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Abstract.

A key  element  in  ferroic  materials  is  the  presence  of  walls,  separating  domains  with  different

orientations of the order parameter. We demonstrate that 180° stripe domains in ferroelectric films give

rise to very distinct features in their diffuse X-ray scattering (DXS) intensity distributions. A model is

developed  that  allows  to  determine  not  only  the  domain  period  but  also  the  period  disorder,  the

thickness and roughness of the domain walls, and the strain induced by the rotation of the polarization.

As an example, the model is applied to ferroelectric/paraelectric superlattices. Temperature-dependent

DXS measurements reveal that the polarization – induced strain dramatically decreases with increasing

temperature and vanishes at the Curie temperature. The motion of ferroelectric domain walls appears as

a collective process that does not create any disorder in the domain period, whereas the pinning by

structural defects increases the wall roughness. This work will facilitate in-situ quantitative studies of

ferroic domains and domain wall dynamics under the application of external stimuli, including electric

fields and temperature.

1



1. Introduction

Domains are ubiquitous among ferroic materials and are formed during phase transitions as a necessity

to reduce the macroscopic manifestations of the order parameter (polarization,  magnetization, strain).

The  ever-growing  tendency  for  device  miniaturization  has  led  to  intense  research  devoted  to

understanding ferroic materials at the nanoscale (Gregg, 2009; Catalan  et al., 2012).  In the case of

ferroelectric thin films, in order to minimize the energy of the depolarizing field and in the absence of

an  efficient  charge  screening  mechanism  provided,  either  by  conducting  electrodes,  or  surface

adsorbates  (Junquera  & Ghosez,  2003;  Fong  et  al.,  2006),  the  arrangement  of  polarization  within

particular spatial regions,  i.e.  domains, can be energetically favourable. Among other configurations,

periodic 180° stripe domains of alternating up and down polarization (Streiffer et al., 2002; Fong et al.,

2004; Catalan  et al., 2006; Takahashi  et al., 2008) can be spontaneously formed.  The walls between

adjacent domains exhibit a different structure than the bulk material, hence different properties (Seidel

et  al.,  2009), so that,  at  the  nanoscale,  where  the  volume  concentration  of  walls  is  increasing

importantly (as predicted by Kittel's law), the walls may limit or even dominate the performances of the

materials (Catalan et al., 2012).

In contrast with what is observed in ferromagnetic materials, it has for a long time been considered that

the ferroelectric domain walls were ideally abrupt. The recent development of spherical-aberration (Cs)

corrected transmission electron microscopy (TEM) has enabled the observation of ferroelectric domain

walls with a finite extension over which the polarization progressively varies (Jia et al., 2008), or with

the local dipoles organized in vortex-like flux-closure structures, hence confining the field within the

ferroelectric film (Jia et al., 2011; Nelson et al., 2011). Piezoresponse force microscopy (PFM) is the

state of the art technique for the visualization and characterization of polar domains in ferroelectric

materials (Kanilin & Bonnell, 2001; Kanilin et al., 2010) and the latest developments in this technique

also allowed to detect vortex structures in thin ferroelectric films (Ivry et al., 2010). The occurrence of
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flux-closure vortex domain structures have been predicted theoretically in ferroelectrics (Kornev et al.,

2004;  Aguado-Puente  & Junquera,  2008;  Aguado-Puente  & Junquera,  2012).  However,  unlike  the

magnetization in ferromagnetic  materials,  the electric  polarization is  strongly linked with the local

mechanical strain and the huge ferroelastic strain associated with vortex-like structures makes them

likely to occur only in very thin films, i.e. a few nanometers only (10 to 20 nm) (Catalan et al., 2012;

Jia et al., 2011; Nelson et al., 2011) or in nanodots (Schilling et al., 2009). An additional possibility for

ferroelectric materials to minimize the depolarising field, is to reorient the polarization in directions

parallel to surfaces, as observed in freestanding films (Schilling et al., 2006) or nanowires (Schilling et

al., 2007). In the case of epitaxial thin films, because of the above mention strain-polarization coupling

this effect is strongly linked to the misfit strain: polarization rotation has been observed in PbTiO3

ultra-thin films (Catalan et al., 2006) and PbTiO3/CaTiO3 superlattices (Sinsheimer et al., 2012), both

under tensile strain conditions. A recent study has demonstrated that the presence of thin paraelectric

(SrTiO3)  layers  in  tricolor  PbTiO3 /  SrTiO3 /  PbZr0.2Ti0.8O3 superlattices  modifies  the  electrostatic

coupling between the ferroelectric layers and and a rotation of the polarization was also observed in

these systems (Lemée et al., 2015). The influence of the rotation of the polarization on the state of

strain in the ferroelectric materials is a question that remains to be clarified.

The  analysis  of  the  structure  of  domain  walls  and  polarization  –  induced  strain  is  an  extremely

challenging task, and even local probe techniques (such as PFM) are pushed to their limits. The above

mentioned  Cs-corrected  TEM,  albeit  being  probably  the  most  powerful  technique,  can  hardly  be

envisioned on a routine basis. In this work, we show that 180° stripe domains  give rise to distinct

features  in  the  diffuse  X-ray  scattering  (DXS)  intensity  profiles  of  these  materials.  While  X-ray

diffraction (XRD) is commonly used to characterize 180° stripe domains in ferroelectric films (Streiffer

et al., 2002; Fong et al., 2004; Catalan et al., 2006; Takahashi et al., 2008; Highland et al., 2014) and

superlattices (Zubko et al., 2010; Jo et al., 2011; Zubko et al., 2012; Chen et al., 2013; Lemée et al.,
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2015; Bein et al., 2015), it is mostly restricted to the determination of the stripe period. We demonstrate

hereinafter that the DXS intensity distribution can be exploited to determine the complete domain size

distribution  (domain  randomness)  and  other  nanostructural  parameters, such  as  the  domain  wall

thickness and wall roughness, and  the statistical distribution of the polarization – induced strains.  In

particular,  we  derive  a  scattering  equation  that  allows  to  model  experimental  DXS  data  and

quantitatively determine all these parameters.

As an example, we apply our modeling to ferroelectric/paraelectric superlattices (SLs) which constitute

ideal systems to analyze ultra-thin layers while keeping the overall material thickness large enough for

being electrically and structurally investigated, also offering the possibility to engineer the strain and/or

the polarization in the layer stack (Jo, Sichel, Dufresne et al., 2010; Jo, Sichel, Lee et al., 2010; Zubko

et al., 2010; Jo et al., 2011; Zubko et al., 2012; Sinsheimer et al., 2012; Chen et al., 2013; Bein et al.,

2015). These ferroelectric/paraelectric SLs exhibit 180° stripe domains (Zubko et al., 2010; Zubko et

al., 2012; Lemée et al., 2015)  since the paraelectric layers modify the electrical boundary conditions

and  induce  a  strong  depolarizing  field.  In  particular,  in  the  weak  electrostatic  coupling  regime

(Stephanovich  et  al.,  2005), each  ferroelectric  layer  in  the  stack  behaves  as  an  isolated  entity

independent from the neighbouring  ferroelectric  layers which therefore exacerbates  effects  that are

usually restricted to ultra-thin films.

2. Experimental details

We have grown tricolor PbTiO3 / SrTiO3 / PbZr0.2Ti0.8O3  (PT/STO/PZT) SLs on TiO2-terminated (001)-

oriented STO substrates using pulsed laser deposition following a procedure described by  Hubault et

al. (2011). The SLs are built from 20 repetitions of PT9/STO2/PZT10/STO2 units where the subscripted

numbers denotes the number of unit-cells (uc) in each layer of the stack.

XRD measurements were carried out from room temperature (RT) up to 900 K in air using an in-house
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designed diffractometer permitting high-resolution measurements. This diffractometer is based on a 18

kW rotating anode generator coupled with a parabolic mirror and divergence slits as primary optics,

and a Ge analyzer and receiving slits as secondary optics, combined with a scintillator counter. These

studies were performed using monochromatic Cu K radiation with a beam divergence estimated to

0.04° (full-width at  half-maximum) with a Gaussian angular distribution.  The alignment of the Ge

analyzer  (and  the  wavelength  selection)  is  performed  using  a  polycrystalline  gold  sample  as  a

reference. 

Rocking scans around symmetrical 00l reflections where achieved by varying incidence angle while

keeping a fixed 2q diffraction angle. The resulting profiles are solely sensitive to the in-plane structure

of  the  films (Pietsch  et  al.,  2004).  In  the  following,  these in-plane  DXS profiles  are  plotted as  a

function of the in-plane component  qx of the reduced scattering vector (q =  Q –  QB),  QB being the

scattering vector at the center of the Bragg peak. The x axis is normal to the ferroelectric domain walls

and the z axis is normal to the surface, Fig. 1(c).

DXS profiles recorded around the 001 and 002 reflections are displayed in Fig. 1(a). Two symmetric

satellite  reflections  are  clearly  visible  around  the  main  Bragg  peak  evidencing  the  existence  of  a

superstructure. Their position is independent on the reflection order which is characteristic of size-

induced effects, as expected from  180° stripe domains of alternating up and down polarization. The

polar  origin of  the observed superstructure is  confirmed from the fact  that  the satellite  reflections

progressively vanish upon increasing temperature and disappear at  TC, estimated to 775 K 1, as shown

in Fig. 1(b). Similar values of TC have been observed for 10 uc-thick PT films grown on STO (Fong et

al., 2006; Streiffer et al., 2002; Fong et al., 2004) and in PT10/STO10 SLs (Zubko et al., 2012) in the

weak coupling regime, suggesting that, despite the very low thickness of the STO layers in our SLs (2

uc) the ferroelectric layers are weakly electrostatically coupled (as expected in situations where the

1 The satellites reappear at their exact same location upon cooling down.
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domain size in smaller than the SL period (Stephanovich et al., 2005). This can be further confirmed by

the stripe period L, estimated to 9 nm from the satellites positions at room temperature, which is close

to the 7 nm period theoretically expected from 10 uc-thick PT films (Streiffer et al., 2002).

3. Structural model of 180° stripe domains

The presence of in-plane satellites occurring at 2p /  L can be straightforwardly explained using the

simple geometry depicted in Fig. 1(c) (Streiffer et al., 2002; Takahashi et al., 2008; Zubko et al., 2010).

However, as shown in Fig. 2(a), the scattering profile from such a simple structure exhibit multiple

satellite reflections and interference fringes that are usually not observed in actual DXS profiles (Fig.

1).  This  suggests  that  this  geometry  is  an  oversimplification  that  doesn't  capture  the  structural

complexity  of  ferroelectric  domain  structures.  We here  develop  a  structural  model  that  allows  an

accurate  description  of  DXS  profiles  from  stripe  domain  structures  and,  hence,  permits  the

quantification of key nanostructural features such as the complete domain period distribution, the wall

thickness  and  roughness  and  polarization-induced  strains.  It  can  here  be  noted  that  we  focus  on

spontaneously formed periodic structures in nanometric films which are significantly disordered as

compared to periodically-poled lateral hetero-structures in single crystals. In the present study we can

safely use the kinematical theory of diffraction. On the contrary, in high-quality periodic structures, the

kinematical theory was shown to be inappropriate and a another formalism should be used (Lyford et

al., 2015).

3.1 Morphology of the domains

The basic building block of the model is depicted in Fig. 1(c). In a 180° stripe domain structure, the

polarization varies periodically (with period  L) from an upwards to a downwards orientation. At the
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interface between two adjacent domain, there is a region (the domain wall) where the magnitude of the

polarization  strongly  varies  over  very  short  distances.  The  shape  of  the polarization  profile  is

commonly,  though  arbitrarily,  described  using  sigmoidal  functions,  like  a  hyperbolic  tangent  for

instance  (Catalan  et  al.,  2012).  In  this  work,  for  algebraic  convenience  and because  of  its  strong

resemblance with a tanh function, we choose to model the gradient with another sigmoidal function: the

cumulative Gaussian function with standard deviation  sw. With this description the thickness of the

domain wall is  d = 6sw (i.e. ±3sw)2.  The intensity scattered from such a structure can be written (the

derivation is given in Appendix 1):

I ( qx )=
sin2

( qx N Λ/ 2)

2 sin 2 ( qx Λ/2 )
e

−q x
2 σw

2

×{|F↑sinc( q x f Λ

2 ) f Λ+F↓ e
i q x Λ/2

sinc [ q x (1− f ) Λ

2 ] (1− f ) Λ|
2

+|F ↓sinc[ qx (1− f ) Λ

2 ] (1− f ) Λ+F↑ ei qx Λ/2sinc( q x f Λ

2 ) f Λ|
2

} (1)

where  F↑ and  F↓ are the structure factors from up and down domains, respectively,  f is the volume

fraction of up domains (1/2 in the absence of an electric field) and N is the number of periods in the

coherently diffracting domains. The first term on the right-hand side in Eq. 1 is due to the periodic

superstructure and gives rise to additional satellite peaks occurring at  qx =  t×2p /  L  (where  t is an

integer). The last term, within braces, is the overall envelope of the diffraction curve and it depends on

the structure factor F, the period L and the volume fraction f. It can be seen the domain wall affects the

diffraction  curve  through  a  simple  Debye-Waller  –  like  factor,  exp(-qx
2 sw

2),  which  is  actually  a

consequence of the choice of using a cumulative Gaussian to describe the polarization gradient. Fig. 2

presents the simulated 002 DXS profiles from PT/STO/PZT SLs. A typical DXS curve computed with

Eq. 1, assuming 250 nm wide coherently diffracting domains and a period L = 10 nm, is given in Fig.

2 This comes from the so-called three-sigma rule: 99.7% of the area of Gaussian function is contained within ± 3 standard 
deviations around the mean value. Since the cumulative Gaussian function is the integral of a Gaussian function, the step-
width of the cumulative gaussian function (i.e. the range over which it varies from 0 to 1) can also given by the three-sigma 
rule.
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2(a).

As  noted  earlier,  this  curve  exhibits  multiple  interference  fringes  that  are  usually  not  observed in

experimental data. One possible reason for this lack of fringes is a disorder in the domain period, the

so-called “domain randomness” (Takahashi et al., 2008). It is indeed highly unlikely that the period of

the spontaneously formed domain superstructure is exactly constant over the macroscopic dimensions

probed by the  X-ray  beam which,  in  turn,  produces  a  broadening  of  the  satellite  reflections.  The

corresponding intensity  can  be  simply  written  as  the  sum of  scattered  intensities  weighted  by  the

probability density function (pdf) of the period, pL:

⟨ I (qx) ⟩=∫ pΛ(Λ) I (qx ,Λ)d Λ (2)

Fig. 2 (a-c) illustrate the effect of increasing domain randomness, which indeed yields a broadening of

the satellite reflections and the smearing of the interference fringes (notice though that the width of the

central peak remains unchanged). The exact shape of the pdf depends on the particular type of period

disorder present in the material. Assessing the exact nature of the period disorder might be a difficult

task. In our case, it  was found that a lognormal distribution with standard deviation  sL gives very

satisfactory results. Although this choice is somewhat arbitrary, it often provides satisfactory results in

systems exhibiting  a  certain  degree  of  polydispersity  (Boulle  et  al.,  2006)  (details  concerning the

lognormal distribution are given in Appendix 2).

A previous study of the tricolour superlattices investigated here revealed that the domains walls are

spontaneously aligned with the in plane lattice vectors, hence giving rise to discrete spots in the in-

plane XRD maps (Lemée  et al.,  2015). Similar observation were made for PbTiO3 ultra-thin films

(Catalan  et  al.,  2006)  and  PbTiO3/CaTiO3 superlattices  (Sinsheimer  et  al.,  2012).  In  some  cases

however, it was found that the ferroelectric domains form isotropic ring of intensity in reciprocal space

(Streiffer et al., 2002), instead of discrete spots, pointing to randomly oriented ferroelectric domains. In
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such cases, there is an additional contribution to the broadening of the satellites which comes from the

projection of the reciprocal space intensity on the (x,z) plane, with the width of this projection being

entirely determined by the collimation of the beam along the y-direction. However, such rings were not

observed in this work so this contribution will not be discussed any further here.

3.2 Polarization – induced strain

Besides the formation of 180° stripe domains, an additional possibility for ferroelectric materials to

confine the polarization within the film is to form flux-closure domains or to reorient the polarization in

the in-plane direction3. Because of the strain-polarization coupling, the local rotation of the polarization

will necessarily give rise to significant shear strain at the interface between domains with different

orientations of the polarization (other than the strictly up/down interface). Interestingly, both situations

can be described using a unique phenomenological framework.

 Shear  strain and rigid rotations shifts  the scattering vector  QB out of its  theoretical position.  The

corresponding scattering vector is then shifted by DQB = -e QB
0, where e is the strain tensor and QB

0 is

the theoretical scattering vector without distortions. For a symmetrical reflection,  QB
0 = (0, 0,  QB,z

0)T,

the reduced scattering vector can therefore be written qx = Qx – ezx QB,z
0. The off-diagonal component ezx

of the strain tensor denotes the presence of shear strain or rotations of the lattice planes in the SL. If ezx

is randomly distributed, with a pdf pe, instead of a tilting of the reciprocal lattice point we observe a

broadening of the reflections in the Qx direction and this is direct indication of the presence of random

shear strain or random rotations (i.e. mosaicity). The total diffracted intensity finally writes:

⟨ I (qx) ⟩=∬ pΛ(Λ) pe(exz QB , z
0

) I (q x)d Λ dexz (3)

3 Since the direction of the polarization is restricted by symmetry of the material, a rotation of the polarization requires a 
change in the symmetry. For instance, the rotation away from the strict [001] direction is accompanied by a tetragonal to 
monoclinic transformation (Catalan et al., 2006; Sinsheimer et al., 2012; Lemée et al., 2015). This is further discussed in 
section 4.
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It  can  be  noted  that  with  the  definition  of  qx given  above,  the  integration  over  ezx is  actually  a

convolution operation.

The local rotation of the polarization creates a maximum shear strain  ezx
max = (uz /  x)max  dz /  x,

corresponding to the angular deviation of the (00l) planes from the growth direction, where dz is the

dimensional  change  of  the  unit-cell  along  the  [001]  direction,  x is  the  distance  over  which  the

polarization rotates and uz is the lattice displacement4. Because of the polydispersity of the ferroelectric

domains, the distance x is itself a random variable, which gives rise to a random distribution of ezx (with

pdf, pe) hence the observed broadening of the peaks. In the distribution of ezx , most unit-cells are free

of shear strain (average <ezx> = 0), whereas those close to the domain boundaries experience significant

shear  strains.  Such large deviations  of  ezx  from the average value give long tails  in  pe that can be

accounted for using Lévy-stable distributions, which arise in the framework of the generalized central

limit theorem5. Hereinafter, pseudo-Voigt functions are used to model Levy-stable distributions since

these distributions lack closed-form analytical  formula (details  regarding Levy-stable  functions  are

given in Appendix 2). Within this  model,  the tail  index  h takes values between 0 (for a Gaussian

distribution with exp(-qx
2) asymptotic behavior) and 1 (for a Lorentzian distribution exhibiting 1/qx

2

tails). Intermediate values of h correspond to intermediate tail behaviors which, hence, correspond to

different probabilities of observing high deviations from the average value for a given width of pe.

3.3 Simulations

In the present section we demonstrate how the different effects described above can be disentangled by

a careful examination of the DXS curve. The limits of the modelling are also discussed.

4 In this work we don't use the average (symmetrized) shear strain ezx = (uz/x + ux/z)/2, because this definition 
cancels rigid rotations which are indeed measured in the diffraction experiment.

5 The generalized central limit theorem is a reformulation of the central limit theorem with the condition of finite 
variance being dropped. See W. Feller et al. (1970).
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Simulated DXS curves of the 002 reflections, corresponding to 250 nm – wide coherent domains with

L = 10 and increasing domain randomness (sL = 0, 1, 3 nm), shear strain (ezx = 0, 0.1, 0.3°) and wall

thickness (sw = 0, L/12) are depicted in Fig. 2. Fig. 2 (a,b,c) illustrates the effect of increasing domain

randomness, which, as already noted in Sec. 3.1, yields the broadening of the satellite reflections and

the smearing of the interference fringes while the width of the central peak remains unchanged. Fig.

2(a,d,g) illustrate the effect of shear strain. In each panel, the three curves correspond to three values of

the tail index (h = 0, 0.5 and 1). Contrarily to what is observed with domain randomness, random shear

strain broadens the whole DXS curve (i.e. the satellites and the central peak). Both type of defects can

therefore be clearly distinguished. Increasing the tail index of the shear strain distribution significantly

modifies the shape of the central and satellite peaks and results in DXS profiles with more pronounced

profile tails.

The other panels in Fig 2 (e, f, h, i) show simulations with both the effects of shear strain and domain

randomness. This figure shows that these parameters distinctly affect the DXS which opens the way to

their determination using experimental DXS data. The red dotted curve in Fig. 2 represents the action

of the thickness of the domain wall. As expected from Eq. 1, the wall thickness affects the asymptotic

behaviour  of  the  curve.  As compared to  strain  and domain  randomness,  its  influence  is  relatively

limited  though.  In  these  simulations  we  used  the  maximum  possible  value  of  the  domain  wall

thickness,  d =  L/2 (so that  sw =  L/12) which correspond to domain walls expending throughout the

whole domain with the formation of sinusoidal polarization profiles which are predicted to occur in

very thin films (Luk'yanchuk et al., 2009).

Fig. 3 displays simulations for several 00l reflections with l increasing from 1 to 4 and various coherent

domain sizes (the other parameters being sL = 1 nm, ezx = 0.1° and h = 0.5). It is readily observed that

for small coherent domains (~ 50 nm) the width and shape of the DXS curve is largely dominated by
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finite size effects, with clearly visible interference fringes and broad curves, even at low values of l. On

the contrary, for large coherent domains,  (250 nm and above) it can be observed that size-induced

effects are negligible: the DXS curves are extremely narrow at low l values, and the width of the curves

scale with  l. With the parameters used here, the curves computed with 250 nm and 500 nm – wide

coherent domains are almost identical.

The divergence of the incident beam also contributes to the overall  broadening of the DXS curve,

through a convolution operation with the resolution function of the diffractometer. This convolution is

straightforwardly performed with Eq. 3, by adding the (Gaussian) resolution function to the Gaussian

part of the pseudo-Voigt function used to describe the strain pdf.

Finally it should be noted that structural defects having a similar influence on the DXS curve (but with

a distinct physical nature) curve cannot be distinguished using solely XRD data, or at least one single

data  set.  For  instance,  mosaicity  (random  rotations  of  lattice  planes)  produces  exactly  the  same

broadening of the DXS curve than polarization – induced strain. Disentangling these effects requires

additional information using complementary techniques or, as shown in the next section, by making use

of their distinct behaviour under the application of external stimuli, like temperature for instance.

4. Example: PbTiO3 / SrTiO3 / PbZr0.2Ti0.8O3 superlattice

Eq. 3 has been used to fit DXS data from tricolor PT/STO/PZT SLs using a generalized simulated

annealing algorithm (Boulle & Debelle, 2010). This global search algorithm allows to find the best

possible solution for a given set of parameters and data, avoiding the shortcomings of conventional

least-squares techniques associated with the presence of local minima. The results are shown in Fig.

1(a,b) as the red line. Fig. 1(a) is the simulation, with one single set of structural parameters, of both the

001 and 002 peaks recorded at room temperature. From this simulations the lateral coherent domain

size was estimated to ~ 900 nm. This value was assumed to be constant with temperature and has been
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used for all the temperature-dependent measurements.

In Fig. 4(a), we present the evolution with temperature of the relative out-of-plane component of the

polarization  deduced from the  structure  factor,  including a  fit  with a  k(1 –  T/TC)1/2 law (red line)

indicating that the SL behaves as a proper ferroelectric with a Curie temperature of  TC = 775 K, in

agreement with the observations above. Fig. 4(b) shows the evolution of the average stripe period <L>

which  decreases  with  increasing  temperature.  A similar  trend  has  previously  been  observed  in

ferroelectric-paraelectric PT/STO SLs (Zubko et al., 2012b). In Fig. 4(c), the evolution of the relative

domain randomness (sL / <L>) is plotted vs. temperature. Also plotted is the calculated evolution with

constant domain randomness (sL = 1.5 nm, blue line). From this figure it can be concluded that the

observed evolution of the relative randomness is solely due to the shortening of the stripe period upon

heating. In the particular case of our tricolour SLs it is unclear whether the observed randomness is due

to  in-plane  fluctuations  of  the  period,  or  to  fluctuations  along  the  growth direction  or  even  from

variations from the PT to the PZT layers. Nonetheless, since our computation assumes that both PT and

PZT contributes to polarization profiles, the quality of the fit indicates that domains are present in both

layers with a similar period. Moreover, the fact that no disorder in the period is created upon heating

demonstrates that the displacement of the wall is collective process.

Also plotted in Fig. 4(c) is the relative effective wall thickness (sw / w, where w = <L>/2 is the domain

size). The horizontal dotted line corresponds to the maximum possible relative wall thickness as given

by sw = L / 12. Surprisingly, at room temperature, the observed relative roughness is higher than this

value and it even increases for increasing temperature. This behaviour can be rationalized as follows:

the DXS intensity distribution in the direction normal to the wall is actually sensitive to the projected
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polarization profile along the  x axis. Therefore if the walls are not perfectly flat on the atomic level

(Fig. 4e), the projected polarization profile may also exhibit smooth variations from an up to a down

domain (Fig. 4f), in a similar fashion than thick domain walls (Fig. 4d), even if the actual thickness of

the domain walls is equal to zero. Using the cumulative Gaussian function introduced in Sec. III, the

standard deviation, noted sR, then corresponds to the root-mean-squared (rms) roughness of the walls,

<Dux()2>1/2, where  ux is the local deviation from a perfectly flat wall (Paruch  et al., 2005) and the

infinity symbol indicate that, in the direction normal to the walls, the DXS is not sensitive to short-

range correlation in the displacement difference  Dux(r). The wall thickness measured is actually the

convolution of both contributions, i.e. wall thickness and wall roughness, which leads to sw
tot = (sw

2 +

sR
2)1/2.

In 10 nm – thick PZT films, at room temperature, Cs-corrected TEM observations (Jia  et al., 2008)

revealed that, in the case of uncharged domain walls6, the wall thickness equals at most two unit-cells,

i.e. 0.8 nm, which yields to  sw = 0.13 nm (which is an order of magnitude smaller than the values

observed here).  In our SLs each ferroelectric layer are at  most 10 uc – thick.  For ultra-thin films,

theoretical work suggests that the wall thickness increases and that the polarization profile then exhibits

a sinusoidal shape. Therefore, assuming the domain walls in our SLs exhibit the maximum possible

thickness (d = L/2 or sw = L / 12) we deduce the evolution of the relative roughness (red dotted line).

Although the absolute values of the roughness are uncertain (as they depend on the assumed value of

the wall thickness) a neat relative increase is observed. This evolution is actually a manifestation of the

dynamics of the domain walls, where the increase of the roughness is due to the pinning by structural

defects during wall motion (Paruch et al., 2005; Paruch et al., 2012).

6 We here measure the 002 reflection which is solely sensitive to the out-of-plane component  Pz of the polarization,
and the corresponding measurement hence corresponds to an uncharged wall.

14



We finally focus on the evolution of the shear strain disorder, which can be quantified by the width of

the shear strain distribution  pe,  and noted  ezx in Fig. 5(a).  Upon increasing sample temperature,  ezx

decreases from 0.11° at RT to 0.05° at TC, and then remain constant. This behaviour indicates that part

of the shear strain is of polar origin and the constant part surviving above TC is the intrinsic mosaicity

of the SLs, which, as outline in Sec. 3.3, also affects the  ezx component of the strain tensor. These

results are fully reversible after heating and cooling cycles through TC. First, we note that above TC the

strain pdf is Gaussian (h = 0) and, as shown in Fig. 5(b) the deviations are closely confined around the

central value (ezx = 0). Using the cumulative distribution function (cdf) shown in Fig. 5(c), we also

notice that, at TC, the maximum shear strain experienced by the system is only ~0.09°. Conversely, at

room temperature, the strain pdf exhibits pronounced tails (h = 0.42), Fig. 5(b), and the cdf reveals that

10% of the unit-cells experience a strain higher than 0.14° with a maximum shear strain value of ~2°.

This observation could be explained by the ferroelastic strain developing at flux-closure domains. The

presence of such domains locally rotates the polarization by 90°, which exchanges the positions of the

a and c direction of the unit-cell which in turn generates huge strains at the interface between a and c

oriented domains, Fig. 5(d). Within this picture, the maximum shear strain ezx
max (calculated assuming

that the width of the closure stripes extend over half of an average domain on both sides of the wall,

i.e. x =  w  = <Λ>/2) equals 0.25° and 0.33° for PZT and PT, respectively, values which are clearly

included in the strain pdf observed at room temperature, and are 3 times higher than the maximum

shear strain observed at TC. It should be here recalled that the computed values of ezx
max depend on the

value of x, so that fluctuations in the values of x also give rise to fluctuation of ezx
max, as observed in the

strain distribution.

In addition, the rotation of the polarization vector can also contribute to the observed behaviour of the

strain. A recent  study of  tricolour  PT/STO/PZT SLs  demonstrated  (i)  the  presence  of  an  in-plane
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component of the polarization, as revealed by satellite reflections in in-plane XRD maps (pointing to

head-to-head and tail-to-tail configurations of this component), (ii) the transition from the tetragonal

phase to a monoclinic MC phase induced by the rotation of the polarization (Lemée et al., 2015). The

transition to the monoclinic phase in turn gives rise to twin domains which could be detected in the

XRD maps and an average monoclinic angle  b = 89.8 could be determined. Fig. 5(e) schematically

represents  two twin  domains  tilted  by  an  angle  2Db =  0.4°,  where  Db is  the  deviation  from the

tetragonal symmetry. Within each twin domain the configuration of the polarization accounts for the

observed DXS satellites in the present article and in the in-plane XRD maps (Lemée et al., 2015), and

the tilt angle accounts for the broadening of the DXS curve in a similar fashion to mosaicity. In Ref.

(Lemée  et al., 2015) the XRD spots emanating from the twin domains were significantly broadened

and overlapped indicating a distribution in the Db angles, as observed here (on the contrary a unique Db

angle would give rise to distinct peaks, and no broadening). Interestingly, the tilt angle between the

twin domains (0.4°) is included in the range of strain spanned by the pdf recorded at room temperature.

Both of the previous interpretations are plausible in regards of the DXS data, it is hence not possible to

disentangle the action of flux-closure strain and domain twinning using solely DXS. Although domain

twinning, induced by the rotation of the polarization, has been confirmed by complementary XRD

measurements, flux-closure strains can not be firmly ruled out without additional characterizations.

5. Conclusions

We have shown that, when studying stripe domains, DXS offers a unique way to discriminate between

morphological effects (such as the presence of domains, domain randomness and wall roughness) and

strain effects that develop around regions where the polarization has different in-plane components.

Combined with temperature-dependent measurements,  the polar contribution to shear  strain can be
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clearly distinguished from the other, non-polar, contributions (e.g. the intrinsic mosaicity of the SLs).

This  work  will  facilitate  the  quantitative  study of  polarization  – induced strains  and domain  wall

dynamics under the application of external stimuli, including electric fields; an area of research which

is witnessing an intense interest these last years for the study of ferroelectric materials (Streiffer et al.,

2002; Fong et al., 2004; Grigoriev et al., 2006; Jo, Sichel, Dufresne et al., 2010; Jo, Sichel, Lee et al.,

2010; Zubko  et al., 2010; Jo  et al., 2011; Chen  et al., 2013; Bein  et al., 2015). In the case of the

temperature-induced evolution we have demonstrated that the polarization – induced strain gradually

decreases for increasing temperature and that the pinning by lattice defects results in an increased wall

roughness. Besides, the displacement of the domain walls, required to reduce the stripe period, appears

as a collective process as no period disorder is induced during motion.

With the advent of two-dimensional detectors now commonly available at synchrotron beamlines, the

amount  of  information  accessible  by  XRD  techniques  can  be  considerably  increased,  without

increasing the measurement time (which is of particular interest for in-situ experiments). In the case of

ferroelectric domains occurring in SLs, the acquisition of full three-dimensional (3D) reciprocal space

maps allows one to probe both the evolution of the in-plane domain structure and the out-of-plane

structure of the SLs. For instance in the case domains developing along the main [100] and [010]

direction the in-plane profile is simply the product of two profiles (as given by Eq. 1) function of q[100]

and  q[010], whereas the out-of-plane intensity profile would be given by standard scattering equations

applying  to  SLs  (Pietsch  et  al.,  2004).  More  complex  situation,  for  instance  with  non-orthogonal

domains or a variation of the domain period across the thickness of the SLs might also be detected by

3D reciprocal space mapping, although the simulation of the data would require a 3D integration as

compared to the simple 1D integration performed in this work (see appendix 1).

Finally it must be recalled that XRD can not be used to identify structural defects, i.e. different defects

may may yield similar XRD curves. As with any model-dependent approach, the exact nature of the
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defects has to be determined beforehand using complementary experiments.
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Appendix 1

Scattering from a perfect and strain-free stripe domain structure

The domain structure consists of regions with alternating up and down polarization, with period L and

the relative volume fraction of up/down domains is given by f (which is equal to 1/2 is the absence of

an electric field), as schematically represented in Fig. 1(c). The spatial evolution of the polarization is

described by the function denoted y(x,a) which permits the polarization to vary smoothly from an up to

a down domain and vice versa. A possible expression for such a function is

Ψ(x , a)=Φ ( x /σw )−Φ [(x−a)/σw ] (A1)

where F is the cumulative Gaussian distribution function:

Φ ( x )=
1
2 [1+erf ( x

√2 )] , (A2)

and sw is the standard deviation, so that d = ±3sw corresponds to the wall thickness. It can be noticed

that when sw tends to 0, the shape function converges to the top-hat function, P(x,a) = 1 for 0  x  a

(0 otherwise),  which  correspond to  a  sharp  domain  wall.  With  this  geometry  the  variation  of  the

structure factor (consecutive to the evolution of the orientation of the polarization) in the direction

normal to the domain walls can be written:

F↑↓( x)= {⟨ F ↑ ⟩ Ψ ( x , f Λ)+ ⟨ F↓ ⟩ Ψ [ x− f Λ , (1− f ) Λ ] }∗∑
n=0

N−1

δ ( x−n Λ) (A3)

where N is the number of periods within a coherently illuminated region (in the present case, it turned

out that  N  50 provided a good agreement with the experimental data).  F and  F are the structure

factors corresponding to an upwards and a downwards polarization respectively. For instance if  F

correspond to a reflection with structure factor Fhkl, F is then given by Fhkl.

Since the qx-scans are performed through central peak of the SL reflection (i.e. the 0th order peak), the
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corresponding intensity profile is not sensitive to the SL structure, but only to the average structure

factor <F> of the SL, where the average is performed over the multiple layers of the SL. For an upward

polarization we hence obtain

⟨ F ↑ ⟩= xPZT F↑
PZT

+x PT F↑
PT

+xSTO F STO (A4)

where xPZT, PT, STO are the volume fractions of PZT, PT and STO, respectively (xi = ni / Sni, where ni is

the number of unit cells of each compound in a single SL period). Owing to the weak coupling regime

observed  in  our  SLs,  we  shall  assume  that  STO  exhibits  its  usual  paraelectric  structure.  For  the

calculation of the structure factor of PZT and STO, we further assume that the shifts of the Zr4+ and Ti4+

ions are identical and that the displacements of the two different type of O2- ions are the same (Jia et al.,

2007). Since the polarization, P, is directly proportional to the shift of the cations with respect to the

O2- ions, the fractional displacements are written dzTi = dzZr = dzTi
0(P/P300) and dzO = dzO

0(P/P300) (the

origin of the unit  cell  being taken on the Pb2+ ions), where  dzTi
0 = 0.039 and  dzO

0 = 0.114 are the

fractional displacements of the Ti4+ and O2- ions at room temperature, respectively (Glazer & Mabud,

1978), and P300 is the value of the polarization at 300 K.

In the vicinity  of the reflection considered the scattered amplitude along  qx can be written can be

written (Pietsch et al., 2004):

E↑↓(qx)=∫ F↑↓(x )exp(i q x x )dx (A5)

Using the expression of F↑↓ (Eq. A3) we obtain:

E↑↓( qx )=E Λ ( qx )
sin ( qx N Λ/ 2 )
sin ( qx Λ/2 )

e i q x( N −1 )Λ /2
(A6)

where 

EΛ (q x)=e−qx
2
σw

2
/2 {F ↑sinc( q x f Λ

2 ) f Λ + F↓ei qx Λ /2sinc[ qx (1− f ) Λ

2 ] (1− f ) Λ}e i q x f Λ/2 (A7)
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The first term on the right-hand side in Eq. (A6) determines the overall envelope of the diffraction

curve and it solely depends on the period  L, the thickness of the domain walls  sw and the up/down

volume ratio  f. The second term is due to the periodic structure and gives rise to additional satellite

peaks occurring at qx = t×2p / L (where t is an integer). It can be noticed that when f = 1 / m, then the

envelope function exhibits minima at  qx =  m 2p /  L, which yields the suppression of the  mth order

satellites.  Hence,  for  f =  1/2  only  the  odd  orders  are  visible.  In  a  standard  XRD experiment  the

irradiated volume is in general much larger than the coherence volume of the incident beam, so that the

recorded intensity is given by the incoherent superposition of the intensities emanating from different

coherently irradiated regions. In these regions, the occurrence of up/down and down/up domains being,

a priori, equally probable, the observed intensity is given by the average  I(qx) = ( |E|2 +  |E|2) / 2,

which finally gives rise to the Eq. 1.

Appendix 2

Lognormal, Lévy-stable and pseudo-Voigt distributions

A log-normal distribution is used to model the pdf of the stripe period:

pLN( x)=
1

√2π x σLN

exp [−1
2 ( ln x−μLN

σLN )
2

] (A8)

where the parameters mLN and sLN are related to the arithmetic mean m and standard deviation s by:

μ=exp (μLN+σLN
2 /2 ) (A9)

and

σ
2
=exp (2μLN+σLN

2 ) [ exp(σLN
2

−1)] (A10)

The average period and domain randomness are computed using the the above expressions of m and s.
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The shear strain pdf were assumed to obey a Lévy-stable distribution. There is no-closed form formula

for most Lévy-stable distribution and they are in general specified by their characteristic function. In

the case of a symmetrical distribution, Lg(x), this reads (Boulle et al., 2006):

∫ dx⋅Lγ( x)exp(iqx)=exp (iμ0 q−σ
γ
|q|γ /2) (A11)

where m0,  s and g are the mean of the distribution, its width and its shape, respectively. For instance,

when g = 2 we obtain a Gaussian distribution and s is the standard deviation. When g = 1, we obtain a

Lorentzian distribution, with heavy 1/x2 tails, and s is the full-width at half maximum. Since the lattice

planes of the SL are, on average, parallel to the lattice planes of the substrate, the mean is m0 = 0. In

order not to impair the computation times we choose not to numerically evaluate the above Fourier

transform  (Eq.  6),  and,  instead  approximate  Lg(x)  with  a  pseudo-Voigt  function,  i.e. the  linear

combination of a Gaussian function, G(x), and a Lorentzian function, L(x) : 

pV(x) = (1 – h)G(x) + hL(x) (A12)

where  h is the tail index. For  h = 0 (g = 2) the distribution is Gaussian and for  h = 1 (g = 1) the

distribution is Lorentzian. Intermediate values of h (and g  [1,2]) give rise to distribution with profile

asymptotically behaving between exp(-x2) and 1/x2. Note that for h > 1 (g < 1) super-Lorenzian profiles

are obtain with tails behaving as 1/x1+g (Boulle et al., 2006).

22



References

Aguado-Puente, P., Junquera, J. (2008). Phys. Rev. Lett. 100, 177601.

Aguado-Puente, P., Junquera, J. (2012). Phys. Rev. B 85, 184105.

Bein, B., Hsing, H.-C., Callori, S. J., Sinsheimer, J., Chinta, P. V., Headrick, R. L., Dawber, M. (2015).

Nature Comm. 6, 10136.

Boulle, A., Conchon, F., Guinebretière, R. (2006). Acta Cryst. A 62, 11-20.

Boulle, A., Debelle, A. (2010). J. Appl. Cryst. 43, 1046-1052.

Catalan, G., Janssens, A., Rispens, G., Csiszar, S., Seeck, O., Rijnders, G., Blank, D. H. A., Noheda, B.

(2006). Phys. Rev. Lett. 96, 127602.

Catalan, G., Seidel, J., Ramesh, R., Scott, J. F. (2012). Rev. Mod. Phys. 84, 119-156.

Chen, P., Cosgriff, M. P., Zhang, Q., Callori, S. J., Adams, B. W., Dufresne, E. M., Dawber, M., Evans,

P. G. (2013). Phys. Rev. Lett. 110, 047601.

Feller, W. (1970). An Introduction to Probability Theory and its Applications, New - York: Wiley.

Fong, D. D., Stephenson, G. B., Streiffer, S. K., Eastman, J. A., Auciello, O., Fuoss, P. H., Thompson,

C. (2004). Science 304, 1650-1653.

Fong,  D.  D.,  Kolpak,  A.  M.,  Eastman,  J.  A.,  Streiffer,  S.  K.,  Fuoss,  P.  H.,  Stephenson,  G.  B.,

Thompson, C., Kim, D. M., Choi, K. J., Eom, C. B., Grinberg, I., Rappe, A. M. (2006).  Phys.

Rev. Lett. 96, 127601.

Glazer, M., Mabud, S. A. (1978). Acta Cryst. B 34, 1065-1070.

Gregg, J. M. (2009). Phys. Stat. Sol. A 206, 577-587.

Grigoriev, A., Do, D. H., Kim, D. M., Eom, C. B., Adams, B., Dufresne, E. M., Evans, P. G. (2006).

Phys. Rev. Lett. 96, 187601.

Highland,  M. J., Fong, D. D., Stephenson, G. B., Fister, T. T., Fuoss, P. H., Streiffer, S. K., Thompson,

C., Richard, M. I., Eastman, J. A. (2014). Appl. Phys. Lett. 104, 132901.

23



Hubault, C.,  Davoisne,  C.,  Dupont,  L.,  Perrin,  A.,  Boulle,  A.,  Holc,  J.,  Kosec,  M.,  Karkut,   M.G.,

Lemée, N. (2011). Appl. Phys. Lett. 99, 052905.

Ivry, Y., Chu, D. P., Scott, J. F., Durkan, C. (2010). Phys. Rev. Lett. 104, 207602.

Jia, C. L., Nagarajan, V., He, J. Q.,Houben, L. , Zhao, T., Ramesh, R., Urban, K., Waser, R., (2007).

Nature Mater. 6, 64-69.

Jia, C. L., Mi, S. B., Urban, K., Vrejoiu, I., Alexe, M., Hesse, D. (2008). Nature Mater. 7, 57-61.

Jia, C. L., Urban, K. W., Alexe, M., Hesse, D., Vrejoiu, I. (2011). Science 331, 1420-1423.

Jo, J. Y., Sichel, R. J., Lee, H. N., Nakhmanson, S. M., Dufresne, E. M., Evans, P. G. (2010). Phys. Rev.

Lett. 104, 207601.

Jo, J. Y., Sichel, R. J., Dufresne, E. M., Lee, H. N., Nakhmanson, S. M., Evans, P. G. (2010). Phys. Rev.

B 82, 174116.

Jo, J. Y., Chen, P., Sichel, R. J., Callori, S. J., Sinsheimer, J., Dufresne, E. M., Dawber, M., Evans, P. G.

(2011). Phys. Rev. Lett. 107, 055501.

Junquera, J., Ghosez, P. (2003). Nature 422, 506-509.

Kanilin, S. V., Bonnell, D. A. (2001). Phys. Rev. B 63, 125411.

Kanilin, S. V., Morozovska, A. N., Chen, L. Q., Rodriguez, B. J. (2010). Rep. Prog. Phys. 73 056502.

Kornev, I., Fu, H., Bellaiche, L. (2004). Phys. Rev. Lett. 93, 196104.

Lemée, N., Infante, I. C., Hubault, C., Boulle, A., Blanc, N., Boudet, N., Demange, V., Karkut, M. G.

(2015). ACS Appl. Mater. Interf. 7, 19906.

Luk'yanchuk, I. A., Lahoche, L., Sené, A. (2009). Phys. Rev. Lett. 102, 147601.

Lyford, T. S., Collins, S. P., Fewster, P. F., Thomas, P. A. (2015). Acta Cryst. A 71, 255-267.

Nelson, C. T., Winchester, B., Zhang, Y., Kim, S. J., Melville, A., Adamo, C., Folkman, C. M., Baek, S.

H., Eom, C. B., Schlom, D. G., Chen, L. Q., Pan, X. (2011). Nano Lett. 11, 828-834.

Paruch, P., Giamarchi, T., Triscone, J. M. (2005). Phys. Rev. Lett. 94, 197601.

24



Paruch, P., Kolton, A. B., Hong, X., Ahn, C. H., Giamarchi, T. (2012). Phys. Rev. B 85, 214115.

Pietsch, U., Holy, V., Baumbach, T. (2004).  High-Resolution X-Ray Scattering: From Thin Films to

Lateral Nanostructures, Springer.

Schilling, A., Adams, T. B., Bowman, R. M., Gregg, J. M., Catalan, G., Scott, J. F. (2006). Phys. Rev. B

74, 024115.

Schilling, A., Bowman, R. M., Catalan, G., Scott, J. F., Gregg, J. M. (2007). Nano Lett. 7, 3787-3791.

Schilling, A., Byrne, D., Catalan, G., Webber, K. G., Genenko, Y. A., Wu, G. S., Scott, J. F., Gregg, J.

M. (2009) Nano Lett. 9, 3359-3364.

Seidel, J., Martin, L. W., He, Q., Zhan, Q., Chu, Y.-H., Rother, A., Hawkridge, M. E., Maksymovych,

P., Yu, P., Gajek, M., Balke, N., Kalinin, S. V., Gemming, S., Wang, F., Catalan, G., Scott, J. F.,

Spaldin, N. A., Orenstein, J., Ramesh, R. (2009). Nature Mater. 8, 229-234.

Sinsheimer,  J.,  Callori,  S.  J.,  Bein,  B.,  Benkara,  Y.,  Daley,  J.,  Coraor,  J.,  Su,  D.,  Stephens,  P.  W.,

Dawber, M. (2012). Phys. Rev. Lett. 109, 167601.

Stephanovich, V. A., Luk'yanchuk, I. A., Karkut, M. G. (2005). Phys. Rev. Lett. 94, 047601.

Streiffer, S. K., Eastman, J. A., Fong, D. D., Thompson, C., Munkholm, A., Bai, G. R., Stephenson, G.

B. (2002). Phys. Rev. Lett. 89, 067601.

Takahashi, R., Dahl, Ø., Eberg, E., Grepstad, J. K., Tybell, T., (2008). J. Appl. Phys. 104, 064109.

Zubko, P., Stucki, N., Lichtensteiger, C., Triscone, J. M. (2010). Phys. Rev. Lett. 104, 187601.

Zubko, P., Jecklin, N., Torres-Pardo, A., Aguado-Puente, P., Gloter, A., Lichtensteiger, C., Junquera, J.,

Stéphan, O., Triscone, J. M. (2012). Nano Lett., 2012, 12, 2846-2851.

Zubko,  P.,  Jecklin,  N.,  Stucki,  N.,  Lichtensteiger,  C.,  Rispens,  G.,  Triscone,  J.  M.  (2012b).

Ferroelectrics 433, 127-137.

25



Figure captions

Fig. 1. (a) 001 and 002 in-plane  qx-scans. (b) selected 002 in-plane  qx-scans for temperatures raging

between 300 and 900, with steps of 50 K (circles: experimental data; line: simulation). The curves

are shifted vertically for clarity. (c) schematic representation of the ferroelectric domain structure

with alternating up and down polarization with period L and wall thickness d. The black curve is

the polarization profile as defined in appendix A.

Fig. 2. Simulated 002 DXS profiles from PT/STO/PZT SLs computed with 250 nm – wide coherent

domains, a period L = 10 nm and varying domain randomness sL = 0, 1, 3 nm (rows) and shear

strain ezx = 0, 0.1, 0.3° (columns). In each panel the three curves correspond to increasing values

of the tail index h = 0, 0.5, 1 and the red dotted line represent the effect of the wall thickness. The

curves are shifted vertically for clarity.

Fig.  3.  Simulated  00l DXS profiles  from  PT/STO/PZT SLs computed  with  a  period  L =  10  nm,

domain randomness  sL = 1 nm, shear strain  ezx = 0.1°, tail index h = 0.5 and varying coherent

domain size: 50 nm (a), 100 nm (b), 250 nm (c) and 500 nm (d). In each panel the 00l (l= 1 to 4)

curves are plotted from bottom to top and are shifted for clarity.

Fig. 4. (a) evolution with increasing temperature of the out-of-plane component of the polarization

normalized to its value at 300 K (filled circles). The red line is a fit with k(1 – T/TC)1/2 (k = 1.3; TC

= 775 K). (b) evolution of the stripe period. (c) evolution of the relative effective wall thickness

(sw
(eff) / w) and the relative domain randomness (sL / <L>) as a function of temperature. The blue

line is the calculated evolutions assuming  sL = 1.5 nm. The black dotted line is the maximum

possible relative wall thickness. The red dotted line is the evolution of the relative roughness  sR /

w = (sw
(eff)2 -  sw

2)1/2/w. The vertical dashed line indicates  TC. The gray areas are the uncertainty

regions. (d) schematic representation of a domain wall with finite thickness d and, (e) of a rough
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wall. Both structures give the same average polarization profile along the x axis (f).

Fig. 5. (a) evolution of the heterogeneous shear strain (filled circles, left axis) and of the tail index

(open  circles,  right  axis).  The  vertical  dashed  line  indicates  TC  and  the  gray  areas  are  the

uncertainty regions. (b) shear strain pdf at RT (blue line) and at  TC (red line) evidencing the

narrowing and the suppression of the tails of the distribution with increasing temperature. (c)

shear strain cdf at RT and TC evidencing the confinement of the strain around the average value at

RT. The dotted lines correspond to an estimate of maximum shear strain in PZT and PT.  (d)

schematic representation of 180° stripe domains with flux closure domains.  The grey regions

indicate the origin of the ferroelastic strain. (e)  schematic representation twinned MC domains

with a rotated polarization.
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