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Abstract

Radiation damage in materials is a space and time multi-scale process, ranging from the atomic

scale up to the macroscopic scale, and from the femtosecond up to several years. The prediction of

the long term evolution of materials subjected to radiative environments (in the nuclear or in the

space industry, as well as in the field of microelectronics) therefore requires the combination of

several simulation and experimental techniques able to cover the different space and time scales

involved.  X-ray  diffraction  (XRD)  is  highly  sensitive  to  atomic  displacements  while  probing

macroscopic volumes of material.  In this respect it is perfectly suited for the study of radiation

damage.  In  this  work  it  is  shown  how  XRD  can  be  quantitatively  and  qualitatively  used  in

combination  with  numerical  simulations,  like  molecular  dynamics  and  rate-equation  cluster

dynamics,  to  analyze  damage  build-up  in  irradiated  SiC  and  ZrC  single  crystals.  Particular

emphasis  is  laid  on  the  methodological  aspects  of  XRD  data  treatment  in  order  to  extract

parameters such as damage-induced strain and disorder.

1. Introduction

The effects of irradiation in materials are inherently space and time multi-scale processes in the

sense that the elementary events associated with energy transfer occur at the atomic scale and last

from a few femtoseconds to a few picoseconds, whereas prolonged exposure to radiation might lead

to macroscopic consequences such as amorphization, swelling, etc [1]. In the ballistic regime, the

elementary event is the collision of an incident particle (ion, electron) with an atom of the target

material which, if the transfer of kinetic is sufficient, might leave its initial site (hence, leaving a

vacancy behind) and collide with one or several other atoms of the material  and relocate in an

interstitial position of the crystal. Most of the Frenkel pairs thereby created recombine by the end of
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the collisional events, although some of these defects may survive and agglomerate as a result of

the accumulation of such collision cascades. Complex microstructural phenomena involving defect

clustering, defect coalescence and defect migration further lead to the macroscopic consequence

above-mentioned [1]. The prediction of the long term evolution of materials subjected to harsh,

radiative  environments  (e.g. in  the  nuclear  or  in  the  space  industry,  as  well  as  in  the  field  of

microelectronics) therefore requires the combination, on the basis of physically relevant scenarios,

of several simulation techniques able to cover the different space and time scales involved [2]. In

this respect, being able to qualitatively and quantitatively confirm the computationally predicted

damage buildup mechanisms using adapted experimental techniques is of utmost importance.

On this way, an obvious choice is transmission electron microscopy (TEM), mainly because of its

atomic – scale imaging capabilities. In particular, the possibility the directly compare experimental

images with defect structure models obtained by molecular dynamics (MD) or ab-initio calculations

[3,  4]  makes  TEM  an  inevitable  tool  to  characterize  radiation  –  induced  defects.  The  main

drawback of TEM is that it is not straightforward to obtain statistically relevant measurements. It is

therefore often used in combination with techniques able to probe macroscopic volumes of material,

such as Rutherford backscattering spectroscopy in channeling mode (RBS/C) and X-ray diffraction

(XRD).

RBS/C is a popular technique among the physics of irradiation  community (mostly because RBS

requires ion beams which are obviously found at ion irradiation facilities).This technique allows to

retrieve depth – resolved damage profiles, where the damage level is quantified through the so-

called randomly displaced atom (RDA) parameter. An important limitation of RBS/C is that it is not

straightforward to establish a connection between the number of RDAs and actual structural defects

(although a recent study aimed at lifting this limitation by modeling RBS/C spectra on the basis of

more and more realistic atomic structures [5]).

XRD does not suffer from this limitation and it has been used for several decades to quantify strain

and disorder in irradiated or implanted materials [6-14]. X-ray diffractometers are easily found in

almost any laboratory and the different theories describing XRD in crystals with defects are well

established since the 1970s. Despite this, there have been only a few attempts to combine XRD and

numerical simulation for the study of radiation damage. For example, Cherkashin  et al. [15] and

Rieutord et al. [14] respectively used finite element modeling and ab initio calculations to interpret

XRD – derived lattice strain. Nordlund et al. [16] and Olsen et al. [3] made use of diffuse X-ray

scattering combined with MD to identify radiation – induced defects in Si and Ni, respectively.

In this work we review our recent effort to combine XRD and numerical simulation for the study of

radiation damage in ion irradiated single crystals. Although part of the results presented here have

already been published elsewhere [17-19], in the present work we emphasize on the methodological
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aspects which were not detailed in our previous publications and, because of space limitations, are

often overlooked in scientific publications although this information is usually crucial to reproduce

results by other researchers. The theoretical background is briefly recalled in section 2; section 3 is

devoted  to  a  detailed  description  of  the  essential  steps  required  for  XRD data  acquisition  and

simulation. Finally, section 4, through the examples of irradiated SiC and ZrC, details how XRD

can be used in combination with MD and rate – equation cluster dynamics (RECD) to determine the

damage build-up mechanisms.

2. Theoretical background

The scattering from large perfect crystals is best described by the dynamical theory of diffraction

[20]. In the case of  distorted crystals, the dynamical theory is  much more difficult to implement.

Nonetheless, in the case of a slowly varying strain distribution, the Takagi – Taupin equations [21,

22] allow to compute the scattered intensity, and a simple recursive algorithm [23] can be used

when the strain variation is confined in one dimension. Another possible approach is to make use of

the kinematical theory of diffraction which, as compared to the dynamical theory, neglects multiple

scattering and is therefore valid for weakly diffracting, disordered or nanoscale materials. 

In a disordered crystal, each atom, with initial coordinate r, is displaced by some vector u(r). The

amplitude scattered by the crystal  is  obtained by adding the amplitudes scattered by individual

atoms  (via the  atomic  scattering  factor,  f)  taking  into  account  the  phase  shift  induced  by  the

difference in beam path between the waves scattered by different atoms [24]:

E(Q)=∑
j=1

N

f j(Q)exp {Q [r j+u (rj) ] } (1)

where Q is the scattering vector and Q = 4π sin(θ) / λ, θ being half the scattering angle and λ the x-) / λ, θ) / λ, θ being half the scattering angle and λ the x- being half the scattering angle and λ the x-

ray wavelength.

It is convenient to separate the displacement vector into a random component,  δu(r) and a non

random component:

u (r)=∇ u(r)⋅r+δ u(r) (2)

where ∇u(r) is the Jacobian of the displacement (or the displacement gradient tensor):

∇ u=(
∂ux /∂ x ∂ux /∂ y ∂ux /∂ z
∂u y/ ∂ x ∂u y /∂ y ∂u y /∂ z
∂u z /∂ x ∂uz / ∂ y ∂uz /∂ z

) (3)

For  brevity,  in  the  following we should refer  to  this  tensor  as  the strain  tensor,  although it  is

important to note that in contrast to the actual strain tensor, e = (∇u + ∇uT) / 2, the displacement

gradient tensor includes rigid rotations,  i.e. the off-diagonal components contain both shear strain

and rigid rotations.

In the case of irradiated materials, the displacement is in general a sole function of the coordinate
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perpendicular to the surface, noted z, whereas in the in-plane directions (x,  y) the displacement is

statistically  homogeneous, so that the scattered radiation is actually  an average over the atomic

displacement probability distribution function. The quantity measured in an actual XRD experiment

is the intensity

⟨E E*⟩=⟨ E⟩ ⟨E*⟩+ ⟨ (E−⟨E ⟩ ) (E*−⟨E*⟩ ) ⟩ (4)

where the fist term on the right hand side of the equation is the coherently diffracted intensity, Icoh,

and  the  second term corresponds  to  the  diffuse  scattering  intensity,  Idif,  which  are  respectively

written:

I coh(Q)=|∑j f j(Q) ⟨exp [ iQδu (z j) ]⟩ exp {i [Q∇ u ( z j) ]⋅rj}exp (iQ⋅rj )|
2

(5)

I dif (Q)=∑
j
∑
k

f j (Q) f k
*
(Q)×( ⟨exp {iQ [δ u ( z j)−δ u ( zk )] }⟩−⟨exp [iQ δ u (z j )] ⟩ ⟨exp [ iQδ u (zk) ] ⟩)

×exp {i [Q∇ u( z) ]⋅( rj−rk ) }exp [ iQ⋅(rj−rk ) ]

(6)

In equation (5), the exponential in angular brackets is the Debye-Waller (DW) factor and yields a

lowering  of  the  diffracted  intensity  [24].  The  second  exponential,  containing  the  displacement

gradient, yields a shift of the XRD peak. Equation (5) shows that the analysis of the diffracted

intensity distribution allows to determine (i) the depth-resolved strain profile,  ∇u(z), and (ii) the

depth-resolved damage profile quantified by the DW factor. The DW factor lies in the [0,1] range,

where 1 corresponds to a perfect crystal, and 0 corresponds to a fully damaged crystal. It should be

noted that the DW factor is a function of Q and it is, therefore, not an absolute measure of lattice

disorder. Instead, it provides a convenient quantitative comparison of lattice damage in different

samples, provided that the same lattice planes are probed in the XRD experiment.  This will be

further discussed in the next sections.  The analysis  of diffuse scattering,  equation (6), provides

information regarding the nature and the density of the defects [6-8]. Equation 6 is here given for

completeness but it will not be discussed any further in the present article.

3. Methodology

3.1 Data acquisition

As the strain and damage profiles are retrieved by the simulation of XRD data (see section 3.2), the

reliability of the result is tightly linked to the quality of the data. Below, we recall important aspects

connected to data collection.

Choice of the diffractometer.

The key feature that allows to retrieve the actual strain/damage profiles from the diffracted intensity

is the existence of interference fringes which must, hence, be clearly resolved in the experimental
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data. In the case of low strain levels and large irradiation depth (µm scale), the interference fringes

will be narrow and closely-spaced so that high-resolution is mandatory to resolve the interference

features.  A diffractometer with a parallel  beam delivered by a 4-reflection monochromator and,

optionally, a crystal analyzer is perfectly suited in such a case.

On  the  contrary,  in  the  case  of  high  strain  levels  and  low  irradiation  depth (nm  scale),  the

resolution conditions can be relaxed in order to enhance the beam intensity. Typically a 1- or a 2-

reflection monochromator combined with a slit-based point detector or a position sensitive detector

is well suited for such cases.

Intermediate cases will require individual testing. In any case, the resolution of the diffractometer

should be measured by recording data  from a pristine crystal  (this  quantity  is  required for the

simulation).

Crystal alignment

The diffractometer should be equipped with an Eulerian cradle (or an equivalent combination of

rotations) that allows to precisely align the sample in the three dimensions. In particular, since the

width of the intrinsic rocking curves of perfect single crystals is in general of the order of a few

thousandths of degrees wide, a misalignment of a few 0.001° is sufficient to produce large errors in

the intensity of the Bragg peak from the unirradiated region of the crystal.  On the contrary, the

rocking-curve  of  the  damaged  area  is  in  general much  wider  and  is  hence  less  sensitive  to

misalignment errors. Therefore, even a small misalignment of ~0.001° leads to an overestimation of

the intensity scattered from the damaged region as compared to the Bragg peak, which may result in

dramatic errors in the DW factor.

Scanning range

Finally, attention must be paid to the scanning range of the θ) / λ, θ being half the scattering angle and λ the x--2θ) / λ, θ being half the scattering angle and λ the x- scans. The area around the Bragg

peak should be scanned wide enough to include all the scattering from the damaged region, i.e. the

recorded  intensity  should  reach  the  background  level  on  both  sides  of  the  Bragg  peak  (this

information is also required for the simulation).

3.2 Data simulation

The strain and damage profiles can be retrieved by simulating the XRD data using the RaDMaX

program [25]. The underlying theoretical principles and the program itself have been presented in

details elsewhere [25,26] and will therefore not be recalled here. Instead, we provide a detailed step

– by – step description  of the program usage,  with the aim of guiding users in the simulation

process. As an example,  we here make use of the case of an irradiated (cubic yttria-stabilized)
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zirconium oxide  crystal;  the  corresponding  data  can  be  found  in  the  “Example”  folder  of  the

RaDMaX program, details regarding the sample were given in [26]. For each simulation step, the

XRD curves are plotted in Fig. 1(a) along with the experimental data. The XRD data exhibit an

intense peak on the high angle side corresponding to the diffraction from the unirradiated region of

the crystal underneath the damaged region. An additional signal with neatly resolved interference

fringes  extends  towards  the  low angle  region  indicating  the  existence  of  a  dilatation  gradient

originating from the damaged region. Fig. 1(b,c) display the evolution of the strain and DW profiles

for each step.

Step 1: adjusting the diffractometer and material parameters

After  loading  the  data,  the  parameters  of  the  diffractometer  have  to  be  adjusted  to  match  the

diffractometer characteristics:

- The wavelength, e.g. λ = 1.5406 Å

- The shape and width of the resolution fucntion of the diffractometer, which have been obtained by

fitting the data from a virgin crystal with a bell – shaped function. Usual shapes such a Gaussian, a

Lorentzian and a pseudo-Voigt function are available. This parameter may also serve to account for

imperfect single crystals which might exhibit  broad peaks. For instance,  in the next section we

address the case of ZrC which features unusually broad and asymmetric Bragg peaks. This has been

accounted for using an asymmetric pseudo - Voigt function (split pseudo - Voigt). In the present

example the function is a Gaussian and the width is 0.013°.

- The background level: it is obtained from the minimum intensity observed in the experimental

data, provided that it has been scanned wide enough (see previous section). A value of 5×10-6 here

gives a satisfactory result.

The material parameters have to be adjusted to match the crystal being analyzed:

- The nature of the crystal (ZrO2)

- The Miller indices of the reflection (400).

- The symmetry and lattice parameters of the crystal (cubic,  a = 5.1456 Å). The lattice parameter

can  be  fine-tuned so  that  the  peak  position  of  the  simulated  curve  exactly  corresponds  to  the

experimental data. This step is crucial since the Bragg peak of the unirradiated region of the crystal

serves as a reference for the strain (position) and for the DW factor (intensity).

- step 2: adjusting the strain level

The default strain value (1 %), Fig. 1(b), is too high and the diffraction peak of the damaged region

extends outwards the actual angular range. Reducing the value to 0.55 % allows the simulated peak

to match the position of the experimental data, see curve (2). The position of the unirradiated region
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is used as a reference, and the strain values are therefore given relatively to the lattice parameter of

the virgin crystal. It should be noted that in the present case, both the strain and damage profiles are

constrained to smoothly converge to the values of the virgin crystal (0% and 1, respectively).

- step 3: adjusting the damage thickness

Curve (2) in Figure 1(a) shows that the simulated curve exhibits too much fringes as compared to

the  experimental  data.  The  fringe  spacing  is  due  to  the  beam path  difference  between  waves

scattered by regions of constant strain; hence, because of the reciprocal relation between real and

reciprocal spaces, narrow spaced fringes indicate a large damage thickness. In the present case, the

latter was decreased from 3500 Å to 2000 Å, see curve (3). It is in general recommended to have

one or two additional fringes in the simulation,  i.e. to slightly overestimate the damage thickness.

This  is  necessary to  ensure the  convergence  of  the  fitting  procedure  (the  overestimation  being

compensated by the shape of the strain/damage profile).

- step 4: adjusting the damage level

The default value of the DW factor (1) yields an overestimation of the intensity of the damaged

region. Reducing its value to 0.55, Fig. 1(c), allows to lower the intensity, see curve (4).

- step 5: tuning the shape of the strain profile

A closer examination of curve (4) shows that the width of the fringes located at the smallest 2θ) / λ, θ being half the scattering angle and λ the x-

values (hence corresponding to the largest  strain) is significantly smaller than the experimental

fringe. Considering the previous argument regarding the fringe spacing, this difference indicates

that the region of maximum strain is too broad. Manually reducing the width of this region, Fig.

1(b), allows to get a very good starting point for the simulation, curve (5). It can be noted that this

requires to also increase the DW factor. For this step it can be useful to consider complementary

data (obtained by RBS/C or SRIM simulations) in order to adjust the shape of the strain profile.

Such strain profiles can be directly imported in RaDMaX.

To compute the scattered intensity, the irradiated region is numerically divided into slices [26]. The

number of slices should be chosen high enough in order not to degrade the shape of the computed

curves and low enough in order not to prohibitively increase the computation time. In the present

case, 80 slices provided good results, which (given the 200-nm damage thickness) corresponds to a

depth resolution of 2.5 nm.

Finally, the shape of the strain/damage profiles is controlled with the number of basis (B-spline)

functions that are used. This number should be high enough to render all the details of the actual

strain/damage profiles, but not too high, otherwise, unphysical oscillations may appear during the
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fitting procedure. In the present case, it was set to 8.

- step 6: fitting

Given that the guess strain/damage profiles obtained in the previous step are probably very close to

the  final  solution,  a  simple  least-square  fitting  allows  to  obtain  this  latter,  see  curve  (6).  The

resulting strain and damage profiles are given as full lines in Fig 1 (b,c), respectively. It can be

noted that the DW profile exhibits oscillations in the region of maximum damage. This is a general

feature that reflects the uncertainty of the fitting induced by the unavoidable noise in the data. In

general, such oscillations are not observed in the strain profiles which are more dependent on the

location and width of the fringes and less on the absolute intensities, contrary to the DW factor

(equation 5).

Finally,  in  the  case  where  no  good guess  strain/damage  profiles  can  be  obtained by manually

tweaking  the  profiles,  one  can  make  use  of  the  a  generalized  simulated  annealing  algorithm

implemented in RaDMaX. This algorithm randomly explores the parameter space so as to look for

the best possible solution. A direct drawback is that this results in much longer computing times,

and finding the solution might require to launch the fitting procedure several times.

3.3 Comments on the shape of the strain profiles

Contrarily to what is sometimes stated in the literature, it is possible to retrieve the true shape and

absolute position of the strain profiles. This is illustrated in Fig. 2.

Fig. 2(a) shows simulated curves with the same symmetrical strain depth-profile located at different

depths  below  the  surface.  It  can  be  observed  that,  whereas  the  envelope  remains  roughly

unchanged, the fine structure of the fringes changes significantly. In particular, when increasing

depth, a high frequency signal appears as a modulation of the envelope. This signal comes from the

interference between the waves scattered by the (unstrained) substrate and the (unstrained) region

present at the surface.

Similarly, Fig. 2(b) shows a same asymmetrical strain profile but with two different orientations. As

above, when the low strain tail extends towards the surface, it gives rise to interferences with the

waves  scattered  by  the  underlying  pristine  crystal,  which  in  turn  results  in  an  additional  high

frequency signal.

In order to be able to retrieve such features, high quality experimental data is required (high signal -

to - noise ratio, high resolution and well aligned samples) and the simulation has to be close to

perfect in order to match the fine features of the data. Even in the case of a perfect fit, the validity

of the results should be crossed-check with a complementary technique. In any case, a poor fit will

yield unreliable strain/damage profiles.
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4. Examples

4.1 Molecular dynamics and XRD: strain and damage in irradiated SiC

The radiation resistance of SiC has been investigated for decades because of the potential of this

material in several applications in the nuclear industry and for high-power and high-temperature

electronics.  Here,  we  focus  on  our  previous  study  of  (001)-oriented  3C-SiC  single  crystals

irradiated with 100 keV Fe+ ions [17]. Because of the high strain levels observed in this materials

along with small irradiated thickness, an intense incident X-ray beam was required, so that the XRD

experiments were carried out using synchrotron radiation at the BM2 beamline of the European

Synchrotron Radiation Facility (Grenoble, France).

The simulation of the 002 and 004 θ) / λ, θ being half the scattering angle and λ the x--2θ) / λ, θ being half the scattering angle and λ the x- scans of 3C-SiC are shown in Fig 3(a,b), respectively. The

resulting strain and DW profiles are given in Fig. 3(c,d). The simulations are close to perfect so that

the strain and damage profiles can be confidently considered as reliable. This is further confirmed

by the fact that the strain profiles resulting from the independent simulations of the 002 and 004

reflections almost perfectly superimpose. The damage region extends over 120 nm with a maximum

damage located ~ 30 nm below the surface. With increasing fluence (expressed in displacements

per atom, dpa) the level of strain increases, reaching values as high as 8.5 %, whereas the DW

factor decreases, indicating an increase of the lattice disorder.

Results of the accumulation of 10 keV collision cascades in a box containing 40 000 atom [27]

were analyzed. Additional simulations were conducted using Frenkel pair accumulations (FPA) in a

simulation box with 14 000 atoms following the methodology introduced in  [28]. Because of the

limited  size  of  the  MD  simulation  cells  (9×9×9  and  6×6×6  nm3 for  CC  and  FPA  methods,

respectively) imposed by the computing capabilities, it is not directly possible to compute strain and

damage profiles. However, since the strain and DW profiles retrieved from the simulation of XRD

data are spatially resolved with a resolution of 2.5 nm, it is possible to compute the average strain

and DW in regions with sizes comparable with the MD simulation cells.  We here consider the

evolution in a 10 nm wide region around the depth of maximum damage (~ 30 nm).

In order to extract the strain and DW from the MD cells, the MD data has been used to generate

“powder diffraction” data using the Debye scattering equation [24]:

I (Q)=∑
n
∑
m
fm f n

sin (Qrmn )

Qrmn
(7)

where rmn is the distance between all pairs of atoms. The calculation has been performed with the

Debyer program (https://debyer.readthedocs.io/). The resulting calculations for selected fluences are

given in Fig. 4. With increasing fluence, the diffraction peaks of SiC are shifted towards lower
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values of the scattering vector, indicating the development of a tensile strain. Concomitantly, the

intensity of the Bragg peaks is lowered, which indicates an increase of the lattice disorder which, in

the case of SiC, corresponds to the amorphization of the material. Focusing on the 004 reflection,

the corresponding strain and DW can respectively be obtained with:

e zz=
d−d 0

d 0

(8)

DW =√
I
I 0

(9)

where the d is the lattice spacing, I is the integrated intensity (i.e. the area) of the diffraction peak

and the subscript 0 denotes the unirradiated crystal. The square root in equation (9) originates from

the fact that the DW factor is defined using the diffracted amplitude, whereas the quantity measured

here is the intensity. The lattice spacing is related to the scattering vector via Q = 2π / d.

The  evolution  of  the  volume swelling  (i.e. 3  times  the  linear  strain  corrected  for  the  Poisson

expansion induced by the unirradiated region [17]) and of the DW with fluence using XRD data and

MD data are displayed in Fig. 5. For both parameters, a remarkably good agreement is obtained

between XRD and MD, especially taking into account the fact that no fitting parameter is used here.

This  good  agreement  provides  a  direct  experimental  validation  of  the  amorphization  scenario

predicted by MD simulations. More specifically, the analysis of the data using a direct-impact /

defect-stimulated model [17] reveals that the formation of amorphous cluster is dominant starting

from 0.1 dpa, which corresponds to the saturation of elastic energy of the system; in other words,

the  relaxation  of  the  elastic  energy  associated  with  distorted  clusters  is  the  driving  force  for

amorphization.  Above 0.15 dpa the agreement  between MD-derived and XRD-derived strain is

much less satisfactory; this is most likely due to a known limitation of the interatomic potential that,

as  the  atomic  distances  deviate  significantly  from  the  perfect  crystal,  underpredicts  the

experimentally measured swelling of the amorphous [29]. This is further discussed in [17].

Let us now focus on the DW factor. According to equation (6), for a 00l reflection the DW factor is

defined as follows:

DW= ⟨exp [iQz δuz ] ⟩=∫d δuz⋅p(δ uz)exp ( iQ z δuz ) (10)

where the averaging is performed over the probability distribution function (pdf) of the random

displacements, p(δuz). As already mentioned in section 2, the DW factor is a function of the vector

Q, so that investigating different  hkl reflections result in different values of DW. This is indeed

observed in Fig. 3(d) where the DW factor of the 004 reflection is systematically lower than the

value derived from the 002 reflection. Acording to equation (10) this dependence can be used to

derive the function  p(δuz) and further determine a damage value that can be used as an absolute
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metric of disorder using XRD data.

The  random displacement  distribution  is  often  assumed  to  be  Gaussian-shaped.  In  the  case  of

thermal disorder, lattice dynamics in the isotropic harmonic regime predicts a Gaussian distribution

[30]  which  gives  rise  to  the  well-known  result  DW =  exp(-  Q2  <u2> /  2).  However,  such  a

description  is  not  suited  to  describe  the  disorder  induced  by  collision  cascades  in  irradiated

materials.  Indeed, the  process  of  energy dissipation  of  low-velocity  projectiles  leads  to  atomic

disorder that is due to both atoms close to equilibrium lattice sites and atoms significantly displaced

from a regular site. This situation, where some displacements are statistically much larger than the

“average”  displacement,  are  known as  Lévy  flights  [31].  Assuming  that  p(δuz)  can  indeed  be

described by a Lévy-stable distribution, the DW factor can be written [18]:

DW=exp(−1
2
|Q|

γ
σu

γ) (11)

where  γ  (0,2] is the tail index that determines the shape of the distribution: γ = 2 corresponds to

the Gaussian distribution, and distributions with γ < 2 exhibit heavy tails (asymptotically behaving

as ~ 1/|u|1+γ), like for instance the Lorentzian distribution (γ = 1) [31]. σu is the characteristic width

of  the  distribution  [32],  whose  definition  varies  depending  on the  value  of  γ;  for  instance,  it

corresponds to the standard deviation for γ = 2, and to the full-width at half-maximum for γ = 1.

These parameters can be derived from the experimentally derived values for the 002 and the 004

reflections:

σu=[2 ln(DW 002)−ln (DW 004)

|Q004|
γ
−|Q002|

γ ]
1 /γ

=[2 ln(DW 002)−ln (DW 004)

|Q002|
γ
(2γ

−1) ]
1 /γ

(12)

γ=
ln [ ln (DW 004) ]−ln [ ln(DW 002)]

ln|Q004|−ln|Q002|
=

ln [ ln (DW 004) ]−ln [ ln(DW 002)]
ln(2)

(13)

Unfortunately there is no general closed-form formula of the Lévy-stable distribution, so that it has

to be generated numerically using a pseudo – random number generator [33]. The result of Eqs.

(12) and (13) is displayed in Fig. 6(a) for several fluences. It can be observed that for increasing

fluence, not only the width of distribution increases (indicating the overall increase of disorder), but

also the tail of the distribution increases (indicating that the probability of Lévy flights increases).

From  these  distributions,  an  absolute  measure  of  disorder  can  be  derived,  for  instance  by

determining the fraction of atoms undergoing a displacement larger than a given threshold distance

dth:

f D
XRD

=∫
dth

∞

d δu z⋅p(d δ uz)=1−∫
0

dth

d δu z⋅p(d δ uz) (14)

This equation corresponds to the complementary cumulative distribution function (1 – cdf) and is
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plotted  in  Fig.  6(a).  The  damage  fraction  can  be  directly  determined  from the  figure  for  any

threshold value. The corresponding value for a threshold distance equal to the size of the unit-cell is

given in Fig. 6(b). For the sake of comparison, the loss of long-range order determined by Gao &

Weber [27] using the same data as that presented above (i.e. MD-CC calculations) is also displayed.

A  remarkable  agreement  between  both  evolutions  is  observed,  which  not  only  validates  the

relevance of the XRD-derived disorder parameter but also provides an experimental validation of

the MD simulations.

4.2 Rate equation cluster dynamics and XRD: strain profiles in irradiated ZrC

In the case of SiC, because of the limitations imposed by the size of the MD cells, the discussion

was limited to the evolution of strain and DW at a fixed depth. However, meaningful information

can be further obtained from the analysis of the whole depth – profile. This is discussed in the

present section in the case of irradiated ZrC crystals.

(001)-oriented ZrC crystals were irradiated with 1.2 MeV Au+ ions as described in details elsewhere

[34].  X-ray  diffraction  experiments  were  conducted  on  a  high-resolution  laboratory  equipment

operating with the CuKα1 radiation of copper (λ = 1.5406 Å) [34]. It is important to note that the

quality of the crystal is not optimal  (with several large crystals disoriented with respect to each

other) which results in poorly resolved interference fringes in the experimental data, Fig. 7(a). For

this reason, it was not possible to achieve perfect simulations; as a consequence, absolute values of

strain and damage will not be discussed here. Instead, we shall focus on the relative evolution of the

strain depth-profile with fluence. As mentioned in section 3, the Bragg peak of the pristine crystal

(not  shown here)  exhibits  an  unusual  asymmetric  shape  which  is  also  visible  in  the  irradiated

crystals. Although the exact origin of this asymmetry is not established, it is likely connected with

the  poor  crystal  quality.  More  importantly,  this  asymmetry  has  been  successfully  modeled  by

convoluting  the  calculated  curve  with  an  asymmetric  pseudo-Voigt  function  in  the  RaDMaX

software.

The strain depth-profiles retrieved from the simulations are given in Fig. 7(b). At first glance, the

resulting evolution of the profiles looks more complex than the evolution observed in SiC. Let us

consider the evolution of the strain at a given depth, say 200 nm. The level of strain first increases

between 0.085 and 0.14 dpa, and then drops to smaller values when increasing the fluence further.

It  can be noticed  that  this  strain relaxation  phenomenon is  initiated  at  the damage-peak initial

location and then propagates deeper below the surface,which results in a shift of this peak towards

larger depths.

Interestingly, this phenomenon is observed for a variety of materials which do not amorphize under

irradiation, like ZrO2, UO2 and MgO [19]. In the case of UO2 for instance, this strain relaxation has
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been ascribed to the transformation of dislocation loops into a tangled network of dislocation lines

[35]. Indeed, whereas dislocation loops produce homogeneous strain (i.e. a uniform dilatation of the

lattice), lines induce essentially heterogenous strain (i.e. localized and randomly distributed strain).

In the XRD data this effect is clearly visible since peak shifted is replaced by peak broadening [36].

We  recently  conjectured  that  this  mechanism  could  be  extended  to  other  non-amorphizable

materials where strain relaxation is observed.

In order to confirm this hypothesis and to reproduce the depth-resolved strain relaxation observed in

ZrC, we conducted rate-equation cluster dynamics simulations using the CRESCENDO code [37]

to obtain  quantitative  depth  profiles  of the defect  populations  (which is  not  possible  with MD

techniques). This code computes the evolution of the population of vacancy and interstitial clusters

through their  creation by irradiation  and growth or  shrinkage by emission or  capture  of  single

defects. We used the 1D version of the code which considers homogeneous slices of the material

parallel to the irradiated surface allowing exchange of mobile clusters between adjacent slices. The

properties  of  point  defects  in  ZrC,  i.e. their  formation  and migration  energies  as  well  as  their

tendency to cluster  were obtained from  ab initio density  functional  theory calculations  [34].  It

should  be  noted  that  the  complete  reproduction  of  the  microstructure  evolution  of  irradiated

materials is a tremendous task because of the complexity and imbrication of the various phenomena

taking place as well as the number of microstructural features one would have to consider. Thus, in

order to apply the RECD framework to ZrC we made some simplifying assumptions which are

discussed in details elsewhere [19,34]. The resulting depth resolved interstitial cluster concentration

(at an ion fluence of 2×1015 ions/cm2) is given in Fig. 8(a), for selected cluster sizes. It can be

observed that the larger defect clusters are  located close to the surface, whereas small defects are

more deeply buried below the surface.

In ZrC it has been shown that vacancies are immobile at room temperature, and they remain as

monovacancies. On the contrary, interstitials are highly mobile and immediately tend to cluster to

form dislocation loops [38]. The elastic strain can hence be computed from defect concentration

profiles from:

e( z)=N V( z)V V
rel
+∑

L
N L( z)ΔV L (15)

where  NV(z) and  NL(z) are the depth resolved concentrations of vacancies and loops respectively.

VV
rel is the relaxation volume of vacancies, which is -0.1 atomic volume (Ω) in ZrC [19]. ΔVL is the

swelling induced by a dislocation loop. It is a function of the burgers vector, the loop size, the loop

orientation, etc. However, in the present case since we are not seeking to reproduce the exact value

of strain, we only consider (100) loops, so that the swelling is simply equal to the atomic volume

times the number of interstitials in the loop. In order to mimic the transformation of dislocation

loops into lines, we introduced intrinsic dislocation lines in the simulation box and we forced the
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loops to be integrated into the dislocation line network everytime the two species went in contact.

The computed strain profiles are displayed in Fig. 8(b). One can note a discrepancy regarding the

depth scale (which is most likely due to the fact that the defect source term is fixed from SRIM-

computed dpa profiles and the fact that defect clusters were assumed to be immobile [19]). On the

contrary, the calculated strain values are close to those determined by XRD and above all, the two-

step process of the strain evolution is very well reproduced: the initial strain buildup is followed by

a strain relaxation mechanism which is initiated at the strain peak, i.e. where the largest defects are

formed. Those defects are more likely to react with pre-existing dislocations in the crystal to form

dislocation lines, hence the observed drop in the strain level in this region. With increasing fluence,

the size of defects deeper in the irradiated layer e progressively increases which increases their

probability  to also transform into dislocation lines,  leading to a  progressive strain relaxation at

larger depths.

5. Conclusions

XRD is a powerful tool to characterize the defect structure in irradiated crystals. Although the most

exhaustive information is obtained from the analysis of the completed scattered intensity (coherent

and diffuse scattering),  the analysis  of the coherent  scattering obtained from simple  θ) / λ, θ being half the scattering angle and λ the x--2θ) / λ, θ being half the scattering angle and λ the x- scans

already provides a wealth of information, especially regarding strain and in disorder. Provided that

high-quality  data  is  recorded  (high  signal-to-noise  ratio  and  sufficient  resolution  to  resolve

interference fringes), the absolute shape of depth – resolved strain and disorder profiles can be

retrieved.  Benefiting  from the  high  spatial  resolution  (a  few nm,  depending  on the  simulation

parameters), these strain and disorder profiles can be quantitatively compared with results obtained

by  atomic  scale  simulations,  such  as  MD  simulations,  and  hence  confirm  damage  build-up

scenarios.  We have also shown that  meso-scale  simulations,  like  RECD for  instance,  allow to

compute  depth  – resolved strain profiles  that  can  be used in  one – to  – one comparison with

experimental XRD results. In this latter example, a strain – relaxation mechanism involving the

transformation of dislocation loops into dislocation lines has been evidenced. 
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Figure captions

Figure 1: (a) the different steps of the simulation of the 004 reflection of an irradiated ZrO2 crystal

(gray circles: experimental data; colored lines: simulation). The curves labeled (1) to (6) correspond

to the different  steps outlined  in the text.  The data  are offset  vertically  for clarity.  (b) and (c)

respectively correspond to strain and DW profiles for each simulation step, using the same color

coding as in (a). The final simulation results are shown as a solid line.

Figure 2: simulated XRD profiles of the 004 reflection of ZrO2 corresponding to the strain profiles

displayed in the inset. (a) The strain profiles only differ by the position of the maximum strain. The

red,  green and blue curves  correspond to an increased depth below the surface.  (b) The strain

profiles have the same shape but a reverse asymmetry.

Figure 3:  the 002 (a) and 004 (b) reflections of irradiated 3C-SiC (gray circles: experimental data;

colored lines: simulation) for increasing fluence. The data are offset vertically for clarity. (c) and

(d) respectively correspond to the retrieved strain and DW profiles using the same color coding as

in (a) (black, blue, green, red for increasing fluence). Solid lines: simulation results of 002; dotted

lines: simulation result of 004.

Figure 4: (a) XRD diagrams generated from the MD simulation cells using the Debye scattering

equation (Equation 7) for several selected fluences. All peaks are labeled using the hkl indices of

the 3C-SiC phase. (b) zoom on the 004 peak.

Figure 5: evolution of strain (a) and DW factor (b) obtained by XRD from a 10 nm – wide region

(red squares), and by MD calculations using collision cascades (black circles) and Frenkel pair

accumulation (white circles).

Figure 6: (a) evolution of the probability distribution function of atomic displacements pdf(u) (solid

lines, left axis) computed using the values of σu and γ given by equation 12 and 13; evolution of the

corresponding complementary cumulative distribution function 1 - cdf(u) (dotted lines, right axis).

The same color coding as in figure 3 is used. (b) evolution of the XRD - derived damage fraction,

fD, obtained from equation (14) for a threshold distance equal to one unit cell (grey data). The loss

of long-range order obtained by MD simulations is shown as the black line.

Figure  7:  (a)  the  004  reflection  of  irradiated  ZrC  as  a  function  of  ion  fluence  (gray  circles:

experimental data; colored lines: simulation). The data are offset vertically for clarity. (b) retrieved
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strain profiles using the same color coding as in (a) (black, blue, green, red for increasing fluence).

Figure 8: (a) depth distribution of the concentration of clusters, NL(z), of selected sizes as calculated

by RECD at a given fluence.  (b) evolution with increasing fluence of the RECD-derived strain

depth - profiles using equation 15. The same color coding as Fig. 7 is used.
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