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Abstract

The present paper presents a regularization procedure of the Lagrangian point-particle approach for the simulation of dispersed
two-phase flows in a statistical framework. The aim is to regularize the probability presence of a particle, written as a
Dirac delta function centered on the particle position in the standard formulation, by a Gaussian like distribution. The
associated regularization length scale is obtained by solving additional transport equations in the Lagrangian framework. The
regularization itself is then achieved by solving two non-linear diffusion equations. The first diffusion equations allows to
spread the field of spatially varying diffusion coefficients required for regularization over the computational mesh. Once this
field is defined, regularization of the Lagrangian fields to be projected on the Eulerian grid such as particle density, particle
velocity, etc... is performed. These ideas are then tested on simplified one-dimensional test cases. While preliminary results
seem encouraging as the dispersed phase fields projected on the Eulerian grid appear much less sensitive to the initial sampling
of the spray, further tests on more realistic test cases are necessary to conclude on precision gains with repect to the additional
computational expense resulting from the regularization procedure.

1 Introduction

Dispersed two-phase flows are encountered in numerous nat-
ural phenomena and industrial applications such as spray
combustion, spray coating or icing applications. The dis-
persed phase consists of a cloud of liquid or solid particles
whose number is generally far too large to compute the evo-
lution of each singe particle at a reasonable computational
cost.
In order to reduce the computational cost, the dispersed phase
may be described in a purely statistical sense using a prob-
ability density function (pdf). The evolution of this pdf
follows Williams’ equation (Williams 1958) and two main
approaches can be used for its resolution: the Euler-Euler
and the Euler-Lagrange approach. Both approaches have
their advantages and drawbacks and the choice between them
mainly depends on the target application.
In this work, the Euler-Lagrange approach is chosen. The
fluid phase is described in a Eulerian framework while the
dispersed phase is described by N numerical particles de-
scribed by Lagrangian variables such as position, velocity,
etc.... The fact that all particle properties are available at the
particle scale generally makes the implementation of phys-
ical models more straightforward compared to the Eulerian
framework where only moments of the probability density
function are computed. Transport equations are then derived
for the Lagrangian variables to track the spray’s evolution
during the simulation. Finally, a statistical weight is assigned

to each numerical particle denoting the number of samples
associated with each numerical particle to fulfill global con-
straints on mass, momentum and energy of the dispersed
phase.
One major difficulty of this approach lies in the control of
statistical convergence. For instance, zones depleted of nu-
merical particles will induce non-physical oscillations of the
dispersed phase fields when the latter are projected on the
Eulerian grid.
(Garg 2009) proposed to locally seed the zones depleted of
particles to circumvent this problem. Their main idea was
to control the minimum and maximum number of particles
in each computational cell. On the one hand, the numerical
particles were split if the lower threshold value was reached
to guarantee sufficient statistical sampling of the spray. On
the other hand, the particles were gathered when the upper
threshold was reached in order to limit oversampling and re-
duce computational expense. Consistency was ensured by
respecting a constraint resulting from mass conservation and
implying equality between the sums of particle weights be-
fore and after splitting / gathering. An important limitation
of this approach lies in the arbitrary character of the thresh-
old values.
The present paper proposes a possibly complementary ap-
proach to compensate the poor statistical convergence inher-
ent to the Lagrangian approach. The main idea is to spread
the information carried by each particle, initially strictly lo-
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calized on each particle’s center of gravity, over a finite dis-
tance. The associated length scale is approximately recon-
structed via the resolution of additional transport equations
for each particle. The fields resulting from the projection
of Lagrangian variables on the computational mesh are then
smoothed via the resolution of a nonlinear diffusion equation,
approximately yielding a Gaussian smoothing of the initial
particle fields.
The paper is organized as follows : section 2 reviews the
governing equations for Euler-Lagrange approach. In section
3, the regularization procedure is introduced in two distinct
steps : first, the reconstruction of the inter-particle distances.
Then, the diffusion equation will be introduced. In section
4, the approach is evaluated on a 1D test case to prove its
efficiency. The main findings of the present work are sum-
marized in the conclusion.

2 Governing equations

Carrier phase

The present approach is restricted to steady carrier phases.
Beyond this fundamental assumption, the system of equa-
tions that is solved for the carrier phase, i.e. incompressible /
compressible Euler or Navier-Stokes equations, is irrelevant.
Therefore, the set of equations for the carrier phase is not
written in detail.

Dispersed phase

The spray is described using a probability density function
(pdf) f(t, x, v) denoting the number of particles with position
x and velocity v at time t. The evolution of f is given by the
kinetic-like Williams equation (Williams 1958)

∂f

∂t
+∇x · (vf) +∇v · (γf) = 0 (1)

with γ the acceleration rate. Note that eq. (1) describes a
simplified version where fragmentation/coalescence and col-
lision phenomena were discarded. These simplifications are
mainly performed for preliminary studies and do not imply
that the proposed methodology is restricted to sprays without
fragmentation and coalescence phenomena.
A direct numerical resolution of Eq.(1) is not possible due to
the size of the phase space. Thus, the Lagrangian approach
is used to seek an approximation of f using a sample of N
numerical particles. f is then approximated as:

fN (t, x, v) =

N∑
p=1

wp(t)δ(x− xp(t))δ(v− xp(t)) (2)

with xp and vp the position and velocity of the particle
p. wp is a numerical weight that can be interpreted as
the (not necessarily integer given the statistical nature of
the sampling) number of real particles associated to the
numerical particle p.

The idea of the present work is to view each particle as
carrying information on the distance to its closest neighbour.
Thus, each particle is now identified by its position, denoted
x̄p and distance to the closest neighbouring particle x′p. We
consider the spray to be initially properly sampled. Then,
information on the evolution of the distance between two
neighbouring particles along their trajectories may be gained
if the evolution of x′p can be tracked. This implies that two
particles that were initially closest at injection remain close
along their respective trajectories, requiring similar inertia.
Evaluating x′p explicitly could be complex in a parallel sim-
ulation environment as particles would have to be copied on
adjacent processors to allow for the evaluation of x′p across
processor boundaries, as is done for instance for explicit eval-
uations of collisions (Capecelatro 2013). Thus, an approx-
imate evolution equation for this distance is derived instead.
This distance is then used to spread information carried by
each particle over a characteristic distance proportional to x′p.

The initial position of each particle is decomposed as:

xp(t0) = x̄p(t0) + x′p(t0) (3)

with x′p(t0) = xp(t0)− x̄p(t0) to the closest neighbouring
particle. Similarly, the particle velocity is defined as:

vp(t0) = v̄p(t0) + v′p(t0) (4)

with v̄p(t0) the initial velocity of the current particle and
v′p(t0) the velocity of its neighbor.

The trajectories of the each numerical particle are given by
the standard transport equations:

dvp
dt

= γp =
1

τp
(u(xp)− vp) + g

dxp
dt

= vp
(5)

with τp the particle time response given by the correlation
((Schiller and Naumann 1935))

τp = τ0
(
1 + 0.15Rep0.687

)
(6)

with Rep =
dp||u(xp)−vp||

ν the particle Reynolds number
and τ0 the particle time response in the limit of zero particle
Reynolds number.

3 Regularization procedure

Equation (2) implies that the pdf is only defined at positions
where a numerical particle is present. The projection step
on the Eulerian grid clearly leads to a regularization of eq.
(2) because the Dirac delta function will at least be spread
over the computational cell containing the particle. How-
ever, this regularization is mesh dependent so that the qual-
ity of the final solution may not be controlled. In particular,
results obtained via projection on a finer grid while keep-
ing the same initial sampling will tend to exhibit more non-
physical oscillations. Moreover, in regions depleted of par-
ticles non-physical oscillations will inevitably appear on the
dispersed fields. Instead of increasing the number of numer-
ical samples/ particles in a static manner, i.e. by initializing
with a higher number of samples, or in a dynamic fashion by
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detecting the zones depleted of particles and increasing the
seeding (Garg 2009), the present work proposes to regularize
the Dirac delta function on the particle presence over a char-
acteristic distance set by the evolution of the inner-particle
distance. To this purpose, the Dirac distribution δ(x − xp)
appearing in Eq.(2) is regularized by a Gaussian distribution
δσp

(x − xp) with the standard deviation σp controling the
distance of the information spread around particle p. This
regularization is based on the resolution of a diffusion equa-
tion. Indeed, applying a diffusion process over a time T to a
Dirac distribution yields a Gaussian Distribution whose stan-
dard deviation σ is given by

σ =
√

2DT (7)

This distance will be referred to as the regularization
length scale for the rest of the paper. Intuitively, the standard
deviation σp should be at least proportional according to the
initial and to the evolution of the inner-particle distance to
balance the poor particle resolution

σp = σp
(
x′p(t), x

′
p(t0)

)
(8)

where t0 denotes the time of the initial condition.
However, this procedure can present three difficulties.

First, the information on x′p required to defined each σp is
not available during the simulation since only the positions
xp of the particles are known. Although possible, an
explicit evaluation of these distances may be expensive in
a distributed memory environment. Therefore, an initial
methodology to reconstruct these quantities is required.

Then, the methodology to replace Dirac distributions by
Gaussian distributions presents two major constraints. First,
the regularization length scale σp is specific to each particle
and is thus expected to be a function of space. Again, per-
forming the regularization explicitly is not straightforward in
a parallel simulation environment, in particular when the reg-
ularization length scale extends over several grid cells.

The overall procedure proposed in this paper will be pre-
sented in two different steps : first, the methodology to ap-
proximately evaluate the evolution of the inner-particle dis-
tance, then the procedure to replace Dirac distributions by
Gaussian distributions.

3.1 Reconstruction of x′
p

The idea retained to reconstruct the values of x′p is to design
and solve transport equations similar to Eq.(5). These equa-
tions also stand for x̄p

dv̄p
dt

=
1

τp
(u(x̄p)− v̄p) + g

dx̄p
dt

= v̄p
(9)

Combining Eq.(5) and Eq.(9), one obtains

dv′p
dt

=
1

τp

(
u(xp)− u(x̄p)− v′p

)
dx′p
dt

= v′p

(10)

Then, one assumes

u(xp)− u(x̄p) ≈ ∇ u · x′p (11)

and the transport equations for x′p finally write

dv′p
dt

=
1

τp

(
∇ u · x′p − v′p

)
dx′p
dt

= v′p

(12)

It is recalled that this methodology is only applicable for
steady fields of the carrier phase. Moreover, a stringent lin-
earity assumption on the flow velocity in the neighbourhoud
x′p of a particle was made, see (Eq.(11)). The validity of
such assumption may be controlled by evaluating the second
derivatives of the carrier phase. In case this assumption be-
comes invalid, the flow field could be seeded with additional
particles, as suggested by (Garg 2009).

3.2 Diffusion equation

The present section describes the implicit regularization pro-
cedure to approximately replace the Dirac delta functions
on particle position by Gaussian distributions with a specific
regularization length scale σp.
A similar method was introduced by (Poustis 2018) in the
context of a deterministic discrete particle simulations in or-
der to improve the robustness of numerical two-way coupling
between the carrier phase and the spray. The method is based
on the resolution of a non-linear diffusion equation

∂τφ−∇ ·
(
D
(
|∇φ|2

)
∇φ
)

= 0 (13)

It was shown in (Poustis 2018) that a diffusion coefficient
expressed in terms of the gradient of the variable to regular-
ize allowed to locally adjust the regularization length scale.
However, this formulation can not directly be used in the
present work because it is not adapted to varying numerical
weights wp. This is because the gradient function of the dis-
persed phase field is no longer uniquely defined with respect
to the regularization length scale. Indeed, a large gradient of
the considered dispersed phase field that is to be projected on
the Eulerian grid could be induced by a small gradient multi-
plied by a large weight wp or vice versa.
Since the regularization cannot be performed solving a sin-
gle diffusion equation, the regularization is split in two suc-
cessive steps. First, a field of diffusion coefficients that is
nonzero not only in the computational cells containing the
particles, but in a neighborhood defined by the magnitude of
x′p(t), needs to be defined. To this purpose, the Eulerian field
of the characteristic diffusion length scale Lp is defined:

Lp(x; t) =

N∑
p=1

x′p(t) 1(xp(t), x) (14)

Then, a non-linear diffusion equation is applied to this
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field:

∂ψ

∂τ
−∇ · (D(ψ)∇ψ) = 0, x ∈ Ω, τ ∈ [0; τmax]

ψ(0, x) = Lp(x, t), x ∈ Ω

∂ψ

∂n
= 0, x ∈ ∂Ω

(15)

with a diffusion coefficient:

D(ψ) =
2

π
arctan

(
β

(
ψ

ψmax

)α)
, (α, β) ∈ R+ (16)

Here, ψ denotes the regularized Eulerian inner-particle
distance field. Taking a diffusion coefficient increasing with
ψ allows to adjust the diffusion intensity according to the
local inner-particle distance. This unsteady non-linear dif-
fusion equation is solved over a non-physical pseudo-time
τmax. Although it is strictly speaking only valid in the case
of linear diffusion, it appears eq. (7) remains approximately
valid locally. Therefore, if the maximum value of the diffu-
sion coefficient is arbitrarily set to unity, τmax may be simply
written as

τmax = max
p

∣∣∣∣x′p(t)∣∣∣∣2 (17)

This definition ensures that the largest inner-particle dis-
tance will be approximately spread over the correct length
scale. A regularized inner-particle distance Eulerian field
L̃p(x) is then obtained at the end of the first diffusion step:

L̃p(x) = ψ(τmax, x) (18)

Given this field of regularized length scales, the diffusion
coefficient for the diffusion of the dispersed phase fields is
simply defined as

D̃(x) = k L̃2
p(x), k ∈ R+ (19)

and the regularized dispersed phase fields, typically parti-
cle density or particle velocity in the present case, writes

∂φ

∂τ
−∇.

(
D̃(x)∇φ

)
= 0, x ∈ Ω, τ ∈ [0; τmax]

φ(0, x) = vp(x, t), x ∈ Ω

∂φ

∂n
= 0, x ∈ ∂Ω

(20)

Given the formulation of D̃(x), the regularization time is
set to τmax = 1.

3.3 Overall Strategy

The overall strategy to perform a Euler-Lagrange simulation
using the regularization procedure proposed in the present
study may be summarized as follows:

• First, solve the gaseous phase equations until steady
state is reached.

• Then, solve the transport equations for the dispersed
phase (eq. (5)). Also, solve the system of equations
(12) as the first step of the regularization procedure.

• Solve the diffusion equation eq.(15) to set the diffusion
coefficient field in the neighborhood of each particle ac-
cording the computed inner-particle distance x′p(t).

• Finally, apply the regularization procedure to any dis-
persed field (e.g. particle velocity field) by solving
eq.(20).

4 Numerical methods

In this section, a brief overview of the numerical methods
used to solve the different system of equations introduced in
the previous sections is proposed.

The implementation of the regularization is targeted in the
IGLOO2D 2D solver developped at ONERA for airfoil icing
applications (Trontin 2017). In particular, the present reg-
ularization could improve the prediction of impinging par-
ticle mass fluxes on airfoil surfaces, a fundamental prelim-
inary to the prediction of liquid deposition and subsequent
ice accretion. Note that such regularization procedures are
already used in practice when particle trajectories are com-
puted with a Lagrangian approach, albeit in an empirical
manner, i.e. with an arbitrary definition of the regularization
length scales. Eulerian approaches do not suffer from these
limitations since they directly transport averaged fields and
because their resolution is based on the Eulerian grid. How-
ever, standard Eulerian methods are not able to handle the
complex wall interaction dynamics occuring when ice crys-
tals impinge and shatter on the airfoil. In that case, more than
one particle velocity needs to be locally defined to correctly
predict impingement dynamics and the resulting system of
equations is difficult to solve in practice. Unfortunately,
the implementation of the present regularization procedure
is still ongoing and only results of simple one-dimensional
simulations may be shown in the results section.

The resolution of the Lagrangian equations (12) is inte-
grated with an explicit semi-analytical Euler scheme (Mur-
rone 2011).
Moreover, the resolution of the two diffusion equations (eq.
(15) and eq.(20)) is performed using a finite volume approach
with explicit time integration. The time integration is re-
stricted by a CFL condition on the time step δτ

δτ ≤ ∆x2

2dDmax
(21)

with d is the physical dimension of the problem, Dmax =
max(D) in the first diffusion problem andDmax = max(D̃)
in the second one. The explicit CFL is quite restrictive and
an implicitation of the non-linear diffusion equations (eqs.20
and 15) is probably necessary to limit computational expense
for realistic applications. Clearly, achieving an efficient reso-
lution for these non-linear diffusion equations is an additional
key aspect of the present methodology, but it is reported to fu-
ture work and thus considered out of the scope of the present
paper.
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5 Results

5.1 Reconstruction of dispersed flow fields
This first test case is used to prove the ability of the

regularization procedure to yield smooth dispersed fields.

A 1D domain is considered [0; 40] with 401 discretization
points. Initially, n = 300 particles (wp = 1) are injected
in a steady linear fluid u(x) = x without initial velocity.
The particles are carried by the fluid over a time T . The
initial injection in space and the time T have been chosen
to ensure there is approximately one particle per cell at the
end of the simulation. Therefore, the initial injection of the
particles is inhomogeneous and the inital values of x′p(t0)
are also inhomogeneous. This allows to obtain smooth
particle density and particle velocity fields, considered here
as reference solutions.
The same simulation with the same parameters is repeated
with N = 75 numerical particles with equal numerical
weights (wp = 4). Particle density and velocity fields are
plotted against their respective reference solutions on Fig.(1)
and (2). A zoom on the particle velocity field is displayed on
Fig.(3) to highlight the oscillation phenomena. Given that
for the reference solution, the injection is chosen to obtain
one particle per cell, reducing the number of numerical
particles automatically induces the apparition of oscillations
on the dispersed fields.

In order to prove its capabilities, the regularization proce-
dure introduced in the previous section is applied to these two
fields. The results are split in two : first, the reconstruction of
the inner-particle distance and then the regularization step.
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Regularized density field

Figure 1: Comparison between the reference solution and
the particle density field obtained with N = 75
numerical particles.

5.1.1 Reconstruction of x′p
In this simple case, the actual inner-particle distances can

be measured in order to tune the procedure. The measured
values are compared to the approximated values obtained
by solving the transport equations (12). The simulation was
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Figure 2: Comparison between the reference solution and
the particle velocity field obtained with N = 75
numerical particles.

20 21 22 23 24 25
x

0

5

10

15

20

25
v(
x
)

Reference field
Velocity field

Regularized velocity field

Figure 3: Zoom on the particle velocity field displayed in
Fig.(2) to highlight the oscillation phenomena.

initialy performed with an equal and constant value of τp for
all particles. In that case, the inner-particle distances were
exactly reconstructed.
In real applications, the value of τp is given by eq.(6). In
that case, the maximal error between the approximated
and measured values is about +9%, i.e. the reconstructed
distances slightly overestimate the measured ones.

5.1.2 Regularization step
Then, the two diffusion equations are solved with initial

conditions given by the non-regularized fields. The results
are also displayed on Fig.(1) and Fig.(2). The resulting
regularized fields accurately match the reference solutions
except at the edge of the spray where some discrepancies
can be noticed.

In an effort to provide a quantitative information about this
procedure, the previous simulation was repeated for different
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numerical particles number N with the regularization proce-
dure to obtain a smooth particle velocity field in each sim-
ulation. Then, the error made is evaluated via a relative L2

norm error between the reference solution and the regular-
ized particle velocity field in each simulation. The errors
obtained are displayed in Table.(1) for their corresponding
number N of numerical particles normalized by the initial
number n = 300 of real particles.

N/n
(
||vref (x)−vp(x)||2

||vref (x)||2

)1/2
0.125 7.0.10−3

0.25 4.6.10−3

0.50 3.8.10−3

0.75 1.3.10−3

Table 1: Relative L2 norm error between the reference solu-
tion and the regularized particle velocity fields for
different initial number of numerical particles .

The results obtained are again quite acceptable even for
the worst case scenario N/n = 0.125.
Regarding the overal computational cost of the regularization
procedure, the time required is not necessarily meaningful
here in a fictive 1D test case. It will be more interesting to
measure this cost on a more realistic 2D case. However, in
order to simply give an order of magnitude, the resolution
of the two diffusion equations required approximately 50
iterations in time. Thus, the regularization procedure is only
applicable for post-processing purposes in its current form,
typically for the reconstruction of particle mass flux profiles
on an airfoil.

5.1.4 Non-constant numerical weight
It was previously mentioned that difficulties could occur

when dealing with particles having different numerical
weights wp. In order to check the robustness of our
methodology, the previous simulation was repeated using
numerical particles with varying numerical weight wp. The
same parameters than the previous test case are used and
the numerical weight of each particle is randomly picked
between 1 and 10. The number of real particle represented
is therefore randomly sampled. The error made on the
reconstruction of the inner-particle distance is identical to
the case with constant numerical weight since the numerical
weights are not involved in the reconstruction. Concerning
the regularization, the results obtained are plotted with the
reference solution on Fig.(4) and are still in good agreement.

5.1.5 Non-Linear velocity profile
One major assumption made in the derivation is to assume

a linear flow field over the distance separating neighboring
particles. The finite distance for each particle is given by x′p.
When this assumption is no longer verified, the error done
on the reconstruction of the inner-particle distances is sig-
nificantly increased. Therefore, the present procedure would
need to be combined with a seeding procedure when the lin-
earity assumption is locally violated over the computed reg-
ularization distance. For the moment, only a criterion that
should detect departure from linearity is proposed.

0 5 10 15 20 25 30 35 40
x

0
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10

15

20

v(
x
)

Reference field Velocity field

Figure 4: Regularized particle velocity field with non-
constant numerical weights. Comparison with the
reference solution.

∣∣∣∣12∆u(xp(t))x
′2
p

∣∣∣∣ ≤ ε |u(xp(t))| (22)

with ε a constant of order 10−2.

6 Conclusions

In this paper, a methodology to improve the statistical con-
vergence of the Euler-Lagrange approach for dispersed two-
phase flows simulations is proposed. Dispersed fields are reg-
ularized/smoothed via the resolution of a diffusion equation.
The regularization length scale is based on the inner-particle
distance. Since these distances are not available nor mea-
surable during the simulation, a prior methodology to ap-
proximately reconstruct this information is proposed. The
methodology proved to be able to obtain smooth particle ve-
locity field on a fictive 1D test case. The influence of the
initial number of numerical parameters and then the influ-
ence of non-constant numerical weights on the quality of the
projected Lagrangian fields were tested. In both cases, the
results were in good agreement with reference solutions ob-
tained with much higher initial particle seeding.
The next step will be to evaluate this methodology on a more
representative 2D test case in the context of icing applica-
tions. A comparison between different methods to achieve
convergence for particle mass flux fields on standard airfoils
will then be performed. First, convergence mass deposition
rates will be achieved via static seeding, i.e. increasing the
initial number of injected particles. Then dynamic seeding,
where the number of particles present in each cell is con-
trolled via minimum and maximum threshold values. Finally,
the present methodology will be used. The computational ex-
pense of these and their respective average error levels with
respect to a reference solution may then be compared.
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