Biodiversity of volatile organic compounds from five French ferns
Françoise Fons, Didier Froissard, Jean-Marie Bessière, Bruno Buatois, Sylvie Rapior

To cite this version:

HAL Id: hal-02194704
https://hal.archives-ouvertes.fr/hal-02194704
Submitted on 25 Jul 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
EDITORS

PROFESSOR ALESSANDRA BRACA
Departmento di Chimica Biorganicae Biofarmacia, Università di Pisa, via Bonanomi 33, 56126 Pisa, Italy
braca@farm.unipi.it

PROFESSOR DEAN GUO
State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100871, China
gda3958@163.com

PROFESSOR J. ALBERTO MARCO
Departamento de Quimica Organica, Universidade de Valencia, E-46100 Burjassot, Valencia, Spain
alberto.marco@uv.es

PROFESSOR YOSUHIRO MIMAKI
School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Horinouchi 1432-1, Hachioji, Tokyo 192-0392, Japan
mimakiy@ps.toyaku.ac.jp

PROFESSOR MANFRED G. REINECKE
Department of Chemistry, Texas Christian University, Fort Worth, TX 76129, USA
m.reinecke@tcu.edu

PROFESSOR WILLIAM N. SETZER
Department of Chemistry, The University of Alabama in Huntsville, Huntsville, AL 35809, USA
wszetter@chemistry.uah.edu

PROFESSOR YASUHIRO TEZUKA
Institute of Natural Medicine, Institute of Toayama, 2830-Sugitani, Toyama 930-0194, Japan
tezuka@inn.u-toyama.ac.jp

PROFESSOR DAVID E. THURSTON
Department of Pharmaceutical and Biological Chemistry, The School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N 1AX, UK
david.thurston@pharmacy.ac.uk

ADVISORY BOARD

Prof. Berhamu M. Abegaz
Gaborone, Botswana

Prof. Qiyan Uddin Ahmad
Karachi, Pakistan

Prof. Øystein M. Andersen
Bergen, Norway

Prof. Giovanni Appendino
Novara, Italy

Prof. Yoshinori Asakawa
Tokushima, Japan

Prof. Lee Banting
Portsmouth, U.K.

Prof. Julie Banerji
Kolkata, India

Prof. Anna R. Blia
Florence, Italy

Prof. Maurizio Bruno
Palermo, Italy

Prof. Josep Coll
Barcelona, Spain

Prof. Geoffrey Cordell
Chicago, IL, USA

Prof. Cristina Gracia-Viguera
Murcia, Spain

Prof. Duvvuru Gunasekar
Tirupati, India

Prof. A. A. Leslie Gunatilaka
Tucson, AZ, USA

Prof. Kurt Hostettmann
Lausanne, Switzerland

Prof. Martin A. Igeasles Arteaga
Mexico, D. F, Mexico

Prof. Jerzy Jaroszewski
Copenhagen, Denmark

Prof. Leopold Jirovetz
Vienna, Austria

Prof. Teodoro Kaufman
Rosalio, Argentina

Prof. Norbert De Kimpe
Gent, Belgium

Prof. Karsten Krohn
Paderborn, Germany

Prof. Hartmut Laatsch
Gottingen, Germany

Prof. Marie Lacaille-Dubois
Dijon, France

Prof. Shohei Sheng Lee
Taipei, Taiwan

Prof. Francisco Macias
Cadiz, Spain

Prof. Imre Mathe
Szeged, Hungary

Prof. Joseph Michael
Johannesburg, South Africa

Prof. Enrico Murano
Tritesta, Italy

Prof. M. Soledade C. Pedras
Saskatoon, Canada

Prof. Luc Pieters
Antwerp, Belgium

Prof. Om Prakash
Manhattan, KS, USA

Prof. Peter Proksch
Düsseldorf, Germany

Prof. Phila Raharivelomanana
Tahiti, French Pynesia

Prof. Satyajit Sarker
Wolverhampton, UK

Prof. Monique Simmonds
Richmond, UK

Prof. Valentin Stonik
Vladivostok, Russia

Prof. Winston F. Tinto
Barbados, West Indies

Prof. Karen Vant-Vetschera
Vienna, Austria

Prof. Peter G. Waterman
Lismore, Australia

INFORMATION FOR AUTHORS

Full details of how to submit a manuscript for publication in Natural Product Communications are given in Information for Authors on our Web site http://www.naturalproduct.us.

Authors may reproduce/republish portions of their published contribution without seeking permission from NPC, provided that any such republication is accompanied by an acknowledgment (original citation)-Reproduced by permission of Natural Product Communications. Any unauthorized reproduction, transmission or storage may result in either civil or criminal liability.

The publication of each of the articles contained herein is protected by copyright. Except as allowed under national “fair use” laws, copying is not permitted by any means or for any purpose, such as for distribution to any third party (whether by sale, loan, gift, or otherwise); as agent (express or implied) of any third party; for purposes of advertising or promotion; or to create collective or derivative works. Such permission requests, or other inquiries, should be addressed to the Natural Product Inc. (NPI). A photocopy license is available from the NPI for institutional subscribers that need to make multiple copies of single articles for internal study or research purposes.

To Subscribe: Natural Product Communications is a journal published monthly. 2010 subscription price: US$1,695 (Print ISSN 1934-578X); US$1,695 (Web edition, ISSN 1555-9475); US$2,995 (Print + single site online); US$5,995 (Personal online). Orders should be addressed to Subscription Department, Natural Product Communications, Natural Product Inc., 7963 Anderson Park Lane, Westerville, Ohio 43081, USA. Subscriptions are renewed on an annual basis. Claims for nonreceipt of issues will be honored if made within three months of publication of the issue. All issues are dispatched by airmail throughout the world, excluding the USA and Canada.
Biodiversity of Volatile Organic Compounds from Five French Ferns

Françoise Fons, Didier Froissard, Jean-Marie Bessière, Bruno Buatois and Sylvie Rapior

Laboratoire de Botanique, Phytochimie et Mycologie, Faculté de Pharmacie (Université Montpellier 1), UMR 5175 CEFE, B.P. 14 491, 15 avenue Charles Flahault, F-34093 Montpellier cedex 5, France
Laboratoire de Botanique, Faculté de Pharmacie de Limoges, 2 rue du Dr Marcland, F-87025 Limoges cedex, France
Centre d’Ecologie Fonctionnelle et Evolutive – Plateforme d’analyses chimiques en écologie -UMR 5175 – 1919 Route de Mende – F-34293 Montpellier cedex 5, France

Received: May 5th, 2010; Accepted: August 9th, 2010

Five French ferns belonging to different families were investigated for volatile organic compounds (VOC) by GC-MS using organic solvent extraction. Fifty-five VOC biosynthesized from the shikimic, lipidic and terpenic pathways including monoterpenes, sesquiterpenes and carotenoid-type compounds were identified. The main volatile compound of Adiantum capillus-veneris L. (Pteridaceae) was (E)-2-decenal with a plastic or “stink bug” odor. The volatile profiles of Athyrium filix-femina (L.) Roth (Woodsiaceae) and Blechnum spicant (L.) Roth (Blechnaceae) showed similarities, with small amounts of isoprenoids and the same main volatile compounds, i.e., 2-phenylethanal (odor of lilac and hyacinth) and 1-octen-3-ol (mushroom-like odor). The main volatile compound of Dryopteris filix-mas (L.) Schott (Dryopteridaceae) was (E)-nerolidol with a woody or fresh bark note. Polyketides, as acylfilicinic acids, were mainly identified in this fern. Oreopteris limbosperma (Bellardi ex. All.) J. Holub (Thelypteridaceae), well-known for its lemon smell, contained the highest biodiversity of VOC. Eighty percent of the volatiles was issued from the terpenic pathway. The main volatiles were (E)-nerolidol, α-terpineol, β-caryophyllene and other minor monoterpenes (for example, linalool, pinenes, limonene, and γ-terpinen-7-al). It was also the fern with the highest number of carotenoid-type derivatives, which were identified in large amounts. Our results were of great interest underlying new industrial valorisation for ferns based on their broad spectrum of volatiles.

Keywords: ferns, Pteridophytes, volatile organic compounds (VOC), filicinic acid, 2-phenylethanal, (E)-nerolidol, (E)-2-decenal, 1-octen-3-ol.

Pteridophytes, including ferns and fern allies, prevailing since the Carboniferous era, are still distributed worldwide [1a,1b]. Some are used as food and others in traditional medicine for their anthelmintic, schistosomicidal, antiviral, diuretic, antihemorrhagic, cholagogue, anti-rheumatism, anti-inflammatory, and remineralizing properties, and for the treatment of Meniere’s syndrome [2a-2e]. Ferns have been widely investigated for their non-volatile organic components, i.e., phenolics, amino acids, di- or sesqui-terpene glycosides, and alkaloids [3a-3g]. However, fewer studies have focused on the volatile organic compound (VOC) profile [2c,4a-4f]. The objective of this project was to identify and compare the VOC contents of ferns from France [5] that have never been studied with this end. As a result, Adiantum capillus-veneris L. (Pteridaceae), Athyrium filix-femina (L.) Roth (Woodsiaceae), Blechnum spicant (L.) Roth (Blechnaceae), Dryopteris filix-mas (L.) Schott (Dryopteridaceae) and Oreopteris limbosperma (Bellardi ex. All.) J. Holub (Thelypteridaceae) were chosen to determine their volatile chemical profiles.

Fresh plant material was utilized. Fifty-five components biosynthesized from the shikimic, lipidic and terpenic pathways were identified from the concentrated diethyl ether extracts of the five ferns (Table 1). Seventeen constituents of A. capillus-veneris extract were identified, including mainly polyketide derivatives (87.9% of the volatile fraction), along with small amounts of aromatics (9.4%), and only one monoterpene (myrcene: 2.5%).

 NPC | Natural Product Communications | 2010 | Vol. 5 | No. 10 | 1655 - 1658

Keywords: ferns, Pteridophytes, volatile organic compounds (VOC), filicinic acid, 2-phenylethanal, (E)-nerolidol, (E)-2-decenal, 1-octen-3-ol.
Table 1: Percentage of volatile organic compoundsa in fresh aerial parts of ferns.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Rb</th>
<th>Adiantum capillus-veneris</th>
<th>Athyrium filix-femina</th>
<th>Blechnum spicant SFc</th>
<th>Blechnum spicant FFd</th>
<th>Dryopteris filic-mas</th>
<th>Oreopteris limbosperma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aromatic compounds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>962</td>
<td>2.5</td>
<td>24.8</td>
<td>45.1</td>
<td>45.6</td>
<td>1.5</td>
<td>10.1</td>
</tr>
<tr>
<td>2-Phenylethanal</td>
<td>1046</td>
<td>1.9</td>
<td>1.2</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzoic acid</td>
<td>1187</td>
<td>5</td>
<td>1.2</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cinnamic acid</td>
<td>1431</td>
<td></td>
<td>27.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethyl vanillate</td>
<td>1554</td>
<td></td>
<td>0.7</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanillic acid</td>
<td>1589</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyketide compounds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-Octadiene</td>
<td>835</td>
<td>5.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(E)-2-Hexenal</td>
<td>851</td>
<td>7.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Z)-3-Hexenol</td>
<td>855</td>
<td>6.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(E)-2-Hexenol</td>
<td>862</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(E)-2-Heptenal</td>
<td>956</td>
<td>7.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-Octen-3-ol</td>
<td>983</td>
<td>2.5</td>
<td>24.8</td>
<td>43.1</td>
<td>37.5</td>
<td>9.1</td>
<td>3.6</td>
</tr>
<tr>
<td>3-Octane</td>
<td>985</td>
<td></td>
<td>1.4</td>
<td>1.1</td>
<td>0.9</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>3-Octanol</td>
<td>995</td>
<td></td>
<td>1.4</td>
<td>1.1</td>
<td>0.9</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>(Z)-3-Hexenoic acid</td>
<td>1017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(E)-2-hexenoic acid</td>
<td>1035</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(E)-2-Octenol</td>
<td>1072</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Z)-2-Nonenal</td>
<td>1161</td>
<td>2.5</td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Z)-2-Decenal</td>
<td>1250</td>
<td></td>
<td>3.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(E)-2-Decenal</td>
<td>1263</td>
<td>32.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonanoic acid</td>
<td>1283</td>
<td>3.1</td>
<td>0.7</td>
<td>0.5</td>
<td></td>
<td></td>
<td>0.9</td>
</tr>
<tr>
<td>(2E,4Z)-Decadienal</td>
<td>1296</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2E,4E)-Decadienal</td>
<td>1321</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Octanoic amide</td>
<td>1357</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetilfilicinic acid</td>
<td>1445</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonanoic amide</td>
<td>1463</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>1474</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propionylfilicinic acid</td>
<td>1529</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decanoic amide</td>
<td>1564</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butyryl filicinate</td>
<td>1612</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Z)-6-Dodecen-4-olide</td>
<td>1665</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undecanoic amide</td>
<td>1670</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lauric amide</td>
<td>1770</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monoterpenic compounds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-Pinene</td>
<td>933</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-Pinene</td>
<td>978</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myrcene</td>
<td>996</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limonene</td>
<td>1030</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,7-Dimethyloctan-3-ol</td>
<td>1079</td>
<td>2.7</td>
<td>0.8</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linalool</td>
<td>1102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terpinen-4-ol</td>
<td>1184</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-Terpinol</td>
<td>1202</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-Dihydrocarvone</td>
<td>1206</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans-Dihydrocarvone</td>
<td>1209</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8,9-Dihydrocarveol</td>
<td>1215</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ-Terpinen-7-al</td>
<td>1298</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perilic acid</td>
<td>1306</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carvone hydrate</td>
<td>1416</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni (oxygented monoterpenes)</td>
<td>1483</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sesquiterpenic compounds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-Caryophyllene</td>
<td>1421</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selinadiene derivative</td>
<td>1467</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(E)-Nerolidol</td>
<td>1557</td>
<td></td>
<td>0.8</td>
<td>38.7</td>
<td>14.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carotenoid derivatives</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>1601</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epoxy-α-ionone</td>
<td>1640</td>
<td>0.5</td>
<td>0.5</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Hydroxyepoxy-β-ionol</td>
<td>1685</td>
<td>0.3</td>
<td>0.5</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrahydro-β-ionol acetate</td>
<td>1688</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blumenol C</td>
<td>1700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Extraction processf | 1.26 / 40 | 53.5 / 300 | 21.0 / 150 | 11.7 / 140 | 58.7 / 370 | 5.64 / 90 |

a Relative percentage of the VOC based on the GC-MS chromatographic area.

b RI = Retention Indices on SLBTM-5MS column (Supelco).

c SF = Sterile Fronds.

d FF = Fertile Fronds.

e NI = non identified.

f Fresh Weight of fern and volume of diethyl ether used for the extraction (g/mL).
The main volatiles were (E)-2-decenal (32.1%), lauric amide (12.4%) and (E)-2-heptenal (7.4%). (E)-2-decenal, a natural plant and mushroom VOC with a plastic [6a] or oxidized mutton fat [6b] odor is also responsible for the unpleasant scent of “stink bug”. (E)-2-decenal is the major compound produced by these insects, with (2E,4Z)-decadienal and (2E,4E)-decadienal [6c,6d] also detected in A. capillus-veneris.

Nineteen compounds were identified for A. filix-femina with essentially polyketides (61.5%) and aromatics (29.9%), as well as small amounts of carotenoids (3.8%) and monoterpenes (2.7%) (Table 1). The main volatiles were 2-phenylethanal (24.8%) and 1-octen-3-ol (24.8%). This C8-derivative, also dominant in B. spicant, is well-known to be responsible for the mushroom aroma and usually found in large amounts in various fungi [7a-7g] and plants [7h].

Thirteen and eight compounds were identified from the sterile and fertile fronds of B. spicant, respectively (Table 1). Both volatile profiles showed 95% of polyketides and aromatics in quasi equal proportions and very small or negligible amounts of monoterpenes, sesquiterpenes and carotenoids (2-3%). The main volatiles were also 2-phenylethanal (about 45%), with an odor of lilac and hyacinth [7b], and 1-octen-3-ol (43.1 and 37.5%, respectively). Low amounts of benzaldehyde [7a,7f,7g] were detected, mainly in the fertile fronds (4.4%), with only 1.5% in the sterile ones.

Fifteen compounds were identified for D. filix-mas, mostly sesquiterpenoids (almost 60%), and polyketides (30.8%); the other groups of volatiles were minor (Table 1). The major volatiles were (E)-nerolidol (38.7%) with a floral, woody or fresh bark odor [7a,7c], acylifilicinic acids (16.6%) and 1-octen-3-ol (9.1%). Filicinic acid derivatives, well-known in Dryopteris and related genera of Dryopteridaceae, possess various biological activities (antioxidant, antibacterial, antitumor promoting activities), which may lead to therapeutic applications [2d,3b].

The volatile components of O. limbosperma, well-known for its lemon smell, were distributed in the five types of VOC (Table 1). The volatile profile of this odorous fern showed logically the highest biodiversity: thirty-one compounds were identified by GC-MS. Eighty percent of the volatiles were issued from the terpenic pathway (monoterpenes 40.3%; sesquiterpenes 19.7%; carotenoids 18.1%), and ten percent from the shikimic or lipidic pathways. The main volatiles were (E)-nerolidol (14.7%) and α-terpineol (13.5%), with a lemon odor, β-caryophyllene (5%), with a spicy odor, and other monoterpenes (for example, linalool, pinenes, limonene, and γ-terpinen-7-al), which contribute to the fern’s pleasant fragrance [7a]. It was also this fern that had the highest amount of carotenoid-type derivatives (18.1%).

More and more industries are searching for novel resources for natural compounds. This paper demonstrates that ferns can generate a broad spectrum of volatile organic components (VOC). Obviously, these kinds of natural volatiles are promising for various industrial formulations since they may be bioproduced, if required. Indeed ferns are attractive natural sources for research programs and for aroma applications in various industries.

Experimental

Plant material: Fresh aerial parts of ferns were collected from metropolitan France as follows: Adiantum capillus-veneris L. (Pteridaceae): 15/11/2009, grown in a pot. Athyrium filix-femina (L.) Roth (Woodsiaceae), Blechnum spicant (L.) Roth (Blechnaceae) and Dryopteris filix-mas (L.) Schott (Dryopteridaceae): 15/07/2009, Gimel-les-Cascades, Corrèze. Sterile fronds (SF) with narrow pinnae and fertile fronds (FF) of B. spicant with large pinnae were collected from the same plant at the same time. Oreopteris limbosperma (Bellardi ex. All.) J. Holub (Thelypteridaceae): 20/09/2009, Ambriugéat, Corrèze. The ferns were identified by Dr. Didier Froissard and voucher specimens are deposited at the Laboratory of Botany (Faculty of Pharmacy, Limoges, France).

Extraction: Aerial parts of ferns were cubed and extracted with diethyl ether (Carlo Erba, 6 ppm BHT; Table 1). After maceration for one week, the concentrated organic extracts were directly used for Gas Chromatography-Mass Spectrometry (GC-MS) analysis, as previously described [7g,7h].

GC-MS analyses: GC-MS analyses were carried out using a gas chromatograph-mass spectrometer Shimadzu QP2010plus (Kyoto, Japan) with a potential of 70 eV for ionization by electron impact. The temperature of the transfer line and the ion source were programmed to 250°C and 200°C, respectively. The spectrometer was used in scan mode, from 40 to 300 m/z ratio. Solvent extract analyses were performed using a 30 m x 0.25 mm x 0.25 μm SLB™-5MS (Supelco) fused silica capillary column. The injector temperature was 250°C. The column was temperature programmed as follows: 50°C (hold 2 min.), from 50 to 100°C at 3.3°C/min., from 100 to 140°C at 2.90°C/min., from 140 to 180°C at 2.70°C/min., and finally to 270°C at 10°C/min. The carrier gas was helium with a constant flow rate set close to 1.0 mL/min. VOC were identified by comparison with National Institute of...
Standards and Technology Mass Spectral Library [8a], and retention indices as reported in the literature [8b].

Acknowledgments - The authors thank Professor Alain Fruchier (ENSCM, Montpellier, France) for his suggestions and chemical advice.

References

Cytotoxicity of Constituents from Mexican Propolis Against a Panel of Six Different Cancer Cell Lines
Feng Li, Suresh Awale, Yasuhiro Tezuka and Shigetoshi Kadota

Antihepatotoxic and Antioxidant Activities of Methanol Extract and Isolated Compounds from Ficus chlamydocarpa
Jean Hubert Donfack, Christophe Colombe Fotsio Simo, Batheley Ngameni, Angèle N. Tchana, Philip G. Kerr, Paola Vita Finzi, Giovanni Vidari, Silvana Giardina, Daniela Buonocore, Bonaventure T. Ngadjui, Paul F. Moundipa and Fulvio Marzatico

Anthocyanin-Rich Black Currant Extract Suppresses the Growth of Human Hepatocellular Carcinoma Cells
Anupam Bishayee, Erzsébet Háznagy-Radnai, Thomas Mbimba, Péter Sipos, Paolo Morazzoni, Altaf S. Darvesh, Deepak Bhatia and Judit Hohmann

New Coumarin-Hemiterpene Ether Glucosides and a Structurally Related Phenylpropanoic Acid Derivative from Artemisia armeniaca
Mahdi Mojarrab, Abbas Delazar, Matthias Hamburger and Olivier Potterat

Synthesis of Fluorescent Analogues of the Anticancer Natural Products 4-Hydroxyphenylmethylene Hydantoin and δ-Tocotrienol
Mudit Mudit, Fathy A. Behery, Vikram B. Wali, Paul W. Sylvester and Khalid A. El Sayed

Two Pairs of Enantiomeric Neolignans from Lobelia chinensis
Jian-Xin Chen, Shen-Hui Huang, Lei Wang, Wei-Li Han, Ying Wang, Dong-Mei Zhang and Wen-Cai Ye

Evaluation and Discrimination of Cortex Magnoliae officinalis Produced in Zhejiang Province (Wen-Hou-Po) by UPLC-DAD-TOF-MS Fingerprint
Lin Wang, Ke Yuan, Wei-Wu Yu and Jing Wang

Phenolic Compounds from Eucalyptus gomphocephala with Potential Cytotoxic and Antioxidant Activities
Eman Al-Sayed, Olli Martiskainen, Małgorzata Bobrowska-Hägerstrand, Jari Sinkkonen, Kid Törnquist, Kalevi Pihlaja, Nahla Ayoub and Abdel-Nasser Singab

Nutritional Value of the Chilean Seaweeds Cryptonemia obovata and Rhodymenia corallina
Jaime Ortiz, Juan Vivanco, Paula Jiménez, Moisés Leiva, Leslie Ramirez and Andrés Bustamante

Volatile Components of Centaurea bracteata and C. pannonica subsp. pannonica growing wild in Croatia
Carmen Formisano, Felice Senatori, Svetlana Bancheva, Maurizio Bruno, Antonella Maggio and Sergio Rosselli

Biodiversity of Volatile Organic Compounds from Five French Ferns
Françoise Fons, Didier Froissard, Jean-Marie Bessière, Bruno Buatois and Sylvie Rapior

Composition and Chemical Variability of Leaf Oil of Myrtus communis from North-Eastern Algeria
Amel Bouzabata, Faffani Boussaha, Joseph Casanova and Félix Tomi

Chemical Composition and Antimicrobial Activity of Essential Oils from Centaurea pannonica and C. jacea
Tanja Milošević, Catherine Argyropoulou, Slavica Solujić, Dragana Murat-Spahić and Helen Skaltsa

GC/MS Analysis and Antimicrobial Activity of the Essential Oil of Fresh Leaves of Eucalyptus globulus, and Leaves and Stems of Smymium olusatrum from Constantine (Algeria)
Habiba Daroui-Mokaddem, Ahmed Kabouche, Mabrouka Bouacha, Boudjemaa Soumati, Aida El-Azzouny, Christian Brunau and Zahia Kabouche

Chemical Composition and Antifungal Activity of Essential Oils of Thuja sutchuenensis, a Critically Endangered Species Endemic to China
Huaping Lei, Yonggang Wang, Chang Su, Fengyin Liang, Weiwei Su, Mamie Hui, Pangchui Shaw and Yulong Luo

Composition and Antifungal Activities of the Leaf Essential oil of Litsea coreana from Taiwan
Chen-Lung Ho, Kuang-Ping Hsu, Yen-Hsueh Tseng, Pei-Chun Liao, Eugene I-Chen Wang, Narumon Jeyashoke, Tzu-Chao Chien, Wei-Chih Dong and Yu-Chang Su

Essential Oil Polymorphism of Wild Growing Hungarian Thyme (Thymus pannonicus) Populations in the Carpathian Basin
Zsuzsanna Pluhár, Szilvia Sárosi, Adrienn Pintér and Hella Simkó

Review/Account
Naturally Occurring Diarylheptanoids
Haining Lv and Gaimei She
Original Paper

Antibacterial and Antifungal Screening of *Centaurium pulchellum* Crude Extracts and Main Secoiridoid Compounds
Branislav Šiler, Danijela Mišić, Jasmina Nestorović, Tijana Banjanac, Jasmina Glamočlija, Marina Soković and Ana Ćirić

A New Sesquiterpene and other Constituents from *Saussurea lappa* Root
Jin-ao Duan, Pengfei Hou, Yuping Tang, Pei Liu, Shulan Su and Hanqing Liu

Terpenoids from *Turraeanthus* species
Juliette Catherine Vardamides, Valerie Tedjon Sielinou, Sergi Herve Akone, Augustin Ephrem Nkengfack and Berhanu M. Abegaz

Bioactive Clerodane Diterpenes from Roots of *Carex distachy*a
Antonio Fiorentino, Brigida D’Abrosea, Severina Pacifico, Angelina Izzo, Grazia D’Angelo and Pietro Monaco

An Unusual Bisnor-clerodane Diterpenoid from *Polyalthia simiarum*
Selina Kabir, Mohamad S. Rahman, A. M. Sarwaruddin Chowdhury, Choudhury M. Hasan and Mohammad A. Rashid

Anti-inflammatory Mechanisms of Compounds from *Curcuma mangga* Rhizomes using RAW264.7 Macrophage Cells
Kanitda Kaewkroek, Chatcatchai Wattanapiromsakul and Supinya Tewtrakul

Analysis of MS/MS Fragmentation of Taxoids
Kouhei Morikawa, Ken Tanaka, Feng Li, Suresh Awale, Yasuhiro Tezuka, Takahiro Nobukawa and Shigetoshi Kadota

New Triterpene Glycosides from *Camptosorus sibiricus*
Ning Li, Wan Xiao, Bailing Hou and Xian Li

New Hopane Triterpenes and Antioxidant Constituents from *Potentilla fulgens*
Vikas Jaitak, Vijay K. Kaul, Himlata, Neeraj Kumar, Bikram Singh, Jyoti Dhar and Om P. Sharma

Cytotoxic Evaluation of Semisynthetic Ester and Amide Derivatives of Oleanolic Acid
Shikha Gupta, Komal Kalani, Mohit Saxena, Santosh K. Srivastava, Satyam K. Agrawal, Nitasha Suri and Ajit K. Saxena

Two Ring-A-Aromatized Bile Acids from the Marine Sponge *Sollasella moretonensis*
Zhenyu Lu, Ryan M. Van Wagoner, Mary Kay Harper, John N. A. Hooper and Chris M. Ireland

Asporyergosterol, A New Steroid from an Algicolous Isolate of *Aspergillus oryzae*
Ming-Feng Qiao, Nai-Yun Ji, Xiang-Hong Liu, Fang Li and Qin-Zhao Xue

Two Minor Phytoecdysteroids of the Plant *Silene viridiflora*
Nilufar Zokirzhonovna Mamadalieva, Abdulaziz Adilhanovich Janibekov, Jean-Pierre Girault and René Lafont

7-O-Methylvariecolortide A, a New Spirocyclic Diketopiperazine Alkaloid from a Marine Mangrove Derived Endophytic Fungus, *Eurotium rubrum*
Dong-Li Li, Xiao-Ming Li, Peter Proksch and Bin-Gui Wang

Cytotoxic Thiocarbamate Derivatives of Boldine
Franz A. Thomet, Pablo Pinyol, Joan Villena, Luis J. Espinoza and Patricio G. Reveco

Synthesis and Bioactivity of β-Carboline Derivatives
Shengkun Li, Bing Yang, Qianliang Zhang, Jiwen Zhang, Junru Wang and Wenjun Wu

Two Acylated Flavonoid Glycosides from the Leaves of *Quercus dentata*
Ling-Li Wang, Mei-Xiang Jiang, Sui-Xu Xu, Qi-Shi Sun, Guang-Yao Zeng and Ying-Jun Zhou

Continued inside backcover