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On the Robust Stability of Some Parameter-Dependent Linear Systems:
Solutions via Matrix Pencil Techniques

Jie Chen, Peilin Fu, and Silviu-Iulian Niculescu

Abstract— This note focuses on deriving stability conditions
for a class of linear parameter-dependent systems in a state-
space representation. More precisely, we will compute the set
of parameters for which the characteristic roots are located on
the imaginary axis, and next we will give the characterization
of the way such critical roots are crossing the imaginary axis.
The methodology considered makes use of the computation of
the generalized eigenvalues of an appropriate matrix pencil
combined with an operator perturbation approach for deriving
the crossing direction. Finally, the particular case of parameter-
dependent polynomials will be also considered, and the stability
analysis of time-delay systems is also revisited in this perspec-
tive.

I. INTRODUCTION

The aim of the paper is to discuss in extent the asymptotic
behavior of imaginary eigenvalues of some matrix polyno-
mials. The main interest of this discussion lies in deriving
less conservative methods for dynamical systems which are
marginally stable. We adopt an operator perturbation ap-
proach (see, e.g., [9], [8]) to the corresponding switch prob-
lem. Indeed, the approach seeks to recast the zero asymptotic
analysis problem as one of eigenvalue perturbation. This
enables us to obtain readily computable results that fully
characterize the variation properties of the critical zeros at the
critical roots of the corresponding system. A special attention
will be paid to the cases when the critical characteristic root
on the imaginary axis is not simple. Thus, both semi-simple
and multiple, but not semi-simple eigenvalue cases will be
largely discussed, and explicit formula of the corresponding
crossing directions evaluation will be derived.

As a byproduct of the analysis proposed in the note several
classical problems are revised and discussed in this new
perspective. In particular, we will emphasize the connections
with the Routh-Hurwitz criterion and root locus method.
Finally, connections to delay systems, and in particular the
so-called pseudo-delay technique are also considered.

The paper is organized as follows: Section II includes the
Problem formulation. Some preliminary results are briefly
outlined in Section III. The main results are presented
in both state-space representation and parameter-dependent
polynomial cases in Section IV, and V respectively. Various
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comments and useful observations in the context of time-
delay systems are given in Section VI. Some comments and
remarks end the paper.

The following notations will be used throughout the paper.
Let R be the set of real numbers, C the set of complex
numbers, and R+ the set of nonnegative real numbers.
Denote the open right half plane by C+ := {s : <(s) > 0},
the closed right half plane by C+, and the imaginary axis
by ∂C+. Similarly, denote the open unit disc by D, the unit
circle by ∂D, and the closed exterior of the unit disc by Dc.
For a matrix A, denote its spectrum by σ(A), and the ith
eigenvalue by λi(A). For a matrix pair (A, B), denote the
set of all its generalized eigenvalues by σ(A, B), i.e.,

σ(A, B) := {λ ∈ C : det(A− λB) = 0} .

II. PROBLEM FORMULATION

Consider the following class of dynamical systems:

ẋ(t) = A(p)x(t), (1)

where x ∈ Rn, and the mapping A : [pmin, pmax] 7→ Rn×n

is given by the matrix polynomial:

A(p) :=
q∑

k=0

Akpk. (2)

In the sequel, a parameter-dependent system defined by (1)-
(2) is called marginally stable for some parameter p = pc

if all the eigenvalues of the corresponding characteristic
equation are located in C− or on the imaginary axis ∂C+

(not any strictly unstable roots).
The problem considered in this paper is to give a complete

characterization of the stability of (1)-(2) with respect to
the parameter p. We shall exploit the particular structure
of the parameter-dependence in order to compute all the
parameter-crossing values for which a change in the stability
may take place. Furthermore, the way the eigenvalues are
crossing the imaginary axis will be explicitly derived. Define
now the set P as the set of all parameters for which the
original system is marginally stable. Such a set will be
called the parameter-crossing set. As discussed in the sequel,
the computation of P is reduced to the computation of the
generalized eigenvalue of some appropriate matrix pencil of
finite dimension, and a simple matrix eigenvalue test. All
the cases (simple, multiple semi-simple, and not semi-simple
eigenvalues) will be discussed in some extent. Various results
from robust stability and robust control will be revisited in
this formalism.



III. PRELIMINARY RESULTS

In this section, we introduce the operator perturbation
theory for matrix eigenvalue problems, which concerns how
the eigenvalues of a matrix function may vary with respect
to a small perturbation. The development is based on the
classical treatise of Kato [9], but goes further beyond.

A. First-order analysis
Consider a matrix operator T (x) of a real variable x.

Suppose that in the neighborhood of x = 0, the perturbed op-
erator T (x) is holomorphic, or equivalently, can be expanded
into the power series,

T (x) = T (0) + xT ′(0) + x2T ′′(0) + · · · . (3)

Let D0 be a small disk near x = 0 but excluding x = 0. It is
known that for x ∈ D0, any semi-simple eigenvalue of T (x),
namely the semi-simple root of the characteristic equation

det (T (x)− ξI) = 0, (4)

is an analytic functions of x and can also be expressed as
a power series in x; here by a semi-simple eigenvalue, we
mean a repeated but diagonalizable eigenvalue. This fact is
summarized in Lemma 1.

Lemma 1: [9] Let λ(0) be a semi-simple eigenvalue of
T (0) with multiplicity m, and P be the eigenprojection for
λ(0), that is,

P =
1

2πj

∮

Γ

(ξI − T (0))−1
dξ, (5)

where Γ is a positively-oriented closed contour enclosing
λ(0) but no other eigenvalues of T (0). Then the correspond-
ing eigenvalues of T (x) are analytic in x and have the form

µi(x) = λ(0) + λ
(1)
i x + o(x2), i = 1, . . . , m, (6)

where λ
(1)
i are the eigenvalues of PT ′(0)P .

With no loss of generality, let λ(0) be ordered as the first
eigenvalue of T (0) with multiplicity m. Then T (0) can be
decomposed as

T (0) = QΣR =
[

Q1 Q2

] [
Σ1 0
0 Σ2

] [
R1

R2

]
, (7)

where Σ1 is diagonal with diagonal entries as λ(0), R =
Q−1 =

[
rT
1 · · · rT

n

]T
, and Q =

[
q1 · · · qn

]
consist of the eigenvectors and generalized eigenvectors of
of T (0). The following lemma shows how λ

(1)
i may be

computed.
Lemma 2: [4] Let T (0) be partitioned as in (7). Then λ

(1)
i ,

i = 1, . . . ,m, in (6) are the eigenvalues of R1T
′(0)Q1.

Consider next the case that λ(0) is not a semi-simple but
repeated eigenvalue of T (0) with multiplicity m. In this case,
T (0) admits a Jordan decomposition in which Σ is block
diagonal with diagonal Jordan blocks, and Q1 consists of the
generalized eigenvectors associated with λ(0). In particular,

Σ1 =




λ(0) 1 · · · 0

0
. . . . . . 0

...
. . . 1

0 · · · · · · λ(0)




.

The eigenvalue of T (x) can no longer be expanded in the
form of (6), but instead as a Puiseux series:

Lemma 3: [4] Let λ(0) be a non-semi-simple eigenvalue
of T (0) with multiplicity m. Then the corresponding eigen-
values of T (x) have the form

µi(x) = λ(0) +
(
γ

(1)
i

) 1
m

x
1
m + · · · , i = 1, . . . , m, (8)

where γ
(1)
i = rmT ′(0)q1.

B. Second-Order Asymptotic Expansion

The first-order asymptotic series introduced in the pre-
ceding subsection can be further developed to include terms
of higher orders. In this section we present formulas for
computing the coefficients of the asymptotic series up to the
second-order as presented in [6] by using results by Kato [9].

Define the operator-valued function

Υ(ξ) = (T (0)− ξI)−1, (9)

which is known as the resolvent of T (0). It is obvious that
the singularities of Υ(ξ) are the eigenvalues of T (0). Let
λ(0) be a semi-simple eigenvalue of T (0). Then Υ(ξ) can
be expanded as a Laurent series at ξ = λ(0), that is,

Υ(ξ) = −(ξ − λ(0))−1P −
∞∑

n=1

(ξ − λ(0))−n−1Dn

+
∞∑

n=0

(ξ − λ(0))nSn+1, (10)

where P , Dn and Sn+1 are corresponding coefficient matri-
ces. Evidently, the matrix P , known as the eigenprojection
for λ(0), can be found as

P = − 1
2πj

∮

Γ

Υ(ξ)dξ =
1

2πj

∮

Γ

(ξI − T (0))−1
dξ,

where Γ is a positively-oriented closed contour enclosing
λ(0) but no other eigenvalues of T (0). The holomorphic part
in the Laurent expansion is called the reduced resolvent of
T (0) with respect to the eigenvalue λ(0), denoted as

S(ξ) =
∞∑

n=0

(
ξ − λ(0)

)n

Sn+1.

Let S = S(λ(0)), namely the value of the reduced resolvent
of T (0) at ξ = λ(0). Then it is obvious that S = S1.

Lemma 4: [6] For any matrix T (0) decomposed in the
form of (7), where Σ1 is in Jordan form with diagonal entries
as λ(0), the reduced resolvent at ξ = λ(0) is equal to

S = Q

[
0 0
0 (Σ2 − λ(0)I)−1

]
R = Q2(Σ2 − λ(0)I)−1R2.

The following Lemma given in [9] provides the result
on the second order perturbation of T (x) when all the
eigenvalues of T (0) are semi-simple.

Lemma 5: [9] Let λ(0) be a semi-simple eigenvalue of
T (0), λ

(1)
i be a semi-simple eigenvalue of PT ′(0)P with

the eigen-projection P
(1)
i , that is

P
(1)
i =

∮

Γi

(ξI − PT ′(0)P )−1
dξ, (11)



where Γi is a positively-oriented closed contour enclosing
λ

(1)
i but no other eigenvalues of PT ′(0)P . Then T (x) has

d = dim P
(1)
i repeated eigenvalues of the form

µip(x) = λ(0)+xλ
(1)
i +x2µ

(2)
ip +o(x2), p = 1, · · · , d, (12)

where µ
(2)
ip are the repeated eigenvalues of P

(1)
i T (2)P

(1)
i with

T (2) = T ′′(0)− T ′(0)ST ′(0), and

P
(1)
i T (2)P

(1)
i = P

(1)
i T ′′(0)P (1)

i − P
(1)
i T ′(0)ST ′(0)P (1)

i .

The eigenvalues of P
(1)
i T (2)P

(1)
i can be computed in a

manner similar to that in the first-order analysis.
Lemma 6: [6] Let λ(0) be a semi-simple eigenvalue of

T (0), λ
(1)
i be a semi-simple eigenvalue of PT ′(0)P . Let

also T (0) be decomposed as in (7), and R1T
′(0)Q1 be

decomposed as

R1T
′(0)Q1

= Q(2)Σ(2)R(2)

=
[

Q
(2)
1 Q

(2)
2

] [
Σ(2)

1 0
0 Σ(2)

2

][
R

(2)
1

R
(2)
2

]
, (13)

where Σ(2)
1 is the Jordan block corresponding to the eigen-

value λ
(1)
i . Then the eigenvalues of P

(1)
i T (2)P

(1)
i are those

of the matrix R(2)R1T
(2)Q1Q

(2)
1 .

IV. MAIN RESULTS

Introduce now the following matrix pencil Λ : C 7→
Cqn2×qn2

, Λ(λ) := λU + V , where the matrices U , and
V are given by:

U =




In2 0 0 . . . 0
0 In2 0 . . . 0
...

. . .
...

0 0 0 . . . Bq


 , (14)

V =




0 −In2 0 . . . 0
0 0 −In2 . . . 0
...

. . .
...

B0 B1 B2 . . . Bq−1


 , (15)

where Bk := Ak ⊕AT
k , for all k = 0, q.

A. Stability crossing set

With the definitions, and the notations above, we have:
Lemma 7: Consider the system (1)-(2) for some p0 ∈

[pmin, pmax]. Then p0 is a parameter-crossing value if and
only if the following conditions are satisfied simultaneously:
(i) p0 ∈ σ(U, V ), that is p0 is a generalized eigenvalue of

the matrix pencil Λ, and
(ii) σ(A(p0)) ∩ jR 6= ø, that is the real matrix A(p0) has

at least one eigenvalue on the imaginary axis.
Remark 1 (Symmetric eigenvalues): The condition (i) in

the Lemma 7 is not sufficient for crossing existence. Indeed,
by construction, the spectrum of Λ includes all the eigenval-
ues of the matrix A(p) which are symmetric with respect to
the origin, and thus we need to exclude the symmetric roots
which are not located on ∂C+.

Since, excepting P , there are no other crossings with
respect to ∂C+, let card(P) = `, and let p1, p2, . . ., p` be
corresponding ordered crossing parameters. The continuity
properties of the characteristic roots with respect to the
parameters [8] allows concluding that for all p ∈ (pk, pk+1),
k = 1, . . . `−1, the number of strictly unstable characteristic
roots (i.e. the instability degree) of (1)-(2) is constant. In
conclusion, the characterization of the parameter-crossing set
P is complete.

B. Crossing direction characterization
1) Simple crossing characteristic roots: Consider now

that the root s = jω0 corresponding to some parameter
p0 ∈ P is simple. Let u0 (v∗0) be the corresponding right-
(left-) eigenvectors, that is:{

(jω0In −A(p0)) u0 = 0,
v∗0 (jω0In −A(p0)) = 0.

Without any loss of generality, we can assume that the right-
and left-eigenvectors u0, v∗0 satisfy the regularity condition
v∗0u0 = 1. Then:

Proposition 1: Let jω0 be a simple eigenvalue of A(p0).
Thus, for p sufficiently close to p0 but p > p0, there exist
a characteristic zero entering the right-half plane (or vice
versa) if the following condition is satisfied:

Re

{
v∗0

(
q∑

k=1

kAkpk−1
0

)
u0

}
< 0 (> 0). (16)

Additionally, if

Re

{
v∗0

(
q∑

k=1

kAkpk−1
0

)
u0

}
= 0,

then for any p sufficiently close to p0 but p > p0, jω0 enters
the right-half plane (or vice versa) if

Re

{
v∗0

(
q∑

k=2

k(k − 1)Akpk−2
0

)
u0

}
< 0 (> 0), (17)

In other words, the crossing direction for simple roots is
given by the sign of (16) easy to evaluate since u0, v∗0 , Ak,
k = 1, . . . ,m and p0 = jω0 are known. It is important
to point out that such a quantity is non-zero since the
corresponding characteristic root is simple, but, as mentioned
in Proposition 1, it can be on the imaginary axis.

2) Semi-simple crossing characteristic roots: Consider
now the case of a multiple, but semi-simple eigenvalue jω0

on the imaginary axis. Using the arguments proposed in the
previous section, simple computations lead to the following:

Proposition 2: Let jω0 be a semi-simple eigenvalue of
A(p0) with multiplicity m and λ

(1)
i be a semi-simple eigen-

value of

−R1

(
q∑

k=1

kAkpk−1
0

)
Q1

with multiplicity d. Then for any p sufficiently close to
p0, the characteristic zeros corresponding to jω0 can be
expanded by the power series

jω0 + λ
(1)
i (p− p0) + µ

(2)
il (p− p0)2 + o

(
(p− p0)3

)
, (18)



with

λ
(1)
i = −λi

[
R1

(
q∑

k=1

kAkpk−1
0

)
Q1

]
,

i = 1, 2, · · · , m,

µ
(2)
il = −λl

[
R

(2)
1 R1

(
q∑

k=2

k(k − 1)Akpk−2
0

)
Q1Q

(2)
1

]
,

l = 1, 2, · · · , d,

where Q
(2)
1 = [q̃1 q̃2 · · · q̃d] and R

(2)
1 = [r̃T

1 r̃T
2 · · · r̃T

d ]T ,
with q̃p and r̃p the right and left eigenvectors of

−R1

(
q∑

k=1

kAkpk−1
0

)
Q1

associated with λ
(1)
i .

(i) For p sufficiently close to p0 but p > p0, there are
at least h (h ≤ m) of characteristic zeros entering the
right-half plane (or vice versa) if h of the eigenvalues
satisfy the condition

Re

{
λi

[
R1

(
q∑

k=1

kAkpk−1
0

)
Q1

]}
< 0 (> 0),

i = 1, 2, · · · , m.

(ii) If

Re

{
λi

[
R1

(
q∑

k=1

kAkpk−1
0

)
Q1

]}
= 0, (19)

then for p sufficiently close to p0 but p > p0, there are
at least h′ (h′ ≤ d) of characteristic zeros entering the
right-half plane (or vice versa) if h′ of the eigenvalues
µ

(2)
il satisfy the condition

Re

{
λl

[
R

(2)
1 R1

(
q∑

k=2

k(k − 1)Akpk−2
0

)
Q1Q

(2)
1

]}

< 0 (> 0), l = 1, 2, · · · , d.(20)
Finally, the last case of interest in this situation is given

by the case when the eigenvalues λ
(1)
i in Proposition 2 are

not semi-simple:
Proposition 3: Let jω0 be a semi-simple eigenvalue of

A(p0) with multiplicity m and λ
(1)
i be a repeated eigenvalue

of

−R1

(
q∑

k=1

kAkpk−1
0

)
Q1

with multiplicity d. Suppose that λ
(1)
i is not semi-simple.

Then for any p sufficiently close to p0 but p > p0, the
characteristic zeros corresponding to jω0 can be expanded
by the Puiseux series

jω0 + λ
(1)
i (p− p0) +

∣∣∣r̃dT̃ q̃1

∣∣∣
1
d

ej 2hπ+π+θ
d (p− p0)1+

1
d

+ · · · , h = 0, 1, · · · , d− 1, (21)

where

T̃ = R
(2)
1 R1

(
q∑

k=2

k(k − 1)Akpk−2
0

)
Q1Q

(2)
1 ,

where θ ∈ [0, 2π] is the phase angle of r̃dT̃ q̃1, and q̃1 and
r̃d are obtained from the Jordan decomposition

Q1R1

(
−

q∑

k=1

kAkpk−1
0

)
Q1R1 = Q̃Σ̃R̃,

with Q̃ = [q̃1 · · · q̃d · · · q̃m] and R̃ = Q̃−1 =
[r̃T

1 · · · r̃T
d · · · r̃T

m]T .
Hence, for p sufficiently close to p0 but p > p0, the

number of critical zeros entering the right-half plane (or vice
versa) can be determined by the condition

cos
(

2hπ + π + θ

d

)
> 0 (< 0), h = 0, · · · , d− 1. (22)

Propositions 2 and 3 reveal a fundamental difference be-
tween the asymptotic behaviors of a semi-simple eigenvalue
and one that is not. Take for instance Proposition 3, for a
repeated eigenvalue that is not semi-simple, the result shows
that, precluding the case that

rm

(
q∑

k=1

kAkpk−1
0

)
q1 = 0,

whether the zero will enter the right-half plane is solely deter-
mined by the multiplicity of the zero and the phase angle θ.
In this case, the branches of the zero will almost generically
enter the right-half plane. Note that in the degenerate case
m = 1, Proposition 3 also reduces to Proposition 2.

3) Multiple non semi-simple characteristic roots: Finally,
consider the case of a multiple, but not semi-simple eigen-
value jω0 on the imaginary axis. Then:

Proposition 4: Let jω∗ be a repeated eigenvalue of∑q
k=0 Ake−jω∗kτ∗ with multiplicity m. Suppose that jω0

is not semi-simple.
Then for any p sufficiently close to p0 but p > p0, the

characteristic zeros corresponding to p0 can be expanded by
the Puiseux series

jω0 +

∣∣∣∣∣rm

(
q∑

k=1

kAkpk−1
0

)
q1

∣∣∣∣∣

1
m

ej 2hπ+π+θ
m

× (p− p0)
1
m + · · · , h = 0, 1, · · · , m− 1,

where θ ∈ [0, 2π] is the phase angle of

rm

(
q∑

k=1

kAkpk−1
0

)
q1,

and q1 and rm are obtained from the Jordan decomposition
q∑

k=0

Akpk
0 = QΣR,

with Q = [q1 q2 · · · qn] and R = Q−1 = [rT
1 rT

2 · · · rT
n ]T .

Hence, for p sufficiently close to p0 but p > p0, the
number of critical zeros entering the right-half plane (or vice
versa) can be determined by the condition

cos
(

2hπ + π + θ

m

)
> 0 (< 0), h = 0, · · · , m−1. (23)



V. PARAMETER-DEPENDENT POLYNOMIALS

In the sequel, we will consider the following class of
parameter-dependent polynomials:

f(s, p) := P0(s) +
nq∑

k=1

Pk(s)pk, (24)

with the parameter p ∈ R. In principle, there are several
ways to compute the stability crossing set P by using the
methodology presented in the previous sections. The standard
method consists in finding a state-space representation that
has the characteristic function given by (24)1. Such a method
was largely used in the context of robust analysis (see,
e.g., [8], [1], [2] and the references therein). For the sake
of brevity, such an approach will be omitted here.

In the sequel, we will propose however a different method
which is inspired by the static output feedback control
problem for SISO systems. Introduce now the following
Hurwitz matrix associated to some polynomial

A(s) =
na∑

i=0

ais
na−i

and denoted by H(A):

H(A) :=




a1 a3 a5 . . . a2na−1

a0 a2 a4 . . . a2na−2

0 a1 a3 . . . a2na−3

0 a0 a2 . . . a2na−4

...
. . .

...
0 0 0 . . . ana



∈ Rna×na ,

(25)
where the coefficients al = 0, for all l > na. Next, define
the matrix pencil:

Λ(λ) := det(λU + V ),

with U, V given by:

U =




I
. . .

I
H(Pnq )


 (26)

V =




0 −I · · · 0
...

...
. . .

...
0 0 · · · −I

H(P0) H(P1) · · · H(Pnq−1)


 , (27)

where the identity, and the zero-blocks matrices have ap-
propriate dimension, and H(Pi) ∈ R(n+nq)×(n+nq), for
all i = 1, 2, . . . , nq represents the corresponding Hurwitz
matrix2 associated to the polynomial Pi(s) defined above.

The following result gives the characterization of the
characteristic roots of f given by (24) on the imaginary

1by using, for example, appropriate companion forms and defining all the
coefficients of sk as appropriate polynomials in the variable p, etc.

2Independently of the order of the polynomial Pi (i = 1, . . . , nq), H(Pi)
will be constructed as a (n+nq)×(n+nq) matrix by setting the coefficients
of high-order terms as zeroes, that is qh = 0, for all h > deg(Pi).

axis as a function of T , and represents a generalization of
the method proposed by [3] in the context of static output
feedback for SISO systems:

Proposition 5: Let λ1 < λ2 < . . . λh, with h ≤ n + nq

be the real eigenvalues of the matrix pencil

Λ(λ) = det(λU + V ).

Then the parameter-dependent polynomial f has some char-
acteristic roots on the imaginary axis if and only if T = λi,
i = 1, 2, . . . h. Furthermore, if there are r unstable roots
(0 ≤ r ≤ n + nd) for p = p∗, p∗ ∈ (λi, λi+1), then, there
are r unstable roots for any parameter p ∈ (λi, λi+1). The
same property holds for the intervals (0, λ1) and (λh,∞).

In conclusion, as derived in the Proposition 5 above,
the set of crossing parameters P is given by the set of
generalized eigenvalue of the corresponding matrix pencil
Λ. For each p0 ∈ P a simple test will give the set of
corresponding characteristic roots on the imaginary axis.
Let jω0 one such a critical root. The remaining point to
be clarified is the characterization of the crossing direction
in some neighborhood of p0. The crossing characterization
derived in the previous section rewrites as follows in the
simple and multiple root case respectively:

Proposition 6: Let jω0 be a simple zero of f (s, p) cor-
responding to the parameter p = p0. If

Re

{
d f(jω0, p)

dp |p=p0

d f(s,p0)
ds |s=jω0

}
< 0, (> 0)

then for any p sufficiently close to p0 but p > p0, jω0 enters
the right-half plane (or vice versa).

Finally, if

Re

{
d f(jω0, p)

dp |p=p0

d f(s,p0)
ds |s=jω0

}
= 0,

then for any p sufficiently close to p0 but p > p0, jω0 enters
the right-half plane (or vice versa) if

Re





d2 f(jω0, p)
dp2 |p=p0

d f(s, p0)
ds |s=jω0



 < 0 (> 0). (28)

Proposition 7: Let jω0 be a repeated zero of f (s, p))
with multiplicity m, corresponding to the parameter p = p0.
If

m!
d f(jω0, p)

dp |p=p0

dm f(s, p0)
dsm |s=jω0

= 0,

then for any p sufficiently close to p0 but p > p0, the zeros
corresponding to jω0 can be expanded by the Puiseux series

jω0 +

∣∣∣∣∣m!
d2 f(jω0, p)

dτ2 |p=p0

dm f(s, p0)
dsm |s=jω0

∣∣∣∣∣

1
m

ej 2hπ+π+θ
m (p− p0)

1
m

+ · · · , h = 0, 1, · · · , m− 1,

where θ ∈ [0, 2π] is the phase angle of

d2 f(jω0,p)
dp2 |p=p0

dm f(s, p0)
dsm |s=jω0

.



Hence, for p sufficiently close to p0 but p > p0, the number
of critical zeros entering the right-half plane (or vice versa)
can be determined by the condition

cos
(

2hπ + π + θ

m

)
> 0 (< 0), h = 0, 1, · · · , m− 1.

VI. PSEUDO-DELAY AND PARAMETER-DEPENDENT
POLYNOMIALS

There exists several frequency-domain methods for han-
dling the stability analysis of linear systems with commen-
surate delays (see, for instance, [7], [10] and the references
therein). In the sequel, we shall focus on the pseudo-delay
technique (see, e.g., [11], [12] for further details).

The characteristic function of a linear delay system:

ẋ(t) =
nc∑

i=0

x(t− iτ),

with x ∈ Rn is given by the quasipolynomial:

f(s; e−sτ ) := P0(s) +
nd∑

i=1

Pi(s)e−isτ . (29)

Roughly speaking, the idea of the approach is to use the bi-
linear transformation associating to z = e−sτ the “quantity”:

z :=
1− λT

1 + λT
, T > 0.

and the parameter-dependent polynomial:

f̃(s, T ) := (1 + sT )nf

(
s,

1− sT

1 + sT

)

=
nd∑

i=0

Pi(s)(1− Ts)i(1 + Ts)nd−i. (30)

It is easy to see that the imaginary value s = jω0 with
ω0 > 0 is a characteristic root of f(s, e−sτ ) for some τ0 > 0
iff s = jω0 is also a root of f̃(s, T0) for some T0 > 0, and
the relation between τ0 and T0 can be explicitly derived (see,
e.g. [13], [12]).

Based on the theory presented in the paper, it is easy
to see that the corresponding set of T for which, at least,
one characteristic root of f̃ lies on ∂C+ will be given by
computing the generalized eigenvalues of some appropriate
matrix pencil associated to f̃ . In other words, crossing detec-
tion for commensurate delays systems is reduced to finding
parameters T such that f̃ has characteristic roots on the
imaginary axis. In conclusion, the generalized eigenvalues of
Λ constructed for f̃ will define the values of the parameter T
for which crossing exists. Next, for each T0 ∈ {λ1, . . . , λh},
we will compute the characteristic roots of the polynomial
f̃(s, T0) on ∂C+. The set of frequencies corresponding to all
these roots on the imaginary axis will define the frequency
crossing set Ω. Next, consider some frequency ω0 ∈ Ω,
which corresponds to T0. Then, the corresponding delay
crossing set Tω0 will be derived by solving the equation:

e−jω0τ =
1− jω0T0

1 + jω0T0
.

Finally, the crossing direction characterization follows the
same procedures as in [4], [6], and it is omitted since it is
out of the scope of the paper.

Remark 2: The detection of the crossing frequency set
proposed here is quite distinct from the procedures proposed
by [11], [12].

VII. CONCLUDING REMARKS

This paper addressed a robust stability analysis of a class
of linear systems depending on some real parameter (poly-
nomial dependence). The approach considered here makes
use of two ingredients: the computation of the generalized
eigenvalues of an appropriate matrix pencil, combined with
an operator perturbation methodology. A complete crossing
characterization is proposed in the simple, semi-simple,
and multiple, but not semi-simple characteristic root cases.
Both state-representation and parameter-dependent polyno-
mial cases have been presented. Some connections with some
method encountered in the analysis of time-delay systems
was also proposed.
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