, is the graph obtained by
drawing edges between the pendant vertices of a helm graph. Then,

THEOREM 18. For a closed helm graph Hn, ϕ(CHn) ={
n
2

if n is even
n+7
2

if n is odd.

PROOF. The number of edges in a closed helm graph is 4n.
Therefore, an independence set having maximal incidences in
CHn contains bn

2
c vertices in the inner cycle, each of which is of

degree 4 and bn
2
c vertices in the outer cycle ofCHn, each of which

is of order 3. Therefore, the total edges of G having non-singleton
set-labels in CHn is 7bn

2
c. Therefore,

ϕ(CHn) = 4n− 7bn
2
c =

{
n
2

if n is even
n+7
2

if n is odd.

This completes the proof.

A web graph,denoted by W (n), is a graph obtained by attaching
pendant edges to the vertices of the outer cycle of a closed helm
graph. Then, we have the following theorem.

THEOREM 19. For a web graph W (n), ϕ(W (n)) ={
n
2

if n is even
n+7
2

if n is odd.

PROOF. The number of edges in a web graph W (n) is 5n. An
independence set having maximal incidence in G consists of bn

2
c

vertices having degree 4 each from the inner and outer cycles of
W (n) and dn

2
c pendant vertices. Then, the sparing number of the

wheel graph is given by

ϕ(W (n)) = 5n− [7bn
2
c+ dn

2
c] =

{
n
2

if n is even
n+7
2

if n is odd.

This completes the proof.
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3. CONCLUSION
In this paper, we have discussed the admissibility of weak inte-
ger additive set-labelings by certain graphs and graph operations
and determined their corresponding sparing numbers. Some prob-
lems in this area are still open. Finding the sparing number of cer-
tain products of arbitrary graphs, certain graph classes with spe-
cific properties etc. are some of the promising problems in this
area. Problems regarding the admissibility of integer additive set-
labelings, both uniform and non-uniform, by certain graphs are also
open.

4. REFERENCES
[1] K. Abhishek, New directions in the Theory of Set-Valuations

of Graphs, Ph.D Thesis, Kannur University, India., 2009.
[2] J. A. Bondy and U. S. R. Murty, Graph Theory, Springer,

2008.
[3] J. A. Gallian, A Dynamic Survey of Graph Labelling, The

Electronic Journal of Combinatorics (DS-6), 2014.
[4] K. A. Germina and T. M. K. Anandavally, Integer Addi-

tive Set-Indexers of a Graph: Sum Square Graphs, Journal
of Combinatorics, Information and System Sciences, 37(2-
4)(2012), 345-358., DOI: 10.12988/imf.2013.310188.

[5] K. A. Germina and N. K. Sudev, On Weakly Uniform Integer
Additive Set-Indexers of Graphs, International Mathematical
Forum, 8(37)(2013), 1827-1834.

[6] F. Harary, Graph Theory, Addison-Wesley Publishing Com-
pany Inc., 1969.

[7] M. B. Nathanson, Additive Number Theory, Inverse Problems
and Geometry of Sumsets, Springer, 1996.

[8] N. K. Sudev and K. A. Germina, On Integer Additive Set-
Indexers of Graphs, International Journal of Mathematical
Sciences & Engineering Applications, 8(2)(2014), 11-22.

[9] N. K. Sudev and K. A. Germina, A Characterisation of Weak
Integer Additive Set-Indexers of Graphs, Journal of Fuzzy Set
Valued Analysis, 2014(2014), 1-7., DOI:10.5899/2014/jfsva-
00189.

[10] N. K. Sudev and K. A. Germina, A Note on Sparing Number
of Graphs, Advances and Applications in Discrete Mathemat-
ics, 14(1)(2014), 51-65.

[11] N. K. Sudev and K. A. Germina, On Weak Integer Additive
Set-Indexers of Certain Graph Classes, Journal of Discrete
Mathematical Sciences and Cryptography, 18(1-2)(2015),
117128., DOI : 10.1080/09720529.2014.962866

[12] N. K. Sudev and K. A. Germina, Weak Integer Additive Set-
Indexers of Graph Operations, Global Journal of Mathemati-
cal Sciences: Theory and Practical, 6(1)(2014), 25-36.

[13] N. K. Sudev and K. A. Germina, Weak Integer Additive Set-
Indexers of Graph Operations, TechS Vidya E-Journal of Re-
search, 2(2013-14), 28-38.

[14] N. K. Sudev, K. A. Germina and K. P. Chithra, Weak
Set-Labeling Number of Certain Integer Additive Set-
Labeled Graphs, International of Computer Applications,
114(2)(2015), 1-6., DOI: 10.5120/19947-1772.

[15] N. K. Sudev, K. A. Germina and K. P. Chithra, Weak Inte-
ger Additive Set-Labeled graphs: A Creative Review, Asian
European Journal of Mathematics, 8(3)(2015), 1-22., DOI:
10.1142/S1793557115500527.

[16] D. B. West, Introduction to Graph Theory, Pearson Education
Inc., 2001.

5


	Introduction
	New Directions
	Conclusion
	References

