First-order optimization algorithms via inertial systems with Hessian driven damping - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Mathematical Programming Année : 2020

First-order optimization algorithms via inertial systems with Hessian driven damping

Résumé

In a Hilbert space setting, for convex optimization, we analyze the convergence rate of a class of first-order algorithms involving inertial features. They can be interpreted as discrete time versions of inertial dynamics involving both viscous and Hessian-driven dampings. The geometrical damping driven by the Hessian intervenes in the dynamics in the form ∇ 2 f (x(t))ẋ(t). By treating this term as the time derivative of ∇f (x(t)), this gives, in discretized form, first-order algorithms in time and space. In addition to the convergence properties attached to Nesterov-type accelerated gradient methods, the algorithms thus obtained are new and show a rapid convergence towards zero of the gradients. On the basis of a regulariza-tion technique using the Moreau envelope, we extend these methods to non-smooth convex functions with extended real values. The introduction of time scale factors makes it possible to further accelerate these algorithms. We also report numerical results on structured problems to support our theoretical findings.
Fichier principal
Vignette du fichier
ACFR-Hessian.pdf (786.67 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02193846 , version 1 (24-07-2019)

Identifiants

Citer

Hedy Attouch, Zaki Chbani, Jalal M. Fadili, Hassan Riahi. First-order optimization algorithms via inertial systems with Hessian driven damping. Mathematical Programming, 2020, ⟨10.1007/s10107-020-01591-1⟩. ⟨hal-02193846⟩
164 Consultations
236 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More