G. Chaurasia, O. Sorkine, and G. Drettakis, Silhouette-aware warping for image-based rendering, Computer Graphics Forum, vol.30, pp.1223-1232, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00607039

G. Chaurasia, O. Sylvain-duchene, G. Sorkinehornung, and . Drettakis, Depth synthesis and local warps for plausible image-based navigation, ACM Transactions on Graphics (TOG), vol.32, issue.3, p.30, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00907793

L. Mcmillan and G. Bishop, Plenoptic modeling: An image-based rendering system, Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, pp.39-46, 1995.

J. Steven, R. Gortler, R. Grzeszczuk, M. Szeliski, and . Cohen, The lumigraph, Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, pp.43-54, 1996.

C. Buehler, M. Bosse, L. Mcmillan, S. Gortler, and M. Cohen, Unstructured lumigraph rendering, Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pp.425-432, 2001.

S. Wanner and B. Goldluecke, Variational light field analysis for disparity estimation and superresolution, PAMI, vol.36, issue.3, pp.606-619, 2014.

F. Sergi-pujades, B. Devernay, and . Goldluecke, Bayesian view synthesis and image-based rendering principles, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.3906-3913, 2014.

E. Penner and L. Zhang, Soft 3d reconstruction for view synthesis, ACM Transactions on Graphics (TOG), vol.36, issue.6, p.235, 2017.

J. Flynn, I. Neulander, J. Philbin, and N. Snavely, Deepstereo: Learning to predict new views from the world's imagery, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.5515-5524, 2016.

T. Nima-khademi-kalantari, R. Wang, and . Ramamoorthi, Learning-Based View Synthesis for Light Field Cameras, Proceedings of SIGGRAPH Asia, vol.35, 2016.

K. M-shahzeb, . Gul, K. Bahadir, and . Gunturk, Spatial and angular resolution enhancement of light fields using convolutional neural networks, IEEE Transactions on Image Processing, vol.27, issue.5, pp.2146-2159, 2018.

S. Hochreiter and J. Schmidhuber, Long shortterm memory, Neural computation, vol.9, issue.8, pp.1735-1780, 1997.

S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber, Gradient flow in recurrent nets: the difficulty of learning long-term dependencies

Z. Shi-xingjian, H. Chen, D. Wang, W. Yeung, W. Wong et al., Convolutional lstm network: A machine learning approach for precipitation nowcasting, Advances in neural information processing systems, pp.802-810, 2015.

W. Luo, G. Alexander, R. Schwing, and . Urtasun, Efficient deep learning for stereo matching, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.5695-5703, 2016.

M. Schuster, K. Kuldip, and . Paliwal, Bidirectional recurrent neural networks, IEEE Transactions on Signal Processing, vol.45, issue.11, pp.2673-2681, 1997.

M. Mathieu, C. Couprie, and Y. Lecun, Deep multi-scale video prediction beyond mean square error, 2015.

R. Shah-abhilash-sunder-raj, M. Lowney, and G. Wetzstein, Stanford lytro light field archive, 2016.

M. Rerabek and T. Ebrahimi, New light field image dataset, 8th International Conference on Quality of Multimedia Experience (QoMEX), 2016.

C. Guillemot and R. Daudt, Inria lytro illum light field dataset, 2016.

P. Diederik, J. Kingma, and . Ba, Adam: A method for stochastic optimization, 2014.

W. Joost-van-amersfoort, A. Shi, F. Acosta, J. Massa, Z. Totz et al., Frame interpolation with multi-scale deep loss functions and generative adversarial networks, 2017.

L. Dabala, M. Ziegler, P. Didyk, F. Zilly, J. Keinert et al., Efficient Multi-image Correspondences for On-line Light Field Video Processing, Comput. Graph. Forum, vol.35, issue.7, pp.401-410, 2016.