, WHO Expert Committee on Drug Dependence: Twenty-first report., 1978.

. Who, WHO Expert Committee on Drug Dependence: Twenty-first report., 1978.

H. Paritala and K. S. Carroll, New Targets and Inhibitors of Mycobacterial Sulfur Metabolism, Infectious Disorders - Drug Targets, vol.13, issue.2, pp.85-115, 2013.

M. Zhang, J. Yue, Y. P. Yang, H. Zhang, J. Q. Lei et al., Detection of Mutations Associated with Isoniazid Resistance in Mycobacterium tuberculosis Isolates from China, Journal of Clinical Microbiology, vol.43, issue.11, pp.5477-5482, 2005.

A. Cheepsattayakorn and R. Cheepsattayakorn, Novel Compounds and Drugs and Recent Patents in Treating Multidrug- Resistant and Extensively Drug-Resistant Tuberculosis, Recent Patents on Anti-Infective Drug Discovery, vol.7, issue.2, pp.141-156, 2012.

R. P?ocinska, M. Korycka-machala, P. Plocinski, and J. Dziadek, Mycobacterial DNA Replication as a Target for Antituberculosis Drug Discovery, Current Topics in Medicinal Chemistry, vol.17, issue.19, pp.2129-2142, 2017.

D. T. Hoagland, J. Liu, R. B. Lee, and R. E. Lee, New agents for the treatment of drug-resistant Mycobacterium tuberculosis, Advanced Drug Delivery Reviews, vol.102, pp.55-72, 2016.

P. J. Brennan, Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis, Tuberculosis, vol.83, issue.1-3, pp.91-97, 2003.

P. J. Brennan and H. Nikaido, The Envelope of Mycobacteria, Annual Review of Biochemistry, vol.64, issue.1, pp.29-63, 1995.

M. Daffé and P. Draper, The Envelope Layers of Mycobacteria with Reference to their Pathogenicity, Advances in Microbial Physiology, vol.39, pp.131-203, 1997.

P. Draper, The outer parts of the mycobacterial envelope as permeability barriers, Frontiers in Bioscience, vol.3, issue.4, pp.d1253-1261, 1998.

I. C. Hancock, S. Carman, G. S. Besra, P. J. Brennan, and E. Waite, Ligation of arabinogalactan to peptidoglycan in the cell wall of Mycobacterium smegmatis requires concomitant synthesis of the two wall polymers, Microbiology, vol.148, issue.10, pp.3059-3067, 2002.

J. Pawe?czyk and L. Kremer, The Molecular Genetics of Mycolic Acid Biosynthesis, Microbiology Spectrum, vol.2, issue.4, pp.2-0003, 2014.

C. Vilchèze and W. R. Jacobs,-jr., The Mechanism of Isoniazid Killing: Clarity Through the Scope of Genetics, Annual Review of Microbiology, vol.61, issue.1, pp.35-50, 2007.

K. Mikusova, R. A. Slayden, G. S. Besra, and P. J. Brennan, Biogenesis of the mycobacterial cell wall and the site of action of ethambutol, Antimicrobial Agents and Chemotherapy, vol.39, issue.11, pp.2484-2489, 1995.

A. S. Xavier and M. Lakshmanan, Delamanid: A new armor in combating drug-resistant tuberculosis, Journal of Pharmacology and Pharmacotherapeutics, vol.5, issue.3, p.222, 2014.

M. Matsumoto, H. Hashizume, T. Tomishige, M. Kawasaki, H. Tsubouchi et al., OPC-67683, a Nitro-Dihydro-Imidazooxazole Derivative with Promising Action against Tuberculosis In Vitro and In Mice, PLoS Medicine, vol.3, issue.11, p.e466, 2006.

M. T. Gler, V. Skripconoka, E. Sanchez-garavito, H. Xiao, J. L. Cabrera-rivero et al., Delamanid for Multidrug-Resistant Pulmonary Tuberculosis, New England Journal of Medicine, vol.366, issue.23, pp.2151-2160, 2012.

R. Singh, U. Manjunatha, H. I. Boshoff, Y. H. Ha, P. Niyomrattanakit et al., PA-824 Kills Nonreplicating Mycobacterium tuberculosis by Intracellular NO Release, Science, vol.322, issue.5906, pp.1392-1395, 2008.

G. D. Coxon, D. Craig, R. M. Corrales, E. Vialla, L. Gannoun-zaki et al., Synthesis, Antitubercular Activity and Mechanism of Resistance of Highly Effective Thiacetazone Analogues, PLoS ONE, vol.8, issue.1, p.e53162, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02281784

D. Hoagland, Y. Zhao, and R. E.-lee, Advances in Drug Discovery and Development for Pediatric Tuberculosis, Mini-Reviews in Medicinal Chemistry, vol.16, issue.6, pp.481-497, 2016.

A. E. Grzegorzewicz, H. Pham, V. A. Gundi, M. S. Scherman, E. J. North et al., Inhibition of mycolic acid transport across the Mycobacterium tuberculosis plasma membrane, Nature Chemical Biology, vol.8, issue.4, pp.334-341, 2012.

C. Varela, D. Rittmann, A. Singh, K. Krumbach, K. Bhatt et al., MmpL Genes Are Associated with Mycolic Acid Metabolism in Mycobacteria and Corynebacteria, Chemistry & Biology, vol.19, issue.4, pp.498-506, 2012.

K. Li, L. A. Schurig-briccio, X. Feng, A. Upadhyay, V. Pujari et al., Multitarget Drug Discovery for Tuberculosis and Other Infectious Diseases, Journal of Medicinal Chemistry, vol.57, issue.7, pp.3126-3139, 2014.

G. Poce, R. H. Bates, S. Alfonso, M. Cocozza, G. C. Porretta et al., Improved BM212 MmpL3 Inhibitor Analogue Shows Efficacy in Acute Murine Model of Tuberculosis Infection, PLoS ONE, vol.8, issue.2, p.e56980, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01054300

W. Li, A. Upadhyay, F. L. Fontes, E. J. North, Y. H. Wang et al., Novel Insights into the Mechanism of Inhibition of MmpL3, a Target of Multiple Pharmacophores in Mycobacterium tuberculosis, Antimicrobial Agents and Chemotherapy, vol.58, issue.11, pp.6413-6423, 2014.

S. P. Rao, S. B. Lakshminarayana, R. R. Kondreddi, M. Herve, L. R. Camacho et al., Indolcarboxamide Is a Preclinical Candidate for Treating Multidrug-Resistant Tuberculosis, Science Translational Medicine, vol.5, issue.214, pp.214ra168-214ra168, 2013.

K. A. Sacksteder, M. Protopopova, C. E. Barry, K. Andries, and C. A. Nacy, Discovery and development of SQ109: a new antitubercular drug with a novel mechanism of action, Future Microbiology, vol.7, issue.7, pp.823-837, 2012.

M. Biava, G. C. Porretta, and F. Manetti, New Derivatives of BM212: A Class of Antimycobacterial Compounds Based on the Pyrrole Ring as a Scaffold, Mini-Reviews in Medicinal Chemistry, vol.7, issue.1, pp.65-78, 2007.

L. Ballell, R. H. Bates, R. J. Young, D. Alvarez-gomez, E. Alvarez-ruiz et al., Fueling Open-Source Drug Discovery: 177 Small-Molecule Leads against Tuberculosis, ChemMedChem, vol.8, issue.2, pp.313-321, 2013.

K. Gobis, H. Foks, K. Bojanowski, E. Augustynowicz-kope?, and A. Napiórkowska, Synthesis of novel 3-cyclohexylpropanoic acid-derived nitrogen heterocyclic compounds and their evaluation for tuberculostatic activity, Bioorganic & Medicinal Chemistry, vol.20, issue.1, pp.137-144, 2012.

K. Gobis, H. Foks, M. Serocki, E. Augustynowicz-kope?, and A. Napiórkowska, Synthesis and evaluation of in vitro antimycobacterial activity of novel 1H-benzo[d]imidazole derivatives and analogues, European Journal of Medicinal Chemistry, vol.89, pp.13-20, 2015.

C. B. Ford, R. R. Shah, M. K. Maeda, S. Gagneux, M. B. Murray et al., Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis, Nature Genetics, vol.45, issue.7, pp.784-790, 2013.

W. A. Rosche and P. L. Foster, Determining Mutation Rates in Bacterial Populations, Methods, vol.20, issue.1, pp.4-17, 2000.

Z. J. Xu, V. A. Meshcheryakov, G. Poce, and S. S. Chng, MmpL3 is the flippase for mycolic acids in mycobacteria, Proceedings of the National Academy of Sciences, vol.114, issue.30, pp.7993-7998, 2017.

C. Chalut, MmpL transporter-mediated export of cell-wall associated lipids and siderophores in mycobacteria, Tuberculosis, vol.100, pp.32-45, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02391838

A. Viljoen, V. Dubois, F. Girard-misguich, M. Blaise, J. L. Herrmann et al., The diverse family of MmpL transporters in mycobacteria: from regulation to antimicrobial developments, Molecular Microbiology, vol.104, issue.6, pp.889-904, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02137585

K. Tahlan, R. Wilson, D. B. Kastrinsky, K. Arora, V. Nair et al., SQ109 Targets MmpL3, a Membrane Transporter of Trehalose Monomycolate Involved in Mycolic Acid Donation to the Cell Wall Core of Mycobacterium tuberculosis, Antimicrobial Agents and Chemotherapy, vol.56, issue.4, pp.1797-1809, 2012.

J. M. Belardinelli, A. Yazidi, L. Yang, L. Fabre, W. Li et al., Structure?Function Profile of MmpL3, the Essential Mycolic Acid Transporter from Mycobacterium tuberculosis, ACS Infectious Diseases, vol.2, issue.10, pp.702-713, 2016.

G. Lamichhane, S. Tyagi, and W. R. Bishai, Designer Arrays for Defined Mutant Analysis To Detect Genes Essential for Survival of Mycobacterium tuberculosis in Mouse Lungs, Infection and Immunity, vol.73, issue.4, pp.2533-2540, 2005.

J. E. Griffin, J. D. Gawronski, M. A. Dejesus, T. R. Ioerger, B. J. Akerley et al., High-Resolution Phenotypic Profiling Defines Genes Essential for Mycobacterial Growth and Cholesterol Catabolism, PLoS Pathogens, vol.7, issue.9, p.e1002251, 2011.

W. Li, A. Obregón-henao, J. B. Wallach, E. J. North, R. E. Lee et al., Therapeutic Potential of the Mycobacterium tuberculosis Mycolic Acid Transporter, MmpL3, Antimicrobial Agents and Chemotherapy, vol.60, issue.9, pp.5198-5207, 2016.

G. Degiacomi, A. Benjak, J. Madacki, F. Boldrin, R. Provvedi et al., Essentiality of mmpL3 and impact of its silencing on Mycobacterium tuberculosis gene expression, Scientific Reports, vol.7, issue.1, 2017.

J. M. Rock, F. F. Hopkins, A. Chavez, M. Diallo, M. R. Chase et al., Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform, Nature Microbiology, vol.2, issue.4, p.16274, 2017.

L. Rosa, V. Poce, G. Canseco, J. O. Buroni, S. Pasca et al., MmpL3 is the cellular target of the antitubercular pyrrole derivative BM212, Antimicrob Agents Chemother, vol.56, pp.324-331, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00968568

S. A. Stanley, S. S. Grant, T. Kawate, N. Iwase, M. Shimizu et al., Identification of Novel Inhibitors ofM. tuberculosisGrowth Using Whole Cell Based High-Throughput Screening, ACS Chemical Biology, vol.7, issue.8, pp.1377-1384, 2012.

S. Lun, H. Guo, O. K. Onajole, M. Pieroni, H. Gunosewoyo et al., Indoleamides are active against drug-resistant Mycobacterium tuberculosis, Nature Communications, vol.4, issue.1, p.2907, 2013.

A. Shetty, Z. Xu, U. Lakshmanan, J. Hill, M. L. Choong et al., Novel Acetamide Indirectly Targets Mycobacterial Transporter MmpL3 by Proton Motive Force Disruption, Frontiers in Microbiology, vol.9, p.2960, 2018.

J. Graham, C. E. Wong, J. S. Day, E. Mcfaddin, U. Ochsner et al., Discovery of benzothiazole amides as potent antimycobacterial agents, Bioorganic & Medicinal Chemistry Letters, vol.28, issue.19, pp.3177-3181, 2018.

H. Zheng, J. T. Williams, G. B. Coulson, E. R. Haiderer, and R. B. Abramovitch, HC2091 KillsMycobacterium tuberculosisby Targeting the MmpL3 Mycolic Acid Transporter, Antimicrobial Agents and Chemotherapy, vol.62, issue.7, pp.e02459-17, 2018.

C. Dupont, A. Viljoen, F. Dubar, M. Blaise, A. Bernut et al., A new piperidinol derivative targeting mycolic acid transport in Mycobacterium abscessus, Mol Microbiol, vol.101, pp.515-529, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02137602

M. H. Foss, S. Pou, P. M. Davidson, J. L. Dunaj, R. W. Winter et al., Diphenylether-Modified 1,2-Diamines with Improved Drug Properties for Development against Mycobacterium tuberculosis, ACS Infectious Diseases, vol.2, issue.7, pp.500-508, 2016.

X. Feng, W. Zhu, L. A. Schurig-briccio, S. Lindert, C. Shoen et al., Antiinfectives targeting enzymes and the proton motive force, Proceedings of the National Academy of Sciences, vol.112, issue.51, pp.E7073-E7082, 2015.

W. Li, A. Sanchez-hidalgo, V. Jones, V. C. De-moura, E. J. North et al., Synergistic Interactions of MmpL3 Inhibitors with Antitubercular Compounds In Vitro, Antimicrobial Agents and Chemotherapy, vol.61, issue.4, pp.2399-2415, 2017.

K. Li, Y. Wang, G. Yang, S. Byun, G. Rao et al., Oxa, Thia, Heterocycle, and Carborane Analogues of SQ109: Bacterial and Protozoal Cell Growth Inhibitors, ACS Infectious Diseases, vol.1, issue.5, pp.215-221, 2015.

M. O. Makobongo, L. Einck, R. M. Peek, and D. S. Merrell, In Vitro Characterization of the Anti-Bacterial Activity of SQ109 against Helicobacter pylori, PLoS ONE, vol.8, issue.7, p.e68917, 2013.

M. Biava, G. Cesare-porretta, D. Deidda, R. Pompei, A. Tafi et al., Importance of the thiomorpholine introduction in new pyrrole derivatives as antimycobacterial agents analogues of BM 212, Bioorganic & Medicinal Chemistry, vol.11, issue.4, pp.515-520, 2003.

K. Gobis, H. Foks, K. Suchan, E. Augustynowicz-kope?, A. Napiórkowska et al., Novel 2-(2-phenalkyl)-1H-benzo[d]imidazoles as antitubercular agents. Synthesis, biological evaluation and structure?activity relationship, Bioorganic & Medicinal Chemistry, vol.23, issue.9, pp.2112-2120, 2015.

A. Bernut, A. Viljoen, C. Dupont, G. Sapriel, M. Blaise et al., Insights into the smooth-to-rough transitioning inMycobacterium bolletiiunravels a functional Tyr residue conserved in all mycobacterial MmpL family members, Molecular Microbiology, vol.99, issue.5, pp.866-883, 2015.

B. Zhang, J. Li, X. Yang, L. Wu, J. Zhang et al., Crystal Structures of Membrane Transporter MmpL3, an Anti-TB Drug Target, Cell, vol.176, issue.3, pp.636-648.e13, 2019.

V. K. Sambandamurthy, S. C. Derrick, T. Hsu, B. Chen, M. H. Larsen et al., Mycobacterium tuberculosis ?RD1 ?panCD: A safe and limited replicating mutant strain that protects immunocompetent and immunocompromised mice against experimental tuberculosis, Vaccine, vol.24, issue.37-39, pp.6309-6320, 2006.

A. Barry, An Overview of the Clinical and Laboratory Standards Institute (CLSI) and Its Impact on Antimicrobial Susceptibility Tests, Antimicrobial Susceptibility Testing Protocols, pp.1-6, 2007.

J. F. Sambrook and D. W. Russell, Molecular cloning: a laboratory manual, 2001.

M. Korycka-macha?a, A. Brzostek, B. Dziadek, M. Kawka, T. Pop?awski et al., Evaluation of the Mycobactericidal Effect of Thio-functionalized Carbohydrate Derivatives, Molecules, vol.22, issue.5, p.812, 2017.

I. Halloum, S. Carrère-kremer, M. Blaise, A. Viljoen, A. Bernut et al., Deletion of a dehydratase important for intracellular growth and cording renders roughMycobacterium abscessusavirulent, Proceedings of the National Academy of Sciences, vol.113, issue.29, pp.E4228-E4237, 2016.

L. Kremer, Y. Guérardel, S. S. Gurcha, C. Locht, and G. S. Besra, Temperature-induced changes in the cell-wall components of Mycobacterium thermoresistibile, Microbiology, vol.148, issue.10, pp.3145-3154, 2002.

A. Waterhouse, M. Bertoni, S. Bienert, G. Studer, G. Tauriello et al., SWISS-MODEL: homology modelling of protein structures and complexes, Nucleic Acids Research, vol.46, issue.W1, pp.W296-W303, 2018.