L. A. Adamic and E. Adar, Friends and neighbors on the web, Social networks, vol.25, issue.3, 2003.

A. Hasan, M. Chaoji, V. Salem, S. Zaki, and M. , Link prediction using supervised learning, SIAM Conference on Data Mining / Workshop on link analysis, p.12, 2006.

L. Bracciale, M. Bonola, P. Loreti, G. Bianchi, R. Amici et al., CRAWDAD dataset roma/taxi, 2014.

P. J. Brockwell and R. A. Davis, Time series: theory and methods, 2013.

A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro, Time-varying graphs and dynamic networks, International Journal of Parallel, Emergent and Distributed Systems, vol.27, issue.5, pp.387-408, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00854287

A. Clauset, C. Moore, and M. E. Newman, Hierarchical structure and the prediction of missing links in networks, Nature, vol.453, issue.7191, pp.98-101, 2008.

P. R. Da-silva-soares and R. B. Prudêncio, Time series based link prediction, International Joint Conference on Neural Networks, pp.1-7, 2012.

D. Davis, R. Lichtenwalter, and N. V. Chawla, Supervised methods for multi-relational link prediction. Social network analysis and mining, vol.3, pp.127-141, 2013.

D. M. Dunlavy, T. G. Kolda, and E. Acar, Temporal link prediction using matrix and tensor factorizations, ACM Transactions on Knowledge Discovery from Data, vol.5, issue.2, p.10, 2011.

N. Eagle and A. S. Pentland, CRAWDAD dataset mit/reality, 2005.

P. Holme and J. Saramäki, Temporal networks, Physics Reports, vol.519, issue.3, pp.97-125, 2012.

Z. Huang, X. Li, and H. Chen, Link prediction approach to collaborative filtering, 5th ACM/IEEE-CS Joint Conference on Digital libraries, pp.141-142, 2005.

Z. Huang and D. K. Lin, The time-series link prediction problem with applications in communication surveillance, INFORMS Journal on Computing, vol.21, issue.2, pp.286-303, 2009.

P. Jaccard, Étude comparative de la distribution florale dans une portion des alpes et des jura, Bulletin de la Société vaudoise des sciences naturelles, vol.37, pp.547-579, 1901.

G. Kossinets, Effects of missing data in social networks, Social networks, vol.28, issue.3, pp.247-268, 2006.

M. Latapy, T. Viard, and C. Magnien, Stream graphs and link streams for the modeling of interactions over time, Social Network Analysis and Mining, vol.8, issue.1, p.61, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01665084

D. Liben-nowell and J. Kleinberg, The link-prediction problem for social networks, Journal of the American society for information science and technology, vol.58, issue.7, pp.1019-1031, 2007.

R. N. Lichtenwalter, J. T. Lussier, and N. V. Chawla, New perspectives and methods in link prediction, 16th ACM SIGKDD international conference on Knowledge discovery and data mining, pp.243-252, 2010.

L. Lü and T. Zhou, Link prediction in complex networks: A survey, Physica A, vol.390, issue.6, 2011.

R. Mastrandrea, J. Fournet, and A. Barrat, Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys, PLoS ONE, vol.10, issue.9, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01238308

T. Murata and S. Moriyasu, Link prediction of social networks based on weighted proximity measures, Proceedings of the IEEE/WIC/ACM international conference on web intelligence, pp.85-88, 2007.

M. Pujari and R. Kanawati, Supervised rank aggregation approach for link prediction in complex networks, 21st International Conference on World Wide Web, pp.1189-1196, 2012.

C. Scholz, M. Atzmueller, and G. Stumme, On the predictability of human contacts: Influence factors and the strength of stronger ties, International Conference on Privacy, Security, Risk and Trust / International Conference on Social Computing, pp.312-321, 2012.

J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot et al., CRAWDAD dataset cambridge/haggle, 2009.

T. Sorensen, A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on danish commons, Kongelige Danske Videnskabernes Selskab, vol.5, pp.1-34, 1948.

L. Tabourier, D. F. Bernardes, A. Libert, and R. Lambiotte, Rankmerging: a supervised learning-to-rank framework to predict links in large social networks, Machine Learning in press, pp.1-28, 2019.

L. Tabourier, A. Libert, and R. Lambiotte, Predicting links in ego-networks using temporal information, EPJ Data Science, vol.5, issue.1, p.1, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01253822

T. Tylenda, R. Angelova, and S. Bedathur, Towards time-aware link prediction in evolving social networks, 3rd workshop on social network mining and analysis, 2009.

T. Viard, R. Fournier-s'niehotta, C. Magnien, and M. Latapy, Discovering patterns of interest in ip traffic using cliques in bipartite link streams, International Workshop on Complex Networks, pp.233-241, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01665089

T. Viard and M. Latapy, Identifying roles in an ip network with temporal and structural density, Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp.801-806, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01009382

P. Wang, B. Xu, Y. Wu, and X. Zhou, Link prediction in social networks: the state-of-the-art, Science China Information Sciences, vol.58, issue.1, pp.1-38, 2015.

T. Zhou, L. Lü, and Y. Zhang, Predicting missing links via local information, The European Physical Journal B, vol.71, issue.4, pp.623-630, 2009.