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Abstract

Many techniques for verifying properties of continuous-time systems are limited to systems of moderate size. In this paper,
we propose an approach based on assume-guarantee contracts and compositional reasoning for verifying properties of a broad
class of continuous-time systems consisting of interconnected components. The notion of assume-guarantee contracts makes
it possible to divide responsibilities among the system components: a contract specifies the property that a component must
fulfill under some assumptions on the behavior of its environment (i.e. of the other components). We define weak and strong
semantics of assume-guarantee contracts. We then establish a certain number of results for compositional reasoning, which
allow us to show that a global assume-guarantee contract of the whole system is satisfied when all components satisfy their
own contracts. We show that the weak satisfaction of the contract is sufficient to deal with interconnections described by a
directed acyclic graph, while strong satisfaction is needed to reason about general interconnections containing cycles. Specific
results for systems described by differential inclusions and invariance assume-guarantee contracts are then developed. Finally,
we show how the proposed assume-guarantee framework can recast different versions of the small-gain theorem as a particular
case. Throughout the paper, the main results are illustrated using simple examples.

Key words: component-based design, assume-guarantee contracts, prefix-closed properties, small-gain theorem.

1 Introduction

Cyber-physical systems (CPS) result from integrations
of computational devices with physical processes and are
to become ubiquitous in modern societies (autonomous
vehicles, smart buildings, robots, etc.) (see [25] and the
references therein). Despite considerable progress in the
field, current techniques apply to system of moderate
complexity (the complexity is quantified by the number
of interacting components). Thus, the design of complex
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CPS requires to divide large design problems in smaller
sub-problems that can be solved using existing tools.

Compositional approaches for the analysis and the de-
sign of dynamical systems have been long known in the
field of control theory, where the celebrated small-gain
theorem [19,21,12] makes it possible to prove stability
of a system from the stability of its components. Other
compositional approaches for the analysis and design of
cyber-physical systems have been mainly initiated in the
field of computer science [18,1,15].

The study of properties of dynamical systems using
decentralized approaches has been an ongoing research
area in recent years [30,8,29,37,9,3,13]. Other composi-
tional approaches, using formal methods and symbolic
techniques, are presented in [28,10,22,26,35,24,32,40,38,27].
All these works develop efficient computational tech-
niques by making specific assumptions on the classes of
dynamical systems and of properties to which they can
be applied.
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In the current work, we aim at proposing a general the-
oretical framework and thus we make weak assump-
tions on systems and properties. We initiate a high-
level framework for verifying properties of complex sys-
tems, consisting of interconnected components, using
a contract-based approach [6]. Each component is as-
signed an assume-guarantee contract, which specifies the
property that the component must fulfill under assump-
tion about its environment (i.e. the other components).
We introduce contracts and define weak and strong se-
mantics. We then establish results that allow us to rea-
son compositionally using assume-guarantee contracts:
i.e. if all components satisfy their own contract then a
global contract of the whole system is satisfied. We show
that the weak satisfaction of the contract is sufficient
to deal with interconnections described by a directed
acyclic graph, while strong satisfaction is needed to rea-
son about general interconnections containing cycles.
We then show that for systems described by differential
inclusions and invariance assume-guarantee contracts,
weak satisfaction of contracts is sufficient to reason on
general interconnections. Finally, we show how the pro-
posed assume-guarantee framework can recast different
versions of the small-gain theorem as a particular case.

There are several advantages in using contract based de-
sign for CPS. Firstly, by dividing a complex design prob-
lem into several smaller sub-problems, one is able to ad-
dress design challenges that would be out of reach of cur-
rent state-of-the-art design methods. Secondly, contract-
based design makes it possible to replace a component
without jeopardizing the behavior of the overall system:
one just has to make sure that the new component sat-
isfies the assigned contract. Thirdly, components are re-
usable when similar contracts appear in the decomposi-
tion of a global contract.

Let us emphasize that the main objective of the paper
is to provide compositionality rules on how to go from
the satisfaction of local contracts for the components to
the satisfaction of a global contract for the whole inter-
connected system. The question on how to construct the
local contracts from the global one is not investigated
in this paper, but have been explored in other works in
the literature for continuous-time in [41] and [6, Section
8.6], and for discrete-time [14,7,16] systems.

The present paper focuses on the theoretical develop-
ment of a general framework for contract-based reason-
ing. Applications of this framework to the design of sym-
bolic controllers are reported in [32,41,33].

Related work: Contract based design for CPS have
been widely studied in [6]. Our approach differs from the
one proposed in [6] in several directions:

• In [6] the contracts need to be checked for the whole
time domain on which trajectories are defined. In this

paper, the satisfaction of contracts is defined in a pro-
gressive and time-dependant way, which makes it pos-
sible to detect the instant at which the contract is vi-
olated.

• While in [6] assumptions and guarantees are defined
over all the set of variables, namely inputs and out-
puts, in this paper, we focus on the case where as-
sumptions are defined on the inputs and guarantees
on the states and outputs. Indeed, this restriction al-
lows us to provide simple compositionality results.

• The use of saturated contracts is crucial in applying
the contract framework proposed in [6], which requires
being able to compute unions and complements of dif-
ferent assertions. In this paper, saturation of the con-
tracts is not required, and one can deal directly with
the contracts as they are.

Assume-guarantee reasoning has been previously used
in control theory. The authors in [20] presented a com-
positionality result for linear dynamical systems based
on the notion of simulation introduced in [39]. In spirit,
our work is closer to the framework presented in [23] for
verifying general properties using parametric assume-
guarantee contracts and compositional reasoning by
means of small-gain theorems. Our approach differs
from the one proposed in [23] in the following directions:

• The approach proposed in [23] follows the framework
of [6], which makes a noticeable difference with our
results;

• In [23], the results hold only for discrete-time systems,
while our approach makes it possible to deal with both
continuous and discrete-time systems.

• The main compositionality result in [23] requires to
assume that at least one component satisfies a con-
tract (for some parameter value), independently of
the behavior of other components. This breaks the
circularity of implications of the assume-guarantee
contracts, which is arguably the main difficulty in
contract-based design, and the reason why we intro-
duce weak and strong semantics for assume-guarantee
contracts, which has not been done in [23].

• In [23], the authors show how their framework makes
it possible to reprove the classical bounded input
bounded output small-gain theorem for discrete-
time systems. In our paper we show how the pro-
posed framework allows to recast the bounded input
bounded output small gain theorem for continous-
time systems. Moreover, we provide a new small-gain
result for the notion of growth bound, which has not
been proposed before in the control literature.

The paper is organized as follows. In Section 2, we intro-
duce the class of prefix-closed properties. In Section 3,
we introduce the class of systems and interconnections
considered throughout the paper. In Section 4, we intro-
duce assume-guarantee contracts, their weak and strong
semantics. We then establish compositionality results
for reasoning about interconnected systems in Section 5.
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In Section 6, we develop specific results for systems de-
scribed by differential inclusions and invariance assume-
guarantee contracts. Finally, in Section 7, we show that
different versions of the classical small-gain theorem can
be recast as particular applications of our framework.
Throughout the paper, simple examples are used as il-
lustrations of the main results.

Due to space constraints, the results for discrete-time
systems and contracts are omitted and can be found
in [36, Chapter 2]. A preliminary version of this work
has been presented in the conference paper [34]. The
current paper extends the approach in different direc-
tions. First, we generalize the approach from cascade
and feedback compositions to any composition structure
and from invariance to more general properties. Second,
while in [34], we have shown that for systems described
by Lipschitz differential inclusions, the notion of invari-
ance relative to assume-guarantee contracts implies the
weak satisfaction. In the current work, we show the con-
verse result. Finally, in the current work, we show that
different versions of the classical small-gain theorem can
be recovered using our framework.

Notations R, R+
0 , R+ and N denote the set or re-

als, nonnegative reals, positive reals and positive inte-
gers respectively. The set of continuous-time domains is
E(R+

0 ) = {[0, a], a ∈ R+
0 } ∪ {[0, a), a ∈ R+} ∪ {R+

0 } .
For Z ⊆ Rn, we denote by M(Z) the set of continuous-
time maps z : E → Z, where E ∈ E(R+

0 ). For q ∈ N+
0 ,

Dq denotes the set of continuous-time maps q times dif-
ferentiable. For x ∈ Rn, ‖x‖ denotes the infinity norm.
For a continuous-time map x : E → Rn and for t ∈ E,
‖x|[0,t]‖∞ denotes the essential supremum of x : E →
Rn on [0, t]. Given a space X equipped with a metric
d : X × X → R+

0 , the closure of the set A ⊆ X is de-

noted cl(A) and its complement is denoted A. For ε > 0
and x ∈ X, the ball with center in x and a radius ε is
Rε(x) = {y ∈ X | d(x, y) ≤ ε}. A continuous function
γ : R+

0 → R+
0 is said to belong to class K if it is strictly

increasing and γ(0) = 0; γ is said to belong to class K∞
if γ is K and γ(r) → ∞ as r → ∞. A continuous func-
tion β : R+

0 ×R+
0 → R+

0 is said to belong to class KL if,
for each fixed s, the map β(·, s) belongs to class K, and
for each fixed nonzero r, the map β(r, ·) is strictly de-
creasing and β(r, s) → 0 as s → ∞. Given a set X, 2X

is used to denote its power set.

2 Preliminaries on prefix-closed sets

Given a set Z ⊆ Rn, prefix closed sets are subsets P ⊆
M(Z) that can be defined as follows: if a trajectory z :
E → Z belongs to the prefix-closed set P , then any
prefix of z belongs to P . In this part, we first give a
formal definition of a prefix-closed set, we then give a

necessary and sufficient condition for a set to be prefix-
closed, finally we give some examples of such sets.

Definition 1 Let Z ⊆ Rn. Let z : E → Z and z′ : E′ →
Z in M(Z). z is said to be a prefix of z′ and denoted
z ∈ pref(z′) if E ⊆ E′ and for all t ∈ E, z(t) = z′(t). In
this case, z can be seen as a restriction of z′ and is also
denoted z = z′|E.

This notion is generalized toward sets of continuous-
time maps in the usual way: for A ⊆ M(Z), pref(A) =⋃
z∈A

pref(z).

Definition 2 Let Z ⊆ Rn and P ⊆ M(Z). P is said
to be prefix-closed if the following logical implication is
satisfied:

z ∈ P and ẑ ∈ pref(z)⇒ ẑ ∈ P.

In the following we will give a characterization of prefix-
closed sets.

Proposition 1 Let Z ⊆ Rn and P ⊆M(Z). P is prefix-
closed if and only if pref(P ) = P .

PROOF. Suppose that pref(P ) = P and let us prove
that P is prefix-closed. Let z ∈ P and ẑ ∈ pref(z). Since
z ∈ P , we have ẑ ∈ pref(z) ⊆ pref(P ) = P . Then,
ẑ ∈ P and P is prefix-closed. Now suppose that P is
prefix-closed and let us prove that pref(P ) = P . The
inclusion P ⊆ pref(P ) is verified by definition of the
prefix. Let ẑ ∈ pref(P ), then there exists z ∈ P such
that ẑ ∈ pref(z). Since P is prefix-closed we get ẑ ∈ P .
Then, pref(P ) ⊆ P which ends the proof. 2

It can be seen that our notion of prefix-closed sets is rel-
atively close to the notion of safety for linear time prop-
erties in [5]. Indeed, the only difference is that we are
considering finite and infinite trajectories, while the lin-
ear time properties are defined in [5] over infinite words.

In the following we give some examples of prefix-closed
sets. This notion allows us to represent different type
of properties such as invariance or systems described by
differential or difference inclusions.

Example 1 (Invariance) Let the set S ⊆ Rn such that
S 6= ∅ and let us define:

A = {z : E → Rn ∈M(Rn) | ∀t ∈ E, z(t) ∈ S}.

The set A represents the set of continuous-time trajecto-
ries that belongs to the set S for all time.

3



Example 2 Let S1, S2 . . . , Sq ⊆ Rn such that for all
i ∈ {1, 2, . . . , q}, Si 6= ∅ and let us define:

A = {z : E → Rn ∈M(Rn)∩Dq | ∀i ∈ {1, 2, . . . , q},
∀t ∈ E, z(i)(t) ∈ Si}

Where z(i) denotes the ith derivative of z. The set A in
this example represents the set of continuous-time trajec-
tories for which the i-th time derivative, i ∈ {1, 2, . . . , q},
belongs to the set Si for all time.

Example 3 (Differential inclusion) Let F : Rn → 2R
n

be a set-valued map we define:

A = {z : E → Rn ∈M(Rn)∩D1 | ∀t ∈ E, ż(t) ∈ F (z(t))}

An example of a non prefix-closed property is the reach-
ability property described as follows:

Example 4 Let the set K ⊆ Rn such that K 6= ∅ and
let us define:

A = {z : E → Rn ∈M(Rn) | ∃t ∈ E, z(t) ∈ K}.

3 Systems and interconnections

3.1 Systems

In this section, we introduce the classes of systems and
interconnections considered throughout this paper, it is
important to note that the classes of systems used in
the paper are quite general, and includes deterministic
and nondeterministic systems, described by difference
or differential equations and inclusions and allows us to
deal with phenomena such as sampling, time delays.

Definition 3 A continuous-time system is a tuple Σ =
(W1,W2, X, Y, T ) where

• W1 ⊆ Rm1 , W2 ⊆ Rm2 , X ⊆ Rn and Y ⊆ Rp, are the
sets in which external and internal inputs, states, and
outputs take their values;

• T ⊆M(W1×W2×X×Y ) is a set of continuous-time
trajectories.

3.2 Interconnections

We first introduce some notations for interconnected sys-
tems. A network of systems consists of a collection of
N ∈ N>0 systems {Σ1, . . . ,ΣN}, a set of vertices I =
{1, . . . , N} and a binary connectivity relation I ⊆ I × I
where each vertex i ∈ I is labelled with the system Σi.
For i ∈ I, we defineN (i) = {j ∈ I | (j, i) ∈ I} as the set
of neighbouring components from which the incoming

edges originate. We define Iinit = {i ∈ I | N (i) = ∅} as
the set of components for which there exist no incoming
edge.

Given a directed graph G = (I, I) over the set of ver-
tices I = {1, . . . , N} and binary connectivity relation I.
A walk is a sequence σ = a1a2 . . . am such that for all
i ∈ {1, . . . ,m − 1}, (ai, ai+1) ∈ I, in such case we say
that ai is an element of σ. For a walk σ, if the vertices
a1, . . . , am−1 are distinct and a1 = am, then σ is a cycle.
The set of all cycles is denoted ζ = {ζ1, . . . , ζp}, p ∈ N.

Remark 1 We recall that for a directed graph, if we drop
one edge of every cycle in the graph, a directed acyclic
graph (DAG) denoted GDAG is obtained. In such case, the
set of initial vertices for the new directed acyclic graph is
characterized by IDAGinit ⊆ Iinit∪A, where A ⊆ I is the set
of vertices to which we dropped an edge. An illustration
of this approach is given in Figure 1.

1 2

34

3 4

1

2

Fig. 1. Left: A graph G of four vertices, containing
two cycles. The set of initial vertices is Iinit = {4}.
Right: A new DAG graph is constructed by remov-
ing dashed edges GDAG. The set of initial vertices is
IDAG
init = {4, 3} ⊆ Iinit ∪A = {4} ∪ {2, 3}.

In the following, we consider interconnections of
continuous-time systems defined as follows:

Definition 4 Let {Σi}i∈I be a collection of systems and
I ⊆ I × I a binary connectivity relation. We say that
{Σi}i∈I is compatible for composition w.r.t. I, if for each
i ∈ I, we have

∏
j∈N (i) Y

j ⊆W i
2, i.e., the internal input

space of Σi is a superset of the Cartesian product of the
output spaces of all the neighbors in N (i). The composed
system Γ denoted 〈(Σi)i∈I , I〉, is given by a tuple Γ =
(W1, {0}, X, Y, T ) where:

• W1 =
∏
i∈IW

i
1;

• X =
∏
i∈I X

i;

• Y =
∏
i∈I Y

i;
• (w1, 0, x, y) : E →W1×{0}×X×Y ∈ T is a trajectory

of Γ if and only if for all i ∈ I, there exists a trajectory
(wi1, w

i
2, x

i, yi) : E → W i
1 ×W i

2 × Xi × Y i ∈ T i of
Σi with w1 = (w1

1, . . . , w
N
1 ) and such that the internal

inputs are constrained by the relation

wi2(t) = (yj1(t), . . . , yjp(t)) where N (i) = {j1, . . . , jp}

for all i ∈ I and for all t ∈ E.
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t t
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w1 w2

x y

AW1
AW2

GX GY

Fig. 2. An illustration of the weak satisfaction of a contract.
Top: trajectories of the external w1 and internal w2 inputs.
Bottom: trajectories of the state x and output y.

By abuse of notation, the constraint on the internal inputs
will be written as wi2 =

∏
j∈N (i){yj}.

Remark 2 Let us remark that in the proposed intercon-
nection structure, all the internal inputs of a system are
outputs of other systems. Then, the composed system Γ =
〈(Σi)i∈I , I〉 has trivial null internal inputs. Hence, with
an abuse of notation, we will denote Γ = (W1, X, Y, T )
and (w1, x, y) ∈ T , with (w1, x, y) : E →W1×X×Y as
a trajectory of Γ. Similarly, all initial elements Σi, where
i ∈ Iinit have trivial null internal inputs and we use the
same notation for their trajectories.

We should emphasize that trajectories of systems need
not be defined for all time, R+

0 . This makes it possible
to avoid forward-completeness issues related to systems
composition as shown in the following example.

Example 5 Let us consider the system Σ1 = (W1,W2, X,
Y, T ) where W1 = {0},W2 = X = Y = R. A trajectory
of Σ1 is a quadruple (0, w2, x, y) : E →W1×W2×X×Y
in T where E ∈ E(R+

0 ), w2 is continuous, x and y are
differentiable and such that x(0) = 1 and for all t ∈ E,

{
ẋ(t) = w2(t)

y(t) = (x(t))2.

Let I = {1} and the interconnection relation I =
{(1, 1)}. It is clear that {Σi}i∈I is compatible for com-
position w.r.t. I. It can be seen that Σ1, has trajecto-
ries defined on the whole time domain R+

0 . However, if
we only consider those trajectories, the set of trajecto-
ries TΓ of the composed system Γ = 〈(Σi)i∈I , I〉 would
be empty since the trajectories of TΓ are of the form
(0, x, y) : E → W1 × X × Y where E ⊆ [0, 1), and for
all t ∈ E, x(t) = 1

1−t and y(t) = 1
(1−t)2 .

t t

tt

w1 w2

x y

AW1
AW2

GX GY

t+ δ

Fig. 3. An illustration of the strong satisfaction of a contract.
Top: trajectories of the external w1 and internal w2 inputs.
Bottom: trajectories of the state x and output y.

4 Assume-guarantee contracts

An assume-guarantee contract is a compositional tool
that specifies how a system behaves under assumptions
about its inputs [6]. The use of assume-guarantee con-
tracts makes it possible to reason on a global system
based on properties of its components. In this section,
we introduce assume-guarantee contracts to reason on
properties for continuous-time systems. These contracts
are equipped with a weak and a strong semantics, which
will allow us to establish compositionality results.

We define contracts for continuous-time systems as fol-
lows:

Definition 5 Let Σ = (W1,W2, X, Y, T ) be a continuous-
time system, an assume-guarantee contract for Σ is a
tuple C = (AW1

, AW2
, GX , GY ) where

• AW1
⊆ M(W1) and AW2

⊆ M(W2) are sets of as-
sumptions on the external and internal inputs;

• GX ⊆ M(X) and GY ⊆ M(Y ) are sets of guarantees
on the states and outputs.

We say that Σ (weakly) satisfies C, denoted Σ |= C, if for
all trajectories (w1, w2, x, y) : E → W1 ×W2 × X × Y
in T :

• for all t ∈ E, ifw1|[0,t] ∈ AW1
andw2|[0,t] ∈ AW2

, then:
· x|[0,t] ∈ GX ;
· y|[0,t] ∈ GY .

We say that Σ strongly satisfies C, denoted Σ |=s C, if for
all trajectories (w1, w2, x, y) : E → W1 ×W2 × X × Y
in T :

• if w1|[0,0] ∈ AW1 then y|[0,0] ∈ GY
• for all t ∈ E, ifw1|[0,t] ∈ AW1 andw2|[0,t] ∈ AW2 , then:
· x|[0,t] ∈ GX ;
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· there exists δ > 0 such that for all s ∈ [0, δ]
y|[0,t+s]∩E ∈ GY .

Σ |=s C obviously implies Σ |= C. An assume-guarantee
contract for a continuous-time system states that if the
restriction of the external and internal inputs to the sys-
tem up to a time t ∈ R+

0 belongs to AW1
and AW2

, re-
spectively, then the restriction of the state of the system
up to time t belongs to GX , and the restriction of the
output of the system up to time t (or up to a time t+ s
with s ∈ [0, δ] and δ > 0, in the case of strong satisfac-
tion) belongs toGY . We must highlight that the value of
δmay depend on the trajectory (w1, w2, x, y) ∈ T and on
the value of the time instant t ∈ E. An illustration of the
weak and strong satisfactions is given in Figures 2 and 3.
One may remark that if the set of guarantees on the out-
putsGY is prefix closed, the notion of strong satisfaction
of a contract can be defined by: Σ strongly satisfies C, if
for all trajectories (w1, w2, x, y) : E →W1×W2×X×Y
in T :

• if w1|[0,0] ∈ AW1
then y|[0,0] ∈ GY

• for all t ∈ E, ifw1|[0,t] ∈ AW1
andw2|[0,t] ∈ AW2

, then:
· x|[0,t] ∈ GX ;
· there exists δ > 0 such that y|[0,t+δ]∩E ∈ GY .

Remark 3 Similarly to Remark 2, a contract for the
composed system Γ = 〈(Σi)i∈I , I〉 has trivial null as-
sumptions on internal inputs. Hence, with an abuse of
notation, a contract for the composed system Γ will be
denoted C = (AW1 , GX , GY ).

5 Compositional reasoning

In this section we provide results allowing us to reason
about interconnected systems based on contracts satis-
fied by the components.

5.1 Acyclic interconnections

We first provide the following result on the composition
of assume-guarantee contracts, where the interconnec-
tion graph G between the components is a DAG.

Theorem 1 Consider a network of continuous-time
components {Σi}i∈I compatible for composition w.r.t. I.
Let Γ = 〈(Σi)i∈I , I〉 be the composed system and assume
that G = (I, I) is a DAG. To each component Σi we
associate a contract Ci = (AW i

1
, AW i

2
, GXi , GY i), and

let C = (
∏
i∈I AW i

1
,
∏
i∈I GXi ,

∏
i∈I GY i) be a contract

for Γ. If for all i ∈ I, Σi |= Ci and
∏
j∈N (i)GY j ⊆ AW i

2

then Γ |= C.

PROOF. Let (w1, x, y) : E → W1 × X × Y in T be
a trajectory of the system Γ. Then, for all i ∈ I, there

exists a trajectory (wi1, w
i
2, x

i, yi) : E →W i
1×W i

2×Xi×
Y i ∈ T i of Σi such that wi2 =

∏
j∈N (i){yj}. Let t ∈ E

such that w1|[0,t] ∈ AW1
. Then we have for all i ∈ I,

wi1|[0,t] ∈ AW i
1
. Since initial components {Σi}i∈Iinit do

not have internal inputs, and from the satisfaction of
contracts for all components, we have:

∀i ∈ Iinit, xi|[0,t] ∈ GXi and yi|[0,t] ∈ GY i . (1)

Let us assume the existence of i ∈ I \ Iinit, such that
xi|[0,t] /∈ GXi or yi|[0,t] /∈ GY i . Since Σi |= Ci andwi1|[0,t] ∈
AW i

1
, we have that wi2|[0,t] /∈ AW i

2
, then using the fact

that wi2 =
∏
j∈N (i){yj} and

∏
j∈N (i)GY j ⊆ AW i

2
, we

have the existence of j ∈ N (i) such that yj|[0,t] /∈ GY j .

Hence, using the structure of a DAG, we have by iterat-
ing this procedure, the existence of k ∈ Iinit such that
yk|[0,t] /∈ GY k which contradicts (1). Hence, we have for

all i ∈ I, xi|[0,t] ∈ GXi and yi|[0,t] ∈ GY i , which implies

that x|[0,t] ∈ GX and y|[0,t] ∈ GY . Then, Γ |= C. 2

5.2 Cyclic interconnections

In order to deal with cyclic interconnections, we need
the following assumption on the set of guarantees on the
output GY . This assumption will be explained later on
different examples.

Assumption 1 Let Σ = (W1,W2, X, Y, T ) be a
continuous-time system, and C = (AW1

, AW2
, GX , GY )

an assume-guarantee contracts for Σ. For any trajectory
(w1, w2, x, y) : E →W1 ×W2 ×X × Y of the system Σ,
the following logical implication is satisfied for all t ∈ E:

∀s ∈ [0, t), (y|[0,s] ∈ GY ⇒ y|[0,t] ∈ GY ).

Now we give some sufficient conditions on systems and
contracts in order to satisfy Assumption 1 for different
examples. Let Σ = (W1,W2, X, Y, T ) be a system, and
C = (AW1

, AW2
, GX , GY ) an assume-guarantee contract

for Σ.

• If the set GY is of the same form as the set A defined
in Example 1 and if for any trajectory (w1, w2, x, y) :
E →W1×W2×X×Y for the system Σ, y : E → Y is
left continuous and the set of guarantees GY is closed
then Assumption 1 is satisfied.

• If the set GY is of the same form as the set A defined
in Example 2 and similarly to the previous example, it
can be shown that if for any trajectory (w1, w2, x, y) :
E →W1 ×W2 ×X × Y for the system Σ, y : E → Y
is q times differentiable, the qth derivative y(q) is left
continuous and the sets Si, i = 1, . . . , q, are closed
then Assumption 1 is satisfied.
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• If the set GY is of the same form as the set A defined
in Example 3 and if the set valued map F : Rn → 2R

n

is outer semicontinuous (see Definition 5.4 in [31]) and
for any trajectory (w1, w2, x, y) : E →W1×W2×X×
Y of the system Σ, y : I → Y is differentiable and
its derivative is left continuous, then Assumption 1 is
satisfied.

The following result relates the satisfaction of Assump-
tion 1 for a global system to its satisfaction for the com-
ponents.

Claim 1 Given a collection of components {Σi}i∈I ,
such that each component Σi satisfies Assumption 1
w.r.t the contract Ci = (AW i

1
, AW i

2
, GXi , GY i). Then the

composed system Γ = 〈(Σi)i∈I , I〉 satisfies Assumption 1
w.r.t the contract C = (

∏
i∈I AW i

1
,
∏
i∈I GXi ,

∏
i∈I GY i).

PROOF. Let (w1, x, y) : E → W1 × X × Y in T be
a trajectory of the interconnected system Γ. Let t ∈ E
and assume that for all s ∈ [0, t), y|[0,s] ∈ GY . Then we

have for all s ∈ [0, t) and for all i ∈ I, yi|[0,s] ∈ GY i .

Since each component Σi satisfies Assumption 1 w.r.t
the contract Ci = (AW i

1
, AW i

2
, GXi , GY i), we have for all

i ∈ I, yi|[0,t] ∈ GY i , which in turn implies that y|[0,t] ∈
GY . 2

Theorem 2 Consider a network of continuous-
time components {Σi}i∈I compatible for composi-
tion w.r.t. I. Let the system Γ = 〈(Σi)i∈I , I〉 be the
composed system. To each component Σi, we asso-
ciate a contract Ci = (AW i

1
, AW i

2
, GXi , GY i) and let

C = (
∏
i∈I AW i

1
,
∏
i∈I GXi ,

∏
i∈I GY i) be a contract for

Γ. Let us assume the following:

(i) for all i ∈ I, Σi |= Ci;
(ii) for all i ∈ I,

∏
j∈N (i)GY j ⊆ AW i

2
;

(iii) for all i ∈ I, Σi satisfies Assumption 1;
(iv) for any cycle ζq in the interconnection graph G =

(I, I), there exists an element k ∈ ζq such that Σk |=s

Ck;
(v) for all i ∈ I, AW i

1
is a prefix-closed set.

then Γ |= C.

PROOF. Let (w1, x, y) : E → W1 × X × Y in T be
a trajectory of the system Γ. Then, for all i ∈ I, there
exists a trajectory (wi1, w

i
2, x

i, yi) : E → W i
1 × W i

2 ×
Xi × Y i ∈ T i of Σi such that wi2 =

∏
j∈N (i){yj}. Let

t ∈ E such that w1|[0,t] ∈ AW1
. Then we have for all

i ∈ I, wi1|[0,t] ∈ AW i
1
. All initial components {Σi}i∈Iinit

do not have internal inputs, then from the satisfaction

of contracts for all components and since AW i
1

is prefix-

closed for all i ∈ I, we have:

∀i ∈ Iinit, ∀s ∈ [0, t], xi|[0,s] ∈ GXi and yi|[0,s] ∈ GY i .

(2)
First, let us prove that

∀i ∈ I, yi|[0,0] ∈ GY i . (3)

We have the existence of an element k in any cycle ζq such
that Σk |=s Ck, which implies from prefix closedeness
of AWk

1
that yk|[0,0] ∈ GY k . To prove that this initial

condition is satisfied by all the components Σi, i ∈ I, we
proceed as follows: for any component Σk that strongly
satisfies its contract, we drop the incoming edge into the
vertex k in the cycle ζq. Then, in view of Remark 1, a
new DAG, GDAG is obtained. Then from (2) we have:

∀i ∈ IDAG
init ⊆ Iinit ∪A, yi|[0,0] ∈ GY i (4)

whereA is the set of vertices to which we dropped an edge
(vertices corresponding to components that strongly sat-
isfy their contracts). Now let an element i ∈ I\IDAG

init and
let us assume that yi|[0,0] /∈ GY i . From prefix-closedness

of AW i
1

it follows that wi1|[0,0] ∈ AW i
1
, moreover Σi |= Ci,

then we have that wi2|[0,0] /∈ AW i
2
, and using the fact

that wi2 =
∏
j∈N (i){yj} and

∏
j∈N (i)GY j ⊆ AW i

2
, we

have the existence of j ∈ N (i) such that yj|[0,0] /∈ GY j .

Hence, using the structure of a DAG, we have by iterat-
ing this procedure, the existence of h ∈ IDAG

init such that
yh|[0,0] /∈ GY h which contradicts (4). Hence, we have for

all i ∈ I, yi|[0,0] ∈ GY i , which implies that y|[0,0] ∈ GY .

To prove that Γ |= C, we proceed by contradiction. Let
us define

T = sup{s ∈ [0, t] | ∀s′ ∈ [0, s], y|[0,s′] ∈ GY } (5)

= sup{s ∈ [0, t] | ∀i ∈ I, ∀s′ ∈ [0, s], yi|[0,s′] ∈ GY i}.

From (3) we have y|[0,0] ∈ GY , it then follows that T ∈
[0, t]. Let us remark that by (5), we have that y|[0,s] ∈ GY
for all s ∈ [0, T ).

We have y|[0,s] ∈ GY for all s ∈ [0, T ). Then, from (iii)
and using Claim 1, we have that y|[0,T ] ∈ GY . We have
the existence of an element k in any cycle ζq such that
Σk |=s Ck. We have from prefix-closedeness of the set
AWk

1
that wk1|[0,T ] ∈ AWk

1
. Then, since

wk2|[0,T ] =
∏

j∈N (k)

{yj|[0,T ]} ∈
∏

j∈N (k)

GY j ⊆ AWk
2
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we have from (iv) the existence of δk > 0 such that

∀sk ∈ [0, δk], yk|[0,T+sk]∩E ∈ GY k

Let δ = min
k∈A

δk, whereA is the set of vertices correspond-

ing to components that strongly satisfy their contracts,
we have that

∀s ∈ [0, δ], yk|[0,T+s]∩E ∈ GY k

by using the same procedure as above (dropping the
incoming edges into the vertex k in the cycle ζq), we have
from (2):

∀i ∈ IDAG
init ⊆ Iinit∪A, ∀s ∈ [0, δ], yi|[0,T+s]∩[0,t] ∈ GY i .

(6)
Now let an element i ∈ I\IDAG

init and let us assume the ex-
istence of s′ ∈ [0, δ] such that yi|[0,T+s′]∩[0,t] /∈ GY i . From

prefix-closedeness of AW i
1

we have that wi1|[0,T+s′]∩[0,t] ∈
AW i

1
. Then, since Σi |= Ci we have thatwi2|[0,T+s′]∩[0,t] /∈

AW i
2
, then using the fact that wi2 =

∏
j∈N (i){yj} and∏

j∈N (i)GY j ⊆ AW i
2
, we have the existence of j ∈ N (i)

such that yj|[0,T+s′]∩[0,t] /∈ GY j . Hence, using the struc-

ture of a DAG, we have by iterating this procedure, the
existence of h ∈ IDAG

init such that yh|[0,T+s′]∩[0,t] /∈ GY h

which contradicts (6). Hence, we have

∀i ∈ I, ∀s ∈ [0, δ], yi|[0,T+s]∩[0,t] ∈ GY i

which by definition of T implies that T = t. Hence, we
have for all i ∈ I and for all s ∈ [0, t], yi|[0,s] ∈ GY i ,

which implies that y|[0,s] ∈ GY for all s ∈ [0, t].

Let i ∈ I, we have wi1|[0,t] ∈ AW i
1

and

wi2|[0,t] =
∏

j∈N (i)

{yi|[0,t]} ∈
∏

j∈N (i)

GY j ⊆ AW i
2

then we have from (i) that for all i ∈ I, xi|[0,t] ∈ GXi ,

which implies that x|[0,t] ∈ GX . Hence, Γ |= C. 2

The proof of Theorem 2 can be interpreted as follows:
from the satisfaction of contracts, the time interval on
which the property holds for the output may be right-
open [0, T ). Then from Assumption 1, we can ensure that
the property holds on its closure [0, T ]. Hence, one can
use the strong satisfaction again to move further and to
enlarge the time interval on which the property holds
[0, T + δ]. Thus, it has to be the whole time domain on
which the trajectory is defined.

Remark 4 It was shown in Theorem 2 that prefix-
closedeness of the set of assumptions AW1

is critical

for the compositionality result for general intercon-
nections containing cycles. Given a non prefix-closed
set of assumptions AW1 , the set pref(AW1) is prefix-
closed. Hence, the result of Theorem 2 remain cor-
rect if we assign to each component Σi the contract
Ci = (pref(AW i

1
), AW i

2
, GXi , GY i). This approach allows

to overcome the prefix-closedeness of the set of assump-
tions on the external inputs AW1 , at the cost of an
additional conservatism.

Remark 5 Proposition 1 in [29] can be recovered by the
result of Theorem 2, where our prefix-closed sets and
general sets corresponds to invariants and LTL specifi-
cations, respectively, in that work.

Let us point out that weak satisfaction is generally insuf-
ficient to reason about general compositions containing
cycles, as shown by the following counter-example:

Example 6 Let us consider the system Σ1 = (W1,W2, X,
Y, T ) where , W1 = W2 = X = Y = R+

0 . A trajectory of
Σ1 is a quadruple (w1, w2, x, y) : E →W1×W2×X×Y
in T where E ∈ E(R+

0 ), w1 and w2 are continuous, x
and y are differentiable and such that x(0) = 0, and for
all t ∈ R+

0 , {
ẋ(t) =

√
w2(t) + w1(t)

y(t) = x(t).

Let I = {1} and consider the interconnection relation
I = {(1, 1)}. It is clear that {Σi}i∈I is compatible
for composition w.r.t. I. Let us consider the assume-
guarantee contract C = (AW1

, AW2
, GX , GY ) for Σ1,

given by:

AW1
= {w1 : E →W1 ∈M(W1)| ∀t ∈ E,w1(t) = 0}

AW2
= {w2 : E →W2 ∈M(W2)| ∀t ∈ E,w2(t) = 0}

GX = {x : E → X ∈M(X)| ∀t ∈ E, x(t) = 0}
GY = {y : E → Y ∈M(Y )| ∀t ∈ E, y(t) = 0}

Let CΓ be the contract for the composed system Γ =
〈(Σi)i∈I , I〉 defined as in Theorem 2. We can easily check
that Σ1 |= C and that Assumption 1 holds. However,
the conclusion of the previous theorem does not hold. In-
deed, the map (w1, x, y) : R+

0 →W1 ×X × Y defined by
w1(t) = 0 and x(t) = y(t) = t2/4 for all t ∈ R+

0 is a
trajectory of Γ and the contract CΓ of the system Γ is not
satisfied.

It is clear from the previous example that strong satis-
faction is needed to reason about general interconnec-
tions containing cycles. We show two modifications of
the previous example, based on sampling or time-delays,
which lead to strong satisfaction of the contract.

Example 7 Consider the system Σ1 = (W1,W2, X, Y, T )
where W1 = W2 = X = Y = R+

0 . A trajectory of Σ1 is

8



a quadruple (w1, w2, x, y) : E → W1 ×W2 × X × Y in
T where E ∈ E(R+

0 ), w1 and w2 are continuous, x and
y are differentiable and such that x(0) = 0, and for all
t ∈ R+

0 ,
ẋ(t) =

√
w2(t) + w1(t)

y(t) = 0 0 ≤ t ≤ t0
y(t) = x(tk) tk < t ≤ tk+1, k ∈ N.

where (tk)k∈N a strictly increasing sequence of sampling
instants with t0 ≥ 0 and tk → +∞ when k → +∞. We
consider the same assume-guarantee contract as in the
previous example. It can be seen that y is left-continuous
and Assumption 1 is satisfied. We can easily check that
Σ1 |=s C, where the value of δ as in Definition 5 is given
by δ = tk+1−t if tk ≤ t < tk+1. Let I = {1} and consider
the interconnection relation I = {(1, 1)}. Let CΓ be the
contract for the composed system Γ = 〈(Σi)i∈I , I〉 defined
as in Theorem 2. Now we can check that the conclusion
of the previous theorem holds since the only trajectory
(w1, x, y) : R+

0 → W1 ×X × Y of the composed system
Γ is given by w1(t) = x(t) = y(t) = 0, for all t ∈ R+

0 .

Example 8 Consider the system Σ1 = (W1,W2, X, Y, T )
where W1 = W2 = X = Y = R+

0 . A trajectory of Σ1 is
a quadruple (w1, w2, x, y) : E → W1 ×W2 × X × Y in
T where E ∈ E(R+

0 ), w1 and w2 are continuous, x and
y are differentiable and such that x(0) = 0, and for all
t ∈ R+

0 , 
ẋ(t) =

√
w2(t) + w1(t)

y(t) = 0 0 ≤ t ≤ T
y(t) = x(t− T ) T < t.

where T > 0 is a time delay. We consider the same
assume-guarantee contract as in Example 6. It can be seen
that y is left-continuous and Assumption 1 is satisfied.
We can easily check that Σ |=s C, where the value of δ
as in Definition 5 is given by δ = T . Let I = {1} and
consider the interconnection relation I = {(1, 1)}. Let
the contract CΓ for the composed system Γ = 〈(Σi)i∈I , I〉
defined as in Theorem 2. Then, we can check that the
conclusion of the previous theorem holds since the only
trajectory (w1, x, y) : R+

0 →W1×X×Y of the composed
system Γ is given by w1(t) = x(t) = y(t) = 0, for all
t ∈ R+

0 .

It can be seen from the Examples 7 and 8 that our frame-
work is suitable to reason about systems that include
some sampled or delayed behaviors. Moreover, these ex-
amples suggest that by sampling or delaying the output
of a component, strong satisfaction of a contract can
be obtained. These examples also show how one can go
from weak to strong satisfaction by slightly modifying

the system. In the next section, we show that this is also
possible by slightly modifying the contract.

It is noteworthy to mention that Theorem 2 does not
hold in general without Assumption 1, as shown by the
following counter-example.

Example 9 Consider the system Σ1 = (W1,W2, X, Y, T )
where W1 = W2 = X = Y = R. A trajectory of Σ1 is
a quadruple (w1, w2, x, y) : E → W1 × W2 × X × Y
in T where E ∈ E(R+

0 ), w1, w2, x, y are continuous,
w2(0) = 0 and for all t ∈ R+

0 ,{
x(t) = w2(t) + w1(t)

y(t) = x(t).

Let I = {1} and consider the interconnection relation
I = {(1, 1)}. It is clear that {Σi}i∈I is compatible
for composition w.r.t. I. Let us consider the assume-
guarantee contract C = (AW1 , AW2 , GX , GY ) for Σ1,
given by:

AW1 = {w1 : E →W1 ∈M(W1)| ∀t ∈ E,w1(t) = 0}
AW2

= {w2 : E →W2 ∈M(W2)| ∀t ∈ E,w2(t) ∈ (−1, 1)}
GX = {x : E → X ∈M(X)| ∀t ∈ E, x(t) ∈ (−1, 1)}
GY = {y : E → Y ∈M(Y )| ∀t ∈ E, y(t) ∈ (−1, 1)}

Let CΓ be the contract for the composed system Γ =
〈(Σi)i∈I , I〉 defined as in Theorem 2. We can easily check
from the continuity of y that Σ1 |=s C and that all the
assumptions of Theorem 2 hold except for Assumption 1.
Moreover, we can check that the conclusion of Theorem 2
does not hold. Indeed, forw1 : R+

0 →W1 ∈ AW1 any map
(w1, x, y) : R+

0 →W1×X×Y satisfying x(0) = y(0) = 0
and x(t) = y(t) for all t ∈ R+

0 is a trajectory of Γ and
the contract CΓ of the system Γ is not satisfied.

Remark 6 Theorems 1 and 2 apply to a very general
class of systems. When considering more specific classes,
one can sometimes reason on general interconnections
without strong contract satisfaction. Such a case will be
shown in Section 6, where we consider systems modeled by
Lipschitz differential inclusions and invariance assume-
guarantee contracts.

5.2.1 From weak to strong contract satisfaction

In this section, we show that under some additional as-
sumptions, it is possible to reason about general com-
positions using the weak semantics of assume guarantee
contracts.

In order to measure the distance between two continuous-
time trajectories, which might not have the same time
domain. We use the notion of ε-closeness of trajecto-
ries [17], which is related to the Hausdorff distance
between the graphs of the trajectories.

9
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Fig. 4. An illustration of the result of Proposition 2. Top:
trajectories of the external w1 and internal w2 inputs. Bot-
tom: trajectories of the state x and output y.

Definition 6 (ε-closeness of trajectories) Let Z ⊆ Rn.
Given ε > 0 and two continuous-time trajectories z1 :
E1 → Z and z2 : E2 → Z in M(Z). z2 is said to be
ε-close to z1, if for all t1 ∈ E1, there exists t2 ∈ E2

such that | t1 − t2 |≤ ε and ‖z1(t1) − z2(t2)‖ ≤ ε. We
define the ε-expansion of z1 by: Bε(z1) = {z′ : E′ → Z |
z′ is ε-close to z}.

This notion is generalized toward sets of continuous-
time maps in the usual way: For A ⊆ M(Z), Bε(A) =⋃
z∈A
Bε(z).

Proposition 2 Let Σ = (W1,W2, X, Y, T ) be a
continuous-time system and let C = (AW1 , AW2 , GX , GY )
be an assume-guarantee contract for Σ. Let us as-
sume that for all trajectories (w1, w2, x, y) : E →
W1 ×W2 × X × Y ∈ T , y : E → Y is continuous and
y|[0,0] ∈ GY ifw1|[0,0] ∈ AW1

. If Σ |= C, then for all ε > 0,
Σ |=s Cε where Cε = (AW1 , AW2 , GX ,Bε(GY ) ∩M(Y )).

PROOF. Let (w1, w2, x, y) : E → W1 × W2 × X ×
Y ∈ T , then y|[0,0] ∈ GY ⊆ Bε(GY ) ∩M(Y ). Let t ∈
E, such that w1|[0,t] ∈ AW1

and w2|[0,t] ∈ AW2
. Then,

satisfaction of C gives that x|[0,t] ∈ GX and y|[0,t] ∈
GY . By continuity of y, there exists δ > 0 such that for
all s ∈ [0, δ], y|[0,t+s]∩E ∈ Bε(GY ). Also by definition,
y|[0,t+s]∩E ∈M(Y ) for all s ∈ [0, δ]. Hence, y|[0,t+s]∩E ∈
Bε(GY ) ∩M(Y ), for all s ∈ [0, δ]. 2

A pictural representation for the result of proposition 2
is shown in Figure 4. The following example shows an
application of the previous corollary:

Example 10 Consider the system Σ1 = (W1,W2, X, Y, T )
where W1 = W2 = X = Y = R+

0 . A trajectory of Σ1

is a triple (w1, w2, x, y) : E → W1 ×W2 ×X × Y in T

where E = R+
0 , w1 and w2 are continuous, x and y are

differentiable and such that x(0) = 0, and for all t ∈ R+
0 ,

{
ẋ(t) =

√
w2(t)− x(t) + w1(t)

y(t) = x(t).

Let I = {1} and consider the interconnection relation
I = {(1, 1)}. It is clear that {Σi}i∈I is compatible for
composition w.r.t. I. Let a > 1 and let us consider the
assume-guarantee contract C = (AW1

, AW2
, GX , GY ) for

Σ1, given by:

AW1
= {w1 : E →W1 ∈M(W1)| ∀t ∈ E,w1(t) = 0}

AW2
= {w2 : E →W2 ∈M(W2)| ∀t ∈ E,w2(t) ∈ [0, a2]}

GX = {x : E → X ∈M(X)| ∀t ∈ E, x(t) ∈ [0, a]}
GY = {y : E → Y ∈M(Y )| ∀t ∈ E, y(t) ∈ [0, a]}

We can easily check that Σ1 |= C and for all trajectories
(w1, w2, x, y) ∈ T , y : E → Y is continuous and y|[0,0] ∈
GY . Then, from Proposition 2, we have that Σ |=s Cε for
any ε > 0, where Cε = (AW1 , AW2 , GX ,Bε(GY )∩M(Y )).
Now let ε > 0, such that

Bε(GY ) ∩M(Y ) = {y : E → Y ∈M(Y )| ∀t ∈ E, y(t) ∈ [0, a+ ε]}
⊆ {y : E → Y ∈M(Y )| ∀t ∈ E, y(t) ∈ [0, a2]}
= AW2

Then, since the system Σ1 satisfies Assumption 1 (the
output trajectory y : E → Y is continuous and the set
[0, a] is closed), we have from Theorem 2 that the com-
posed system Γ = 〈(Σi)i∈I , I〉 satisfies the composed con-
tract CΓ = (AW1 , GX ,Bε(GY ) ∩M(Y )). Let us remark
that there exist trajectories of the composed system Γ
given by: (w1, x, y) : R+

0 →W1×X×Y , where w1(t) = 0

and x(t) = y(t) = (1− e−t/2)2, for all t ∈ R+
0 .

We have shown how one can go from weak to strong
satisfaction of a contract, by relaxing the guarantees on
the output. In the next result, we show that it is also
possible to do so by relaxing the assumptions.

Proposition 3 Let Σ = (W1,W2, X, Y, T ) be a
continuous-time system and let C = (AW1 , AW2 , GX , GY )
be an assume-guarantee contract for Σ. Let us as-
sume that for all trajectories (w1, w2, x, y) : E →
W1 × W2 × X × Y ∈ T , w1 : E → W1 and
w2 : E → W2 are continuous and y|[0,0] ∈ GY if
w1|[0,0] ∈ AW1

. For an ε > 0, if Σ |= Cε, with
Cε = (Bε(AW1)∩M(W1),Bε(AW2)∩M(W2), GX , GY ).
Then, Σ |=s C.
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PROOF. Let (w1, w2, x, y) : E →W1×W2×X×Y ∈
T , then y|[0,0] ∈ GY . Let t ∈ E, such that w1|[0,t] ∈ AW1

and w2|[0,t] ∈ AW2 . By continuity of w1 and w2, there
exists δ > 0 such that for all s ∈ [0, δ], w1|[0,t+s]∩E ∈
Bε(AW1) andw2|[0,t+s]∩E ∈ Bε(AW2). Also by definition,
w1|[0,t+s]∩E ∈ M(W1) and w2|[0,t+s]∩E ∈ M(W2) for all
s ∈ [0, δ]. Then, satisfaction of Cε gives that x|[0,t+s] ∈
GX and y|[0,t+s] ∈ GY for all s ∈ [0, δ]. 2

We recall that the approach proposed in Proposition 3
to ensure strong satisfaction of contract has been used
in [32] to construct symbolic controllers for sampled-
data systems. Interestingly, this technique is useful in
practice, since it allows to ensure strong satisfaction of
contracts without reasoning in terms of δ which may
depend on time and trajectory.

6 Compositional invariants for differential in-
clusions

In this section, we focus on continuous-time systems
Σ = (W1,W2, X, Y, T ) defined by differential inclusions,
and invariance assume-guarantee contracts, where as-
sumptions and guarantees are defined as in Example 1.
We use the classical characterization of invariant sets
for differential inclusions developed using the concept of
contingent cone (see [4] and the references therein) to
derive necessary and sufficient conditions for weak sat-
isfaction of assume-guarantee contracts. We also show
that under some technical assumptions (Lipschitzness of
the vector field and the output map), weak satisfaction
makes it possible to reason on general interconnections
containing cycles.

A trajectory of Σ is a triple (w1, w2, x, y) : E → W1 ×
W2 × X × Y in T where E ∈ E(R+

0 ), w1 and w2 are
locally measurable, x and y are absolutely continuous
and continuous, respectively, and satisfy for almost all
t ∈ E:{
ẋ(t) ∈ F (x(t), w1(t), w2(t)), x(0) ∈ X0

y(t) = h(x(t))
(7)

where F : Rn × Rm1 × Rm2 → 2R
n

is a set-valued map,
h : Rn → Rp is continuous and X0 is the set of initial
conditions. Let us introduce the following assumption
on the system Σ:

Assumption 2 The set-valued map 1 F : Rn × Rm1 ×
Rm2 → 2R

n

is Lipschitz, has compact values and X ×

1 Given a set-valued map F : Rq → 2Rn

, the domain of
F is dom(F ) = {z ∈ Rq| F (z) 6= ∅}. F is said to be
locally Lipschitz if for all z ∈ Int(dom(F )), there exists
a neighborhood U of z and a constant L ≥ 0 (the Lips-
chitz constant) such that for every z1, z2 ∈ U ∩ dom(F ),

W1 × W2 ⊆ Int(dom(F )). The map 2 h : Rn → Rp
satisfies X ⊆ Int(dom(h)) and h(X) ⊆ Y .

Definition 7 Consider the sets SW1 ⊆ Rm1 , SW2 ⊆
Rm2 , SX ⊆ Rn and SY ⊆ Rp. A contract C =
(AW1

, AW2
, GX , GY ) is an invariance contract with re-

spect to (SW1
, SW2

, SX , SY ) if the set of assumptions
and guarantees are described as follows:

• AWi
= {wi : E → Rmi ∈ M(Rmi) | ∀t ∈ E, wi(t) ∈

SWi
}, i ∈ {1, 2};

• GX = {x : E → Rn ∈M(Rn) | ∀t ∈ E, x(t) ∈ SX};
• GY = {y : E → Rp ∈M(Rp) | ∀t ∈ E, y(t) ∈ SY };

Consider a network of components {Σi}i∈I , compatible
for composition w.r.t. I, where each component has the
form of (7). Each component Σi has maps and initial sets
F i, hi, Xi

0, i ∈ I, the composed system Γ = 〈(Σi)i∈I , I〉
can be written under the same form with maps F , h and
initial set X0 given by:

F (x,w1) =
∏
i∈I

F i(xi, wi1, w
i
2), wi2 =

∏
j∈N (i)

{hj(xj)}

h(x) = (h1(x1), . . . , hN (xN )), (8)

X0 =
∏
i∈I

Xi
0.

Note that this representation is consistent with the one
given in Definition 4.

We have the following technical result whose proof is
given in appendix of [].

Claim 2 If hi is Lipschitz and Assumption 2 holds for all
Σi, i ∈ I, then Assumption 2 holds for Γ = 〈(Σi)i∈I , I〉;

6.1 Invariants relative to assume-guarantee contracts

We give necessary and sufficient conditions for weak sat-
isfaction of assume-guarantee contracts based on the
classical characterization of invariant sets for differential
inclusions (see e.g. Theorem 5.3.4 in [4]).

Definition 8 Let K ⊆ Rn and x ∈ K, the contingent
cone to set K at point x, denoted TK(x), is given by:

TK(x) =

{
z ∈ Rn | lim inf

h→0+

dK(x+ hz)

h
= 0

}
F (z1) ⊆ F (z2) + L||z1 − z2||B. F is said to be Lipschitz if
the constant L is independent of z ∈ Int(dom(F )). It has
compact values if for all z ∈ dom(F ), F (z) is compact.
2 Given a map h : Rn → Rp, the domain of h is denoted
dom(h) and consists of elements x ∈ Rn such that h(x) is
defined.
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where dK(y) denotes the distance of y to K, defined by
dK(y) = inf

y′∈K
||y − y′||.

Definition 9 Let Σ = (W1,W2, X, Y, T ) be a continuous-
time system described by (7). Let C = (AW1

, AW2
, GX , GY )

be an invariance assume-guarantee contract for Σ with
respect to (SW1

, SW2
, SX , SY ), where the sets SW1

, SW2

are compact. A closed set K ⊆ X is said to be an in-
variant of Σ relative to the contract C if the following
conditions hold:

(i) X0 ⊆ K ⊆ SX ∩ h−1(SY );
(ii) for all x ∈ K, F (x, SW1 , SW2) ⊆ TK(x).

where the set-valued map is given by: F (·, SW1
, SW2

) =⋃
w1∈SW1

⋃
w2∈SW2

F (·, w1, w2).

We prove that the existence of an invariant of Σ relative
to a contract C is equivalent to the weak satisfaction of
this contract.

Proposition 4 Let Σ = (W1,W2, X, Y, T ) be a
continuous-time system described by (7) such that As-
sumption 2 holds. Let C = (AW1 , AW2 , GX , GY ) be an
invariance assume-guarantee contract for Σ with respect
to (SW1

, SW2
, SX , SY ), where the sets SW1

, SW2
are com-

pact. Then, Σ |= C, if and only if there exists a closed set
K ⊆ X that is an invariant of Σ relative to the contract C

PROOF. First let us prove that the existence
of an invariant of Σ relative to a contract C im-
plies the weak satisfaction of this contract. Let
(w1, w2, x, y) : E → W1 × W2 × X × Y in T . Let
t ∈ E and suppose that wi|[0,t] ∈ AWi

, i ∈ {1, 2}.
Then, we have for all s ∈ [0, t], wi(s) ∈ SWi

, then for
almost all s ∈ [0, t], ẋ(s) ∈ F (x(s), SW1

, SW2
). From

Assumption 2, we have X ⊆ Int(dom(F (·, SW1
, SW2

)))
and then K ⊆ Int(dom(F (·, SW1

, SW2
))). Moreover,

from the compactness of SWi
, i ∈ {1, 2}, it follows

that the set-valued map F (·, SW1
, SW2

) is Lipschitz
and has compact values. Then, since for all x ∈ K,
F (x, SW1 , SW2) ⊆ TK(x), we have by Theorem 5.3.4
in [4] that for all s ∈ [0, t], x(s) ∈ K ⊆ SX and then
for all s ∈ [0, t], y(s) = h(x(s)) ∈ h(K) ⊆ SY . Then,
x|[0,t] ∈ GX and y|[0,t] ∈ GY . Hence, Σ |= C.

We now deal with the second implication. Let us assume
that Σ |= C. Then for any trajectory (w1, w2, x, y) : E →
W1×W2×X×Y of the system Σ. We have for all t ∈ E,
if for all s ∈ [0, t], w1(s) ∈ SW1

and w2(s) ∈ SW1
, then

for all s ∈ [0, t], x(s) ∈ SX and y(s) ∈ SY . Let us prove
the existence of a non empty set K ⊆ X satisfying the
conditions of Definition 9. Let us define

K̂ = {p ∈ X | ∃(w1, w2, x, y) : E → SW1
×SW2

×X×Y ∈ T
with x(0) ∈ X0 and ∃t ∈ E with x(t) = p}. (9)

The set K̂ is the set of reachable states for the differential
inclusion (7) initialized in X0, where the external and
internal inputs belongs to SW1 and SW2 , respectively.
From the satisfaction of the contract, we have thatX0 ⊆
K̂ ⊆ SX∩h−1(SY ). Let (w′1, w

′
2) ∈ SW1

×SW2
and let us

prove that K̂ is an invariant for the differential inclusion

ẋ(t) ∈ F (x(t), w′1, w
′
2). (10)

Let z0 ∈ K̂, and let z : E′ → X be a solution of (10)

with z(0) = z0. Since z0 ∈ K̂, we have the existence of a
trajectory σ = (w1, w2, x, y) : [0, s]→ SW1 ×SW2 ×X×
Y of the system Σ described in (7) such that x(0) ∈ X0

and x(s) = z0 and for which the external and internal
inputs belong to SW1 and SW2 , respectively. Let the time
domain Ec defined as follows:

Ec = [0, a+ s] if E′ = [0, a]

= [0, a+ s) if E′ = [0, a)

= R+
0 if E′ = R+

0

and let the trajectory σc = (wc1, w
c
2, x

c, yc) : Ec →
SW1

× SW2
×X × Y of the system Σ defined as follows:

for all t ∈ [0, s], σ(t) = σc(t) and for all t ∈ Ec \ [0, s]
we have, xc(t) = z(t − s), yc(t) = h(xc(t)), wc1(t) = w′1
and wc2(t) = w′2. From construction of K̂, we have that

x(t) ∈ K̂ for all t ∈ Ec. Hence, for all t ∈ E′, z(t′) =

x(t′ + s) ∈ K̂, where t′ + s ∈ Ec. Hence, K̂ is an invari-
ant for the differential inclusion (10). Let us now prove

that K = cl(K̂) is also an invariant for (10). Let v0 ∈ K,
and let us assume the existence of v : E → X solution
to (10) with v(0) = v0 and s ∈ E such that v(s) ∈ K.
Since, K is an open, we have the existence of ε > 0 such
that Rε(v(s)) ⊆ K. Then, using the continuity of solu-
tions of (10) in initial conditions (see Corollary 5.3.3 in

[4]), we have the existence of η > 0 and x0 ∈ K̂ such that
x0 = x(0) ∈ Rη(v0) and x(s) ∈ Rε(v(s)) ∈ K, which

contradicts the invariance of K̂. Hence, K = cl(K̂) is an
invariant for the differential inclusion (10).

For (w′1, w
′
2) ∈ SW1

× SW2
, we have that K is closed.

Moreover by Assumption 2, F and thus F (·, w′1, w′2) is
Lipschitz and has compact values. Moreover, X ×W1×
W2 ⊆ Int(dom(F )) and thus X ⊆ Int(F (·, w′1, w′2)),
which in turn implies that K ⊆ Int(F (·, w′1, w′2)). Then,
from Theorem 5.3.4 in [4], we have

∀x ∈ K, F (x,w′1, w
′
2) ⊆ TK(x). (11)

Since equation (11) is verified for all (w′1, w
′
2) ∈ SW1

×
SW2

, we have

∀x ∈ K, F (·, SW1 , SW2) =
⋃

w′
1∈SW1

⋃
w′

2∈SW2

F (·, w′1, w′2) ⊆ TK(x)
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Then, K is an invariant of the system Σ relative to the
contract C. 2

It is noteworthy to mention that in view of Proposition 4,
the Lipschitzness property of the system Σ is needed
only on a neighbourhood of the set of interest given by
SX × SW1 × SW2 .

6.2 Composition of invariants

We now provide results allowing us to reason about in-
terconnected systems based on invariants of their com-
ponents.

Theorem 3 (Invariants under composition)
Consider a network of continuous-time components
{Σi}i∈I compatible for composition w.r.t. I, where the
components Σi, i ∈ I, have the form of (7) and sat-
isfies Assumption 2. Each component Σi have maps
and initial sets F i, hi, Xi

0, i ∈ I, where hi is Lips-
chitz. Let Ci = (AW i

1
, AW i

2
, GXi , GY i) be an invari-

ance assume-guarantee contract for Σi with respect to
(SW i

1
, SW i

2
, SXi , SY i), where the sets SW i

1
, SW i

2
are com-

pact. Let C = (
∏
i∈I AW i

1
,
∏
i∈I GXi ,

∏
i∈I GY i) be a

contract for the composed system Γ = 〈(Σi)i∈I , I〉 and
assume the following:

(i) for all i ∈ I, Σi |= Ci;
(ii) for all i ∈ I,

∏
j∈N (i) SY j ⊆ SW i

2
.

then Γ |= C.

PROOF. First, since hi is Lipschitz and Assumption 2
holds for all Σi, i ∈ I, then from Claim 2 we have that
Assumption 2 holds for Γ = 〈(Σi)i∈I , I〉. Hence, using
the equivalence between the invariance relative to con-
tracts and the weak satisfaction of contracts from Propo-
sition 4, we have the existence of a closed set Ki that is
invariant for Σi relative to the contract Ci.

To complete the proof, let us show that the set K =∏
i∈I K

i is an invariant of Γ relative to the contract C.
Let i ∈ I and consider a trajectory xi : R+

0 → Xi with
xi(0) ∈ Ki and satisfying ẋi(t) ∈ F i(xi, SW i

1
, SW i

2
), for

all t ∈ R+
0 . Using the fact thatKi invariant of Σi relative

to the contract Ci and from Proposition 4 we have that
xi(t) ∈ Ki, for all t ∈ R+

0 .

Consider the map G : X → 2X defined for x ∈ X by:

G(x) =
∏
i∈I

F i(xi, SW i
1
, SW i

2
); (12)

Let a trajectory x : R+
0 → X with x(0) ∈ K and sat-

isfying ẋ(t) ∈ G(x(t)) for all t ∈ R+
0 . We have from

above that x(t) ∈ K, for all t ∈ R+
0 . Moreover, us-

ing the fact that G is Lipschitz, has compact values,
X ⊆ Int(dom(G)) and K is a closed set, we have by
Theorem 5.3.4 in [4] that G(x) ⊆ TK(x) for all x ∈ K.

Let us now consider the system described by the follow-
ing differential inclusion:

ẋ(t) ∈ F (x(t), SW1
). (13)

Where x(t) = (x1(t), . . . , xN (t)) and SW1
=
∏
i∈I SW i

1
.

Let x ∈ K, then for all i ∈ I, we have that

F i(xi, SW i
1
, wi2) = F i(xi, SW i

1
,
∏

j∈N (i)

{hj(xj)})

⊆ F i(xi, SW i
1
,
∏

j∈N (i)

{hj(Kj)})

⊆ F i(xi, SW i
1
,
∏

j∈N (i)

{SY j})

⊆ F i(xi, SW i
1
, SW i

2
).

Where the first equality comes from the definition of
an interconnection relation, the second inclusion comes
from (i) and the last inclusion comes from (ii). Then, we
have that F (x, SW1

) ⊆ G(x) ⊆ TK(x), for all x ∈ K.

Finally, we have X0 =
∏
i∈I X

i
0 ⊆

∏
i∈I K

i = K,

K =
∏
i∈I K

i ⊆
∏
i∈I GXi , and K =

∏
i∈I K

i ⊆∏
i∈I (hi)

−1
(GY i) = h−1(GY ). Hence, K is an invariant

of Γ relative to the contract C. Then from Proposition 4
and Claim 2, we get Γ |= C. 2

We show an example to illustrate the application of the
previous theorem.

Example 11 Consider systems Σi = (W i
1,W

i
2, Xi, Yi, Ti),

i = 1, 2 where W i
1 = W i

2 = Xi = Y i = R. A trajectory
of Σi is a triple (wi1, w

i
2, x

i, yi) : E →W i
1×W i

2×Xi×Y i
in Ti where E = R+

0 , wi1 and wi2 are locally measurable,
xi and yi are absolutely continuous and continuous,
respectively, and satisfy for almost all t ∈ E:

ẋi(t) = f i(xi(t), wi1(t), wi2(t))

= −aixi(t) + aiw
i
2(t) + wi1(t),

yi(t) = hi(x(t)) = xi(t).

where xi(0) ∈ [0, bi] with ai, bi ∈ R+
0 , let b = max(b1, b2).

It can be seen that hi is Lipschitz and that Assump-
tion 2 holds for Σi. Let the interconnection relation I =
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{(1, 2), (2, 1)}. It is clear that {Σi}i∈I is compatible for
composition w.r.t. I. Let the invariance contract Ci =
(AW i

1
, AW i

2
, GXi , GY i) for the system Σi with respect to

(SW i
1
, SW i

2
, SXi , SY i), with SW i

1
= {0}, SW i

2
= SXi =

SY i = [0, b]. We can easily check that for all xi ∈ [0, b],
fi(x

i, [0, b], {0}) ⊆ T[0,b](x
i), since

T[0,b](x
i) =


R+ if xi = 0,

R− if xi = b,

R if xi ∈ (0, b)

Then [0, b] is an invariant of the system Σi, relative to
the contract Ci. By Theorem 3, [0, b]2 is an invariant
of the composed system Γ = 〈(Σi)i∈I , I〉 relative to the
composed contract C.

7 Small gain results

In this part, we show how the proposed framework can
recover different versions of the classical small gain theo-
rem as a particular case. Indeed, we show how the frame-
work allows to recover the classical BIBO stability re-
sult [12]. Moreover, we construct a new small-gain result
for the concept of growth bound [2]. To the best of our
knowledge, this result is new and have not been investi-
gated before in the literature. We suppose for the sake of
simplicity that for each system Σ = (W1,W2, X, Y, T ),
we have W1 = {0}, X = Y = W2 = Rn and for all
(w1, w2, x, y) : R+

0 → W1 × W2 × W × X × Y in T ,
x(t) = y(t), for all t ∈ R+

0 .

7.1 BIBO stability

Given a system Σ satisfying a BIBO stability condi-
tion [12], we show that if the gain of the system is lower
than 1 then the feedback 3 composed system is bounded
for all the time domain.

Theorem 4 Consider a component Σ1 = ({0},W2, X, Y, T ),
I = {1} and let the interconnection relation I = {(1, 1)}
such that {Σi}i∈I is compatible for composition w.r.t.
I. Let γ < 1 and β ∈ R+

0 such that for any trajectory
(0, w2, x, y) : R+

0 →W1×W2×X×Y in T , x : R+
0 → X

is continuous, ‖x(0)‖ ≤ β
1−γ and for all t ∈ R+

0 we have:

‖x|[0,t]‖∞ ≤ γ‖w2|[0,t]‖∞ + β. (14)

Then for any trajectory (0, x, y) : R+
0 → {0} × X × Y

of the composed system Γ = 〈(Σi)i∈I , I〉, we have for all

t ∈ R+
0 : ‖x|[0,t]‖∞ ≤ β

1−γ .

3 Given a system Σ1 and a set of vertices I = {1}, the
feedback composition of the system Σ1 is the composition
with an interconnection relation I = {(1, 1)}.

PROOF. We first start by constructing a suitable con-
tract for the system Σ1. Let the map a : R+

0 → R+
0 ,

a parameter ε > 0 and a parametrized contract C(ε) =
(AεW1

, AεW2
, GεX , G

ε
Y ) for Σ, where:

• AεW1
= {w1 : R+

0 → W1 ∈ M(W1)| ∀t ∈ R+
0 , w1(t) =

0};
• AεW2

= {w2 : R+
0 →W2 ∈M(W2)| ∀t ∈ R+

0 , ‖w2|[0,t]‖∞ ≤
a(ε)};

• GεX = GεY = {x : R+
0 → X ∈ M(X)| ∀t ∈

R+
0 , ‖x|[0,t]‖∞ ≤ γa(ε) + β}.

Let us choose a(ε) = β+ε
1−γ , where ε > 0. We have that

‖x(0)‖ ≤ β

1− γ
≤ γa(ε) + β =

β + γε

1− γ

for any ε > 0. Hence, x|[0,0] ∈ GεX . We also have

from (14) that Σ1 |= C(ε), and for all trajectories
(w1, w2, x, y) ∈ T , x : R+

0 → X is continuous. Then,
from Proposition 2, we have that Σ1 |=s C′(ε) for any
ε > 0, where C′(ε) = (AεW1

, AεW2
, GεX ,Bε(GεY )∩M(Y )).

Now, using the fact that γa(ε) + β − a(ε) = −ε < 0,
we have that Bε(GεY ) ∩ M(Y ) ⊆ AεW2

. Moreover,

from continuity of x : R+
0 → X Assumption 1 is

satisfied. Then from Theorem 2, the composed sys-
tem Γ = 〈(Σi)i∈I , I〉 satisfies the composed contract
CεΓ = (AεW1

, GεX ,Bε(GεY ) ∩ M(Y )). Then, we have for

all t ∈ R+
0 : ‖x|[0,t]‖∞ ≤ γa(ε) + β = β+γε

1−γ .

Since the last inequality is verified for all ε > 0 we have
for all t ∈ R+

0 , ‖x|[0,t]‖∞ ≤ β
1−γ . 2

7.2 Growth bound

The notion of growth bound allows us to analyse
the growth or contraction properties of a system,
particularly, it coincides with forward completeness
(see Corollary 2.3 in [2]) for finite-dimensional sys-
tems described by nonlinear differential equations
ẋ(t) = F (x(t), w1(t), w2(t)) and with a locally Lipschitz
map F . Given a continuous-time system with a given
growth bound, in the following we show how to char-
acterize the growth bound of the feedback composed
system.

Theorem 5 Consider a component Σ1 = ({0},W2, X, Y, T ),
I = {1} and let I = {(1, 1)} be the interconnection re-
lation such that {Σi}i∈I is compatible for composition
w.r.t. I. Let γ1, γ2, γ3 be class K maps and constants
(c, ρ) ∈ R × [0, 1), where γ3 < ρId 4 and such that for
any trajectory (0, w2, x, y) : R+

0 →W1 ×W2 ×X × Y in

4 i.e, γ3(r) < ρr for all r > 0
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T , x : R+
0 → X is continuous, ‖x(0)‖ ≤ γ2(‖x(0)‖) + c

and for all t ∈ R+
0 we have:

‖x(t)‖ ≤ γ1(t) + γ2(‖x(0)‖) + γ3(‖w2|[0,t]‖∞) + c. (15)

Then there exist K functions α1, α2 and c′ ∈ R such that
for any trajectory (0, x, y) : R+

0 → {0} × X × Y of the
composed system Γ = 〈(Σi)i∈I , I〉 we have for all t ∈ R+

0 ,
‖x(t)‖ ≤ α1(t) + α2(‖x(0)‖) + c′, where α1 = 2

1−ργ1,

α2 = 2
1−ργ2, and c′ = 2c

1−ρ .

PROOF. We first define the system Σ1
x(0) = ({0},W2, X,

Y, Tx(0)) where (0, w2, x, y) : R+
0 → {0}×W2×X×Y ∈

Tx(0) is a trajectory of the system Σ1
x(0) is and only if it

is a trajectory of the system Σ1 initialized in x(0) ∈ X.

We start by constructing a suitable contract for the sys-
tem Σ1

x(0). Let the map a : R+
0 × R+

0 → R+
0 . A pa-

rameter ε > 0 and a parametrized contract C(ε) =
(AεW1

, AεW2
, GεX , G

ε
Y ) for Σ1, where:

• AεW1
= {w1 : R+

0 → W1 ∈ M(W1)| ∀t ∈ R+
0 , w1(t) =

0};
• AεW2

= {w2 : R+
0 →W2 ∈M(W2)| ∀t ∈ R+

0 , ‖w2(t)‖ ≤
a(t, ε)};
• GεX = GεY = {x : R+

0 → X ∈ M(X)| ∀t ∈
R+

0 , ‖x(t)‖ ≤ γ1(t) + γ2(‖x(0)‖) + γ3(‖a(t, ε)‖) + c}.

Let us choose the map a : R+
0 × R+

0 → R+
0 satisfying

a(t, ε) = (1− ρ)−1(γ1(t) + γ2(‖x(0)‖) + c+ ε)

where ε > 0. First, since ρ < 1, we have that (1 − ρ)Id
is a class K map, which implies from Lemma 4.2 in [21])
that (1− ρ)−1Id is class K. Moreover, since γ1 is class K
we have for all t ∈ R+

0 ,

‖a|[0,t](·, ε)‖∞ = ‖a(t, ε)‖ (16)

Let us now prove that Σ1 |= C(ε). Let t ∈ R+
0 and assume

that ‖w2(s)‖ ≤ a(s, ε) for all s ∈ [0, t]. We have from
(15) that for all s ∈ [0, t]

‖x(s)‖ ≤ γ1(s) + γ2(‖x(0)‖) + γ3(‖w2|[0,s]‖∞) + c

≤ γ1(s) + γ2(‖x(0)‖) + γ3(‖a|[0,s](·, ε)‖∞) + c

≤ γ1(s) + γ2(‖x(0)‖) + γ3(‖a(s, ε)‖) + c

where the last inequality comes from (16). Hence,
Σ1 |= C(ε). Moreover we have that for all trajectories
(w1, w2, x, y) ∈ T , x : R+

0 → X is continuous and
using the fact that ‖x(0)‖ ≤ γ2(‖x(0)‖) + c, we have
that x|[0,0] ∈ GεX , for all ε > 0. Then, from Proposi-

tion 2, we have that Σ1 |=s C′(ε) for any ε > 0, where
C′(ε) = (AεW1

, AεW2
, GεX ,Bε(GεY ) ∩M(Y )). Now, using

the fact that γ3 < ρId we have

γ1(t) + γ2(‖x(0)‖)+γ3(a(t, ε)) + c− a(t, ε) ≤ γ1(t)+

γ2(‖x(0)‖) + ρa(t, ε) + c− a(t, ε)

= −ε < 0

which implies that Bε(GεY ) ∩ M(Y ) ⊆ AεW2
. More-

over, from continuity of x : R+
0 → X, Assumption 1

is satisfied. Then from Theorem 2, the composed sys-
tem Γ = 〈(Σi)i∈I , I〉 satisfies the composed contract
CεΓ = (AεW1

, GεX ,Bε(GεY ) ∩ M(Y )). Then, we have for

all t ∈ R+
0 :

‖x(t)‖ ≤ γ1(t) + γ2(‖x(0)‖) + γ3(a(t, ε)) + c

≤ a(t, ε) = (1− ρ)−1(γ1(t) + γ2(‖x(0)‖) + c+ ε).

The last inequality is verified for all ε > 0, which implies
from the continuity of (1− ρ)−1Id that for all t ∈ R+

0 :

‖x(t)‖ ≤ (1− ρ)−1(γ1(t) + γ2(‖x(0)‖) + c)

≤ 2

1− ρ
γ1(t) +

2

1− ρ
γ2(‖x(0)‖)

+
2c

1− ρ
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where the last inequality comes from the fact that (1−
ρ)Id is a class K and the weak triangular inequality [19].
By choosing α1 = 2

1−ργ1, α2 = 2
1−ργ2, and c′ = 2c

1−ρ
where α1 and α2 are class K (see Lemma 4.2 in [21]), we
have for all t ∈ R+

0 , ‖x(t)‖ ≤ α1(t)+α2(‖x(0)‖)+c′. 2

We can mention that for finite-dimensional systems, de-
scribed by nonlinear differential equations and with a
locally Lipschitz map F , the previous result states that
if a system is forward complete with a gain γ3 lower than
identity, then the feedback composed system is forward
complete.

Remark 7 Let us mention that using the same ap-
proach, and similar to the work of [11], one can generalize
different small-gain results to different interconnection
structures.

8 Conclusion

In this paper, we proposed a contract based approach
for verifying compositionally properties of continuous-
time interconnected systems. The main notions consid-
ered in the paper and their relationships are sketched in
Figure 5. The main contributions are summarized be-
low. We introduced a notion of assume-guarantee con-
tracts equipped with a weak and a strong semantics. We
showed that weak semantics are sufficient to deal with
acyclic interconnections (Theorem 1), strong semantics
are required to reason on cyclic interconnections (The-
orem 2 and Example 6) and that strong semantics of
a contract can sometimes be obtained from weak ones
(Propositions 2 and 3).

We then developed specific results for systems de-
scribed by differential inclusions and invariance assume-
guarantee contracts. We showed that sufficient and nec-
essary conditions for weak satisfaction of contracts can
be given using invariant sets (Proposition 4) and that
invariants are compatible with cyclic interconnections
(Theorem 3). Finally, we have shown how the proposed
assume-guarantee framework can recast different ver-
sions of the small-gain theorem as a particular case
(Theorems 4 and 5).

Appendix

Proof of Claim 2

Consider a network of components {Σi}i∈I , compatible
for composition w.r.t. I, where each component has the
form of (7). Each component Σi has maps and initial
sets F i, hi, Xi

0, i ∈ I, and the composed system Γ =
〈(Σi)i∈I , I〉 can be written as in (8). Assume that hi is
Lipschitz and Assumption 2 holds for all Σi, i ∈ I, and
let us show that Γ = 〈(Σi)i∈I , I〉 satisfies Assumption 2.

First, using the fact that for all i ∈ I, F i has compact
values and Xi × W i

1 × W i
2 ⊆ Int(dom(F i)), we have

directly from (8) that F has compact values and X ×
W1 ⊆ Int(dom(F )).

Similarly, using the fact that for all i ∈ I, hi satisfies
Xi ⊆ Int(dom(hi)) and hi(Xi) ⊆ Y i, we directly get
from (8) that h satisfies X ⊆ Int(dom(h)) and h(X) ⊆
Y .

Now assume that for all i ∈ I, F i and hi are Lip-
chitz, and let us show that the interconnected system
Γ = 〈(Σi)i∈I , I〉 is Lipschitz. From Lipschitzness of F i,
we have the existence of Li, Li1, L

i
2 > 0 such that for

all (xia, x
i
b) ∈ Xi, for all (wi1,a, w

i
1,b) ∈ W i

1 and for all

(wi2,a, w
i
2,b) ∈W i

2, we have :

F i(xia, w
i
1,a, w

i
2,a)⊆ F i(xib, wi1,b, wi2,b) + Li‖xia − xib‖B

+Li1‖wi1,a − wi1,b‖B + Li2‖wi2,a − wi2,b‖B

where ‖.‖ is the infinity norm of appropriate dimension
and B is the ball centred at the origin with radius 1
of appropriate dimension. Similarly, from Lipschitzness
of hi, we have the existence of li > 0 such that for all
(xia, x

i
b) ∈ Xi we have:

‖hi(xia)− hi(xia)‖ ≤ li‖xia − xib‖

Consider (xa, xb) ∈ X and (w1,a, w1,b) ∈ W1 with
xa = (x1

a, . . . , x
N
a ), xb = (x1

b , . . . , x
N
b ), w1,a =

(w1
1,a, . . . , w

N
1,a), and w1,b = (w1

1,b, . . . , w
N
1,b). Choosing

L = maxi∈I L
i, L1 = maxi∈I L

i
1, L2 = maxi∈I L

i
2 and

l = maxi∈I l
i, we have the chain of inclusions in (17).

Hence, the interconnected system Γ = 〈(Σi)i∈I , I〉 is
Lipschitz.
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