
HAL Id: hal-02262577
https://hal.science/hal-02262577

Submitted on 2 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Network Inference of Dynamic Models by the
Combination of Spanning Arborescences

Anthony Coutant, Céline Rouveirol

To cite this version:
Anthony Coutant, Céline Rouveirol. Network Inference of Dynamic Models by the Combination of
Spanning Arborescences. Journées Ouvertes en Biologie, Informatique et Mathématiques, Jul 2017,
Lille, France. �hal-02262577�

https://hal.science/hal-02262577
https://hal.archives-ouvertes.fr

Network Inference of Dynamic Models
by the Combination of Spanning Arborescences

Anthony COUTANT and Céline ROUVEIROL
Laboratoire d’Informatique de Paris Nord (LIPN), UMR CNRS 7030, Université Paris 13

99 avenue Jean-Baptiste Clément, 93430 Villetaneuse, France

Corresponding author: firstname.lastname@lipn.univ-paris13.fr

Abstract In this paper, we tackle the problem of generative learning of dynamic models from
”fat” time series data (high #variables/#individuals ratio), leading to a high sensitivity of learned
models to the dataset noise. To overcome this problem, we propose a method computing a mixture
of many highly biased but optimal spanning arborescences obtained from many perturbed versions
of the original dataset, introducing variance to counterbalance the strong arborescence bias. The
method is theoretically at the boundary between structure oriented Bayesian model averaging
and recent work on density estimation using mixtures of poly-trees through a perturb and combine
framework, transposed to a dynamic setting. In practice, preliminary results on the recent DREAM
D8C1 challenge are promising.

Keywords Network inference, Ensemble Learning, Model Averaging, Spanning Arborescences

1 Introduction

Accurate network inference, or generative structure learning, is a major problem in bioinformatics for the
comprehension of systems of different kinds, such as regulatory networks [1] or cell signaling pathways [2].
Although a difficult problem in any dataset, generative structure learning on biological contexts is additionally
challenged by the scarcity of the available datasets, obtaining such data often being very expensive and time
consuming.

A major issue occuring in structure learning algorithms from data is the one of data fragmentation, where
the computation of frequencies from data is not reliable enough to robustly estimate statistics and avoid over-
fitting. This problem occurs more particularly when the dataset is scarce and suffers from a very high vari-
ables/samples ratio, such as in many biological contexts where the number of available sets of measurements
does not exceed several tens in a good situation, for a living organism made of hundreds or thousands of genes
and involving many more molecules.

Biological systems are also often characterized by their dynamic properties, and many biological phe-
nomenon under study are actually time evolving processes, e.g. the diauxic shift of the Saccharomyces cere-
visiae yeast [3], for which available datasets can take the form of time series. Together, the data scarcity and
the objective of finding dynamic models reinforce the data fragmentation issue, since considering several time
points in space for each variable in the model both increases the number of actually considered variables in
the network to learn, and reduces the samples size of the original dataset, due to the underlying used sliding
window.

A possible strategy to prevent overfitting in such situation is to reduce the learning algorithm variance by
reducing the number of possible models. This can be achieved for example by constraining the search space
so that the resulting subspace have good properties, or by constraining the search algorithm so that a subset
of possible models is reachable. Used alone, this strategy can find a good local, even global, optimum, but
relatively to a potentally inadequate space where a good solution for the overall learning problem is unexistent.

Another possibility is to find an asymptotic structure which is the result of a consensus between different
models learned from the dataset [4,5]. This way, the lack of sufficient statistics on data is partly offset by an
attempt to compute sufficient statistics on potentially very noisy intermediate models.

In this article, we use both solutions. The general behaviour of the algorithm we propose is to compute
an expected composite model using Bayesian Model Averaging [4] theory and a set of expected features, the
expected edge existence, computed from the learning of many component models. These components are
themselves highly biased models, more precisely spanning arborescences [6], with the interesting property for

Article

45

these simple structure spaces, that a global optimum is computable in polynomial time for any dataset [7]. Due
to this latter property, it is necessary to introduce variance in the dataset for each component learning task,
in order to converge to diverse simple models, allowing different significant features of the final model to be
represented in the population of simple models. This variance is obtained by: 1) perturbing the original dataset
through sampling with replacement; 2) forbidding the use of some edges in the spanning arborescence, the edge
blacklist being randomly generated for each component.

The paper is organized as follows. We first provide the background material through the description of
required theory and previous works in section 2. Then, we describe our mixture algorithm in section 3. We
finally validate in section 4 our algorithm with promising results on experiments over the challenging biological
network inference application from time series data from the popular DREAM D8C1 recent challenge [8],
before discussing the algorithm and its perspectives in section 5.

2 Related Works

Network inference has been studied for decades in bioinformatics context and many solutions can be
grouped into the following families.

Feature selection methods break the global network inference problem into a set of N subproblems, N
being the number of features in the studied biological system. The objective is to find the best neighbors of
each feature in the biological model to learn, using various methods. A main strategy is to learn and rank, for
each feature j, a set of (possibly linear) regression coefficients describing the function of all other features to j.
Recent examples of this strategy include: the HLICORN method [9,10], where linear coefficients are computed
between each possible gene and previously discovered coregulator sets; the GENIE3 [11] algorithm, where a
supervised classification tree is built for each node, seen as the target, and potential parents are ranked according
to their decreasing order of entropy gain between the tree’s layers; BORUTA [12], a wrapper type of method
around random forest classification; TIGRESS [13], which uses a perturb and combine strategy as this paper
does. Note that this latter strategy is still significantly different from our proposal. First, TIGRESS reduces
the learning problem into an independent learning problem for each node, while our proposal constrains the
learned models globally, allowing here to enforce global sparsity and more generally allowing rich extensions
to the method (e.g. global prior addition). Furthermore, the models to combine in this work are obtained by
Lasso regression and forward selection strategy, without any quality guarantee, unlike our strategy. Finally, the
approach only introduces variance in the process via data perturbation, while we propose both data and edge
space sampling for each component, the latter showing significant experimental impact (cf. Section 4).

Ordinary Differential Equations (ODE) methods aim at modelling a dynamic biological system as a set of
differential equations involving its features (genes, proteins, etc.). In practice, these methods can find highly
accurate parameters for given equations, and have even been extended for learning the equations themselves
[14], but their computational cost make them only suitable for small biological systems, which is not our target.

Pairwise score approaches aim at finding networks optimizing a sum of feature to feature scores measuring
the level of correlation or dependency between them. A famous algorithm in this category is the ARACNE
[15] method which computes a superset of the Chow-Liu spanning tree induced by the learning dataset, by first
computing a complete graph with all pairwise mutual informations (MI), and then iteratively flagging edges
for removal using a MI inequality for every triangle in the graph. Such posterior optimization, called transitive
reduction, is indeed often very important in algorithms of this family since distinguishing between direct or
indirect dependencies is not necessarily possible with the used measures.

(Dynamic) Bayesian network (DBN) learning algorithms [16] aim at finding the best factorization of the
joint distribution involving the features at different consecutive time steps, as a product of conditional distri-
butions (one per feature). Most DBN learning algorithms targetting problems of any size try to find a local
optimum in the model space, through the use of a heuristic, going from one model in the space to another
through iterative local perturbation of a best candidate obtained so far (best-first strategy) [17] or a set of best
candidates (beam search) [18]. These algorithms often add some extra-mechanics to proceed further the first
local optima, as for example random restarts or tabu search [19].

Most methods in the above mentioned families consider the input dataset as is to make network inference.
In the context of small datasets, the data fragmentation issue together with the possibility of noise presence in

Article Network Inference of Dynamic Models by the Combination of Spanning . . .

46

the dataset can misconduct the learning algorithms. In order to abstract from a single model learned from such
dataset, ensemble learning strategies have been designed to implement a ”wisdom of crowds” principle in a
machine learning context. Historically used in a fully supervised context to average classification predictions
and turn them into final majority decisions, these principles have been transposed for probability density esti-
mation and structure learning contexts, a good example of such strategy for probabilistic models having been
theorized under the Bayesian Model Averaging (BMA) [4] framework.

In BMA, the objective is to find an expected model, defined by a set of expected features it must satisfy,
such as the dependency between its variables, the underlying graph edges or paths and so forth, assuming those
features are relevant in the model space, by combining different component models. In practice, considering
the whole space is intractable and one must rely on a subset to approximate the result, such as using Markov
Chain Monte Carlo methods [20] or bagging [21].

Typical BMA methods consider the whole model space for learning which leads to the question of which
heuristic to use and with which extra mechanics. This problem has been recently partially tackled in [5] but
choices still remain. A recent work by Schnitzler et al. [22] considers combining more simple component
models instead, namely spanning trees, and proposes extensions of the Chow-Liu algorithm [23] which show
good results in their non-dynamic density estimation context. The algorithm proposed in this paper is close
but differs in two main ways: it focuses at outputing an expected structure as in traditional BMA for structure
learning, and thus require to make choices between the different component properties, while their work outputs
a result in the form of a linear combination of each component’s density probability function; it focuses on time
series datasets instead of i.i.d. propositional data. Note that a preliminary adaptation of Schnitzler work for
structure learning has been proposed in [24], but authors use the component models as an intermediate product
to refine potential parent candidates of a greedy algorithm, while we propose an algorithm which directly infers
a model from the components.

Among BMA methods, it is important to mention the seminal work in [4] about BMA structure learning
through the computation of expected features using bagging on the Bayesian networks space. However, in
this work, learned expected features are used as constraints for heuristic learning, which does not include
component edges themselves, and whose result does not lead to significant improvement compared to the
unconstrained learning counterpart. Finally, in this paper, while most work focuses on combining unconstrained
Bayesian networks, few indications are also given on the results obtained by merging spanning trees, which
apparently gave worse results than with unconstrained Bayesian networks. However, this can be explained
by the low introduction of variance, unlike our proposal, which can lead to poor space exploration because
of the components global optimality. Also, chosen experiment datasets can not be considered as being high
dimensional ones and the variables/individuals ratio is less subject to data fragmentation, which can explain
that more biased models perform worse. We will demonstrate in section 4 that combining arborescences in an
adequate way can actually give very good results in this context.

3 Combining Spanning Arborescences for Network Inference

In this section, we propose a general algorithm for network inference from the combination of spanning
arborescences. Several application oriented details are willingly not given, such as the specific scoring function
used and the value of hyperparameters. These informations are detailed in Section 4 for the problem at hand.

3.1 Data representation

Let us consider a matrix representation of a dataset D consisting of n ordered time stamps (D rows) over
N variables (D columns). Each column j is a sequence describing an observed variable over n time steps
〈Dij〉i∈〈1,...,n〉 and each row i describes the state of a system at time step i over the N observed variables. Our
goal is to find a model of the system of interest in terms of dependencies between the observed variables at
different time steps of the system. In this paper, we assume that this system is a Markov process, i.e. that each
time step state only depends on the immediate previous step state, and that the transition from each state to the
next state is driven by the same underlying model.

The first step for the proposed algorithm to work is to transform the n × N dataset into a (n − 1) × 2N
dataset Dt describing 2 consecutive time slices of the system. The transformation consists in concatenating

Article Network Inference of Dynamic Models by the Combination of Spanning . . .

47

every pair of consecutive time steps from D into a ”dynamic” example in Dt, i.e. ,we have for each row Dt
i .:

Dt
i . = [Di,1 . . . Di,N Di+1,1 . . . Di+1,N].

The given assumptions and the consequent representation allow transforming the ordered structure learning
problem from D into a simpler i.i.d. structure learning problem in the dynamic examples space of Dt.

3.2 Learning component models

From a dynamic dataset Dt, the first learning step of the proposed algorithm is to compute a set of compo-
nent models, i.e. simple models which will be combined in the second part of the algorithm.

Considering a number m of simple models to learn, we first compute m local perturbations of Dt, denoted
by {Dt[k]}1≤k≤m, by sampling from Dt with replacement (bagging strategy [21]). Then, for each Dt[k], a
directed graph Gk = (V,Ek), with V having one vertex for each of the N original variables, is built by first
randomly choosing α ·N · (N − 1)/2 undirected edges and then computing the two directed scores s(A→ B)
and s(B → A) for each of them. Finally, each graph Gk is searched for its optimum spanning arborescence Ak

with respect to the score s, using the Edmonds algorithm [6].

Even if the built graphs only have one node per original variable (as opposed to two nodes, one for timestep
t and one for timestep t + 1), the semantics of an arc X → Y measures the influence of X at time t over Y
at time t + 1. This semantics is taken into account during scores’ computation. Indeed, a score computation
s(X → Y) is actually a score involving Dt[k]

.x and Dt[k]
.(y+N) columns of Dt, where x and y are the indices of

variables X and Y in D. Concerning the choice of score itself, many asymmetrical scores can be used. A
simple one with conditionals interpretation is the conditional entropy H(X|Y). Bayesian scores, like Bayesian
Dirichlet variants [7] can also be used with the advantage of being able to add prior information, relatively to
each edge, to the learning task.

The edge sampling step before spanning arborescence computation is important in order to counterbalance
the determinism of the Edmonds algorithm due to its global optimality. The choice of α at this step is critical and
will be discussed in Section 4. On one hand, it must be low enough to avoid that the optimality of the spanning
algorithm restricts the component models diversity too much before the combination step. On the other hand, it
should also be high enough so that the spanning algorithm still discriminates between different models and the
resulting components are not just the consequences of random sampling. The choice of sampling undirected
edges instead of directly sampling directed ones is of major importance to this purpose, since it allows to obtain
strongly connected Gk graphs, to guarantee the existence of a spanning arborescence for a wide range of α.

To conclude, the first learning step ensures each component to be sparse, and globally optimal in the con-
sidered arborescences space, with respect to s. Edmonds algorithm, like Kruskal one in the undirected graphs
space, allows to get this optimality for each directed component in polynomial time.

3.3 Computing the composite model

Once the m component models have been learned, the second learning step aims at combining them into
a composite model. In the Bayesian Model Averaging framework, this step is achieved by computing a set of
expected features {E(fi)}i for the composite model, each E(fi) being inferred from each component features
set {fki }1≤k≤m. In this paper, the feature space consists in the set of all possible edges in V 2, and an expected
edge score is computed by counting how often that edge was present in the arborescenceAk, considering it was
present in the initial weighted graph Gk. Formally, we have for all (A,B) ∈ V 2:

E(fA→B) ≈
| {k | (A,B) ∈ edges(Ak)} |

α
.

More complex features could be considered, such as paths instead of edges or ancestor / descendant rela-
tionships, as in [4] (although the authors do not combine them in a single model). We leave these problems for
future work since it would require more complex combination rules, requiring transitive reduction techniques
[25], a difficult problem in the case where the input graph has cycles or is weighted.

The computation of all edges’ expected scores in the composite model directly provides a ranking for those
edges. A combined model is finally built from such ranking by choosing the k-best edges or all edges whose

Article Network Inference of Dynamic Models by the Combination of Spanning . . .

48

score exceeds a given threshold. The ranking itself can be used to compare the learning results with an optimal
model through an AUROC evaluation.

The Algorithm 1 summarizes the proposed approach.

Algorithm 1 The learning algorithm
Require:
Dt: a dynamic 2 slices of time learning dataset,
m: a number of component models to learn;
s: an edge directed weighting score;
α: a density for graphs setup pre-spanning arborescence;
σ: an edge weight threshold for final edges keep decision;

Ensure: a structural model from t to t+ 1 of the system
for 1 ≤ k ≤ m do

Dt[k] := sample with replacement from(Dt)
Gk := build strongly connected graph(Dt[k], s, α)
Ak := edmonds spanning arborescence(Gk)
F k := edges(Ak)

end for
∀(A,B) ∈ V 2 : E(fA→B) := | {k | (A,B) ∈ F k} | / α
return G = choose top edges({E(fA→B)}, σ)

3.4 Complexity

Following the decomposition of the Algorithm 1, the time complexity can be expressed as the sum of
two terms: one for the components computation, and another for the combination step. The components
computation complexity is m · (s+ g+ e), where s (resp. g, e) is the complexity of sampling (resp. connected
graph construction and Edmonds algorithm). The complexity of the sampling step is negligible here, but the
construction of the graphGk is inO(αN(N−1)) ≈ O(N2), as is the Edmonds algorithm computation with the
Tarjan optimization for dense graphs [26] (O(N2 log N) for sparse ones). Thus the components computation
part is in O(mN2).

The combination part is trickier since it consists in a succession of joins between the component edgelists
for further counting. Depending on the join algorithm used, this part can become the bottleneck of the overall
learning approach. Indeed, a simple nested join has a time complexity inO(PQ) where P andQ are the number
of rows in each table to join together. In our algorithm, this leads to a complexity in O(N2m). However, it is
possible to considerably improve this step using better strategies, such as hash joins, running inO(P +Q), thus
leading to a linear complexity in our settings. Note that in a purely sequential algorithm, it is not really necessary
to compute joins since component edges can be counted just after arborescence computation. However, since
this method is highly parallelizable due to the independence of components learning and of combinations order,
it is preferable to consider this solution since the parallelization gain overcomes the joins cost in practice.

Overall, the proposed approach is the sum of a quadratic and a linear step (in a parallel configuration), and
thus is of quadratic complexity.

4 DREAM 8 (HPN-DREAM) SC1B Network Inference Challenge Results

In this section, we validate our method and compare it with other algorithms through a dataset of the recent
HPN-DREAM 8 Breast Cancer closed challenge [8].

4.1 Challenge and evaluation method description

The DREAM 8 SC1B subchallenge learning objective is to find the network of a synthetical biological
model built using state of the art methods and biological knowledge. Simulation of this model led to the
production of several time series involving 20 biological features. The data used to perform the validation of
our algorithm was firstly pre-processed as described in section 3 to produce a single two-time slice dataset, the
resulting data containing 80 t to t+ 1 examples over 40 temporal features.

The evaluation of learning results for this task is achieved by an official tool, the DREAMTools python
package [27], through the computation of an AUROC score against the golden standard. In addition to com-

Article Network Inference of Dynamic Models by the Combination of Spanning . . .

49

Fig. 1. (Top) mean and sds of AUC computed by DREAMTools over 50 computations as a function of the number of
combined models, as well as the samples and edge ratio used for components learning. (Bottom) mean and sds of AUC
computed by DREAMTools over 50 computations as a function of the edge and sample ratios. Only convergence values
for increasing m are plotted.

puting scores the same way from one algorithm to another, this package also provides the expected ranking an
algorithm would have reached if the challenge were still open, using all final results from the more than 100
official submissions, which allows for a cheap comparison with many algorithms of all families described in
section 2.

In order to quantify the impact of several parameters on our algorithm learning quality, we have tested the
method with different parametrization of the number of combined modes m, the ratio of samples n contained
in each data perturbation, and the ratio of edges α present in each graph before each component learning. We
used BDeu [7] gain as edge score, the difference between the BDeu score of the A → B local structure and
the no edge one. Namely for an edge A→ B: BDeu(parents(B) = {A})−BDeu(parents(B) = ∅).

4.2 Results

Results for many parametrizations, given in Figure 1(Top), show different clear trends. Firstly, we can see
that for small edge ratios, the obtained AUC seems to monotonically increase with the number of combined
models, until reaching plateaus. For bigger ratios, the trend seems to be mostly observable, but the higher the

Article Network Inference of Dynamic Models by the Combination of Spanning . . .

50

sampling ratio, the lower the minimum edge ratio needs to be to show this trend. Additionally, we can observe
that the convergence AUC value tends to increase whenever any of the edge or the sample ratio decrease, which
is clearer in Figure 1(Bottom). These results seem to indicate that focusing on smaller parts of the available
information for each component, while aggregating a higher number of them for final consensus, seem to give
the best results, which confirms the requirement for components diversity in order to give a good consensus.
Extra experiments done and not displayed here show that smaller edge and sample ratios break the observed
trends. For edge ratio, this is predictable, since the minimum value displayed of 0.05 corresponds to an average
number of 2 neighbors per node (considering we add the reverse edges for each sampled edge, to ensure we
can compute a spanning arborescence), which is the minimal number of neighbors required for the algorithm
to make a choice. Lower values actually lead the spanning arborescence algorithm to just select most available
edges in the graphs it is given. For samples ratio, it seems to indicate a limit from which the dataset is too small
to capture faithful enough information.

Concerning the expected ranking for the different results, our approach is very promising since it reached
the 3rd position for the best mean AUC obtained over the different parametrizations, outperforming GENIE3,
ARACNE, all heuristic oriented Bayesian network methods, as well as all linear and most non-linear regression
methods, all ODE and all ensemble learning solutions.

4.3 Discussion

At the moment, the gap with the best performance is of 0.045. A particularity of the considered DREAM
subchallenge is that 3 out of the 20 biological features are actually fake nodes, supposed to have no correlation
with the others. This shows a limitation of our approach in its current form: learning spanning trees means that
every node will get one parent per component, even if there is no true correlation. Note that this problem is
not necessarily easy to solve, since there is also a tendency for such spurious correlations to be non-uniformly
distributed. Indeed, the optimization of the spanning arborescence score encourages to keep the apparently
more correlated pairs of nodes, so the ones with the most biased noise are chosen. Since sample and edge
samplings are uniformly done, there is a high probability for a restricted number of parents to appear in each
component for a fake node. In practice, this means that a simple pruning of the components is not enough.
Future work will address this issue.

5 Conclusion

In this paper, we have presented a network inference learning algorithm based on the combination of mul-
tiple spanning arborescences learned over multiple perturbation of the original dataset, with enforced diversity
through edge sampling, showing promising results in practice on a recent DREAM challenge.

Experiments have more particularly shown that combining more models together with more diversity, in-
volving a decrease of both sample and edge ratios in the currently defined parameter space, leads to better
convergence values. It is encouraged to use this strategy in a quite extreme way, since best performances ob-
tained in the experiments are achieved by situations where both ratios are very low. The only warning would be
to still allow the Edmonds algorithm to have choice, in order not to make the components completely random.
We have also seen in section 4 the impact of fake nodes on the results, and the difficulty of identifying them
whenever the spanning arborescence assign most nodes a parent. This issue has a significant impact on the
current results since removing edges involving fake nodes would lead to a top position of the approach.

Future works will address the limitations of the current algorithm, such as its sensitivity to fake nodes.
More advanced extensions will also be investigated, such as the introduction of priors, really important in
biological contexts, modular capabilities, which is becoming a standard in recent methods to abstract from a
model complexity, and different component combination rules to preserve extra properties in the consensus
model, such as paths or path lengths.

References
[1] Michael Hecker, Sandro Lambeck, Susanne Toepfer, Eugene van Someren, and Reinhard Guthke. Gene regulatory

network inference: Data integration in dynamic models—a review. Biosystems, 96(1):86 – 103, 2009.

[2] Karen Sachs, Omar Perez, Dana Pe’er, Douglas A. Lauffenburger, and Garry P. Nolan. Causal protein-signaling
networks derived from multiparameter single-cell data. Science, 308(5721):523–529, 2005.

Article Network Inference of Dynamic Models by the Combination of Spanning . . .

51

[3] Ludwig Geistlinger, Gergely Csaba, Simon Dirmeier, Robert Küffner, and Ralf Zimmer. A comprehensive gene
regulatory network for the diauxic shift in saccharomyces cerevisiae. Nucleic acids research, page gkt631, 2013.

[4] Nir Friedman, Moises Goldszmidt, and Abraham Wyner. Data analysis with bayesian networks: A bootstrap ap-
proach. In Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence, pages 196–205. Morgan
Kaufmann Publishers Inc., 1999.

[5] Bradley M Broom, Kim-Anh Do, and Devika Subramanian. Model averaging strategies for structure learning in
bayesian networks with limited data. BMC bioinformatics, 13(13):S10, 2012.

[6] Jack Edmonds. Optimum branchings. Mathematics and the Decision Sciences, Part, 1:335–345, 1968.

[7] David Heckerman, Dan Geiger, and David M Chickering. Learning bayesian networks: The combination of knowl-
edge and statistical data. Machine learning, 20(3):197–243, 1995.

[8] Steven M Hill, Laura M Heiser, Thomas Cokelaer, Michael Unger, Nicole K Nesser, Daniel E Carlin, Yang Zhang,
Artem Sokolov, Evan O Paull, Chris K Wong, et al. Inferring causal molecular networks: empirical assessment
through a community-based effort. Nature methods, 13(4):310–318, 2016.

[9] I Chebil, Rémy Nicolle, G Santini, Céline Rouveirol, and Mohamed Elati. Hybrid method inference for the con-
struction of cooperative regulatory network in human. IEEE transactions on nanobioscience, 13(2):97–103, 2014.

[10] Rémy Nicolle, François Radvanyi, and Mohamed Elati. Coregnet: reconstruction and integrated analysis of co-
regulatory networks. Bioinformatics, page btv305, 2015.

[11] Va Anh Huynh-Thu, Alexandre Irrthum, Louis Wehenkel, and Pierre Geurts. Inferring regulatory networks from
expression data using tree-based methods. PLOS ONE, 5(9):1–10, 09 2010.

[12] Miron B Kursa and Witold R Rudnicki. Feature selection with the boruta package. Journal of Statistical Software,
36(11):1–13, 2010.

[13] Anne-Claire Haury, Fantine Mordelet, Paola Vera-Licona, and Jean-Philippe Vert. Tigress: Trustful inference of
gene regulation using stability selection. BMC Systems Biology, 6(1):145, 2012.

[14] Alex Greenfield, Christoph Hafemeister, and Richard Bonneau. Robust data-driven incorporation of prior knowledge
into the inference of dynamic regulatory networks. Bioinformatics, 29(8):1060–1067, 2013.

[15] Adam A Margolin, Ilya Nemenman, Katia Basso, Chris Wiggins, Gustavo Stolovitzky, Riccardo D Favera, and
Andrea Califano. Aracne: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular
context. BMC bioinformatics, 7(Suppl 1):S7, 2006.

[16] Min Zou and Suzanne D Conzen. A new dynamic bayesian network (dbn) approach for identifying gene regulatory
networks from time course microarray data. Bioinformatics, 21(1):71–79, 2005.

[17] Judea Pearl. Heuristics: intelligent search strategies for computer problem solving. 1984.

[18] Peter Norvig. Paradigms of artificial intelligence programming: case studies in Common LISP. Morgan Kaufmann,
1992.

[19] Jan Karel Lenstra. Local search in combinatorial optimization. Princeton University Press, 2003.

[20] Walter R Gilks. Markov chain monte carlo. Encyclopedia of Biostatistics, 2005.

[21] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[22] François Schnitzler, Sourour Ammar, Philippe Leray, Pierre Geurts, and Louis Wehenkel. Efficiently Approximat-
ing Markov Tree Bagging for High-Dimensional Density Estimation, pages 113–128. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2011.

[23] C Chow and C Liu. Approximating discrete probability distributions with dependence trees. IEEE transactions on
Information Theory, 14(3):462–467, 1968.

[24] Sourour Ammar and Philippe Leray. Mixture of Markov Trees for Bayesian Network Structure Learning with Small
Datasets in High Dimensional Space, pages 229–238. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[25] Andrea Pinna, Sandra Heise, Robert J Flassig, Alberto De La Fuente, and Steffen Klamt. Reconstruction of large-
scale regulatory networks based on perturbation graphs and transitive reduction: improved methods and their evalu-
ation. BMC systems biology, 7(1):73, 2013.

[26] Robert Endre Tarjan. Finding optimum branchings. Networks, 7(1):25–35, 1977.

[27] Thomas Cokelaer, Mukesh Bansal, Christopher Bare, Erhan Bilal, Brian M Bot, Elias Chaibub Neto, Federica
Eduati, Alberto de la Fuente, Mehmet Gönen, Steven M Hill, et al. Dreamtools: a python package for scoring
collaborative challenges. F1000Research, 4, 2015.

Article Network Inference of Dynamic Models by the Combination of Spanning . . .

52

