M. Hecker, S. Lambeck, S. Toepfer, E. Van-someren, and R. Guthke, Gene regulatory network inference: Data integration in dynamic models-a review, Biosystems, vol.96, issue.1, pp.86-103, 2009.

K. Sachs, O. Perez, D. Pe'er, D. A. Lauffenburger, and G. P. Nolan, Causal protein-signaling networks derived from multiparameter single-cell data, Science, vol.308, issue.5721, pp.523-529, 2005.

L. Geistlinger, G. Csaba, S. Dirmeier, R. Küffner, and R. Zimmer, A comprehensive gene regulatory network for the diauxic shift in saccharomyces cerevisiae, Nucleic acids research, p.631, 2013.

N. Friedman, M. Goldszmidt, and A. Wyner, Data analysis with bayesian networks: A bootstrap approach, Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence, pp.196-205, 1999.

M. Bradley, K. Broom, D. Do, and . Subramanian, Model averaging strategies for structure learning in bayesian networks with limited data, BMC bioinformatics, vol.13, issue.13, p.10, 2012.

, Optimum branchings. Mathematics and the Decision Sciences, Part, vol.1, pp.335-345, 1968.

D. Heckerman, D. Geiger, and D. M. Chickering, Learning bayesian networks: The combination of knowledge and statistical data, Machine learning, vol.20, issue.3, pp.197-243, 1995.

M. Steven, L. M. Hill, T. Heiser, M. Cokelaer, N. K. Unger et al., Inferring causal molecular networks: empirical assessment through a community-based effort, Nature methods, vol.13, issue.4, pp.310-318, 2016.

R. Chebil, G. Nicolle, and . Santini, Céline Rouveirol, and Mohamed Elati. Hybrid method inference for the construction of cooperative regulatory network in human, IEEE transactions on nanobioscience, vol.13, issue.2, pp.97-103, 2014.

R. Nicolle, F. Radvanyi, and M. Elati, Coregnet: reconstruction and integrated analysis of coregulatory networks, Bioinformatics, p.305, 2015.

A. Va, A. Huynh-thu, L. Irrthum, P. Wehenkel, and . Geurts, Inferring regulatory networks from expression data using tree-based methods, PLOS ONE, vol.5, issue.9, pp.1-10, 2010.

B. Miron, W. R. Kursa, and . Rudnicki, Feature selection with the boruta package, Journal of Statistical Software, vol.36, issue.11, pp.1-13, 2010.

A. Haury, F. Mordelet, P. Vera-licona, and J. Vert, Tigress: Trustful inference of gene regulation using stability selection, BMC Systems Biology, vol.6, issue.1, p.145, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00694218

A. Greenfield, C. Hafemeister, and R. Bonneau, Robust data-driven incorporation of prior knowledge into the inference of dynamic regulatory networks, Bioinformatics, vol.29, issue.8, pp.1060-1067, 2013.

I. Adam-a-margolin, K. Nemenman, C. Basso, G. Wiggins, R. D. Stolovitzky et al., Aracne: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context, BMC bioinformatics, vol.7, issue.1, p.7, 2006.

M. Zou and . Suzanne-d-conzen, A new dynamic bayesian network (dbn) approach for identifying gene regulatory networks from time course microarray data, Bioinformatics, vol.21, issue.1, pp.71-79, 2005.

J. Pearl, Heuristics: intelligent search strategies for computer problem solving, 1984.

P. Norvig, Paradigms of artificial intelligence programming: case studies in Common LISP, 1992.

J. K. Lenstra, Local search in combinatorial optimization, 2003.

. Walter-r-gilks, Markov chain monte carlo. Encyclopedia of Biostatistics, 2005.

L. Breiman, Bagging predictors. Machine learning, vol.24, pp.123-140, 1996.

F. Schnitzler, S. Ammar, P. Leray, P. Geurts, and L. Wehenkel, Efficiently Approximating Markov Tree Bagging for High-Dimensional Density Estimation, pp.113-128, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00645009

C. Chow and . Liu, Approximating discrete probability distributions with dependence trees, IEEE transactions on Information Theory, vol.14, issue.3, pp.462-467, 1968.

S. Ammar and P. Leray, Mixture of Markov Trees for Bayesian Network Structure Learning with Small Datasets in High Dimensional Space, pp.229-238, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00644991

A. Pinna, S. Heise, J. Robert, A. Flassig, S. De-la-fuente et al., Reconstruction of largescale regulatory networks based on perturbation graphs and transitive reduction: improved methods and their evaluation, BMC systems biology, vol.7, issue.1, p.73, 2013.

. Robert-endre-tarjan, Finding optimum branchings. Networks, vol.7, pp.25-35, 1977.

T. Cokelaer, M. Bansal, C. Bare, E. Bilal, M. Brian et al., Dreamtools: a python package for scoring collaborative challenges, 1000.