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A B S T R A C T

The effect of carbon additives on electrode formulation of bulk antimony was investigated in potassium-ion
batteries. Several types of carbon including conventional carbon black, graphite and double-walled carbon
nanotubes (DWCNT), employed as conductive agents, were found to play a non-negligible role on the electro-
chemical performance of antimony. While DWCNT alone show no reversible K+ storage compared to the other
carbons, the Sb/DWCNT electrode exhibits better capacity retention and rate capability than Sb formulated with
usual carbon additives or even with graphite. This can be ascribed to the specific structure of DWCNT acting not
only as conductive additive but also as a mechanical reinforcement for the whole electrode, which has to
withstand the large volume change of antimony during potassiation/depotassiation cycles.

1. Introduction

Owing to their high energy density, Li-ion batteries (LIB) have been
widely commercialized to power portables electronic devices and
electric vehicles, and have been proposed as a system of choice for large
scale energy storage [1]. However, the extensive use of Li for nomad
applications coupled to its uneven distribution on Earth's crust may
cause price volatility in the future, and hamper a wider application of
LIB. For this reason, batteries operating with more abundant and low
cost materials such as Na-ion batteries (NIB) and K-ion batteries (KIB)
have recently emerged [2].

Even though the research devoted to KIB is still at an early stage,
this technology appears as very promising given the low potential of the
K+/K redox couple allowing the development of high energy density
batteries. Regarding the negative electrode, most studies mainly focus
on carbonaceous materials such as graphite, hard carbon, soft carbon or
carbons nanotubes. These materials show interesting cycling perfor-
mance but limited specific capacity compared to alloying materials
which form binary compounds with potassium [3]. Among them, an-
timony, appears as a promising candidate owing to its relatively low
operating voltage and its high specific capacity of 660 mAh/g corre-
sponding to the formation of K3Sb [4,5]. One of the critical issues of Sb,

however, is the huge volume expansion (∼400%) occurring during the
reversible potassiation/depotassiation process, which leads to electrode
pulverization, extensive electrolyte degradation on the continuously
formed fresh electrode surface and rapid capacity fading [6]. Several
strategies have been proposed to overcome this drawback such as im-
proving the electrolyte by using additives. However, the well-known
fluoroethylene carbonate, extensively applied in LIB and NIB, appears
to have no beneficial effect in KIB [7,8]. Embedding Sb nanoparticles in
porous carbon matrixes notably improves the performance, but often
involves trickier synthesis protocols and usually leads to poor cou-
lombic efficiency (CE) due to the large surface of carbon exposed to the
electrolyte degradation [5,9–11]. On the other hand, MXene materials
are well known to offer fast diffusion kinetics owing two their two di-
mensional open framework showing interesting mechanical properties
of flexibility and free standing. In that way, An et al. introduced Sb
metal particles in MXene paper showing impressive capacity retention
over 500 cycles [12].

Inspired by the research on LIB and NIB, an alternative approach to
mitigate volume expansion in alloy materials is playing with binder and
carbon additives in the electrode formulation [13]. This last approach is
applied here, where double-walled carbon nanotubes (DWCNT) are
used instead of other conventional carbon additives in the formulation
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to improve the cycling performance of bulk Sb. Indeed, given their
specific structure, DWCNT are expected to act not only as a conductive
additive assuring the electrical percolation in the electrode, but also to
reinforce its mechanical properties owing to their bundle network
structure [14].

2. Materials and methods

Commercial antimony powder (325 mesh, 99.5%, Alfa Aesar) was
mixed with different types of carbonaceous conductive additives and
carboxymethyl cellulose binder (DS=0.7, Mw=250,000, Sigma
Aldrich) in weight ratio 70/18/12, respectively. These proportions
were chosen given the excellent performance obtained with them in LIB
[15]. Four different carbon additives were investigated: a mixture of
carbon black (C65, BET=65m2/g, Timcal) and vapor ground carbon
fibers (VGCF-S, BET= 15m2/g, Showa Denko) in weight ratio 50/50,
Super P (BET=62m2/g, Alfa Aesar), Graphite (SLP6, BET=15.5m2/
g, Timcal) and double-walled carbon nanotubes (DWCNT,
BET=958m2/g). The detailed synthesis of the DWCNT is described
elsewhere [16]. In short, they were grown at 1000 °C by catalytic
chemical vapor deposition of a mixture of methane and hydrogen on a
Co:Mo MgO-based catalyst with additions of molybdenum oxide (ele-
mental composition: Mg0.99Co0.0075Mo0.0025O). The catalytic support
was removed by processing the material with a concentrated HCl
aqueous solution and further washing by deionised water. The inner
and outer diameters ranged from 0.5 to 2.5 nm and from 1.2 to 3.2 nm,
respectively. The median inner diameter was 1.3 nm and the median
outer diameter was 2.0 nm. Deionised water was added to the different
mixtures, which were then ball milled in a planetary mill for 1 h. The
obtained slurries were tape casted onto copper foils (17.5 μm thick,
99.9%, Goodfellow), dried at room temperature for 24 h and subse-
quently at 80 °C overnight under dynamic vacuum. The loading of the
obtained electrodes (antimony plus carbon) was 1.5–2mg/cm2. In
order to study the specific influence of DWCNT on electrode formula-
tion, two other Sb/DWCNT/CMC weight ratios were investigated: 63/
25/12 and 78/10/12. Reference electrodes prepared with the four
carbon additives only were also formulated with CMC binder in weight
ratio 70/30. The electrolyte was prepared by dissolving 0.8mol/L of
potassium bis(fluorosulfonyl)imide (KFSI, 99.9% purity, Solvionic) into
a 1:1 (v/v) mixture of ethylene carbonate (EC, anhydrous, 99% purity,
Alfa Aesar) and diethyl carbonate (DEC, anhydrous, purity ≥99%,
Sigma Aldrich). Coin cells were assembled in an Ar-filled glove box
against K metal (Sigma Aldrich) as counter and reference electrode with
a glass fiber separator (Whatman GF/D) soaked with the electrolyte. A
polypropylene membrane (Celgard) was added between the electrode
and the glass fiber separator for the coin cells cycled before the scan-
ning electron microscopy (SEM) characterizations, performed with Hi-
tachi S-4800 microscope. X-ray diffraction (XRD) patterns were col-
lected on a Panalytical X'Pert diffractometer with the Cu Kα radiation.
Raman spectra were measured on a LabRAM ARAMIS spectrometer
equipped with CCD detector and 50× optical microscope objective
using an excitation laser at 633 nm. The characterization of the com-
mercial antimony powder is given in Fig. S1. The XRD pattern can be
fully indexed with hexagonal antimony (ICSD code 064695). The SEM
image of commercial powder shows a global repartition from 2 to
40 μm in the agreement with the supplier given size of 325 mesh. The
four carbon additives were characterized by XRD, Raman spectroscopy
and nitrogen adsorption/desorption, as shown in Fig. S2. Galvanostatic
charge-discharge profiles were conducted on MPG2 potentiostat (Bio-
logic) at a current rate of C/2 (i.e., 1 mol of K per mole of Sb in 2 h)
between 0.0 and 2.0 V. All the capacities, reproducible for a minimum
of two coin-cells, are reported in mAh per g of composite (notified
Sb+C) taking into account that carbon additives participate to the
measured capacity.

3. Results and discussion

Fig. 1 shows the galvanostatic charge/discharge profiles of Sb
electrodes formulated with different carbon additives. The electro-
chemical signatures of the carbons alone are given in the insets and
their characteristics and capacities are reported in the Table 1. Overall,
all first cycle curves are rather similar and dominated by the reversible
potassiation/depotassiation of Sb [4]. Regarding the signature of the
different carbons, the potential of the first discharge of DWCNT elec-
trode is particularly high at 1 V as previously shown by Zhao et al., [17]
while that of the other materials is around 0.5–0.2 V. The large first
discharge capacity of the DWCNT electrode is likely due to electrolyte
decomposition, possibly enhanced by to the large surface area of
DWCNT [18]. In this case, the lack of electrochemical reversible ac-
tivity resembles that of multi-walled carbon nanotubes rather than that
of single-walled ones, which instead reversibly store K+ [17]. More-
over, potassium storage in DWCNT is not reversible, whereas the three
other carbons show relatively stable potassium storage (insets Fig. 1
and Table 1). For all Sb/carbon electrodes, the specific first discharge
capacity varies from 533 to 600 mAh/g(Sb+C). This value can be com-
pared with their expected capacity (in red in Table 1) calculated taking
into account the experimental capacity of the pure carbon electrodes
and the theoretical capacity of Sb (660 mAh/g). Among Sb/Super P, Sb/
C65/VGCF, Sb/graphite and Sb/DWCNT electrodes, the latter presents
the best experimental first cycle CE of 88%, very close to 86%, the
expected value calculated from the CE of the corresponding pure carbon
electrode, whereas all the other carbons present lower experimental CE,
which is even much lower than the expected values (> 95%) calculated
as described above. This is rather surprising considering the limited
reversibility of DWCNT vs. K compared to the other carbon electrodes,
indicating that antimony clearly works better as an electrode material
in the presence of DWCNT than formulated with the other tested car-
bons. The reversible capacity of the first cycle is around 470 mAh/
g(Sb+C) independently of the carbon additive, corresponding to the in-
sertion of K+ in carbon and the partial alloying of K with Sb in all cases
excepted for Sb/DWCNT where DWCNT show no reversible K+ storage.

The cycling stability of the four electrodes at C/2 current rate
(110mA/g) is compared in Fig. 2a. Both Sb/DWCNT and Sb/C65/VGCF
show stable capacity retention during the first cycles, whereas the ca-
pacity of Sb/Super P progressively decreases and that of Sb/Graphite
undergoes rapid fading after 10 cycles. The low capacity retention of
the latter can be explained by the large volume expansion (400% for Sb
to K3Sb and 60% for Cgr to KC8) expected for this electrode as well as
the combination of very distinct morphologies of Sb and Cgr particles
(Fig. 3), not adapted to long term cycling (vide infra). It is interesting to
notice that the electrodes presenting the best capacity retention,
namely Sb/DWCNT and Sb/C65/VGCF, are made of carbon fibers
which enhance the mechanical strength and assure a good electric
conductivity in the electrode [19]. In summary, Sb/DWCNT exhibits
better capacity retention with 440 mAh/g(Sb+C) after 40 cycles when
the capacity of the other electrodes have already faded.

Fig. 2b shows the rate capability of Sb/DWCNT and Sb/C65/VGCF,
both electrodes showing stable capacity over at least 20 cycles (Fig. 2a).
Sb/DWCNT exhibits high rate performance, delivering a stable capacity
of 453 mAh/g(Sb+C) (close to the expected value of 462 mAh/g) at 4C
(880mA/g) whereas for the Sb/C65/VGCF electrode the capacity de-
creases from 344 mAh/g(Sb+C) to 280 mAh/g(Sb+C) over 5 cycles at the
same rate. This result points out that the addition of DWCNT provides
high electrode robustness even over fast potassiation/depotassiation.

As Sb/DWCNT exhibits the best cycle life, different DWCNT weight
ratios were investigated in the Sb electrodes to check further possible
improvements of the performance. Fig. 2c shows the first cycle with the
corresponding CE of the different Sb/DWCNT electrodes. Considering
the electrochemical activity of DWCNT only in the first discharge,
Table 2 reports the experimental and the expected capacities measured
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for the three Sb/DWCNT electrodes. While the first cycle CE is very
close to the expected one (88 vs 86%) for the 70/18 Sb/DWCNT ratio,
the same value is not obtained for the other two formulations, less and
more rich in Sb, confirming that the best capacity retention strongly
depends on the optimization of the electrode formulation. In all cases,
the CE reaches 99% after two cycles before rapidly decreasing, testi-
fying the gradual electrolyte decomposition which also contributes to
the gradual drop in capacity. In half-cell configuration, the high re-
activity of metallic K counter electrode was already shown to induce a
cross-talk mechanism between the electrodes, harmful for the

electrolyte stability and thus for the battery cycle life [20]. Investiga-
tion in full cell against a real positive electrode is thus necessary to
avoid this bias in the evaluation of the electrochemical performance.
From this study, which will need to be further refined, the 70/18/12
ratio appears as the best compromise for the first cycle CE as well as for
the cyclability. This is slightly different from Sb/Cgr composites pre-
pared by magneto ball milling with different weight ratios [8]. In-
creasing the amount of carbon graphite in the composite result in better
cycle life and CE but lower overall capacities.

In order to investigate the capacity fading mechanism, SEM images

Table 1
Capacities of carbone and Sb/carbone electrodes observed in Fig. 1. The red values have been cal-
culated taking into account the experimental capacity of carbon electrodes and the theoretical one of
Sb i.e. (660mA/g). The BET surfaces of the four different carbons are given for indication.

Carbone electrodes Sb/Carbone electrodes

BET
surface
(m²/g)

1st Discharge/charge
capacity (mAh/g)

Reversible
capacity after

10 cycles
(mAh/g)

1st Discharge/charge
capacity (mAh/g)

CE (%)

DWCNT 958 465/54 35 542 (546)/479 (471) 88.4
(86%)*

Super P 62 385/240 205 600 (531)/480 (505) 80
(95%)*

Graphite 15.5 315/274 268 533 (519)/455 (511) 85.4
(98%)*

C65/VGCF 65/15 343/210 190 578 (523)/462 (500) 79.9
(95.6%)*

Fig. 1. Galvanostatic profiles of Sb formulated with four different carbon additives recorded at C/2 between 0 and 2 V versus K metal. The insets show the
electrochemical signature of the carbon electrode without antimony at a current density of 25mA/g. a) Sb/DWCNT, b) Sb/Super P, c) Sb/graphite, d) Sb/C65/VGCF.
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of pristine electrodes were compared to those of electrodes after
30 cycles (Fig. 3). On the one hand, the pristine electrodes present Sb
micro-particles uniformly dispersed on the electrode surface. Very
distinct morphologies are observed for Sb/Graphite with the presence
of graphitic flakes, and Sb/DWCNT which is rather compact, DWCNT
and CMC creating a dense network around the Sb particles. On the
other hand, Sb/C65/VGCF and Sb/Super P reveal a similar surface
morphology appearing more porous than the other two materials. The
very different electrode surfaces associated to the specific electro-
chemical signature of the four Sb/C composites prompted us to in-
vestigate the formation and the evolution of the SEI by X-ray

photoelectron spectroscopy and impedance spectroscopy. The mea-
surements are in progress and will be the core of a follow-up paper.
After 30 cycles, the Sb/graphite electrode was totally detached from the
current collector when the cells were opened whereas the three other
electrodes were intact. The loss of electronic contact between electrode
and current collector explains the rapid capacity fading of Sb/graphite.
The Sb/DWCNT electrode shows a relatively homogeneous surface
without cracks. The specific morphology of DWCNT allows keeping a
good electronic percolation with Sb particles and current collector,
accommodating the volume change over the potassiation/depotassia-
tion process. The three other composites display Sb particles covered by

Fig. 2. a) Reversible capacity as a function of cycle number for the four Sb/C electrodes, b) Rate capability of Sb/DWCNT and Sb/C65/VGCF electrodes from C/5 to
4C rate, c) 1st cycle of Sb/DWCNT electrode with different weight ratios d) the corresponding capacity retention with CE.

Fig. 3. SEM images of pristine electrodes top and electrodes after 30 cycles bottom. From the left to the right: Sb/DWCNT, Sb/C65/VGCF, Sb/Super P and Sb/
graphite electrode respectively.
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a black coating surely due to electrolyte decomposition, which is en-
hanced in KIB compared to LIB and SIB. On the Sb/C65/VGCF electrode
surface, some particles appear isolated while Sb/Super P electrode ex-
hibits some cracks. The combination of the efficient reversible po-
tassiation of Sb, with both a good electronic percolation and mechan-
ical strength brought by DWCNT, seems to be a promising approach to
improve the electrode performance of in KIB.

4. Conclusions

The influence of carbon additives on the cycling performance of
bulk Sb in K-ion half-cells was investigated for the first time. This study
underlines the crucial role of carbon additives in Sb-based composite
electrodes for KIB, and these findings might be extended to other alloy
materials. While DWCNT were not expected to provide a specific ad-
vantage due to their absence of reversible electrochemical activity vs.
K, they nevertheless represent an excellent additive for Sb electrodes
allowing a considerable extension of the lifespan of formulated elec-
trodes. Indeed, the use of 18 wt% DWCNT as conductive additive in Sb
electrodes formulated with CMC improved the capacity retention and
the rate capabilities of bulk Sb electrodes. DWCNT appears to be much
more efficient than other conventional carbon additives, such as C65/
VGCF, super P and graphite, which react electrochemically with K and
are not beneficial to the Sb composite electrode. On the other hand,
DWCNT are more inert vs. K (at least after the first discharge) and act as
an excellent additive with both good mechanical and electrical con-
ductivity properties. Indeed, the specific structure of DWCNT greatly
contributes to the stabilization of the electrode integrity over the po-
tassiation/depotassiation process. These results confirm that the addi-
tion of DWCNT to the formulation is an interesting strategy for the
improvement of the performance of alloying electrode materials for
KIB. The intrinsic nature of DWCNT seems to play a key role in the
electrochemical behaviour of the studied composites [17]. Nitrogen-
doped DWCNT, reported to improve the adsorption of K+ on surface
defects and edges, could also be an interesting additive for negative
electrodes in KIB and will be the object of a future study [21,22]. In
parallel, a serious evaluation of electrolyte reactivity as a function of
the type of carbon, either used as active material or as additive in
electrodes for KIB, has to be forecasted.
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