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Abstract: The paper presents the actual results of the 
TIMMO-2-USE project dedicated to time modeling and 
analysis in the domain of automotive embedded system 
design. A first result is the Timing Augmented 
Description Language (TADL2) that offers capabilities 
for symbolic time expressions modeling, probabilistic 
timing information and timing constraints applied on 
mode definitions. The syntax and semantic of such 
extensions are presented. These extensions are aligned 
with EAST-ADL and AUTOSAR timing models.  Based 
on these extensions, new algorithms and tools are 
developed to analyze and validate TADL2 specifications.  

Conjointly with these aspects, a new methodology based 
on industrial use cases is proposed compatible with those 
of TIMMO, ATESST2 and AUTOSAR. This 
methodology solves specific issues related to timing in an 
automotive system design, such as time budgeting.  
The TIMMO-2-USE work and results are driven by 
industrial use cases. Use cases are the corner stone of the 
project as they are used as input for providing 
requirements for the language, the algorithm 
development, and the methodology development but also 
because the same are used for a validation of the results.  

Keywords: Time modeling, EAST-ADL, AUTOSAR, 
Automotive embedded systems, Use Cases, Methodology, 
Multi-clock systems, Probabilistic timing information,  

1 Introduction 

TIMMO-2-USE [1] is an abbreviation that stands for 
TIMing MOdel - TOols, algorithms, languages, 
methodology, and USE cases, which summarizes the main 
objectives of the project, i.e., the development of novel 
languages, algorithms, tools, and a methodology, 
validated by use cases, for the development of automotive 
embedded systems.  
This project is the follow-up of the TIMMO project [2] 
which has developed a language, the Timing Augmented 
Description Language (TADL) [3] that allows - in the 
context of a development process based on EAST-ADL2 
[4] and AUTOSAR 3.0 [5] - the complete management 
and transformation of timing information, i.e. their 
specification, their modeling and their analysis.  
TIMMO was the path paving for introducing 
WCRT/WCET timing analysis into the first phases of 
AUTOSAR-based automotive software development. A 
methodology was developed – complementary to the 
EAST-ADL methodology - that supports these modeling 

and analysis activities. Both, language and methodology 
were developed as true extensions of the AUTOSAR 
standard.  
This paper presents the first results of TIMMO-2-USE. As 
the title suggests, TIMMO-2-USE is centered on the 
definition of industrial uses cases for the extension and 
the validation of concepts defined during the project. 
The definition of these industrial use cases plays a central 
role in the project as they drive requirements for the 
language, the new algorithms to be developed and 
methodology works.  
Concerning the language, TIMMO-2-USE goes a step 
beyond that of TIMMO by extending TADL with new 
capabilities for symbolic time expressions – i.e. free 
variables in time expressions, multi-clock definitions, 
modeling of probabilistic timing information and mode 
dependency. Semantic definitions of such extensions are 
proposed that fix some previous semantical issues of 
TADL.  
New algorithms are under development and would be 
integrated in some partners’ tools to analyze and validate 
TADL2 models.  
The integration of these new results into an automotive 
development process is handled by the development of a 
methodology, compatible with those of TIMMO, 
ATESST2 [6] and AUTOSAR. The methodology is 
applied on the different industrial use cases of the project.  
All these aspects are illustrated on a Brake by Wire 
(BbW) example. This example covers one out of the four 
uses cases presented in this paper. The BbW system is 
characterized by timing requirements related to symbolic 
time expression, synchronization constraints and 
probabilistic constraints. In the paper, the example also 
serves as a basis for illustrating the concepts and steps of 
the methodology process. The algorithm results are not 
highlighted here but it is part of the overall picture.  
The paper is organized as follows: first, we give an 
overview of the existing work related to time modeling 
and methodology and we point out how we relate/differ 
from them. The industrial uses cases on which this work 
is founded are presented in section 3. Section 4 presents 
the Brake by Wire example and its connections with the 
different use cases. Section 5 is dedicated to the TADL2 
language and semantics with a special focus on symbolic 
time expressions and probabilistic time modeling. The 
concepts of the methodology and how they apply on use 
cases are presented in section 6. A concluding section, 
which presents the ongoing and future works of the 
project, closes the paper. 
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2 Related work on Time modeling and 
Methodology in automotive domain 

2.1 Timing Modeling.  

An automotive design process is organized into multiple 
abstractions levels respectively phases which use different 
languages, models and tools to handle timing 
requirements and properties. EAST_ADL2, AUTOSAR 
4.0 and their timing extensions [7] play a central role in 
this process. They allow expressing basic timing 
constraints such as repetition rates, end to end delays, 
synchronization and compositions of these constraints at 
different levels of abstraction. In these models, time is 
discrete and implicit. Measurements are constant values 
associated with two possible time units (ms and °crank).  
These languages consider Event as the main entity to refer 
to a specific location in the system at which the 
occurrences of such event can be observed (data read 
from a port, data written to a port, , activating, starting 
and terminating of a runnable entity, sending a frame over 
a network, … ), In order to relate timing events to one 
another, a concept EventChain is introduced. Based on 
Events and EventChains, it is possible to abstract from 
EAST-ADL and AUTOSAR structural models, functional 
and data dependencies, critical execution paths and to 
apply timing constraints on these paths.  
The EAST-ADL timing package as well as the 
AUTOSAR Timing Extensions originate from the 
“Timing Augmented Description Language” TADL 
developed during the TIMMO project.  
Some other languages such as the UML profiles MARTE 
[8] and SysML [9] make it possible to integrate in a 
design, more complex algebraic expressions for 
manipulating time. In MARTE models, time can be 
multiform (discrete, dense and logical). The Clock 
Constraint Specification language CCSL [10] is a 
declarative language annexed to MARTE that specifies 
constraints imposed on clocks. CCSL covers classical 
timing constraints such as the periodicity, the delay, the 
offset and some others such as the precedence, the 
coincidence and the alternation of events. A CCSL 
specification is the conjunction of all these constraints 
applied on clocks. 
Discrete time is also a common concept for formal 
languages such as PSL [11] Property Specification 
Language. PSL can be applied for the definition of 
assertions, as well as for complex modeling. PSL also 
covers timing intervals based on semantics of discrete 
event simulation and includes a type of regular expression 
called SERE, a Sequential Extended Regular Expression 
to describe complex scenarios. In PSL, time advances in 
pre-defined units.  
These models are independent from any abstraction level 
of a design. There are several tools that support PSL for 
simulation and formal verification (e.g. from Mentor 
Graphics, Cadence, and Synopsys). TimeSquare [12] is 
the software environment to deal with MARTE time 

model and CCSL that allows timing analysis and 
simulation of CCSL specifications.  
These languages have interesting concepts that can 
potentially solve some issues raised by TIMMO-2-USE.  
Therefore, different concepts of time: symbolic time 
expression, uncertain or probabilistic time, and the 
possibility to extend timing expression with these notions 
are carefully studied. TIMMO-2-USE will further 
advance TADL2 while keeping the current alignment 
between TADL2 and AUTOSAR Timing Extensions and 
adapting TADL2 in the future if changes of the 
AUTOSAR Timing Extension occur. 

2.2 Methodology.  

In order to accurately solve timing issues during the 
development of distributed automotive software-intensive 
systems, it is essential to follow a suitable methodology 
that proposes a step-by-step solution for the issue. In 
essence, such a methodology shall describe what needs to 
be done when by whom, and even more importantly, what 
are the required inputs and produced outputs for/by a 
specific step in the methodology. For efficiency reasons, it 
is very important that the timing modeling language 
provides adequate support for capturing the timing 
information stipulated by the methodology.  
In the TIMMO [2] project, that introduced the first 
version of the TADL, a methodology was defined 
focusing on the timing analysis during a development 
process following the top-down approach: Time budgets 
on one level of abstraction are broken into smaller time 
budgets on the next lower level of abstraction, The 
primary concern of this methodology is to ensure that on 
every level of abstraction timing analyses are conducted 
in order to verify timing at early stages of the 
development. In addition, the methodology suggests a 
number of available tools for timing analysis and 
simulation purposes. 
The ATESST2 [4] project based its methodology on the 
results of the TIMMO project and aligns and integrates it 
with other cross-cutting concerns like requirements, 
safety, and behavior. In addition, the ATESST2 
methodology enables one to make use of various 
combinations of such cross-cutting concerns, for example, 
combining methods for dealing with safety and timing 
topics. This methodology accounts also for guidelines 
describing the sequence of task to be conducted when 
combining such cross-cutting concerns.  
When AUTOSAR [5] introduced the AUTOSAR Timing 
Extensions in R 4.0.1 and maintained it in subsequent 
revision of this standard, the AUTOSAR methodology 
was extended to consider the aspect of timing in the 
development of automotive systems. By and large, the 
AUTOSAR Timing Extensions provide different timing 
views that are utilized during the development of the 
entire vehicle system (VFB and System Timing) and the 
development of the ECUs (SW-Component, Basic 
Software Module and ECU Timing) which are part of this 
system. The AUTOSAR methodology describes the 



 Page 3/10 

timing related work products to be created and maintained 
during the development process and which tasks require 
those work products. 
All the mentioned methodology definitions lack the 
description of how timing information is used and 
processed while conducting tasks of the proposed 
methodology; and do not address various day-to-day 
collaboration scenarios that are playing a key role in the 
automotive industry, for example bottom-up approach. 
Specifically, the TIMMO-2-USE project is concerned 
about closing this gap and is addressing a number of 
prominent use cases and scenarios to address the timing 
related issues in those situations. Some of these use case 
are described in the following subsection. 

3. T2U use case descriptions 

As mentioned already above, the main goal of the 
TIMMO-2-USE project is to address and propose 
practical solutions for relevant industrial use cases that 
require special consideration of timing aspects. Three use-
cases that are the center of discussions in this paper are 
described in this section.  

3.1. Specify time budgets 
Many novel and innovative vehicle functions span over 
several ECUs and across the responsibility of multiple 
suppliers. In the presence of timing constraints, such as 
maximum end-to-end latencies, that are tied to the correct 
functioning of such distributed functionalities, the OEM is 
responsible for integrating all involved system parts into 
the vehicle’s EE-architecture while making sure that all 
timing constraints are fulfilled.  However, it is not clear 
for the suppliers what portion of the total end-to-end delay 
is available for the system parts that they implement. 
Therefore, the OEM has to divide the overall end-to-end 
latency for the involved system parts, and communicate 
these as so-called timing budgets to his suppliers. During 
the development process, the OEM and the suppliers want 
to keep the two-way feedback. When the suppliers have 
refined solutions at the proper abstraction level, the OEM 
can estimate if the time budgets are realistic, and may 
either ask the supplier to improve the solution or adjust 
the time budgets. 

3.2. Specify synchronization constraints  
A vehicle offers many different features such as braking, 
steering etc, to the driver. Today, these features are 
typically implemented using both mechanical and 
electronic components. The fact that the electronic system 
of the vehicle is integrated with different mechanical 
solutions implies that the vehicle’s electronic system 
inherently contains a certain degree of parallelism. That 
is, the system needs to monitor and control several 
simultaneous sources of input and output. Quite often it is 
also the case that the input or output needs to be 
synchronized in order to provide a notion of simultaneity. 
For example, when braking, it is crucial that the brake 
forces that are applied at each wheel also are applied at 
the same time. A correct behavior is governed by the 
introduction of synchronization constraints during the 

vehicle design. This use-case is concerned, on the one 
hand, with the formulation of such synchronization 
constraints, and on the other hand with techniques to 
ensure their fulfillment during system design. 

3.3 Specify probabilistic timing constraints 
Much automotive functionality are so called hard-real 
time systems, which means that the violation of timing 
constraints leads to total system failure. For these kinds of 
applications it is necessary to define deterministic timing 
constraints such as worst-case execution times (WCET) 
and strict end-to-end deadlines. However, in automotive 
system design, one also has to cope with functionalities 
which can be classified as firm real-time systems. For 
such functionalities infrequent deadline missed are 
tolerable but degrade the system’s quality of service. 
Timing constraints for such kind of functionalities cannot 
be very well described using deterministic timing 
constraints. For this reason, this use case is about 
extending the TIMMO-2-USE language, methodology, 
and tool landscape with the possibility to specify and 
verify probabilistic timing constraints. In particular, it 
shall be possible to describe probabilistic timing 
properties for events and event chains. For example, the 
end-to-end delay of an event chain must be smaller than 
10 ms in 99% of the cases. Obviously, existing methods 
and tools for analyzing timing constraints must be 
adapted. For example, the schedulability test cannot only 
return true or false. The answer should be the probability 
of the schedulability. 
 

4. An Automotive example BbW 

The example used to illustrate our concepts throughout 
this paper is a brake-by-wire system (BbW). As depicted 
in Figure 1, the system consists of one brake pedal, four 
brake actuators, four wheel speed sensors and five 
electronic control units (ECU).  

 

Figure 1: Distributed architecture for brake-by-wire 

Four of the ECUs are placed each at one wheel. The brake 
actuators and the wheel speed sensors are directly 
connected to the ECU at the respective wheel. The brake 
pedal is directly connected to fifth ECU. All five ECUs 
are interconnected via a common bus. 
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Figure 2: Functional Design Architecture of a BbW system annotated with timing requirements 
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The intended functionality of this system is the following: 
When the driver presses the pedal, the brake actuators 
shall apply a braking force on the wheel that is in relation 
with the angle of the pedal. In addition to this basic brake 
functionality, it is augmented with ABS functionality in 
the sense that if the speed of one wheel is significantly 
smaller than the estimated vehicle speed, the brake force 
is reduced on that wheel until it regains speed that is 
comparable with the estimated vehicle speed. This 
functionality is modeled at design level in functional 
design architecture (FDA) as depicted in Figure 2 
The FDA in Figure 2 can visually be divided into three 
parts. Sensors are depicted on the left, computation 
activities in the middle, and actuators on the right. The 
sensor functionality is realized with two functions for 
each sensor. The first function models the raw 
functionality of the sensors, whereas the second interprets 
the raw data provided by the first in the context of the 
application. For the brake pedal, the raw data is a certain 
voltage that is related to the pedal angle, which in the 
second step is transformed into a desired percentage of the 
maximal brake force. In the case of wheel speed, the raw 
data is “ticks”, which are interpreted as wheel speed in the 
second step.  
The computation is divided into three main subparts. In 
the first subpart, the requested brake force is computed. 
The second subpart (solely consisting of the global 
controller) calculates a basic brake force on each of the 
four wheels, disregarding the ABS functionality. It 
additionally estimates the vehicle speed based on the 
wheel speeds. The ABS functionality is added in the 
second part on a per wheel basis. The desired global brake 
force, computed in the first step, may be adjusted 
depending on the difference between the estimated 
vehicle speed and the respective wheel speed.  
The actuator part has a similar two-steps structure as the 
sensors, but mirrored. The first step translates the 
requested brake force into an electrical voltage that can be 
used by the actuators in the second step.  
All wheel-specific functions are allocated to the ECU near 
their respective wheel. Functionality related to the pedal 
and to the global controller is allocated to the central 
ECU.  
This design is primarily concerned with two types of 
timing requirements: end-to-end latency and 
synchronization. The end-to-end latency requirements 
constrain the time it might take for the brake actuators to 
react to a change of the pedal angle. As shown in Figure 
2, this limit is in this example set to 200ms. The figure 
also shows two segments of this delay of 130ms and 
70ms. Although not explicit in the figure, identical 
requirements are imposed for all wheels.  
The end-to-end latencies introduced previously only state 
an upper bound on the response from pedal angle change 
to a  brake actuation. For that reason, a situation where the 
front left wheel starts braking after 50ms and the front 
right wheel after 200ms would be legal.  Such behaviour 
could potentially be dangerous, or at least very 

uncomfortable to the driver. In order to enforce the brake 
actuation to happen roughly at the same time at all 
wheels; regardless of if it happens after 50 or 200ms, a 
synchronisation constraint is introduced. The 
synchronisation constraint states that if one actuation 
event occurs on one wheel, actuation events must also 
occur on the other wheels within 20ms.  
In addition, each function has been assigned a period. All 
functions in the sensor and actuator parts have a period of 
10ms, whereas all functions in the computation part have 
a period of 50ms.  

5. The TADL2 language 

TADL2 is a language for imposing timing constraints on 
the events identifiable in structural models on different 
levels of abstraction. As such, TADL2 is entirely agnostic 
regarding the nature of the events it constrains, 
demanding only that it must be possible to associate every 
event with a sequence of occurrence times when a 
modeled system is run. Currently, TADL2 incorporates 
the event definitions of both AUTOSAR and EAST-ADL, 
as well as a more informally identified form of external 
events. 

5.1 Overview of the language  
The timing constraints of TADL2 are of three basic 
forms: 

• The repetition constraint, which constrains the 
distance between repeated occurrences of a 
single event. 
 

• The delay constraint, which constrains the 
distance between two events called source and 
target, so that all occurrences of source must be 
matched by an occurrence of target. 
 

• The synchronization constraint, which 
constrains a set of events to always occur within 
a certain tolerance from each other. 
 

From these basic constraints TADL2 derives several 
forms that capture common special cases and offer 
compatibility with AUTOSAR 4.0 timing extensions. 
Typical examples are the special cases of periodic and 
sporadic repetition, and the delay variants age and 
reaction time (which attach to the event-chains used to 
indicate causality relationships between events in 
AUTOSAR). 
The BbW system modeled in Figure 2 illustrates the use 
of all three basic constraints. The delay constraint 
BrakeReactionDelay at the top of the figure specifies that 
the upper limit on the distance between each occurrence 
of EventPedalPosition and the matching occurrence of 
EventABSTorqueRearRight is 200 milliseconds. The 
lower limit, which is also possible to specify, defaults to 0 
if not present. 
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The bottom of Figure 2 also shows fifteen examples of 
periodic repetition constraints, with periods varying 
between 10 and 50 milliseconds. Each such constraint is 
equivalent to a basic repetition constraint giving equal 
values for their upper and lower distance limits. It is 
important to note that these constraints—just like the 
delay constraints above—are just specifying requirements 
on the functions producing the constrained events; they 
are in no way part of the implementations of these 
functions.   
The rightmost constraint of Figure 2 illustrates the third 
basic constraint form: event synchronization. In this case 
four individual events are constrained to always occur 
within 20 milliseconds of each other, although without 
prescribing any form of order between them (this is the 
essential difference between synchronization and a set of 
delay constraints). Whether such a timing behavior is 
allowed, contradicted, or maybe even implied, by the 
other constraints attached to the same events is a separate 
question that can only be answered by comparing the 
meanings of all constraints involved. 
 To simplify reasoning, TADL2 defines the semantics of 
each of its basic constraints formally, using only logical 
quantifiers (for all, there exists) and simple inequalities 
between time values. The meaning of derived constraint 
then follows from their mechanical translation into the 
basic forms. 

5.2 Symbolic time expressions    
All time values in Figure 2 are simple constants, which is 
often all that is needed in order to specify a desired timing 
behavior. However, one of the main developments of 
TADL2 is the generalization of time values to expressions 
that also include symbolic variables and arithmetic 
operations. The three delay constraints of Figure 2 may 
illustrate the power of this extension. Since a given delay 
limit must be preserved when an end-to-end delay is 
broken down into segments, the presence of two segments 
in Figure 3 actually only corresponds to one degree of 
freedom when setting up a time budget for the segments. 
Thus, instead of manually maintaining the invariant that 
the upper limits assigned to BrakeDelayAtMasterNode 
and BrakeDelayAtRearRightNode always sum up to 200 
ms, it may be beneficial to express this invariant by giving 
the upper attribute of BrakeDelayAtRearRightNode the 
value of 200 ms - BrakeDelayAtMasterNode.upper. 
Furthermore, by replacing 130 ms in BrakeAtMasterNode 
by the symbolic expression x ms, it will be possible to 
freely experiment with different values of x, as well as to 
symbolically infer possible bounds on x as dictated by 
other constraints (in this example, x must clearly be 
between 0 and 200 for the constraints to be satisfiable at 
all). 

5.3 Multiple timebases  
Timing constraints traditionally refer to the universal 
chronometric time which is implicit in constraint 
declaration. This convenience presents two main 
drawbacks. First, it is difficult to model constraints 
measured on a different timebase so as for an ignition 

control system where timing constraints are both 
measured on chronometric clocks or/and rotation angle of 
a crankshaft. In this case, the rotation position of the 
crankshaft triggers periodic execution of control 
functions. Secondly, as clocks are implicit, drifts, jitters 
and offset between clocks cannot be modelled easily. This 
is a classical issue when distributing functions code on 
different ECUs.  The choice of a processor and/or a 
network may introduce distortions on time evolution that 
influences the overall constraints. 
To overcome these drawbacks, we propose, in TADL2, an 
explicit notion of timebases. A timebase represents a 
possibly infinite and strictly ordered set of instants. A 
timebase is associated with a dimension. Example 1 
shows how to declare a dimension. A time measurement 
may have a chronometric or an angle dimension. Each 
dimension lists their units. Numbers indicate the ratio 
between one unit and the smallest one (ratio=1). Thus, the 
timebase Universal is of type chronometric and its 
precision is the nanosecond (ns). 

dimension chronometric { ns:1, micros:103, ms: 106, 
sec: 109} 

dimension angle { degree: 1, rotation: 360 } 

timebase Universal: chronometric { 1 micros } 

timebase ECU1: chronometric {1 ms on ECU1=  96 
micros on Universal } 

timebase Crankshaft: angle {1 rotation on Crankshaft  
= speed ms on Universal } 
 
Example 1: Dimension and timebase declarations 

Timebases may relate to each other. As shown in example 
1, ECU1 has a drift of 4 micros comparing to the 
Universal timebase.  
Timebases with different dimensions can be linked as 
well. For instance, the cranckshaft timebase has an angle 
dimension. A conversion factor based on the engine 
rotation speed must be applied on values measured on the 
crankshaft to be converted into the Universal timebase. 
Arithmetic rules have been defined to cope with multiple 
timebases and timingExpression with values measured on 
multiple timebase. Based on this definition of Universal, a 
timing expression in the BbW example becomes:  

DelayConstraint.Lower = 200 ms on Universal 

5.4 Probabilistic time  
A basic delay constraint defines time windows in which 
target occurrences are expected, but does not further 
specify where in such a window an occurrence should be 
placed. This means that a behavior where the target 
occurrences repeatedly touch the window limits is just as 
correct as a behavior where occurrences are nicely 
concentrated to the window midpoint. To give the 
constraint user a means to distinguish between such 
behaviors, TADL2 has been extended to support the 
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notion of probabilistic timing. Two complementary 
approaches are currently included in TADL2 side by side. 
One approach assumes full independency between 
repeated occurrence variations, which allows occurrence 
placements to be finely controlled using an optional 
distribution attribute. Available settings include both 
predefined standard distributions as well as arbitrary 
discretized distribution curves. The other approach needs 
no independence assumption but requires the parallel use 
of several constraints to express variations, each one 
specified with an attribute that expresses a minimum 
number of inhabited time windows over sequences of a 
particular length. 
The two approaches are overlapping, but their detailed 
relationship is still a topic of further investigation within 
the TIMMO-2-USE project. Ongoing work is also 
exploring how the probabilistic approaches can be applied 
to the other basic constraint forms of TADL2. 

5.5 Timing constraints and modes 
Even TADL, the constraint language of the original 
TIMMO project, supported a notion of system-level mode 
identifiers attached to its timing constraints. TADL2 
inherits this mechanism, with the intuition that a mode-
dependent constraint only needs to be satisfied during the 
intervals when its mode is active. The mode concept is a 
quite complex idea, however, whose full specification and 
realization involves much more behavioral aspects than 
just a desired timing behavior. Still, the logic of mode 
changes does affect the meaning of timing constraints, 
since changes that occur during some open time window 
may render the window inhabitance question ambiguous. 
To keep the TADL2 language relatively self-contained, 
TIMMO-2-USE has decided not to fully develop the logic 
of modes and mode changes, but to capture their impact 
on timing constraints via a notion of start and stop events 
for each mode. This means that ambiguity issues related 
to the timing of mode changes can be sorted out 
semantically in TADL2 without having to engage in all 
aspects of defining and propagating mode changes 
throughout a full system model. The exact definitions of 
mode-dependent repetition, delay and synchronization 
constraints is still work in progress. 

5.6 Gap between AUTOSAR and EAST_ADL concepts 
TADL concepts of events, event chains, and timing 
constraints are common to AUTOSAR Timing Extensions 
introduced in AUTOSAR R4.0 and EAST_ADL. In 
TADL2, timing constraints have been revisited by 
clarifying semantic points such as the timing constraint in 
the context of mode or the synchronization constraint.  
New concepts have been introduced such as the symbolic 
timing expression and the explicit clock definition.  The 
objective of TIMMO-2-USE is the ownership by 
AUTOSAR and EAST_ADL of these new concepts by 
aligning them to the current and future releases of these 
languages.  

6. Methodology  

6.1 TIMMO-2-USE Generic Method Pattern  

During the analysis of several industrial use cases it 
became obvious that there are a lot of common tasks. This 
led to the definition of the TIMMO-2-USE Generic 
Method Pattern (GMP) described in this section. This 
method pattern is the basis for all steps to be taken during 
the course of a phase and level of abstraction respectively. 

As shown in Figure 3, the TIMMO-2-USE Generic 
Method Pattern consists of the six tasks called “Create 
Solution”, “Transform Timing Requirements”, “Find 
Timing Properties”, “Analyze”, “Verify and Validate”, 
and “Specify Timing Requirements”. By and large, these 
tasks are carried out at every level of abstraction of the 
EAST-ADL. Since the EAST-ADL, as well as TIMMO-
2-USE, defines a phase for every level of abstraction these 
tasks are carried out for every level of abstraction: 
Vehicle, Analysis, Design, Implementation and 
Operational Level. Indeed, there are two exceptions: The 
first exception is that at the beginning of the Vehicle 
Phase, a formal work product “Timing Requirements” is 
not available. The second exception is that at the end of 
the Operational Phase the task “Specify Timing 
Requirements” is not carried out. In the following, all 
tasks and their purpose are described in more detail. The 
tasks are described in the order as they appear in Figure 3 
(from left to right). 

Create Solution: Based on the given requirements, 
including timing requirements, that originate from the 
higher level of abstraction respectively previous phase, a 
solution is created or an already existing solution is 
revised. While creating/revising the solution the given 
timing requirements must be considered, in other words 
the given timing requirements, like any other non-timing 
requirement, guide the creation of the solution. The 
resulting solution is captured in appropriate models. In 
case of EAST-ADL these models are the Technical 
Feature Model TFM on the Vehicle Level, Functional 
Analysis Architecture FAA on the Analysis Level, 
Functional Design Architecture FDA and Hardware 
Design Architecture HDA on the Design Level, and 
Environment Model EM which is present on all levels of 
abstraction. Out of these, the first three models primarily 
capture timing requirements and properties related to the 
system’s application. The Hardware Design Architecture 
provides parameters for execution and hardware delays. 
The Environment Model provides characteristics and 
constraints imposed by the surrounding systems. 
Several solutions (alternatives) can evolve from the task 
“Create Solution” and each of those solutions shall have 
the potential to satisfy the given requirements. However, 
each solution may result from specific design decisions 
that have been taken during the course of this task.  

Transform Timing Requirements: Based on the created 
solution the timing requirements specified in the previous 
phase are transformed into timing requirements suitable 
for further processing during the current phase. In other 
words, those timing requirements are transformed into 
timing requirements such that they are “comparable” with 
the timing properties of the solution created in the current 
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phase and thus on the current level of abstraction (see also 
the description of the task “Verify and Validate”). 
In a nutshell: Timing requirements are expressed using 
events, event chains, and timing constraints that are 
imposed on these events and event chains. Events refer to 
locations, usually ports, in a solution model at which the 
occurrences of the events are observed; and event chains 
specify a causal relationship between events and their 
temporal occurrences.  
During every phase, a solution model is created based on 
the requirements and solution model created in the 
previous phase. An event specified in the previous phase 

and referring to an observable location in the 
corresponding solution model possibly has to be 
transformed or mapped into an event referring to an 
observable location in the solution model created during 
the current phase. This transformation has to be 
performed for all events and event chains, and especially 
the values of the timing requirements imposed on event 
chains. 
Several solutions (alternatives) can evolve from the task 
“Create Solution” and for each of those solutions the 
given timing requirements must be transformed. 
 

 

 

Figure 3: TIMMO-2-USE Generic Method Pattern. 

Find Timing Properties:. Once the solution has been 
created and the timing requirements evolved from 
previous phase have been transformed [into timing 
requirements on the current level of abstraction], the 
timing properties of this solution are specified and the 
values of these timing properties are determined and 
assessed. The methods applied to determine – find – the 
particular values are manifold: [timing] expert knowledge 
and estimation, simulation, analysis, educated guess, 
knowledge from previous projects or iterations within the 
current project, etc. The most appropriate and suitable 
method should be selected for this purpose. 
The objective of this task is to find timing properties that 
are inherent in the solution and its requirements. For 
example, the critical path in the solution is identified and 
annotated with timing properties accordingly. 
Note that the purpose of this task is not to define new 
types of timing properties, but to decide which of the 
timing properties, like latency, response time, execution 
time, sampling rates, etc. are used to describe the dynamic 
behavior of the solution. 

If several solutions (alternatives) are available, then each 
of those solutions is annotated with timing information. 
And with regard to the dynamic – temporal – behavior of 
the solutions there may be different critical paths leading 
to different sets of timing properties and their values. 

Analyze: Based on the solution and its timing properties 
the specific values of those timing properties are assessed, 
in the sense of checking the consistency of all timing 
properties (looking at the whole picture and the target 
system). The primary purpose of this assessment is to 
decide whether to continue conducting the subsequent 
tasks in the development process, or to repeat any or a 
sequence of previous tasks. In other words at this point it 
is decided “whether the numbers are good enough for 
progressing”, or whether those numbers have to be 
revised (iteration). It could also happen that the solution 
subject to timing analysis must be revised, or even worse 
a new solution must be searched. 
The methods applied to assess the values of the timing 
properties are manifold and the most appropriate and 
suitable method should be selected for this purpose. Such 
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a method could be as simple as an addition of values, or it 
could be more complex, like applying a calculus on the 
given numbers. In addition, the methods being used for 
analyses may vary depending on the phase: On higher 
levels of abstractions other methods are used than on 
lower levels of abstraction. For example, scheduling 
analysis is used on implementation level, but not on 
abstraction levels like Vehicle Level. 
It may happen that several solutions (alternatives) are 
available and in this case the purpose of the task 
“Analyze” is to identify and quantify the strengths of 
every solution with regard to the dynamic – temporal – 
behavior. One can select the most appropriate and/or 
promising solutions in order to proceed with the 
development. 

Verify and Validate: Eventually, the timing properties are 
explicitly compared against the given timing requirements 
(verification) and assessed for appropriateness, which 
means regarding consistency and correctness (validation). 
During the course of this task the values of the timing 
properties are compared against the values of the 
transformed timing requirements and possibly timing 
properties that arose during the course of the phase. The 
primary purpose of this task is to decide whether to 
continue conducting the subsequent tasks in the 
development process, or to repeat any or a sequence of 
previous tasks. Essentially, this is the task which 
“compares the numbers of timing properties with given 
[transformed] timing requirements”. 
If several solutions (alternatives) are available then the 
purpose of the task “Verify and Validate” is to verify and 
validate the timing properties of every solution. One has 
to select the most appropriate solution – one solution – in 
order to proceed with the development. 

Specify Timing Requirements: Once the decision is 
taken to proceed with the next phase, all or some of the 

obtained timing properties and transformed timing 
requirements are converted into corresponding timing 
requirements. 
The result of the task is not that all timing properties that 
were found in the previous tasks are converted into timing 
requirements, but only those of them which are 
fundamental and important for design decision to be taken 
in subsequent steps. One criterion for identifying timing 
properties as timing requirements is that they were critical 
for the verification performed. 
These timing requirements are the basis for any design 
work being conducted during the next phase. 
In the TIMMO-2-USE project the Generic Method Pattern 
is used in the work package “Methodology” to describe 
the various use cases identified at the beginning during 
the requirements elicitation in work package 
“Requirements and Use Cases”. The following section 
makes use of this pattern explaining the tasks to be carried 
out in order to specify time budgets on different levels of 
abstraction and phases respectively. 
 
6.2 Use case Specify time budgets 
 In Figure 2, an end-to-end latency between pedal sensor 
and brake actuator of 200ms has been specified at higher 
abstraction levels and given to this abstraction level as a 
requirement. The task is now, in accordance to the 
description of the use case Specify time budgets in section 
3 to divide this end-to-end latency over the intermediate 
design functions. For simplicity of example, we assume 
that it is sufficient to divide the end-to-end latency into 
two segments as indicated in the figure. The focus is here 
on the first segment, BrakeDelayAtMasterNode. Figure 4 
presents the methodology for the use case Specify time 
budgets, and how it maps to the generic methodology 
presented in section 6 The Find timing properties and the 
Analyze timing properties tasks have been split into two 
subtasks each in order to illustrate the activities to be 
performed in these tasks in more detail. Moreover, the 
tasks Verify timing properties and Specify timing 
requirements have been renamed to better reflect their 
purposes in the context of this use case. The following 
paragraphs will describe the figure in more detail focusing 
on the tasks mapped to Find timing properties and Analyze 
timing properties: The task Find timing properties 
identifies timing properties with a direct impact on the 
time budgeting process and that are a direct implication of 
the solution and its timing requirements. Such properties 
are typically execution times (or preferably response 
times) and communication delays. These properties can be 
obtained using the following strategies: 

1. Transformed from a lower abstraction level 
2. Determined from the solution 
3. Determined from an extrapolated solution at 

lower abstraction level 
Each of these strategies is represented by a separate task 
in the methodology.  
The purpose of the task Transform time budget properties 
from lower abstraction levels is to reuse information that 

Solution 

Time budget 
[Higher level] 

F
ind tim

ing properties  

A
nalyze tim

ing properties  

Time budget 
properties  

[Lower level] 

Create solution 

Transform time 
budget properties 
from lower AL 

Determine time 
budget properties  

Estimate influence 
from future 
functionality 

Create time budget 
proposal 

Verify time budget 

Specify time budget 

Estimated influence from 
future functionality 

Time budget 
proposal 

Time budget 
verification report 

Time budget 

Extrapolate time 
budget properties 

Time budget properties 

Product plan 

Figure 4. Methodology for the use case Specify time 
budgets 
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has already been derived for the parts of the solution that 
has already been developed bottom-up at a lower 
abstraction level. Referring to the example inFigure 2, the 
WCET of the HW_BrakePedalSensor and the 
LDM_BrakePedal have been determined/measured at a 
lower abstraction level, but are in this task transformed 
into the context of the current abstraction level with 
values of 5ms each.  
The task Determine time budget properties analyses the 
solution and its requirements for time budget properties 
that are a direct implication of the solution and the 
requirements at the current abstraction level. In our 
example, this corresponds to highlighting all periodic 
constraints on all functions, including those of the sensor 
functions whose execution times we estimated in the 
previous task.  
The task Extrapolate time budget properties addresses a 
problem that occurs in particular at high abstraction 
levels, where information needed for finding the sought 
timing properties might not be present. The task allows us 
to rapidly prototype lower-level models in order to 
estimate essential properties. In our example, this task is 
not necessary as all functions are annotated with periods.  
In the task Analyze timing properties, the previously 
found timing properties are elaborated to form a time 
budget proposal. In this process, not only the current 
solution needs to be considered, but also the influence of 
both planned and still unknown future functionality. The 
task Estimate influence from future functionality assesses 
the amount of slack that needs to be introduced due to 
interference of future functionality. In our example, we 
disregard this aspect.  
A final time budget proposal is formed in the task Create 
time budget proposal based on the identified time budget 
properties and the estimated influence from future 
functionality. The principal timing properties needed for 
creating a time budget in our example, are the periods of 
function. Given the assumption that the execution times 
are less than or equal to the period (which we have in 
some cases even confirmed previously), the periods are 
the main contributors to the end-to-end response time. 
Summing up the periods gives a delay of 110ms. 
Assigning a budget of 130ms to this part of the system 
therefore introduces a 20ms margin that may be used for a 
more relaxed implementation if needed in the future.  
Following the same line of reasoning, the second budget 
segmented was fixed to 70ms. Both budget segments give 
a total latency of 200ms, which satisfies the original 
requirement.  
Lower abstraction levels will receive the two budget 
segments as requirements in addition to the end-to-end 
latency requirement.  

7 Conclusion & perspectives 

This paper presents the first results of the TIMMO-2-USE 
project concerning the time modeling and analysis of 
automotive embedded systems. Different uses cases are 
defined in the project which highlights new needs to 

consider such as complex time expression with variable 
parameters, multi time bases and probabilistic values. A 
methodology has been developed that covers these use 
cases. A TADL2 language guide is currently being 
prepared. Results on analysis and new algorithms to 
validate TADL2 models are not highlighted in the current 
paper but it is part of the all picture. 
Ongoing work will further advance TADL2 while keeping 
the current alignment between TADL2 and EAST_ADL2 
and AUTOSAR4.0 timing concepts. Collaborations 
between the MAENAD project and the AUTOSAR 
timing group will allow adapting TADL2 if future 
changes of the AUTOSAR and/or EAST_ADL timing 
concepts occur.  
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