Lymphotoxin alpha revisited: general features and implications in rheumatoid arthritis
F. Calmon-Hamaty, B. Combe, M. Hahne, J. Morel

To cite this version:

HAL Id: hal-02193310
https://hal.archives-ouvertes.fr/hal-02193310
Submitted on 25 May 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
Rheumatoid arthritis (RA) is a chronic inflammatory disease affecting synovial joints. Thera-pies blocking tumor necrosis factor-alpha (TNFα) are now routinely used in the management of RA. However, a significant number of patients with RA do not respond or develop resistance to anti-TNF therapies, and the participation of other cytokines in RA pathogenesis has been reported as well. Lymphotoxin alpha (LTα) is the closest homolog to TNFα and has been implicated in inflammation and autoimmunity since its original description in 1968. In spite of that, little is known about the role of LTα in RA or the potential of blocking this cytokine as an alternative therapeutic approach. In this review, we aim to summarize the general features of LTα and what is currently known about its participation in RA.

Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease affecting synovial joints. Therapies blocking tumor necrosis factor-alpha (TNFα) are now routinely used in the management of RA. However, a significant number of patients with RA do not respond or develop resistance to anti-TNF therapies, and the participation of other cytokines in RA pathogenesis has been reported as well. Lymphotoxin alpha (LTα) is the closest homolog to TNFα and has been implicated in inflammation and autoimmunity since its original description in 1968. In spite of that, little is known about the role of LTα in RA or the potential of blocking this cytokine as an alternative therapeutic approach. In this review, we aim to summarize the general features of LTα and what is currently known about its participation in RA.

Lymphotoxin alpha in general
LTα, formerly known as TNFβ, was originally described in 1968 as a cytotoxic factor produced by T lymphocytes after antigenic or mitogenic stimulation [11]. Later on, in 1984, human LTα was purified from a B-lymphoblastoid cell line [12,13] and its structure was determined by classic protein-sequencing methods, making LTα the first member of the TNF superfamily to be characterized [14]. TNFα was subsequently purified, and sequence comparison and receptor competition experiments revealed that these two proteins were homologous [15,16]. Indeed, LTα is the closest homolog to TNFα.

LTα and TNFα are 30% homologous in their primary amino acid sequence, but of greater significance is the observation that the regions of major sequence homology indicated a similarity in their tertiary and quaternary structures [15]. LTα is structurally similar to TNFα: LTα is a soluble homotrimer composed of 17-kDa monomers and binds to and signals specifically through TNF receptors 1 and 2 (TNFR1 and TNFR2) to exert its biological activities.

Although LTα and TNFα have many similarities, there are some distinct molecular and biological differences [17,18]. Like TNFα, LTα binds with high affinity to TNFR1 and TNFR2 [19]. However, the N-terminus of LTα, unlike that of TNFα, resembles a traditional signal peptide, making its conversion to a soluble form extremely efficient. Thus, LTα is never found at the cell surface, a unique feature among the TNF superfamily members. LTα is anchored to the cell membrane only in association with membrane-bound LTβ, as LTαβ heterotrimers [20]. LTαβ is structurally distinct from LTα and comprises two membrane-anchored heterotrimers, the predominant LTα1β2 form and a minor LTα2β1 form,
both of which interact with the LTβ receptor (LTβR) [18,21,22]. Besides binding to TNFR1 and TNFR2, LTα binds to HVEM (herpesvirus entry mediator), a receptor discovered as an entry route for herpes simplex virus, but this binding is relatively weak [23].

LTα is expressed by CD4+ T helper type 1 (Th1) cells, CD8+ cells, natural killer (NK) cells, B cells, and macrophages [18]. LTα has specific roles in the development and function of the immune system, mainly in lymphoid organ development, organization and maintenance of lymphoid microenvironments, host defense, and inflammation [18]. However, most of the evidence pointing to these roles came from genetically deficient mice and the relevance of LTα in humans is less clear. Moreover, these mice models make it difficult to determine the relative role of LTα in these systems. This is because the LTα gene is closely linked to the TNFα and LTβ genes and targeting the LTα gene can lead to collateral damage to the neighboring genes [24]. Additionally, LTα could somehow control the expression of TNFα and the absence of LTα could interfere with the production of this cytokine. In any case, although LTα was once considered to be redundant to TNFα, the fact that the same cell types express both LTα and TNFα and that knockout mice for LTα could contribute to inflammation by the induction of chemokines. In this manner, LTα induces the expression of RANTES (regulated upon activation, normal T cell expressed and secreted) and monocyte chemoattractant protein-1 in a murine endothelial cell line [39]. Moreover, LTα contributes to lymphatic vessel functions in steady-state conditions and induces lymphangiogenesis in inflammation through mechanisms yet to be characterized [40].

LTα is required for the differentiation of NK cells and plays a role in the recruitment and antitumor activity of mature NK cells [41-43]. When inoculated subcutaneously with syngeneic B16F10 melanoma cells, LTα−/− mice develop enhanced tumor growth and metastasis in comparison with wild-type littermates. This was associated with a lower number of NK cells and with slower migration of these cells from the bone marrow to peripheral organs [44]. Established, preclinical graft-versus-host disease (GVHD) models showed that LTα contributes to the development of GVHD, the most frequent complication of allogeneic transplantation [45]. Naïve and alloreactive CD4+ T cells secrete soluble LTα after T-cell receptor stimulation. LTα participates in GVHD-mediated epithelial cell apoptosis, target organ damage, and mortality and this is mediated through TNFR1 signaling [45]. These effects were not redundant to TNFα, as GVHD patients treated with TNFRFc, which cross-reacts with and blocks LTα, have outcomes different from those of patients treated with anti-TNFα monoclonal antibody, as do patients with a chronic autoimmune disease such as RA [8].

Lymphotoxin alpha in rheumatoid arthritis

The first reports suggesting a role for LTα in RA came from an analysis in patients with RA by enzyme-linked immunosorbent assay (ELISA), reverse transcription-polymerase chain reaction, and immunohistochemistry. It has been reported that LTα levels are elevated in the
serum and the synovial tissue of patients with RA in comparison with the healthy controls or patients with osteoarthritis [6,46]. A relevant piece of evidence linking LTα to RA was provided by a case report describing an RA patient with no beneficial clinical effect after therapy with infliximab, a monoclonal antibody that specifically blocks TNFα. Interestingly, subsequent treatment of this patient with etanercept, a TNFR2-Fc fusion protein that also blocks LTα, resulted in clinical remission of the disease [8]. The different ligand specificities of etanercept and infliximab could account for the different outcomes of this patient after both treatments. Increased LTα expression has been shown in the synovial tissue of this patient [8]. These data, together with the biological similarities between LTα and TNFα, suggest that resistance to TNFα blockage may occur when TNFα is not the dominant inflammatory cytokine and that LTα may play a role in the disease. An important advancement in the understanding of the participation of LTα in RA came from a study using the collagen-induced arthritis (CIA) mouse model, the most commonly used animal model for arthritis [47]. In this model, the blocking of LTα with a monoclonal antibody significantly improved the disease [47]. The main mechanism responsible for this improvement in the CIA model appears not to be the blocking of soluble LTα but the depletion of LTα expressing Th1 and

![Diagram](image-url)
important to further characterize the relevance of LTα in play a disease-promoting role in RA [48]. It will be phages, cell types that are increased in the arthritic joint.

Acknowledgments

Arthritis; RIP, rat insulin promoter; RIPLT, rat insulin promoter lymphotoxin; other proinflammatory cytokines have been identified to contribute to the disease as well [49]. LTα can easily be placed in the context of the RA synovium as it is secreted by CD4+ Th1 cells, CD8+ T cells, NK cells, and macrophages, cell types that are increased in the arthritic joint. The fact that LTα activates RA FLs and thus may contribute to synovial hyperplasia suggests that LTα can also play a disease-promoting role in RA [48]. It will be important to further characterize the relevance of LTα in RA by detecting in vivo evidence of LTα expression in arthritic tissue, where it might exert effects such as those we reported on synovial fibroblasts.

Conclusions

TNFs is known to play a crucial role in RA, but several other proinflammatory cytokines have been identified to contribute to the disease as well [49]. LTα can easily be placed in the context of the RA synovium as it is secreted by CD4+ Th1 cells, CD8+ T cells, NK cells, and macrophages, cell types that are increased in the arthritic joint. The fact that LTα activates RA FLs and thus may contribute to synovial hyperplasia suggests that LTα can also play a disease-promoting role in RA [48]. It will be important to further characterize the relevance of LTα in RA by detecting in vivo evidence of LTα expression in arthritic tissue, where it might exert effects such as those we reported on synovial fibroblasts.

Abbreviations

CIA: collagen-induced arthritis; EAE, experimental allergic encephalomyelitis; ELISA, enzyme-linked immunosorbent assay; FLs, fibroblast-like synoviocytes; GvHD, graft-versus-host disease; ICAM, intercellular adhesion molecule; LTα, lymphotoxin alpha; NK, natural killer; PP, Peyer patches; RA, rheumatoid arthritis; RIF, rat insulin promoter; RPLT, rat insulin promoter lymphotoxin; Th, T helper; TNF, tumor necrosis factor; TNFR, tumor necrosis factor receptor.

Competing interests

Wyeth as part of Pfizer participate in the funding of a project on the effect of anti-TNF (soluble receptor and monoclonal antibodies) on LTα in rheumatoid arthritis.

Acknowledgments

We thank Wyeth (now part of Pfizer Inc, New York, NY, USA) and GERRI (Groupe d’Études et de Recherches Immuno-Rhumatologiques, Montpellier, France) for their financial support. This study was supported by contract interface number 05.524-DRV/MC/SS.

Author details

Institut de Génétique Moléculaire de Montpellier CNRS-UMR 5535, 1919 Route de Mende, 34293 Montpellier, Cedex 5, France. 1Department of Immuno-Rheumatology, Hôpital Lapeyronie, 371 Avenue du Doyen Gaveron, 34295 Montpellier, Cedex 5, France. 2University of Montpellier 1, 2 Rue École de médecine CS 59001, 34060 Montpellier, Cedex 2, France. 3University of Montpellier 2, Route de Mende, 34199 Montpellier, Cedex 5, France. Published: 26 July 2011

References

19. Medvedev AE, Espevik T, Ranges G, Sundan A: Distinct roles of the two...