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Abstract
Data workers are non-professional data scientists who en-
gage in data analysis activities as part of their daily work.
In this position paper, we share our past work and our mul-
tidisciplinary approaches on understanding data workers’
sense-making practices and the human-tool partnerships.
We introduce our current research ideas on the role of alter-
natives in data analysis activities. Finally, we conclude with
open questions and research directions.
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Introduction
Data analysis shares similar characteristics with experimen-
tal [15] and design processes [12]: both are open-ended,
highly interactive, and iterative—where a broad space of
possible solutions are explored until a satisfactory result
emerges [4, 7]. As such, data workers generate and com-
pare multiple schemas [13], formulate solutions by com-
bining parts from different exploration paths [7], and deal
with uncertainty that could arise at different layers of the
analysis [2]. Moreover, multiple types of data workers need
to collaborate together to perform more complex analytic
tasks [1, 6].

While real-world analyses tend to be messy and complex,



today’s tools still largely rely on single-state models involv-
ing one user at a time. This disconnect contributes to mak-
ing analytic practices cumbersome and increases cognitive
load [9, 7]. Worse still, a lack of support for exploration of
alternatives, explicit management of uncertainty in analysis,
and support for collaboration in sense-making can lead to
bad problem solving and decision-making [11].

Our research more generally focuses on understanding how
data workers make sense of data and on providing them
with rich, flexible tools that are adapted to the highly situ-
ated nature of such interactions. Our current work focuses
more specifically on understanding the role of alternatives
in data workers’ analysis practices.

In this position paper, we describe our past and on-going
work on understanding data workers’ practices. We de-
scribe our background and our general approach , and
close with open research questions drawn from our expe-
rience.

Background & Approach
We are researchers in information visualisation and more
generally human-computer interaction, with a background
in computer science. One co-author is a researcher in an
applied laboratory for agronomics research, while the other
two are in an engineering school.

Our work focuses on data workers: professionals who en-
gage in data analysis activities as part of their daily work
but who would generally not characterize themselves as
a data analyst or data scientist. Our approach tends to
combine different qualitative methods to understand these
users’ needs and practices, tool-building to address these
needs, and other qualitative and quantitative evaluation
methods.

In prior work, for example, we conducted interviews and
walk-through scenarios with data workers to understand
how they think about and manage the various kinds of un-
certainty that arise in their work [2]. In a recent study, we
examined how multiple types of data workers collaborate to
explore complex data sets (e. g., model simulations) using a
visualization tool [1].

Beyond analyzing the data workers’ general sense-making
strategies, we also looked at how they explore large search
spaces and how they reconcile conflicting optimisation cri-
teria. The results of this study revealed an iterative analysis
approach adopted by our data workers, that interleaves dif-
ferent types of analysis scenarios.

We found exploration scenarios where data workers ex-
amine together new and refined research questions and
hypotheses, and other scenarios where they learn to appro-
priate the exploration tool and setup, and attempt to recap
and establish common ground (storytelling). This type of
study can help improve our understanding of the role of
human expertise and its inter-play with visual analytics in
reaching new insights and building common ground during
collaborative data work.

Other work focuses more on building better tools for ana-
lysts—usually within a specific context. For example, the
EvoGraphDice prototype [3] combines the automatic detec-
tion of visual features with human interpretation to aid in the
exploration of multidimensional datasets. Our recent work
on Codestrates [14] builds literate computing capabilities—
similar in concept to Jupyter notebooks—on top of Web-
strates [8] to provide a malleable, collaborative environment
in which users can not only collaboratively write code but
can also dynamically extend the environment from within
the environment. Such systems aim to reduce the barriers



for users to adapt the tool to their contextual needs and fur-
ther a co-adaptive relationship between tool and user [10].

Alternatives in Data Analysis Activities
In our current study, we take our first step at trying to gain a
deeper understanding of the nuance and complexity of how
data workers explore alternatives. For example, in the early
stage of data analysis, alternative ideas are explored to bet-
ter define the problem [6]; in the implementation stage, al-
ternative data features, models, and evaluation methods are
explored for different reasons [1, 5]. However, it remains un-
clear what kinds of alternatives exist within the data sense-
making loop—what characteristics do they share and how
do these considerations of alternatives influence sense-
making.

We focus on understanding: (1) When do data workers con-
sider and try alternatives (if at all)? (2) What kinds of alter-
natives do they consider? (3) What strategies do data work-
ers adopt to explore and manage alternatives? (4) What
are the triggers and barriers to “alternative exploration”?
(5) How do existing tools support the exploration of alterna-
tives?

We conducted semi-structured interviews with 12 partici-
pants (4 from an enterprise setting and 8 from the research
domain). We collected 827 minutes of recordings yielding
585 unique observations. We are analyzing these data with
a combination of affinity diagramming and workflow dia-
gram methods with the goal of characterizing the role of
alternatives in these kinds of sense-making activities.

Our aim is to provide a richer understanding of these prac-
tices and to identify specific gaps that call out the need for
new tools or new ways of designing such tools.(nb: I won-
der if we have a results teaser to add here, even if very high
level, couple of sentences or so ...)

Open questions & research directions
Data work involves a rich body of disciplines and methods.
While significant work has identified and formalized various
sense-making processes, there is still much to learn about
these practices in impromptu or less-formal settings.

Moreover, much analysis work takes place in the head of
the user. How can we build better tools and processes to
help get such tacit learning out of the head of the individ-
ual and into a form that can be more easily shared within
collaborative contexts.

(jl: Data workers often need to explore a large scale of al-
ternatives. How do we design tools to enable better focus
on exploring and comparing alternatives, as opposed to just
managing them?)

Alternatives can be generated, updated, revisited, and re-
combined in different stages along the analysis. How do we
design tools to actively support and to record this process
in a fluid manner.?

Data workers need to revisit past and on-going data analy-
sis projects, both to share key insights with others, but also
to reflect upon and to adapt their sense-making strategies.
How do we facilitate reflective and collaborative sensemak-
ing in a team of data workers having differing skills and ex-
pertise?
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