W. J. Kane, Scoliosis prevalence: a call for a statement of terms, Clin Orthop, vol.126, p.598138, 1977.

B. V. Reamy and J. B. Slakey, Adolescent idiopathic scoliosis: review and current concepts, Am Fam Physician, vol.64, p.11456428, 2001.

S. L. Weinstein, L. A. Dolan, J. Cheng, A. Danielsson, and J. A. Morcuende, Adolescent idiopathic scoliosis. The Lancet, vol.371, pp.1527-1537, 2008.

F. Altaf, A. Gibson, Z. Dannawi, and H. Noordeen, Adolescent idiopathic scoliosis, BMJ, vol.346, p.23633006, 2013.

M. A. Asher and D. C. Burton, Adolescent idiopathic scoliosis: natural history and long term treatment effects, Scoliosis, vol.1, 2006.

T. Schlösser, G. Van-der-heijden, A. L. Versteeg, R. M. Castelein, and . How, Idiopathic" Is Adolescent Idiopathic Scoliosis? A Systematic Review on Associated Abnormalities, PLoS ONE, vol.9, p.24820478, 2014.

R. G. Burwell, R. K. Aujla, B. Freeman, P. H. Dangerfield, A. A. Cole et al., Patterns of extra-spinal left-right skeletal asymmetries in adolescent girls with lower spine scoliosis: relative lengthening of the ilium on the curve concavity & of right lower limb segments, Stud Health Technol Inform, vol.123, p.17108404, 2006.

H. Normelli, J. Sevastik, and J. Akrivos, The length and ash weight of the ribs of normal and scoliotic persons, Spine, vol.10, p.4081873, 1985.

R. G. Burwell, B. Freeman, P. H. Dangerfield, R. K. Aujla, A. A. Cole et al., Left-right upper arm length asymmetry associated with apical vertebral rotation in subjects with thoracic scoliosis: anomaly of bilateral symmetry affecting vertebral, costal and upper arm physes? Stud Health Technol Inform, vol.123, p.17108405, 2006.

L. Shi, P. A. Heng, T. Wong, W. Chu, B. Yeung et al., Morphometric analysis for pathological abnormality detection in the skull vaults of adolescent idiopathic scoliosis girls, Med Image Comput Comput Assist Interv, vol.9, p.17354888, 2006.

Y. Qiu, X. Sun, X. Qiu, W. Li, Z. Zhu et al., Decreased circulating leptin level and its association with body and bone mass in girls with adolescent idiopathic scoliosis, Spine, vol.32, pp.2703-2710, 2007.

A. Moreau, S. Forget, B. Azeddine, D. Angeloni, F. Fraschini et al., Melatonin signaling dysfunction in adolescent idiopathic scoliosis, Spine, vol.29, p.15303021, 2004.

M. Girardo, N. Bettini, E. Dema, and S. Cervellati, The role of melatonin in the pathogenesis of adolescent idiopathic scoliosis (AIS), Eur Spine J, vol.20, issue.1, pp.68-74, 2011.

S. R. Wiener-vacher and K. Mazda, Asymmetric otolith vestibulo-ocular responses in children with idiopathic scoliosis, J Pediatr, vol.132, p.9627598, 1998.

M. Simoneau, V. Lamothe, É. Hutin, P. Mercier, N. Teasdale et al., Evidence for cognitive vestibular integration impairment in idiopathic scoliosis patients, BMC Neurosci, vol.10, p.102, 2009.

C. Assaiante, S. Mallau, J. Jouve, G. Bollini, and M. Vaugoyeau, Do Adolescent Idiopathic Scoliosis (AIS) Neglect Proprioceptive Information in Sensory Integration of Postural Control?, PLoS ONE, vol.7, p.22815779, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01384139

M. Simoneau, P. Mercier, J. Blouin, P. Allard, and N. Teasdale, Altered sensory-weighting mechanisms is observed in adolescents with idiopathic scoliosis, BMC Neurosci, vol.7, p.68, 2006.

Y. Takahashi, I. Kou, A. Takahashi, T. A. Johnson, K. Kono et al., A genome-wide association study identifies common variants near LBX1 associated with adolescent idiopathic scoliosis, Nat Genet, vol.43, p.22019779, 2011.

I. Kou, Y. Takahashi, T. A. Johnson, A. Takahashi, L. Guo et al., Genetic variants in GPR126 are associated with adolescent idiopathic scoliosis, Nat Genet, vol.45, pp.676-679, 2013.

D. Londono, I. Kou, T. A. Johnson, S. Sharma, Y. Ogura et al., A meta-analysis identifies adolescent idiopathic scoliosis association with LBX1 locus in multiple ethnic groups, J Med Genet, vol.51, pp.401-406, 2014.

R. Chettier, L. Nelson, J. W. Ogilvie, H. M. Albertsen, and K. Ward, Haplotypes at LBX1 Have Distinct Inheritance Patterns with Opposite Effects in Adolescent Idiopathic Scoliosis, PloS One, vol.10, p.117708, 2015.

S. Sharma, D. Londono, W. L. Eckalbar, X. Gao, D. Zhang et al., A PAX1 enhancer locus is associated with susceptibility to idiopathic scoliosis in females, Nat Commun, vol.6, p.6452, 2015.

A. Miyake, I. Kou, Y. Takahashi, T. A. Johnson, Y. Ogura et al., Identification of a Susceptibility Locus for Severe Adolescent Idiopathic Scoliosis on Chromosome 17q24.3, PLoS ONE, vol.8, p.24023777, 2013.

V. Worthington and P. Shambaugh, Nutrition as an environmental factor in the etiology of idiopathic scoliosis, J Manipulative Physiol Ther, vol.16, p.8492060, 1993.

F. V. De-george and R. L. Fisher, Idiopathic scoliosis: genetic and environmental aspects, J Med Genet, vol.4, p.6082901, 1967.

J. Kouwenhoven and R. M. Castelein, The pathogenesis of adolescent idiopathic scoliosis: review of the literature, Spine, vol.33, pp.2898-2908, 2008.

R. G. Burwell, R. K. Aujla, M. P. Grevitt, P. H. Dangerfield, A. Moulton et al., Pathogenesis of adolescent idiopathic scoliosis in girls-a double neuro-osseous theory involving disharmony between two nervous systems, somatic and autonomic expressed in the spine and trunk: possible dependency on sympathetic nervous system and hormones with implications for medical therapy, Scoliosis, vol.4, p.24, 2009.

W. J. Wang, H. Y. Yeung, W. Chu, N. Tang, K. M. Lee et al., Top theories for the etiopathogenesis of adolescent idiopathic scoliosis, J Pediatr Orthop, vol.31, p.21173615, 2011.

T. G. Lowe, M. Edgar, J. Y. Margulies, N. H. Miller, V. J. Raso et al., Etiology of Idiopathic Scoliosis: Current Trends in Research*, J Bone Jt Surg, vol.82, pp.1157-1157, 2000.

L. Shi, D. Wang, W. Chu, R. G. Burwell, B. Freeman et al., Volume-based morphometry of brain MR images in adolescent idiopathic scoliosis and healthy control subjects, AJNR Am J Neuroradiol, vol.30, pp.1302-1307, 2009.

D. Wang, L. Shi, W. C. Chu, R. G. Burwell, J. C. Cheng et al., Abnormal cerebral cortical thinning pattern in adolescent girls with idiopathic scoliosis, Neuroimage, vol.59, p.21872666, 2012.

L. Shi, D. Wang, S. Hui, M. Tong, J. Cheng et al., Volumetric changes in cerebellar regions in adolescent idiopathic scoliosis compared with healthy controls, Spine J, vol.13, pp.1904-1911, 2013.

T. Sahlstrand and B. Petruson, A Study of Labyrinthine Function in Patients with Adolescent Idiopathic Scoliosis I. An Electro-Nystagmographic Study, Acta Orthop, vol.50, pp.759-769, 1979.

C. De-waele, W. Graf, P. Josset, and P. P. Vidal, A radiological analysis of the postural syndromes following hemilabyrinthectomy and selective canal and otolith lesions in the guinea pig, Exp Brain Res, vol.77, p.2792260, 1989.

F. M. Lambert, D. Malinvaud, J. Glaunès, C. Bergot, H. Straka et al., Vestibular asymmetry as the cause of idiopathic scoliosis: a possible answer from Xenopus, J Neurosci, vol.29, pp.12477-12483, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00534421

T. Sato, Vergleichende Untersuchungen über die Bogengänge des Labyrinthes beim neugeborenen und beim erwachsenen Menschen, 1902.

T. H. Bast, Ossification of the otic capsule in human fetuses, Contributions to Embryology, 1930.

T. H. Bast and A. Bj, The temporal bone and the ear, 1949.

J. Hublin, F. Spoor, M. Braun, F. Zonneveld, and S. Condemi, A late Neanderthal associated with Upper Palaeolithic artefacts, Nature, vol.381, p.8622762, 1996.

F. Spoor, F. Esteves, T. Silva, F. , P. Dias et al., The bony labyrinth of Lagar Velho 1. The Lapedo Child, a Gravettian Human Skeleton from the Abrigo Do Lagar Velho, pp.287-292, 2002.

F. Spoor, J. Hublin, and O. Kondo, The bony labyrinth of the Dederiyeh child, Neanderthal Burials Excavations of the Dederiyeh Cave, pp.215-220, 2002.

N. Jeffery and F. Spoor, Prenatal growth and development of the modern human labyrinth, J Anat, vol.204, pp.71-92, 2004.

M. C. Dahm, R. K. Shepherd, and G. M. Clark, The Postnatal Growth of the Temporal Bone and its Implications for Cochlear Implantation in Children, Acta Otolaryngol (Stockh), vol.113, pp.4-39, 2009.

I. S. Curthoys, The interpretation of clinical tests of peripheral vestibular function, The Laryngoscope, vol.122, pp.1342-1352, 2012.

W. R. Nemzek, H. A. Brodie, B. W. Chong, C. J. Babcook, S. T. Hecht et al., Imaging findings of the developing temporal bone in fetal specimens, AJNR Am J Neuroradiol, vol.17, p.8883642, 1996.

B. S. Richards, D. J. Sucato, D. E. Konigsberg, and J. A. Ouellet, Comparison of reliability between the Lenke and King classification systems for adolescent idiopathic scoliosis using radiographs that were not premeasured, Spine, vol.28, pp.1156-1157, 2003.

, British Society of Audiology. Recommended procedure. The caloric test. London: BSA, 2010.

C. S. Hallpike, The caloric tests, J Laryngol Otol, vol.70, p.13278645, 1956.

L. B. Jonkees, J. P. Maas, and A. J. Philopszoon, Clinical nystagmography. A detailed study of electro-nystagmography in 341 patients with vertigo, Pract Otorhinolaryngol (Basel), vol.24, pp.65-93, 1962.

P. Pietkiewicz, R. Pepa?, W. J. Su?kowski, H. Zieli?ska-bli?niewska, and J. Olszewski, Electronystagmography versus videonystagmography in diagnosis of vertigo, Int J Occup Med Environ Health, vol.25, pp.59-65, 2012.

D. C. Hoaglin and B. Iglewicz, Fine-tuning some resistant rules for outlier labeling, J Am Stat Assoc, vol.82, pp.1147-1149, 1987.

L. Shi, D. Wang, and C. W. Chu, Automatic MRI Segmentation and morphoanatomy of the vestibular system in adolescent idiopathic scoliosis, Neuroimage, vol.54, issue.1, pp.180-188, 2011.

S. Zhou, J. Yan, H. Da, Y. Yang, N. Wang et al., A correlational study of scoliosis and trunk balance in adult patients with mandibular deviation, PLoS ONE, vol.8, p.23555836, 2013.

G. Dalleau, P. Leroyer, M. Beaulieu, C. Verkindt, C. Rivard et al., Pelvis morphology, trunk posture and standing imbalance and their relations to the Cobb angle in moderate and severe untreated AIS, PLoS ONE, vol.7, p.22792155, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01232320

R. G. Burwell, P. H. Dangerfield, and B. Freeman, Concepts on the pathogenesis of adolescent idiopathic scoliosis. Bone growth and mass, vertebral column, spinal cord, brain, skull, extra-spinal left-right skeletal length asymmetries, disproportions and molecular pathogenesis, Stud Health Technol Inform, vol.135, p.18401079, 2008.

J. Kouwenhoven, T. H. Smit, A. J. Van-der-veen, I. Kingma, J. H. Van-dieën et al., Effects of dorsal versus ventral shear loads on the rotational stability of the thoracic spine: a biomechanical porcine and human cadaveric study, Spine, vol.32, pp.2545-2550, 2007.

P. G. Cox and N. Jeffery, Morphology of the mammalian vestibulo-ocular reflex: The spatial arrangement of the human fetal semicircular canals and extraocular muscles, J Morphol, vol.268, pp.878-890, 2007.

K. M. Stankovic, O. Adachi, K. Tsuji, A. G. Kristiansen, J. C. Adams et al., Differences in gene expression between the otic capsule and other bones, Hear Res, vol.265, pp.83-89, 2010.

M. S. Sørensen, P. Bretlau, and M. B. Jørgensen, Quantum type bone remodeling in the otic capsule of the pig, Acta Otolaryngol (Stockh), vol.110, pp.217-223, 1990.

M. S. Sørensen, P. Bretlau, and M. B. Jørgensen, Human perilabyrinthine bone dynamics. A functional approach to temporal bone histology, Acta Oto-Laryngol Suppl, vol.496, pp.1-27, 1992.

T. Frisch, M. S. Sørensen, S. Overgaard, M. Lind, and P. Bretlau, Volume-referent bone turnover estimated from the interlabel area fraction after sequential labeling, Bone, vol.22, p.9626408, 1998.

T. Frisch, S. Overgaard, M. S. Sørensen, and P. Bretlau, Estimation of volume referent bone turnover in the otic capsule after sequential point labeling, Ann Otol Rhinol Laryngol, vol.109, pp.33-39, 2000.

T. Frisch, . Bloch, and M. S. Sørensen, Prevalence, size and distribution of microdamage in the human otic capsule, Acta Otolaryngol (Stockh), 2015.

H. Naganuma, K. Tokumasu, M. Okamoto, S. Hashimoto, and S. Yamashina, Three-dimensional analysis of morphological aspects of the human utricular macula, Ann Otol Rhinol Laryngol, vol.112, p.12784980, 2003.

I. S. Curthoys, Vestibular compensation and substitution, Curr Opin Neurol, vol.13, p.10719646, 2000.

P. F. Smith and I. S. Curthoys, Mechanisms of recovery following unilateral labyrinthectomy: a review, Brain Res Rev, vol.14, p.2665890, 1989.

M. Dieterich, S. Bense, S. Lutz, A. Drzezga, T. Stephan et al., Dominance for vestibular cortical function in the non-dominant hemisphere, Cereb Cortex, vol.13, p.12902399, 2003.

C. Best, E. Lange, H. Buchholz, M. Schreckenberger, S. Reuss et al., Left hemispheric dominance of vestibular processing indicates lateralization of cortical functions in rats, Brain Struct Funct, vol.219, pp.2141-2158, 2013.

T. Liu, W. Chu, G. Young, K. Li, B. Yeung et al., MR analysis of regional brain volume in adolescent idiopathic scoliosis: neurological manifestation of a systemic disease, J Magn Reson Imaging JMRI, vol.27, pp.732-736, 2008.

D. Wang, L. Shi, S. Liu, S. Hui, Y. Wang et al., Altered Topological Organization of Cortical Network in Adolescent Girls with Idiopathic Scoliosis, PLoS ONE, vol.8, p.83767, 2013.

A. E. Geissele, M. J. Kransdorf, C. A. Geyer, and J. S. Jelinek, Van Dam BE. Magnetic resonance imaging of the brain stem in adolescent idiopathic scoliosis, Spine, vol.16, p.1925751, 1991.

G. E. Korte and E. Mugnaini, The cerebellar projection of the vestibular nerve in the cat, J Comp Neurol, vol.184, pp.265-277, 1979.

D. E. Angelaki, T. A. Yakusheva, A. M. Green, J. D. Dickman, and P. M. Blazquez, Computation of egomotion in the macaque cerebellar vermis, The Cerebellum, vol.9, pp.174-182, 2010.

A. Brodal and P. Brodal, Observations on the secondary vestibulocerebellar projections in the macaque monkey, Exp Brain Res, vol.58, p.3987852, 1985.

R. Blanks, W. Precht, and Y. Torigoe, Afferent projections to the cerebellar flocculus in the pigmented rat demonstrated by retrograde transport of horseradish peroxidase, Exp Brain Res, vol.52, p.6641889, 1983.

S. C. Carleton and M. B. Carpenter, Distribution of primary vestibular fibers in the brainstem and cerebellum of the monkey, Brain Res, vol.294, p.6200186, 1984.

F. Walberg and E. Dietrichs, The interconnection between the vestibular nuclei and the nodulus: a study of reciprocity, Brain Res, vol.449, p.2456133, 1988.

N. Kotchabhakdi and F. Walberg, Cerebellar afferent projections from the vestibular nuclei in the cat: an experimental study with the method of retrograde axonal transport of horseradish peroxidase, Exp Brain Res, vol.31, p.350598, 1978.

C. Mazzucchelli, M. Pannacci, R. Nonno, V. Lucini, F. Fraschini et al., The melatonin receptor in the human brain: cloning experiments and distribution studies, Mol Brain Res, vol.39, p.8804720, 1996.

M. V. Podda, F. Deriu, E. Giaconi, M. Milia, and E. Tolu, Melatonin inhibits rat medial vestibular nucleus neuron activity in vitro, Neurosci Lett, vol.341, p.12697285, 2003.

J. S. Cook and C. A. Ray, Melatonin attenuates the vestibulosympathetic but not vestibulocollic reflexes in humans: selective impairment of the utricles, J Appl Physiol, vol.109, pp.1697-1701, 2010.

F. Fraschini, A. Cesarani, D. Alpini, D. Esposti, and B. M. Stankov, Melatonin Influences Human Balance, Neurosignals, vol.8, pp.111-119, 1999.

T. K. Hensch, Critical period mechanisms in developing visual cortex, Curr Top Dev Biol, vol.69, p.16243601, 2005.

A. S. Keuroghlian and E. I. Knudsen, Adaptive auditory plasticity in developing and adult animals, Prog Neurobiol, vol.82, p.17493738, 2007.

D. J. Simons and P. W. Land, Early experience of tactile stimulation influences organization of somatic sensory cortex, Nature, vol.326, pp.694-697, 1987.

D. Eugène, S. Deforges, N. Vibert, and P. Vidal, Vestibular critical period, maturation of central vestibular neurons, and locomotor control, Ann N Y Acad Sci, vol.1164, pp.180-187, 2009.

S. J. Moorman, R. Cordova, and S. A. Davies, A critical period for functional vestibular development in zebrafish, Dev Dyn, vol.223, p.11836792, 2002.

M. Simoneau, P. Mercier, J. Blouin, P. Allard, and N. Teasdale, Altered sensory-weighting mechanisms is observed in adolescents with idiopathic scoliosis, BMC Neurosci, vol.7, p.17052338, 2006.

M. T. Wallace and B. E. Stein, Early experience determines how the senses will interact, J Neurophysiol, vol.97, p.16914616, 2007.

P. Y. Risold, R. H. Thompson, and L. W. Swanson, The structural organization of connections between hypothalamus and cerebral cortex, Brain Res Rev, vol.24, pp.197-254, 1997.

T. Katafuchi, K. P. Puthuraya, H. Yoshimatsu, and Y. Oomura, Responses of rat lateral hypothalamic neuron activity to vestibular nuclei stimulation, Brain Res, vol.400, p.3815070, 1987.

J. G. Mercer, N. Hoggard, L. M. Williams, C. B. Lawrence, L. T. Hannah et al., Localization of leptin receptor mRNA and the long form splice variant (Ob-Rb) in mouse hypothalamus and adjacent brain regions by in situ hybridization, FEBS Lett, vol.387, p.8674530, 1996.

S. G. Bouret, S. J. Draper, and R. B. Simerly, Trophic action of leptin on hypothalamic neurons that regulate feeding, Sci Signal, vol.304, p.108, 2004.

B. J. Yates, Vestibular influences on the sympathetic nervous system, Brain Res Rev, vol.17, p.1638275, 1992.

B. J. Yates, Vestibular influences on the autonomic nervous system, Ann N Y Acad Sci, vol.781, p.8694435, 1996.

B. J. Yates and A. M. Bronstein, The effects of vestibular system lesions on autonomic regulation: observations, mechanisms, and clinical implications, J Vestib Res, vol.15, p.16179761, 2005.

G. Vignaux, J. Besnard-s-ndong, P. Philoxène-b-denise, and F. Elefteriou, Bone remodeling is regulated by inner ear vestibular signals, J Bone Miner Res Off J Am Soc Bone Miner Res, 2013.

P. Denise, S. Besnard, G. Vignaux, J. P. Sabatier, E. E. Hitier et al., Sympathetic B antagonist prevents bone mineral density decrease induced by labyrinthectomy, Aviakosmicheskaia Ekol Meditsina Aerosp Environ Med, vol.43, pp.36-38, 2009.

J. C. Cheng, X. Guo, and A. H. Sher, Persistent Osteopenia in Adolescent Idiopathic Scoliosis: A Longitudinal Follow-Up Study, Spine, vol.24, p.10382248, 1999.

J. C. Cheng and X. Guo, Osteopenia in adolescent idiopathic scoliosis: a primary problem or secondary to the spinal deformity?, Spine, vol.22, p.9259781, 1997.

J. Cheng, L. Qin, C. Cheung, A. Sher, K. M. Lee et al., Generalized low areal and volumetric bone mineral density in adolescent idiopathic scoliosis, J Bone Miner Res, vol.15, p.10934658, 2000.

J. C. Cheng, S. P. Tang, X. Guo, C. W. Chan, and L. Qin, Osteopenia in adolescent idiopathic scoliosis: a histomorphometric study, Spine, vol.26, pp.1-5, 2001.

N. N. Byl and J. M. Gray, Complex balance reactions in different sensory conditions: adolescents with and without idiopathic scoliosis, J Orthop Res, vol.11, p.8483034, 1993.

J. Kouwenhoven, K. L. Vincken, L. W. Bartels, and R. M. Castelein, Analysis of preexistent vertebral rotation in the normal spine, Spine, vol.31, p.16741456, 2006.

R. G. Burwell, B. Freeman, P. H. Dangerfield, R. K. Aujla, A. A. Cole et al., Etiologic theories of idiopathic scoliosis: neurodevelopmental concept of maturational delay of the CNS body schema ("body-in-the-brain"), Stud Health Technol Inform, vol.123, p.17108406, 2006.

M. Jansen, Physiological Scoliosis, Br Med J, vol.2, pp.1372-1373, 1912.

M. Janssen, J. Kouwenhoven, T. Schlösser, M. A. Viergever, L. W. Bartels et al., Analysis of preexistent vertebral rotation in the normal infantile, juvenile, and adolescent spine, Spine, vol.36, pp.486-491, 2011.

C. J. Goldberg, F. E. Dowling, and E. E. Fogarty, Adolescent idiopathic scoliosis: is rising growth rate the triggering factor in progression?, Eur Spine J, vol.2, pp.29-36, 1993.