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NONPARAMETRIC ESTIMATION OF THE TREND IN
REFLECTED FRACTIONAL SDE

NICOLAS MARIE*

Abstract. This paper deals with the consistency, a rate of convergence and
the asymptotic distribution of a nonparametric estimator of the trend in the
Skorokhod reflection problem defined by a fractional SDE and a Moreau sweep-
ing process.
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1. Introduction

Consider T > 0 and the Skorokhod reflection problem

(1)

 Xε(t) =

∫ t

0

b(Xε(s))ds+ εB(t) + Yε(t)

−Ẏε(t) ∈ NC(t)(Xε(t)) |DYε|-a.e. with Yε(0) = x0

; t ∈ [0, T ],

where b : R→ R is a Lipschitz continuous function, ε > 0, B is a fractional Brow-
nian motion of Hurst index H ∈]1/2, 1[, Ẏε is the Radon-Nikodym derivative of
the differential measure DYε of Yε with respect to its variation measure |DYε|, the
multifunction C : [0, T ] ⇒ R is Lipschitz continuous for the Hausdorff distance,
x0 ∈ C(0) and NC(t)(Xε(t)) is the normal cone of C(t) at point Xε(t). The defini-
tion of the normal cone is stated later.

A solution to Problem (1), if it exists, is a couple (Xε, Yε) of continuous functions
from [0, T ] into R such that Xε(t) ∈ C(t) for every t ∈ [0, T ]. Roughly speaking,
Xε coincides with the solution to dX∗ε (t) = b(X∗ε (t))dt + εdB(t), except when Xε

hits the frontier of C. Each time this situation occurs, Xε is pushed inside of C
with a minimal force by Yε. The differential inclusion defining the process Yε in
Problem (1) is equivalent to a (Moreau) sweeping process. Several authors studied
Problem (1) when H = 1/2. For instance, the reader can refer to Bernicot and
Venel [2], Slominski and Wojciechowski [21] or Castaing et al. [3]. When H 6= 1/2,
the reader can refer to Falkowski and Slominski [8] or Castaing et al. [4]. In this
last paper, the authors proved the existence, uniqueness and the convergence of an
approximation scheme of the solution to Problem (1) under a nonempty interior

Key words and phrases. Nonparametric estimation ; Trend estimation ; Skorokhod reflection
problem ; Sweeping process ; Fractional Brownian motion ; Stochastic differential equations.
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condition on C (see Assumption 2.2). In fact, in all these papers, the authors stud-
ied the Skorokhod reflection problem defined by a SDE and a sweeping process for
a multiplicative and/or multidimensional noise.

Let K : R → R+ be a kernel. The paper deals with the consistency, a rate of
convergence and the asymptotic distribution of the nonparametric estimator

τ̂ε(t) :=
1

hε

∫ t

0

∫ T

0

K

(
s− u
hε

)
dXε(s)du ; t ∈ [0, T ]

of the trend

τ(.) :=

∫ .

0

b(x(u))du+ y(.)− x0

of Problem (1), where

(2)

 x(t) =

∫ t

0

b(x(s))ds+ y(t)

−ẏ(t) ∈ NC(t)(x(t)) |Dy|-a.e. with y(0) = x0

and hε > 0 goes to zero when ε→ 0.

Along the last two decades, many authors studied statistical inference in stochastic
differential equations driven by the fractional Brownian motion. Most references
on the estimation of the trend component in fractional SDE deals with parametric
estimators (see Kleptsyna and Le Breton [9], Tudor and Viens [22], Hu and Nu-
alart [11], Chronopoulou and Tindel [7], Neuenkirch and Tindel [19], Mishura and
Ralchenko [17], Hu et al. [12], etc.). On the nonparametric estimation of the trend
component in fractional SDE, there are only few references. Saussereau [20] and
Comte and Marie [6] study the consistency of some Nadaraya-Watson’s-type esti-
mators of the drift function in a fractional SDE. In [16], Mishra and Prakasa Rao
established the consistency and a rate of convergence of a nonparametric estimator
of the whole trend of the solution to a fractional SDE. Our paper generalizes their
results to the Skorokhod reflection Problem (1). On the nonparametric estimation
in Itô’s calculus framework, the reader can refer to Kutoyants [13] and [14]. Up to
our knowledge, there is no reference on the nonparametric estimation of the trend
in reflected fractional SDE.

Section 2 deals with some preliminaries on the Skorokhod reflection problem defined
by a fractional SDE and a sweeping process. Section 3 deals with the consistency,
a rate of convergence and the asymptotic distribution of the estimator τ̂ε(t).

Notations and basic properties:
(1) For every h > 0, Kh := 1/hK(·/h).
(2) Consider a Hilbert space (E, 〈., .〉). For every closed convex subset K of E

and every x ∈ E, NK(x) is the normal cone of K at x:

NK(x) := {y ∈ E : ∀z ∈ K, 〈y, z − x〉 6 0}.

In particular, for E = R and K = [l, u] with l, u ∈ R such that l 6 u,

NK(x) =

 R− if x = l
R+ if x = u
{0} if x ∈]l, u[

.

(3) For every t ∈]0, T ], ∆t := {(u, v) ∈ [0, t]2 : u < v}.
(4) For every function f from [0, T ] into R and (s, t) ∈ ∆T , f(s, t) := f(t)−f(s).
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(5) Consider (s, t) ∈ ∆T . The vector space of continuous functions from [s, t]
into R is denoted by C0([s, t],R) and equipped with the uniform norm
‖.‖∞,s,t defined by

‖f‖∞,s,t := sup
u∈[s,t]

|f(u)| ; ∀f ∈ C0([s, t],R),

or the semi-norm ‖.‖0,s,t defined by

‖f‖0,s,t := sup
u,v∈[s,t]

|f(v)− f(u)| ; ∀f ∈ C0([s, t],R).

Moreover, ‖.‖∞,T := ‖.‖∞,0,T and ‖.‖0,T := ‖.‖0,0,T .
(6) Consider (s, t) ∈ ∆T . The set of all dissections of [s, t] is denoted by D[s,t].
(7) Consider (s, t) ∈ ∆T . A function f : [s, t]→ R is of finite 1-variation if and

only if,

‖f‖1-var,s,t := sup

{
n−1∑
k=1

|f(tk, tk+1)| ; n ∈ N∗ and (tk)k∈J1,nK ∈ D[s,t]

}
<∞.

Consider the vector space

C1-var([s, t],R) := {f ∈ C0([s, t],R) : ‖f‖1-var,s,t <∞}.

The map ‖.‖1-var,s,t is a semi-norm on C1-var([s, t],R). Moreover, ‖.‖1-var,T :=
‖.‖1-var,0,T .

(8) The vector space of Lipschitz continuous functions from a closed interval
I ⊂ R into R is denoted by Lip(I) and equipped with the Lipschitz semi-
norm ‖.‖Lip,I defined by

‖f‖Lip,I := sup

{
|f(t)− f(s)|
|t− s|

; s, t ∈ I and s 6= t

}
for every f ∈ Lip(I). Moreover, ‖.‖Lip := ‖.‖Lip,R and ‖.‖Lip,T := ‖.‖Lip,[0,T ].

(9) For every L > 0,

Θ0(L) := {f ∈ Lip(R) : |f(0)|+ ‖f‖Lip 6 L}.

2. Preliminaries

This section deals with some preliminaries on the Skorokhod reflection problem
defined by a fractional SDE and a sweeping process.

First, the following theorem states a sufficient condition of existence and uniqueness
of the solution to the unperturbed sweeping process defined by

(3)
{
−ẏ(t) ∈ NC(t)(y(t)) |Dy|-a.e.
y(0) = y0

; t ∈ [0, T ],

where y0 ∈ C(0).

Theorem 2.1. Assume that for every t ∈ [0, T ], C(t) is a compact interval of R.
Moreover, assume that there exist r > 0 and a ∈ R such that

[a− r, a+ r] ⊂ int(C(t)) ; ∀t ∈ [0, T ].

Then, Problem (3) has a unique continuous solution of finite 1-variation y : [0, T ]→
R such that

‖y‖1-var,T 6 max{0, ‖y0 − a‖ − r}.

See Monteiro Marques [18] for a proof.

In the sequel, the multifunction C fulfills the following assumption.
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Assumption 2.2. For every t ∈ [0, T ], C(t) is a compact interval of R. Moreover,
there exist r > 0 and a continuous selection γ : [0, T ]→ R such that

[γ(t)− r, γ(t) + r] ⊂ int(C(t)) ; ∀t ∈ [0, T ].

Let ϕ : [0, T ] → R be a continuous function such that ϕ(0) = 0 and consider the
(generic) Skorokhod reflection problem

(4)
{

vϕ(t) = ϕ(t) + wϕ(t)
−ẇϕ(t) ∈ NCϕ(t)(wϕ(t)) |Dwϕ|-a.e. with wϕ(0) = x0

,

where
Cϕ(t) := {v − ϕ(t) ; v ∈ C(t)} ; ∀t ∈ [0, T ],

vϕ : [0, T ]→ R is a continuous function and wϕ : [0, T ]→ R is a continuous function
of finite 1-variation. Under Assumption 2.2, by Theorem 2.1 together with Castaing
et al. [5], Lemma 2.2, Problem (4) has a unique solution. Moreover, the following
proposition provides a suitable control of wϕ − wψ for any continuous functions
ϕ,ψ : [0, T ]→ R such that ϕ(0) = ψ(0) = 0.

Proposition 2.3. Under Assumption 2.2, for every continuous functions ϕ,ψ :
[0, T ]→ R such that ϕ(0) = ψ(0) = 0,

‖wϕ − wψ‖∞,T 6 ‖ϕ− ψ‖∞,T .

See Slominski and Wojciechowski [21], Proposition 2.3 for a proof.

Under Assumption 2.2, note that there exist R > 0, N ∈ N∗ and (t0, . . . , tN ) ∈
D[0,T ] such that

[γ(tk)−R, γ(tk) +R] ⊂ C(t)

for every k ∈ J0, N − 1K and t ∈ [tk, tk+1].

Proposition 2.4. Consider (s, t) ∈ ∆T and ρ ∈]0, R/2]. Under Assumption 2.2,
if ‖ϕ‖0,s,t 6 ρ, then

‖wϕ‖1-var,s,t 6 N sup
u∈[0,T ]

sup
v,w∈C(u)

|w − v|.

The proof of Proposition 2.4 is the same that the proof of Castaing et al. [4], Propo-
sition 2.5 but with the upper bound for the 1-variation norm of the 1-dimensional
unperturbed sweeping process provided in Theorem 2.1 instead of the corresponding
upper bound in the multidimensional case provided in Castaing et al. [4], Proposi-
tion 2.1.

For any t ∈ [0, T ],

NCϕ(t)(wϕ(t)) = NC(t)−ϕ(t)(vϕ(t)− ϕ(t)) = NC(t)(vϕ(t)).

Then Problem (4) is equivalent to{
vϕ(t) = ϕ(t) + wϕ(t)

−ẇϕ(t) ∈ NC(t)(vϕ(t)) |Dwϕ|-a.e. with wϕ(0) = x0
.

So, one can use the previous results of this section in order to establish the existence
and uniqueness of the solution to Problems (1) and (2).

Theorem 2.5. Under Assumption 2.2,
(1) Problem (1) has a unique solution (Xε, Yε). Moreover, its paths belong to

Cp-var([0, T ],R)× C1-var([0, T ],R)

for every p > 1/H.
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(2) Problem (2) has a unique solution (x, y). Moreover, it is a Lipschitz con-
tinuous map from [0, T ] into R2 such that

‖y‖Lip,T 6 ‖b‖Lip + ‖C‖Lip,T

and
‖x‖Lip,T 6 2‖b‖Lip + ‖C‖Lip,T .

The proof of the existence of solutions to Problem (1) in Theorem 2.5 is the same
that the proof of Castaing et al. [4], Theorem 3.1 but with the upper bound for the
1-variation norm of wϕ in Problem (4) provided in Proposition 2.4 instead of the
corresponding upper bound in the multidimensional case provided in Castaing et
al. [4], Proposition 2.5. Castaing et al. [4], Proposition 4.1 gives the uniqueness of
the solution to Problem (1). Castaing et al. [5], Theorem 4.2 gives the existence,
uniqueness and the regularity of the solution to Problem (2).

3. Convergence of the trend estimator

This section deals with the consistency, a rate of convergence and the asymp-
totic distribution of the estimator τ̂ε(t). First, the following lemma deals with the
convergence of Xε and Yε when ε→ 0.

Lemma 3.1. Under Assumption 2.2, if b ∈ Θ0(L) with L > 0, then there exists a
deterministic constant cH,L,T > 0, depending only on H, L and T , such that

E(‖Xε − x‖2∞,T ) + E(‖Yε − y‖2∞,T ) 6 cH,L,T ε
2.

Proof. ConsiderHε := Xε−Yε and h := x−y. By Proposition 2.3, for any t ∈ [0, T ],

‖Yε − y‖∞,t 6 ‖Hε − y‖∞,t.
Then,

|Xε(t)− x(t)| 6 ‖Hε − h‖∞,t + ‖Yε − y‖∞,t 6 2‖Hε − h‖∞,t

6 2L

∫ t

0

|Xε(s)− x(s)|ds+ 2ε‖B‖∞,t.

By Gronwall’s lemma,

|Xε(t)− x(t)| 6 2ε‖B‖∞,T e2LT .

Moreover,

|Yε(t)− y(t)| 6 |Hε(t)− h(t)|+ |Xε(t)− x(t)|
6 (TL+ 1)‖Xε − x‖∞,T + ε‖B‖∞,T
6 ε‖B‖∞,T (2e2LT (TL+ 1) + 1).

This concludes the proof because E(‖B‖2∞,T ) <∞. �

In the sequel, the bandwidth hε and the kernel K fulfill the following assumptions.

Assumption 3.2. The bandwidth hε satisfies ε = o(h1−H
ε ).

Assumption 3.3. The kernel K is bounded and K−1({0})c =]A,B[ with A < B.

For instance, the triangular kernel

u ∈ R 7−→ (1− |u|)1|u|61

or the parabolic kernel

u ∈ R 7−→ 3

4
(1− u2)1|u|61

fulfill Assumption 3.3.
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Let us now establish the consistency and a rate of convergence for the estimator τ̂ε
of the trend τ of Problem (1).

Theorem 3.4. Under Assumptions 2.2 and 3.3, if b ∈ Θ0(L) with L > 0, then
there exists a deterministic constant cC,H,K,L,T > 0, depending only on C, H, K,
L and T , such that

sup
t∈[0,T ]

E(|τ̂ε(t)− τ(t)|2) 6 cC,H,K,L,T (ε2 + h2
ε + ε2h2H−2

ε ).

In particular, under Assumption 3.2, the estimator τ̂ε is consistent.

Proof. First of all, for any t ∈ [0, T ],

τ̂ε(t)− τ(t) =

∫ t

0

∫ T

0

Khε
(s− u)dXε(s)du−

∫ t

0

b(x(u))du− y(t) + x0

= αε(t) + βε(t) + γε(t) + ζε(t) + ηε(t),

where

αε(t) :=

∫ t

0

∫ T

0

Khε
(s− u)(b(Xε(s))− b(x(s)))dsdu,

βε(t) :=

∫ t

0

∫ T

0

Khε
(s− u)b(x(s))dsdu−

∫ t

0

b(x(u))du,

γε(t) := ε

∫ t

0

∫ T

0

Khε
(s− u)dB(s)du,

ζε(t) :=

∫ t

0

∫ T

0

Khε
(s− u)d(Yε − y)(s)du and

ηε(t) :=

∫ t

0

∫ T

0

Khε
(s− u)dy(s)du− y(t) + x0.

Let us find suitable controls of the supremum on [0, T ] of the second order moment
of all these components.

• Note that

|αε(t)| =

∣∣∣∣∣
∫ t

0

∫ (T−u)/hε

−u/hε

K(s)(b(Xε(hεs+ u))− b(x(hεs+ u)))dsdu

∣∣∣∣∣
6 ‖b‖Lip

∫ t

0

sup
06hεs+u6T

|Xε(hεs+ u)− x(hεs+ u)|du 6 LT‖Xε − x‖∞,T .

Then, by Lemma 3.1,

sup
t∈[0,T ]

E(αε(t)
2) 6 L2T 2cH,L,T ε

2.

• Since C is a Lipschitz continuous and compact-valued multifunction, x is
bounded by a deterministic constant M > 0 depending only on C (not on
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b). Then,

|βε(t)| =

∣∣∣∣∣
∫ T

0

b(x(s))

∫ s/hε

(s−t)/hε

K(u)duds−
∫ t

0

b(x(u))du

∣∣∣∣∣
=

∣∣∣∣∣
∫ ∞
−∞

K(u)

∫ T

0

b(x(s))1[hεu,hεu+t](s)dsdu−
∫ t

0

b(x(s))ds

∣∣∣∣∣
=

∣∣∣∣∣
∫ B

A

K(u)

(∫ T∧(hεu+t)

0∨(hεu)

b(x(s))ds−
∫ t

0

b(x(s))ds

)
du

∣∣∣∣∣
6 2hε sup

z∈[−M,M ]

|b(z)|
∫ B

A

K(u)|u|du.

Moreover, since |b(0)|+ ‖b‖Lip 6 L,

|βε(t)| 6 2(|A| ∨ |B|)Lhε.
• By Memin et al. [15], Theorem 1.1, there exists a deterministic constant
c1 > 0, only depending on H, such that

E(γε(t)
2) 6 ε2t

∫ t

0

E

∣∣∣∣∣
∫ T

0

Khε
(s− u)dB(s)

∣∣∣∣∣
2
 du

6 c1
ε2T

h2
ε

∫ T

0

∣∣∣∣∣
∫ T

0

K

(
s− u
hε

)1/H

ds

∣∣∣∣∣
2H

du 6 c2ε
2h2H−2
ε ,

where

c2 := c1T
2

∣∣∣∣∣
∫ B

A

K(s)1/Hds

∣∣∣∣∣
2H

.

• Since the paths of Yε − y are continuous and of finite 1-variation,

ζε(t) =

∫ T

0

∫ t

0

Khε
(s− u)dud(Yε − y)(s)

=

∫ T

0

∫ s/hε

(s−t)/hε

K(u)dud(Yε − y)(s)

=

∫ ∞
−∞

K(u)

∫ T

0

1[hεu,hεu+t](s)d(Yε − y)(s)du

=

∫ B

A

K(u)(Yε − y)(0 ∨ (hεu), T ∧ (hεu+ t))du.

Then, by Lemma 3.1,

sup
t∈[0,T ]

E(ζε(t)
2) 6 E(‖Yε − y‖2∞,T ) 6 cH,L,T ε

2.

• Since y is a Lipschitz continuous function (see Theorem 2.5.(2)),

|ηε(t)| =

∣∣∣∣∣
∫ T

0

∫ t

0

Khε
(s− u)dudy(s)− y(t) + x0

∣∣∣∣∣
6
∫ B

A

K(u)|y(0 ∨ (hεu), T ∧ (hεu+ t))− y(0, t)|du 6 2(|A| ∨ |B|)‖y‖Lip,Thε.

Moreover, since ‖y‖Lip,T 6 L+ ‖C‖Lip,T ,

|ηε(t)| 6 2(|A| ∨ |B|)(L+ ‖C‖Lip,T )hε.

�
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Theorem 3.4 says that the quadratic risk of the estimator τ̂ε(t) involves a squared
bias of order ε2 + h2

ε and a variance term of order ε2h2H−2
ε . The best possible rate

ε2/(2−H) is reached for a bandwidth choice of order ε1/(2−H).

Corollary 3.5. Under Assumptions 2.2 and 3.3, if hε = ε1/(2−H), then

lim
ε→0

εα−2/(2−H) sup
t∈[0,T ]

E(|τ̂ε(t)− τ(t)|2) = 0 ; ∀α > 0.

Corollary 3.5 is a straightforward consequence of Theorem 3.4.

In the sequel, C fulfills the following assumption.

Assumption 3.6. There exist l,u ∈ C1([0, T ],R) such that for every t ∈ [0, T ],
l(t) < u(t) and

C(t) = [l(t),u(t)].

Finally, Proposition 3.8 provides the asymptotic distribution of the estimator τ̂ε(t)
for every t ∈ E := El ∪ Eu ∪ Eint(C), where

EI := {s ∈ [0, T ] : ∃ε > 0, ∀r ∈]s− ε, s+ ε[, x(r) ∈ I(r)}
for every multifunction I : [0, T ]⇒ R.

First, recall that for any f ∈ C1-var([0, T ],R), ḟ is the Radon-Nikodym deriva-
tive of the differential measure Df of f with respect to its variation measure |Df |.
In particular, if f is absolutely continuous, then

f(v)− f(u) =

∫ v

u

ḟ(s)ds ; ∀(u, v) ∈ ∆T .

Lemma 3.7. Under Assumption 3.6, ẏ is continuous on E.

Proof. Since y is a Lipschitz continuous function, it is absolutely continuous. In
other words, for every (u, v) ∈ ∆T ,

y(v)− y(u) =

∫ v

u

ẏ(s)ds.

On the one hand, consider t ∈ Eint(C). So, there exists ε > 0 such that for any
s ∈]t− ε, t+ ε[, x(s) ∈]l(s),u(s)[ and then

ẏ(s) = 0.

Therefore, ẏ is continuous at time s. On the other hand, consider t ∈ El. So, there
exists ε > 0 such that for any s ∈]t− ε, t+ ε[, x(s) = l(s) and then

ẏ(s) = l̇(s)− b(l(s)).

Therefore, since l ∈ C1([0, T ],R), ẏ is continuous at time s. The same idea gives
the continuity of ẏ on Eu. �

The previous lemma states that ẏ is continuous when x stays a little time on the
frontier or in the interior of C. Unfortunately, there is no reason for ẏ to be
continuous each time x enters or exits the frontier of C.

Proposition 3.8. Under Assumptions 3.6 and 3.3, if A > 0, t ∈ E ∩ [0, T [ and
hε = ε1/(2−H), then

ε−1/(2−H)(τ̂ε(t)− τ(t)− γε(t))
L2

−−−→
ε→0

µ(t)

and
ε−1/(2−H)γ̇ε(t)

∆−−−→
ε→0

N (0, σ2
H,K),
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where

µ(t) := (b(x(t))− b(x(0)) + ẏ(t)− ẏ(0))

∫ B

A

K(u)udu

and

σ2
H,K := H(2H − 1)

∫ B

A

∫ B

A

|u− v|2H−2K(u)K(v)dudv.

Proof. Since
sup
t∈[0,T ]

E(αε(t)
2) + sup

t∈[0,T ]

E(ζε(t)
2) = O(ε2)

as established in the proof of Theorem 3.4,

ε−1/(2−H)(αε(t) + ζε(t))
L2

−−−→
ε→0

0.

Let us study the behaviour of ε−1/(2−H)(βε(t) + ηε(t)) when ε→ 0.
• Since A > 0 and hεB + t < T for ε small enough,

βε(t) =

∫ B

A

K(u)

(∫ hεu+t

t

b(x(s))ds−
∫ hεu

0

b(x(s))ds

)
du

= hε

∫ B

A

K(u)u

(∫ 1

0

b(x(shεu+ t))ds−
∫ 1

0

b(x(shεu))ds

)
du.

Therefore, by Lebesgue’s theorem,

lim
ε→0

ε−1/(2−H)βε(t) = (b(x(t))− b(x(0)))

∫ B

A

K(u)udu.

• Since y is a Lipschitz continuous function, as recalled previously, dy(s) =
ẏ(s)ds. Then,

ηε(t) =

∫ B

A

K(u)(y(t, hεu+ t)− y(0, hεu))du

= hε

∫ B

A

K(u)u

(∫ 1

0

ẏ(shεu+ t)ds−
∫ 1

0

ẏ(shεu)ds

)
du.

Therefore, since ẏ is continuous on a neighborhood of t by Lemma 3.7, by
Lebesgue’s theorem,

lim
ε→0

ε−1/(2−H)ηε(t) = (ẏ(t)− ẏ(0))

∫ B

A

K(u)udu.

Finally,

γ̇ε(t) = ε

∫ T

0

Khε(s− t)dB(s) N (0, σε(t)
2)

where

σε(t)
2 := H(2H − 1)ε2

∫ T

0

∫ T

0

|s− r|2H−2Khε
(r − t)Khε

(s− t)drds

= σH,Kε
2h2H−2
ε .

Therefore,
ε−1/(2−H)γ̇ε(t)

∆−−−→
ε→0

N (0, σ2
H,K).

�

Since x is Lipschitz continuous on [0, T ], the subset of times x enters or exists the
frontier of C is countable. So, the Lebesgue measure of E is equal to T . Therefore,
Proposition 3.8 is true for almost every t in [0, T ].
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