, CPU : Intel(R) Xeon(R) Gold 5118 @ 2.30GHz

K. Ahn and J. Kim, Efficient Mining of Frequent Itemsets and a Measure of Interest for Association Rule Mining, J. Inf. Knowl. Manag, vol.03, issue.03, pp.245-257, 2004.

J. C. Augusto and P. Mccullagh, Ambient intelligence : Concepts and applications, Comput. Sci. Inf. Syst, vol.4, issue.1, pp.1-27, 2007.

P. J. Azevedo and A. M. Jorge, Comparing Rule Measures for Predictive Association Rules, Machine Learning : ECML 2007, pp.510-517, 2007.

J. Cumin, G. Lefebvre, F. Ramparany, and J. L. Crowley, A Dataset of Routine Daily Activities in an Instrumented Home, 11th International Conference on Ubiquitous Computing and Ambient Intelligence (UCAmI), 2017.
URL : https://hal.archives-ouvertes.fr/hal-01639673

G. Das, K. Lin, H. Mannila, G. Renganathan, and P. Smyth, Rule Discovery from Time Series, Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, KDD'98, pp.16-22, 1998.

J. Deogun and L. Jiang, Prediction Mining -An Approach to Mining Association Rules for Prediction, Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, pp.98-108, 2005.

J. K. Febrer-hernández, R. Hernández-león, C. Feregrino-uribe, and J. Hernández-palancar,

. Spac-nf, A classifier based on sequential patterns with high netconf, Intell. Data Anal, vol.20, issue.5, pp.1101-1113, 2016.

P. Fournier-viger, T. Gueniche, S. Zida, and V. S. Tseng, ERMiner : Sequential Rule Mining Using Equivalence Classes, Advances in Intelligent Data Analysis XIII, pp.108-119, 2014.

P. Fournier-viger, C. Wu, V. S. Tseng, L. Cao, and R. Nkambou, Mining Partially-Ordered Sequential Rules Common to Multiple Sequences, IEEE Transactions on Knowledge and Data Engineering, vol.27, issue.8, pp.2203-2216, 2015.

H. Mannila, H. Toivonen, and A. I. Verkamo, Discovery of Frequent Episodes in Event Sequences, Data Min Knowl Discov, vol.1, issue.3, pp.259-289, 1997.

T. Schlüter and S. Conrad, About the analysis of time series with temporal association rule mining, 2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), pp.325-332, 2011.