
HAL Id: hal-02191839
https://hal.science/hal-02191839

Submitted on 23 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The TIMMO-2-USE project: Time modeling and
analysis to use

M-A Peraldi-Frati, D Karlsson, A Hamann, S. Kuntz, J Nordlander

To cite this version:
M-A Peraldi-Frati, D Karlsson, A Hamann, S. Kuntz, J Nordlander. The TIMMO-2-USE project:
Time modeling and analysis to use. Embedded Real Time Software and Systems (ERTS2012), Feb
2012, Toulouse, France. �hal-02191839�

https://hal.science/hal-02191839
https://hal.archives-ouvertes.fr

 Page 1/10

The TIMMO-2-USE project: Time modeling and analysis to use

M-A Peraldi-Frati1, D. Karlsson2, A. Hamann3, S. Kuntz4, J. Nordlander5
1I3S, UNSA, CNRS/INRIA, B.P. 121, 06903 Sophia-Antipolis, France.

2Volvo Technology AB, Dept 6260 M2.7, 40508 Göteborg, Sweden.
3Robert Bosch GmbH, Robert-Bosch-Strasse 19, 71701 Schwieberdingen., Germany
4Continental Automotive GmbH, Siemensstrasse 12, 93055 Regensburg, Germany.

5Chalmers University of Technology, 412 96 Göteborg, Sweden.

Abstract: The paper presents the actual results of the
TIMMO-2-USE project dedicated to time modeling and
analysis in the domain of automotive embedded system
design. A first result is the Timing Augmented
Description Language (TADL2) that offers capabilities
for symbolic time expressions modeling, probabilistic
timing information and timing constraints applied on
mode definitions. The syntax and semantic of such
extensions are presented. These extensions are aligned
with EAST-ADL and AUTOSAR timing models. Based
on these extensions, new algorithms and tools are
developed to analyze and validate TADL2 specifications.

Conjointly with these aspects, a new methodology based
on industrial use cases is proposed compatible with those
of TIMMO, ATESST2 and AUTOSAR. This
methodology solves specific issues related to timing in an
automotive system design, such as time budgeting.
The TIMMO-2-USE work and results are driven by
industrial use cases. Use cases are the corner stone of the
project as they are used as input for providing
requirements for the language, the algorithm
development, and the methodology development but also
because the same are used for a validation of the results.

Keywords: Time modeling, EAST-ADL, AUTOSAR,
Automotive embedded systems, Use Cases, Methodology,
Multi-clock systems, Probabilistic timing information,

1 Introduction

TIMMO-2-USE [1] is an abbreviation that stands for
TIMing MOdel - TOols, algorithms, languages,
methodology, and USE cases, which summarizes the main
objectives of the project, i.e., the development of novel
languages, algorithms, tools, and a methodology,
validated by use cases, for the development of automotive
embedded systems.
This project is the follow-up of the TIMMO project [2]
which has developed a language, the Timing Augmented
Description Language (TADL) [3] that allows - in the
context of a development process based on EAST-ADL2
[4] and AUTOSAR 3.0 [5] - the complete management
and transformation of timing information, i.e. their
specification, their modeling and their analysis.
TIMMO was the path paving for introducing
WCRT/WCET timing analysis into the first phases of
AUTOSAR-based automotive software development. A
methodology was developed – complementary to the
EAST-ADL methodology - that supports these modeling

and analysis activities. Both, language and methodology
were developed as true extensions of the AUTOSAR
standard.
This paper presents the first results of TIMMO-2-USE. As
the title suggests, TIMMO-2-USE is centered on the
definition of industrial uses cases for the extension and
the validation of concepts defined during the project.
The definition of these industrial use cases plays a central
role in the project as they drive requirements for the
language, the new algorithms to be developed and
methodology works.
Concerning the language, TIMMO-2-USE goes a step
beyond that of TIMMO by extending TADL with new
capabilities for symbolic time expressions – i.e. free
variables in time expressions, multi-clock definitions,
modeling of probabilistic timing information and mode
dependency. Semantic definitions of such extensions are
proposed that fix some previous semantical issues of
TADL.
New algorithms are under development and would be
integrated in some partners’ tools to analyze and validate
TADL2 models.
The integration of these new results into an automotive
development process is handled by the development of a
methodology, compatible with those of TIMMO,
ATESST2 [6] and AUTOSAR. The methodology is
applied on the different industrial use cases of the project.
All these aspects are illustrated on a Brake by Wire
(BbW) example. This example covers one out of the four
uses cases presented in this paper. The BbW system is
characterized by timing requirements related to symbolic
time expression, synchronization constraints and
probabilistic constraints. In the paper, the example also
serves as a basis for illustrating the concepts and steps of
the methodology process. The algorithm results are not
highlighted here but it is part of the overall picture.
The paper is organized as follows: first, we give an
overview of the existing work related to time modeling
and methodology and we point out how we relate/differ
from them. The industrial uses cases on which this work
is founded are presented in section 3. Section 4 presents
the Brake by Wire example and its connections with the
different use cases. Section 5 is dedicated to the TADL2
language and semantics with a special focus on symbolic
time expressions and probabilistic time modeling. The
concepts of the methodology and how they apply on use
cases are presented in section 6. A concluding section,
which presents the ongoing and future works of the
project, closes the paper.

 Page 2/10

2 Related work on Time modeling and
Methodology in automotive domain

2.1 Timing Modeling.

An automotive design process is organized into multiple
abstractions levels respectively phases which use different
languages, models and tools to handle timing
requirements and properties. EAST_ADL2, AUTOSAR
4.0 and their timing extensions [7] play a central role in
this process. They allow expressing basic timing
constraints such as repetition rates, end to end delays,
synchronization and compositions of these constraints at
different levels of abstraction. In these models, time is
discrete and implicit. Measurements are constant values
associated with two possible time units (ms and °crank).
These languages consider Event as the main entity to refer
to a specific location in the system at which the
occurrences of such event can be observed (data read
from a port, data written to a port, , activating, starting
and terminating of a runnable entity, sending a frame over
a network, …), In order to relate timing events to one
another, a concept EventChain is introduced. Based on
Events and EventChains, it is possible to abstract from
EAST-ADL and AUTOSAR structural models, functional
and data dependencies, critical execution paths and to
apply timing constraints on these paths.
The EAST-ADL timing package as well as the
AUTOSAR Timing Extensions originate from the
“Timing Augmented Description Language” TADL
developed during the TIMMO project.
Some other languages such as the UML profiles MARTE
[8] and SysML [9] make it possible to integrate in a
design, more complex algebraic expressions for
manipulating time. In MARTE models, time can be
multiform (discrete, dense and logical). The Clock
Constraint Specification language CCSL [10] is a
declarative language annexed to MARTE that specifies
constraints imposed on clocks. CCSL covers classical
timing constraints such as the periodicity, the delay, the
offset and some others such as the precedence, the
coincidence and the alternation of events. A CCSL
specification is the conjunction of all these constraints
applied on clocks.
Discrete time is also a common concept for formal
languages such as PSL [11] Property Specification
Language. PSL can be applied for the definition of
assertions, as well as for complex modeling. PSL also
covers timing intervals based on semantics of discrete
event simulation and includes a type of regular expression
called SERE, a Sequential Extended Regular Expression
to describe complex scenarios. In PSL, time advances in
pre-defined units.
These models are independent from any abstraction level
of a design. There are several tools that support PSL for
simulation and formal verification (e.g. from Mentor
Graphics, Cadence, and Synopsys). TimeSquare [12] is
the software environment to deal with MARTE time

model and CCSL that allows timing analysis and
simulation of CCSL specifications.
These languages have interesting concepts that can
potentially solve some issues raised by TIMMO-2-USE.
Therefore, different concepts of time: symbolic time
expression, uncertain or probabilistic time, and the
possibility to extend timing expression with these notions
are carefully studied. TIMMO-2-USE will further
advance TADL2 while keeping the current alignment
between TADL2 and AUTOSAR Timing Extensions and
adapting TADL2 in the future if changes of the
AUTOSAR Timing Extension occur.

2.2 Methodology.

In order to accurately solve timing issues during the
development of distributed automotive software-intensive
systems, it is essential to follow a suitable methodology
that proposes a step-by-step solution for the issue. In
essence, such a methodology shall describe what needs to
be done when by whom, and even more importantly, what
are the required inputs and produced outputs for/by a
specific step in the methodology. For efficiency reasons, it
is very important that the timing modeling language
provides adequate support for capturing the timing
information stipulated by the methodology.
In the TIMMO [2] project, that introduced the first
version of the TADL, a methodology was defined
focusing on the timing analysis during a development
process following the top-down approach: Time budgets
on one level of abstraction are broken into smaller time
budgets on the next lower level of abstraction, The
primary concern of this methodology is to ensure that on
every level of abstraction timing analyses are conducted
in order to verify timing at early stages of the
development. In addition, the methodology suggests a
number of available tools for timing analysis and
simulation purposes.
The ATESST2 [4] project based its methodology on the
results of the TIMMO project and aligns and integrates it
with other cross-cutting concerns like requirements,
safety, and behavior. In addition, the ATESST2
methodology enables one to make use of various
combinations of such cross-cutting concerns, for example,
combining methods for dealing with safety and timing
topics. This methodology accounts also for guidelines
describing the sequence of task to be conducted when
combining such cross-cutting concerns.
When AUTOSAR [5] introduced the AUTOSAR Timing
Extensions in R 4.0.1 and maintained it in subsequent
revision of this standard, the AUTOSAR methodology
was extended to consider the aspect of timing in the
development of automotive systems. By and large, the
AUTOSAR Timing Extensions provide different timing
views that are utilized during the development of the
entire vehicle system (VFB and System Timing) and the
development of the ECUs (SW-Component, Basic
Software Module and ECU Timing) which are part of this
system. The AUTOSAR methodology describes the

 Page 3/10

timing related work products to be created and maintained
during the development process and which tasks require
those work products.
All the mentioned methodology definitions lack the
description of how timing information is used and
processed while conducting tasks of the proposed
methodology; and do not address various day-to-day
collaboration scenarios that are playing a key role in the
automotive industry, for example bottom-up approach.
Specifically, the TIMMO-2-USE project is concerned
about closing this gap and is addressing a number of
prominent use cases and scenarios to address the timing
related issues in those situations. Some of these use case
are described in the following subsection.

3. T2U use case descriptions

As mentioned already above, the main goal of the
TIMMO-2-USE project is to address and propose
practical solutions for relevant industrial use cases that
require special consideration of timing aspects. Three use-
cases that are the center of discussions in this paper are
described in this section.

3.1. Specify time budgets
Many novel and innovative vehicle functions span over
several ECUs and across the responsibility of multiple
suppliers. In the presence of timing constraints, such as
maximum end-to-end latencies, that are tied to the correct
functioning of such distributed functionalities, the OEM is
responsible for integrating all involved system parts into
the vehicle’s EE-architecture while making sure that all
timing constraints are fulfilled. However, it is not clear
for the suppliers what portion of the total end-to-end delay
is available for the system parts that they implement.
Therefore, the OEM has to divide the overall end-to-end
latency for the involved system parts, and communicate
these as so-called timing budgets to his suppliers. During
the development process, the OEM and the suppliers want
to keep the two-way feedback. When the suppliers have
refined solutions at the proper abstraction level, the OEM
can estimate if the time budgets are realistic, and may
either ask the supplier to improve the solution or adjust
the time budgets.

3.2. Specify synchronization constraints
A vehicle offers many different features such as braking,
steering etc, to the driver. Today, these features are
typically implemented using both mechanical and
electronic components. The fact that the electronic system
of the vehicle is integrated with different mechanical
solutions implies that the vehicle’s electronic system
inherently contains a certain degree of parallelism. That
is, the system needs to monitor and control several
simultaneous sources of input and output. Quite often it is
also the case that the input or output needs to be
synchronized in order to provide a notion of simultaneity.
For example, when braking, it is crucial that the brake
forces that are applied at each wheel also are applied at
the same time. A correct behavior is governed by the
introduction of synchronization constraints during the

vehicle design. This use-case is concerned, on the one
hand, with the formulation of such synchronization
constraints, and on the other hand with techniques to
ensure their fulfillment during system design.

3.3 Specify probabilistic timing constraints
Much automotive functionality are so called hard-real
time systems, which means that the violation of timing
constraints leads to total system failure. For these kinds of
applications it is necessary to define deterministic timing
constraints such as worst-case execution times (WCET)
and strict end-to-end deadlines. However, in automotive
system design, one also has to cope with functionalities
which can be classified as firm real-time systems. For
such functionalities infrequent deadline missed are
tolerable but degrade the system’s quality of service.
Timing constraints for such kind of functionalities cannot
be very well described using deterministic timing
constraints. For this reason, this use case is about
extending the TIMMO-2-USE language, methodology,
and tool landscape with the possibility to specify and
verify probabilistic timing constraints. In particular, it
shall be possible to describe probabilistic timing
properties for events and event chains. For example, the
end-to-end delay of an event chain must be smaller than
10 ms in 99% of the cases. Obviously, existing methods
and tools for analyzing timing constraints must be
adapted. For example, the schedulability test cannot only
return true or false. The answer should be the probability
of the schedulability.

4. An Automotive example BbW

The example used to illustrate our concepts throughout
this paper is a brake-by-wire system (BbW). As depicted
in Figure 1, the system consists of one brake pedal, four
brake actuators, four wheel speed sensors and five
electronic control units (ECU).

Figure 1: Distributed architecture for brake-by-wire

Four of the ECUs are placed each at one wheel. The brake
actuators and the wheel speed sensors are directly
connected to the ECU at the respective wheel. The brake
pedal is directly connected to fifth ECU. All five ECUs
are interconnected via a common bus.

 Page 4/10

Figure 2: Functional Design Architecture of a BbW system annotated with timing requirements

 Page 5/10

The intended functionality of this system is the following:
When the driver presses the pedal, the brake actuators
shall apply a braking force on the wheel that is in relation
with the angle of the pedal. In addition to this basic brake
functionality, it is augmented with ABS functionality in
the sense that if the speed of one wheel is significantly
smaller than the estimated vehicle speed, the brake force
is reduced on that wheel until it regains speed that is
comparable with the estimated vehicle speed. This
functionality is modeled at design level in functional
design architecture (FDA) as depicted in Figure 2
The FDA in Figure 2 can visually be divided into three
parts. Sensors are depicted on the left, computation
activities in the middle, and actuators on the right. The
sensor functionality is realized with two functions for
each sensor. The first function models the raw
functionality of the sensors, whereas the second interprets
the raw data provided by the first in the context of the
application. For the brake pedal, the raw data is a certain
voltage that is related to the pedal angle, which in the
second step is transformed into a desired percentage of the
maximal brake force. In the case of wheel speed, the raw
data is “ticks”, which are interpreted as wheel speed in the
second step.
The computation is divided into three main subparts. In
the first subpart, the requested brake force is computed.
The second subpart (solely consisting of the global
controller) calculates a basic brake force on each of the
four wheels, disregarding the ABS functionality. It
additionally estimates the vehicle speed based on the
wheel speeds. The ABS functionality is added in the
second part on a per wheel basis. The desired global brake
force, computed in the first step, may be adjusted
depending on the difference between the estimated
vehicle speed and the respective wheel speed.
The actuator part has a similar two-steps structure as the
sensors, but mirrored. The first step translates the
requested brake force into an electrical voltage that can be
used by the actuators in the second step.
All wheel-specific functions are allocated to the ECU near
their respective wheel. Functionality related to the pedal
and to the global controller is allocated to the central
ECU.
This design is primarily concerned with two types of
timing requirements: end-to-end latency and
synchronization. The end-to-end latency requirements
constrain the time it might take for the brake actuators to
react to a change of the pedal angle. As shown in Figure
2, this limit is in this example set to 200ms. The figure
also shows two segments of this delay of 130ms and
70ms. Although not explicit in the figure, identical
requirements are imposed for all wheels.
The end-to-end latencies introduced previously only state
an upper bound on the response from pedal angle change
to a brake actuation. For that reason, a situation where the
front left wheel starts braking after 50ms and the front
right wheel after 200ms would be legal. Such behaviour
could potentially be dangerous, or at least very

uncomfortable to the driver. In order to enforce the brake
actuation to happen roughly at the same time at all
wheels; regardless of if it happens after 50 or 200ms, a
synchronisation constraint is introduced. The
synchronisation constraint states that if one actuation
event occurs on one wheel, actuation events must also
occur on the other wheels within 20ms.
In addition, each function has been assigned a period. All
functions in the sensor and actuator parts have a period of
10ms, whereas all functions in the computation part have
a period of 50ms.

5. The TADL2 language

TADL2 is a language for imposing timing constraints on
the events identifiable in structural models on different
levels of abstraction. As such, TADL2 is entirely agnostic
regarding the nature of the events it constrains,
demanding only that it must be possible to associate every
event with a sequence of occurrence times when a
modeled system is run. Currently, TADL2 incorporates
the event definitions of both AUTOSAR and EAST-ADL,
as well as a more informally identified form of external
events.

5.1 Overview of the language
The timing constraints of TADL2 are of three basic
forms:

• The repetition constraint, which constrains the
distance between repeated occurrences of a
single event.

• The delay constraint, which constrains the
distance between two events called source and
target, so that all occurrences of source must be
matched by an occurrence of target.

• The synchronization constraint, which
constrains a set of events to always occur within
a certain tolerance from each other.

From these basic constraints TADL2 derives several
forms that capture common special cases and offer
compatibility with AUTOSAR 4.0 timing extensions.
Typical examples are the special cases of periodic and
sporadic repetition, and the delay variants age and
reaction time (which attach to the event-chains used to
indicate causality relationships between events in
AUTOSAR).
The BbW system modeled in Figure 2 illustrates the use
of all three basic constraints. The delay constraint
BrakeReactionDelay at the top of the figure specifies that
the upper limit on the distance between each occurrence
of EventPedalPosition and the matching occurrence of
EventABSTorqueRearRight is 200 milliseconds. The
lower limit, which is also possible to specify, defaults to 0
if not present.

 Page 6/10

The bottom of Figure 2 also shows fifteen examples of
periodic repetition constraints, with periods varying
between 10 and 50 milliseconds. Each such constraint is
equivalent to a basic repetition constraint giving equal
values for their upper and lower distance limits. It is
important to note that these constraints—just like the
delay constraints above—are just specifying requirements
on the functions producing the constrained events; they
are in no way part of the implementations of these
functions.
The rightmost constraint of Figure 2 illustrates the third
basic constraint form: event synchronization. In this case
four individual events are constrained to always occur
within 20 milliseconds of each other, although without
prescribing any form of order between them (this is the
essential difference between synchronization and a set of
delay constraints). Whether such a timing behavior is
allowed, contradicted, or maybe even implied, by the
other constraints attached to the same events is a separate
question that can only be answered by comparing the
meanings of all constraints involved.
 To simplify reasoning, TADL2 defines the semantics of
each of its basic constraints formally, using only logical
quantifiers (for all, there exists) and simple inequalities
between time values. The meaning of derived constraint
then follows from their mechanical translation into the
basic forms.

5.2 Symbolic time expressions
All time values in Figure 2 are simple constants, which is
often all that is needed in order to specify a desired timing
behavior. However, one of the main developments of
TADL2 is the generalization of time values to expressions
that also include symbolic variables and arithmetic
operations. The three delay constraints of Figure 2 may
illustrate the power of this extension. Since a given delay
limit must be preserved when an end-to-end delay is
broken down into segments, the presence of two segments
in Figure 3 actually only corresponds to one degree of
freedom when setting up a time budget for the segments.
Thus, instead of manually maintaining the invariant that
the upper limits assigned to BrakeDelayAtMasterNode
and BrakeDelayAtRearRightNode always sum up to 200
ms, it may be beneficial to express this invariant by giving
the upper attribute of BrakeDelayAtRearRightNode the
value of 200 ms - BrakeDelayAtMasterNode.upper.
Furthermore, by replacing 130 ms in BrakeAtMasterNode
by the symbolic expression x ms, it will be possible to
freely experiment with different values of x, as well as to
symbolically infer possible bounds on x as dictated by
other constraints (in this example, x must clearly be
between 0 and 200 for the constraints to be satisfiable at
all).

5.3 Multiple timebases
Timing constraints traditionally refer to the universal
chronometric time which is implicit in constraint
declaration. This convenience presents two main
drawbacks. First, it is difficult to model constraints
measured on a different timebase so as for an ignition

control system where timing constraints are both
measured on chronometric clocks or/and rotation angle of
a crankshaft. In this case, the rotation position of the
crankshaft triggers periodic execution of control
functions. Secondly, as clocks are implicit, drifts, jitters
and offset between clocks cannot be modelled easily. This
is a classical issue when distributing functions code on
different ECUs. The choice of a processor and/or a
network may introduce distortions on time evolution that
influences the overall constraints.
To overcome these drawbacks, we propose, in TADL2, an
explicit notion of timebases. A timebase represents a
possibly infinite and strictly ordered set of instants. A
timebase is associated with a dimension. Example 1
shows how to declare a dimension. A time measurement
may have a chronometric or an angle dimension. Each
dimension lists their units. Numbers indicate the ratio
between one unit and the smallest one (ratio=1). Thus, the
timebase Universal is of type chronometric and its
precision is the nanosecond (ns).

dimension chronometric { ns:1, micros:103, ms: 106,
sec: 109}

dimension angle { degree: 1, rotation: 360 }

timebase Universal: chronometric { 1 micros }

timebase ECU1: chronometric {1 ms on ECU1= 96
micros on Universal }

timebase Crankshaft: angle {1 rotation on Crankshaft
= speed ms on Universal }

Example 1: Dimension and timebase declarations

Timebases may relate to each other. As shown in example
1, ECU1 has a drift of 4 micros comparing to the
Universal timebase.
Timebases with different dimensions can be linked as
well. For instance, the cranckshaft timebase has an angle
dimension. A conversion factor based on the engine
rotation speed must be applied on values measured on the
crankshaft to be converted into the Universal timebase.
Arithmetic rules have been defined to cope with multiple
timebases and timingExpression with values measured on
multiple timebase. Based on this definition of Universal, a
timing expression in the BbW example becomes:

DelayConstraint.Lower = 200 ms on Universal

5.4 Probabilistic time
A basic delay constraint defines time windows in which
target occurrences are expected, but does not further
specify where in such a window an occurrence should be
placed. This means that a behavior where the target
occurrences repeatedly touch the window limits is just as
correct as a behavior where occurrences are nicely
concentrated to the window midpoint. To give the
constraint user a means to distinguish between such
behaviors, TADL2 has been extended to support the

 Page 7/10

notion of probabilistic timing. Two complementary
approaches are currently included in TADL2 side by side.
One approach assumes full independency between
repeated occurrence variations, which allows occurrence
placements to be finely controlled using an optional
distribution attribute. Available settings include both
predefined standard distributions as well as arbitrary
discretized distribution curves. The other approach needs
no independence assumption but requires the parallel use
of several constraints to express variations, each one
specified with an attribute that expresses a minimum
number of inhabited time windows over sequences of a
particular length.
The two approaches are overlapping, but their detailed
relationship is still a topic of further investigation within
the TIMMO-2-USE project. Ongoing work is also
exploring how the probabilistic approaches can be applied
to the other basic constraint forms of TADL2.

5.5 Timing constraints and modes
Even TADL, the constraint language of the original
TIMMO project, supported a notion of system-level mode
identifiers attached to its timing constraints. TADL2
inherits this mechanism, with the intuition that a mode-
dependent constraint only needs to be satisfied during the
intervals when its mode is active. The mode concept is a
quite complex idea, however, whose full specification and
realization involves much more behavioral aspects than
just a desired timing behavior. Still, the logic of mode
changes does affect the meaning of timing constraints,
since changes that occur during some open time window
may render the window inhabitance question ambiguous.
To keep the TADL2 language relatively self-contained,
TIMMO-2-USE has decided not to fully develop the logic
of modes and mode changes, but to capture their impact
on timing constraints via a notion of start and stop events
for each mode. This means that ambiguity issues related
to the timing of mode changes can be sorted out
semantically in TADL2 without having to engage in all
aspects of defining and propagating mode changes
throughout a full system model. The exact definitions of
mode-dependent repetition, delay and synchronization
constraints is still work in progress.

5.6 Gap between AUTOSAR and EAST_ADL concepts
TADL concepts of events, event chains, and timing
constraints are common to AUTOSAR Timing Extensions
introduced in AUTOSAR R4.0 and EAST_ADL. In
TADL2, timing constraints have been revisited by
clarifying semantic points such as the timing constraint in
the context of mode or the synchronization constraint.
New concepts have been introduced such as the symbolic
timing expression and the explicit clock definition. The
objective of TIMMO-2-USE is the ownership by
AUTOSAR and EAST_ADL of these new concepts by
aligning them to the current and future releases of these
languages.

6. Methodology

6.1 TIMMO-2-USE Generic Method Pattern

During the analysis of several industrial use cases it
became obvious that there are a lot of common tasks. This
led to the definition of the TIMMO-2-USE Generic
Method Pattern (GMP) described in this section. This
method pattern is the basis for all steps to be taken during
the course of a phase and level of abstraction respectively.

As shown in Figure 3, the TIMMO-2-USE Generic
Method Pattern consists of the six tasks called “Create
Solution”, “Transform Timing Requirements”, “Find
Timing Properties”, “Analyze”, “Verify and Validate”,
and “Specify Timing Requirements”. By and large, these
tasks are carried out at every level of abstraction of the
EAST-ADL. Since the EAST-ADL, as well as TIMMO-
2-USE, defines a phase for every level of abstraction these
tasks are carried out for every level of abstraction:
Vehicle, Analysis, Design, Implementation and
Operational Level. Indeed, there are two exceptions: The
first exception is that at the beginning of the Vehicle
Phase, a formal work product “Timing Requirements” is
not available. The second exception is that at the end of
the Operational Phase the task “Specify Timing
Requirements” is not carried out. In the following, all
tasks and their purpose are described in more detail. The
tasks are described in the order as they appear in Figure 3
(from left to right).

Create Solution: Based on the given requirements,
including timing requirements, that originate from the
higher level of abstraction respectively previous phase, a
solution is created or an already existing solution is
revised. While creating/revising the solution the given
timing requirements must be considered, in other words
the given timing requirements, like any other non-timing
requirement, guide the creation of the solution. The
resulting solution is captured in appropriate models. In
case of EAST-ADL these models are the Technical
Feature Model TFM on the Vehicle Level, Functional
Analysis Architecture FAA on the Analysis Level,
Functional Design Architecture FDA and Hardware
Design Architecture HDA on the Design Level, and
Environment Model EM which is present on all levels of
abstraction. Out of these, the first three models primarily
capture timing requirements and properties related to the
system’s application. The Hardware Design Architecture
provides parameters for execution and hardware delays.
The Environment Model provides characteristics and
constraints imposed by the surrounding systems.
Several solutions (alternatives) can evolve from the task
“Create Solution” and each of those solutions shall have
the potential to satisfy the given requirements. However,
each solution may result from specific design decisions
that have been taken during the course of this task.

Transform Timing Requirements: Based on the created
solution the timing requirements specified in the previous
phase are transformed into timing requirements suitable
for further processing during the current phase. In other
words, those timing requirements are transformed into
timing requirements such that they are “comparable” with
the timing properties of the solution created in the current

 Page 8/10

phase and thus on the current level of abstraction (see also
the description of the task “Verify and Validate”).
In a nutshell: Timing requirements are expressed using
events, event chains, and timing constraints that are
imposed on these events and event chains. Events refer to
locations, usually ports, in a solution model at which the
occurrences of the events are observed; and event chains
specify a causal relationship between events and their
temporal occurrences.
During every phase, a solution model is created based on
the requirements and solution model created in the
previous phase. An event specified in the previous phase

and referring to an observable location in the
corresponding solution model possibly has to be
transformed or mapped into an event referring to an
observable location in the solution model created during
the current phase. This transformation has to be
performed for all events and event chains, and especially
the values of the timing requirements imposed on event
chains.
Several solutions (alternatives) can evolve from the task
“Create Solution” and for each of those solutions the
given timing requirements must be transformed.

Figure 3: TIMMO-2-USE Generic Method Pattern.

Find Timing Properties:. Once the solution has been
created and the timing requirements evolved from
previous phase have been transformed [into timing
requirements on the current level of abstraction], the
timing properties of this solution are specified and the
values of these timing properties are determined and
assessed. The methods applied to determine – find – the
particular values are manifold: [timing] expert knowledge
and estimation, simulation, analysis, educated guess,
knowledge from previous projects or iterations within the
current project, etc. The most appropriate and suitable
method should be selected for this purpose.
The objective of this task is to find timing properties that
are inherent in the solution and its requirements. For
example, the critical path in the solution is identified and
annotated with timing properties accordingly.
Note that the purpose of this task is not to define new
types of timing properties, but to decide which of the
timing properties, like latency, response time, execution
time, sampling rates, etc. are used to describe the dynamic
behavior of the solution.

If several solutions (alternatives) are available, then each
of those solutions is annotated with timing information.
And with regard to the dynamic – temporal – behavior of
the solutions there may be different critical paths leading
to different sets of timing properties and their values.

Analyze: Based on the solution and its timing properties
the specific values of those timing properties are assessed,
in the sense of checking the consistency of all timing
properties (looking at the whole picture and the target
system). The primary purpose of this assessment is to
decide whether to continue conducting the subsequent
tasks in the development process, or to repeat any or a
sequence of previous tasks. In other words at this point it
is decided “whether the numbers are good enough for
progressing”, or whether those numbers have to be
revised (iteration). It could also happen that the solution
subject to timing analysis must be revised, or even worse
a new solution must be searched.
The methods applied to assess the values of the timing
properties are manifold and the most appropriate and
suitable method should be selected for this purpose. Such

 Page 9/10

a method could be as simple as an addition of values, or it
could be more complex, like applying a calculus on the
given numbers. In addition, the methods being used for
analyses may vary depending on the phase: On higher
levels of abstractions other methods are used than on
lower levels of abstraction. For example, scheduling
analysis is used on implementation level, but not on
abstraction levels like Vehicle Level.
It may happen that several solutions (alternatives) are
available and in this case the purpose of the task
“Analyze” is to identify and quantify the strengths of
every solution with regard to the dynamic – temporal –
behavior. One can select the most appropriate and/or
promising solutions in order to proceed with the
development.

Verify and Validate: Eventually, the timing properties are
explicitly compared against the given timing requirements
(verification) and assessed for appropriateness, which
means regarding consistency and correctness (validation).
During the course of this task the values of the timing
properties are compared against the values of the
transformed timing requirements and possibly timing
properties that arose during the course of the phase. The
primary purpose of this task is to decide whether to
continue conducting the subsequent tasks in the
development process, or to repeat any or a sequence of
previous tasks. Essentially, this is the task which
“compares the numbers of timing properties with given
[transformed] timing requirements”.
If several solutions (alternatives) are available then the
purpose of the task “Verify and Validate” is to verify and
validate the timing properties of every solution. One has
to select the most appropriate solution – one solution – in
order to proceed with the development.

Specify Timing Requirements: Once the decision is
taken to proceed with the next phase, all or some of the

obtained timing properties and transformed timing
requirements are converted into corresponding timing
requirements.
The result of the task is not that all timing properties that
were found in the previous tasks are converted into timing
requirements, but only those of them which are
fundamental and important for design decision to be taken
in subsequent steps. One criterion for identifying timing
properties as timing requirements is that they were critical
for the verification performed.
These timing requirements are the basis for any design
work being conducted during the next phase.
In the TIMMO-2-USE project the Generic Method Pattern
is used in the work package “Methodology” to describe
the various use cases identified at the beginning during
the requirements elicitation in work package
“Requirements and Use Cases”. The following section
makes use of this pattern explaining the tasks to be carried
out in order to specify time budgets on different levels of
abstraction and phases respectively.

6.2 Use case Specify time budgets
 In Figure 2, an end-to-end latency between pedal sensor
and brake actuator of 200ms has been specified at higher
abstraction levels and given to this abstraction level as a
requirement. The task is now, in accordance to the
description of the use case Specify time budgets in section
3 to divide this end-to-end latency over the intermediate
design functions. For simplicity of example, we assume
that it is sufficient to divide the end-to-end latency into
two segments as indicated in the figure. The focus is here
on the first segment, BrakeDelayAtMasterNode. Figure 4
presents the methodology for the use case Specify time
budgets, and how it maps to the generic methodology
presented in section 6 The Find timing properties and the
Analyze timing properties tasks have been split into two
subtasks each in order to illustrate the activities to be
performed in these tasks in more detail. Moreover, the
tasks Verify timing properties and Specify timing
requirements have been renamed to better reflect their
purposes in the context of this use case. The following
paragraphs will describe the figure in more detail focusing
on the tasks mapped to Find timing properties and Analyze
timing properties: The task Find timing properties
identifies timing properties with a direct impact on the
time budgeting process and that are a direct implication of
the solution and its timing requirements. Such properties
are typically execution times (or preferably response
times) and communication delays. These properties can be
obtained using the following strategies:

1. Transformed from a lower abstraction level
2. Determined from the solution
3. Determined from an extrapolated solution at

lower abstraction level
Each of these strategies is represented by a separate task
in the methodology.
The purpose of the task Transform time budget properties
from lower abstraction levels is to reuse information that

Solution

Time budget
[Higher level]

F
ind tim

ing properties

A
nalyze tim

ing properties

Time budget
properties

[Lower level]

Create solution

Transform time
budget properties
from lower AL

Determine time
budget properties

Estimate influence
from future
functionality

Create time budget
proposal

Verify time budget

Specify time budget

Estimated influence from
future functionality

Time budget
proposal

Time budget
verification report

Time budget

Extrapolate time
budget properties

Time budget properties

Product plan

Figure 4. Methodology for the use case Specify time
budgets

 Page 10/10

has already been derived for the parts of the solution that
has already been developed bottom-up at a lower
abstraction level. Referring to the example inFigure 2, the
WCET of the HW_BrakePedalSensor and the
LDM_BrakePedal have been determined/measured at a
lower abstraction level, but are in this task transformed
into the context of the current abstraction level with
values of 5ms each.
The task Determine time budget properties analyses the
solution and its requirements for time budget properties
that are a direct implication of the solution and the
requirements at the current abstraction level. In our
example, this corresponds to highlighting all periodic
constraints on all functions, including those of the sensor
functions whose execution times we estimated in the
previous task.
The task Extrapolate time budget properties addresses a
problem that occurs in particular at high abstraction
levels, where information needed for finding the sought
timing properties might not be present. The task allows us
to rapidly prototype lower-level models in order to
estimate essential properties. In our example, this task is
not necessary as all functions are annotated with periods.
In the task Analyze timing properties, the previously
found timing properties are elaborated to form a time
budget proposal. In this process, not only the current
solution needs to be considered, but also the influence of
both planned and still unknown future functionality. The
task Estimate influence from future functionality assesses
the amount of slack that needs to be introduced due to
interference of future functionality. In our example, we
disregard this aspect.
A final time budget proposal is formed in the task Create
time budget proposal based on the identified time budget
properties and the estimated influence from future
functionality. The principal timing properties needed for
creating a time budget in our example, are the periods of
function. Given the assumption that the execution times
are less than or equal to the period (which we have in
some cases even confirmed previously), the periods are
the main contributors to the end-to-end response time.
Summing up the periods gives a delay of 110ms.
Assigning a budget of 130ms to this part of the system
therefore introduces a 20ms margin that may be used for a
more relaxed implementation if needed in the future.
Following the same line of reasoning, the second budget
segmented was fixed to 70ms. Both budget segments give
a total latency of 200ms, which satisfies the original
requirement.
Lower abstraction levels will receive the two budget
segments as requirements in addition to the end-to-end
latency requirement.

7 Conclusion & perspectives

This paper presents the first results of the TIMMO-2-USE
project concerning the time modeling and analysis of
automotive embedded systems. Different uses cases are
defined in the project which highlights new needs to

consider such as complex time expression with variable
parameters, multi time bases and probabilistic values. A
methodology has been developed that covers these use
cases. A TADL2 language guide is currently being
prepared. Results on analysis and new algorithms to
validate TADL2 models are not highlighted in the current
paper but it is part of the all picture.
Ongoing work will further advance TADL2 while keeping
the current alignment between TADL2 and EAST_ADL2
and AUTOSAR4.0 timing concepts. Collaborations
between the MAENAD project and the AUTOSAR
timing group will allow adapting TADL2 if future
changes of the AUTOSAR and/or EAST_ADL timing
concepts occur.

Acknowledgment

This document is based on the TIMMO-2-USE project in
the framework of the ITEA2, EUREKA cluster N°3674.
The work has been funded by The French Ministry for
Industry and Finances, the German Ministry for Education
and Research (BMBF) under the funding ID 01IS10034,
and the Swedish governmental agency for innovation
systems (VINNOVA). The responsibility for the content
rests with the authors.

8. References

[1] TIMMO-2-USE Project, ITEA 2, 2009, Website
http://www.timmo-2-use.org

[2] TIMMO Project,, ITEA2 2007, Website
http://www.timmo-2-use.org/timmo/index.htm

[3] H. Blom, R. Johansson, H. Lönn. Annotation with
Timing Constraints in the Context of EAST-ADL2
and AUTOSAR – the Timing Augmented
Description Language. STANDRTS'09 at ECRTS
2009. Dublin, Ireland, June 2009

[4] EAST_ADL2 – ATESST Project: EAST_ADL2
Specification, profile and Tools http://www.atesst.org

[5] AUTOSAR AUTomotive Open System Architecture.
http://www.autosar.org

[6] ATESST2 Project, FP7 STREP, ICT for Transport,
EUCAR Integrated Safety Program, June 2008 to
June 2010. http://www.atesst.org

[7] AUTOSAR Specification of Timing Extensions,
1.1.0, AUTOSAR Release 4.0.2, 2010-11-03,
AUTOSAR Development Cooperation.

[8] OMG UML Profile for Modeling and Analysis of
Real-time and Embedded Systems, MARTE V1.0.
Object November 2009. OMG document number:
formal/2009-11-02.

[9] OMG. Systems Modeling Language (SysML)
Specification 1.1. Object Management Group, May
2008. OMG document number: ptc/08-05-17

[10] C. André. Syntax and semantics of the clock
constraint specication language. Technical Report
6925, INRIA, 2009.

[11] IEEE P1850 - Standard for PSL - Property
Specification Language Homepage
http://www.vhdl.org/ieee-1850/, March 2011.

[12] TimeSquare Model Development Kit, http://www-
sop.inria.fr/aoste/dev/timesquare/

[13] MAENAD FP7 Project http://www.maenad.eu/

