G. Alessandrini and S. Vessella, Lipschitz stability for the inverse conductivity problem, Adv. in Appl. Math, vol.35, pp.207-241, 2005.

I. Azpiroz, H. Barucq, R. Djellouli, and H. Pham, Characterization of partial derivatives with respect to material parameters in a fluid-solid interaction problem, Journal of Mathematical Analysis and Applications, vol.465, pp.903-927, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01806939

A. Bamberger, G. Chavent, and P. Lailly, Une application de la théorie du contrôleà un problème inverse de sismique, Annales de Géophysique, vol.33, pp.183-200, 1977.

, About the stability of the inverse problem in the 1-d wave equation, Journal of Applied Mathematics and Optimisation, vol.5, pp.1-47, 1979.

H. Barucq, H. Calandra, G. Chavent, and F. Faucher, A priori estimates of attraction basins for velocity model reconstruction by time-harmonic Full Waveform Inversion and Data Space Reflectivity formulation, Magique, vol.3
URL : https://hal.archives-ouvertes.fr/hal-02016373

J. Bérenger, A perfectly matched layer for the absorption of electromagnetic waves, Journal of Computational Physics, vol.114, pp.185-200, 1994.

E. Beretta, M. V. De-hoop, F. Faucher, and O. Scherzer, Inverse boundary value problem for the helmholtz equation: quantitative conditional lipschitz stability estimates, SIAM Journal on Mathematical Analysis, vol.48, pp.3962-3983, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01407446

E. Bozdag, J. Trampert, and J. Tromp, Misfit functions for full waveform inversion based on instantaneous phase and envelope measurements, Geophysical Journal International, vol.185, pp.845-870, 2011.

D. Brandwood, A complex gradient operator and its application in adaptive array theory, IEE Proceedings F-Communications, Radar and Signal Processing, vol.130, pp.11-16, 1983.

C. Bunks, F. M. Saleck, S. Zaleski, and G. Chavent, Multiscale seismic waveform inversion, Geophysics, vol.60, pp.1457-1473, 1995.

H. Cartan, Differential calculus, vol.1, 1971.

G. Chavent, Identification of functional parameters in partial differential equations, in Identification of Parameters in Distributed Systems, pp.31-48, 1974.

G. Chavent, Nonlinear least squares for inverse problems: theoretical foundations and step-bystep guide for applications, 2010.

G. Chavent, Data Space Reflectivity and the Migration based Travel Time approach to FWI, 79th EAGE Conference and Exhibition, 2017.

G. Chavent and F. Clément, Waveform inversion through MBTT formulation, 1992.
URL : https://hal.archives-ouvertes.fr/inria-00074833

G. Chavent, K. Gadylshin, and V. Tcheverda, Reflection fwi in mbtt formulation, 77th EAGE Conference and Exhibition, 2015.

G. Chavent and K. Kunisch, On weakly nonlinear inverse problems, SIAM Journal on Applied Mathematics, vol.56, pp.542-572, 1996.

F. Clément, G. Chavent, and S. Gómez, Migration-based traveltime waveform inversion of 2-d simple structures: A synthetic example, Geophysics, vol.66, pp.845-860, 2001.

M. V. De-hoop, L. Qiu, and O. Scherzer, A convergence analysis of a multi-level projected steepest descent iteration for nonlinear inverse problems in banach spaces subject to stability constraints, 2012.

C. B. James-martin, L. C. Wilcox, and O. Ghattas, A stochastic newton mcmc method for large-scale statistical inverse problems with application to seismic inversion, SIAM Journal on Scientific Computing, vol.34, pp.1460-1487, 2012.

M. Kern, Numerical Methods for Inverse Problems, 2016.

K. Kreutz-delgado, The complex gradient operator and the cr-calculus, 2009.

P. Lailly, The seismic inverse problem as a sequence of before stack migrations, Conference on Inverse Scattering: Theory and Application, pp.206-220, 1983.

H. Li and T. Adali, Optimization in the complex domain for nonlinear adaptive filtering, Signals, Systems and Computers, 2006. ACSSC'06. Fortieth Asilomar Conference on, pp.263-267, 2006.

J. L. Lions and S. K. Mitter, Optimal control of systems governed by partial differential equations, vol.1200, 1971.

L. Métivier, R. Brossier, Q. Mérigot, E. Oudet, and J. Virieux, Measuring the misfit between seismograms using an optimal transport distance: application to full waveform inversion, Geophysical Supplements to the, Monthly Notices of the Royal Astronomical Society, pp.345-377, 2016.

J. Nocedal and S. J. Wright, Numerical Optimization, Springer Sries in Operations Research, 2006.

R. Plessix, G. Chavent, and Y. De-roeck, A quantitative kirchhoff migration to esimate the 2d velocity distribution, 3rd Internat. Conf. on Mathematical and Numerical Aspects of Wave Propagation, pp.704-712, 1995.

R. Plessix, A review of the adjoint-state method for computing the gradient of a functional with geophysical applications, Geophysical Journal International, vol.167, pp.495-503, 2006.

R. G. Pratt and N. R. Goulty, Combining wave-equation imaging with traveltime tomography to form high-resolution images from crosshole data, Geophysics, vol.56, pp.208-224, 1991.

R. G. Pratt, Z. Song, P. Williamson, and M. Warner, Two-dimensional velocity models from wide-angle seismic data by wavefield inversion, Geophysical Journal International, vol.124, pp.323-340, 1996.

R. G. Pratt and M. H. Worthington, Inverse theory applied to multi-source cross-hole tomography, Geophysical Prospecting, pp.287-310, 1990.

L. Qiu, J. Ramos-martínez, A. Valenciano, Y. Yang, and B. Engquist, Full-waveform inversion with an exponentially encoded optimal-transport norm, SEG Technical Program Expanded Abstracts, pp.1286-1290, 2017.

C. Shin and D. Min, Waveform inversion using a logarithmic wavefield, Geophysics, pp.31-42, 2006.

C. Shin, S. Pyun, and J. B. Bednar, Comparison of waveform inversion, part 1: conventional wavefield vs logarithmic wavefield, Geophysical Prospecting, vol.55, pp.449-464, 2007.

L. Sirgue and R. G. Pratt, Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies, Geophysics, pp.231-248, 2004.

W. Symes and J. J. Carazzone, Velocity inversion by differential semblance optimization, Geophysics, vol.56, pp.654-663, 1991.
URL : https://hal.archives-ouvertes.fr/hal-01315596

A. Tarantola, Inversion of seismic reflection data in the acoustic approximation, Geophysics, pp.1259-1266, 1984.

A. Tarantola, Inversion of travel times and seismic waveforms, Seismic tomography, pp.135-157, 1987.

A. Tarantola, Theoretical background for the inversion of seismic waveforms including elasticity and attenuation, Pure and Applied Geophysics, vol.128, pp.365-399, 1988.

E. Turkel and A. Yefet, Absorbing pml boundary layers for wave-like equations, Applied Numerical Mathematics, vol.27, pp.533-557, 1998.

R. Versteeg, The marmousi experience: Velocity model determination on a synthetic complex data set, The Leading Edge, vol.13, pp.927-936, 1994.

J. Virieux and S. Operto, An overview of full-waveform inversion in exploration geophysics, Geophysics, vol.74, pp.1-26, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00457989

S. Wang, M. V. De-hoop, and J. Xia, On 3d modeling of seismic wave propagation via a structured parallel multifrontal direct helmholtz solver, Geophysical Prospecting, vol.59, pp.857-873, 2011.

Y. Yang, B. Engquist, J. Sun, and B. F. Hamfeldt, Application of optimal transport and the quadratic wasserstein metric to full-waveform inversion, Geophysics, vol.83, pp.43-62, 2018.