
HAL Id: hal-02189322
https://hal.science/hal-02189322

Submitted on 21 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Climate variability of the last 2700 years in the
Southern Adriatic Sea: Coccolithophore evidences

Antonio Cascella, Sergio Bonomo, Bassem Jalali, Marie-Alexandrine Sicre,
Nicola Pelosi, Sabine Schmidt, Fabrizio Lirer

To cite this version:
Antonio Cascella, Sergio Bonomo, Bassem Jalali, Marie-Alexandrine Sicre, Nicola Pelosi, et al.. Cli-
mate variability of the last 2700 years in the Southern Adriatic Sea: Coccolithophore evidences. The
Holocene, 2019, 30 (1), pp.53-64. �10.1177/0959683619865600�. �hal-02189322�

https://hal.science/hal-02189322
https://hal.archives-ouvertes.fr


This is the peer reviewed version of the following article: [Antonio

Cascella, Sergio Bonomo, Bassem Jalali, Marie-Alexandrine Sicre,

Nicola Pelosi, Sabine Schmidt, Fabrizio Lirer (2019). Climate

variability of the last 2700 years in the Southern Adriatic Sea:

Coccolithophore evidences. The Holocene, which has been published

in final form at [doi.org/10.1177/0959683619865]. This article may be

used for non-commercial purposes in accordance with SAGE Terms

and Conditions for Self-Archiving.



1

1

Climate variability of the last 2700 years in the Southern Adriatic Sea:2

Coccolithophore evidences3

4

Antonio Cascella1*, Sergio Bonomo 1-2-3, Bassem Jalali4 , Marie-Alexandrine Sicre4, Nicola Pelosi2,5

Sabine Schmidt5, Fabrizio Lirer26

1) Istituto Nazionale di Geofisica e Vulcanologia (INGV), Via della Faggiola 32, 52126, Pisa;*7

corresponding author: antonio.cascella@ingv.it8

2) Istituto di Scienze Marine (ISMAR), Consiglio Nazionale delle Ricerche (CNR), Calata Porta di9

Massa, Interno Porto di Napoli, 80133- Naples, Italy.10

3) Istituto di Biomedicina ed Immunologia Molecolare "Alberto Monroy" (IBIM), Consiglio11

Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146, Palermo, Italy;12

4) Sorbonne Universités (UPMC, Univ. Paris 06) CNRS-IRD-MNHN, LOCEAN Laboratory, 4 place13

Jussieu, F-75005 Paris, France;14

5) UMR5805 EPOC, Université de Bordeaux, Avenue Geoffroy Saint-Hilaire, 33615 Pessac, France;15

16



2

17

Abstract18

New information on paleoenvironmental conditions over the past 2700 years in the Central19

Mediterranean Sea have been acquired through the high-resolution study of calcareous20

nannofossils preserved in the sediment core SW104ND14Q recovered in the Southern21

Adriatic Sea (SAS) at 1013 m water depth. The surface water properties at this open SAS site22

are sensitive to atmospheric forcing (acting both at local and regional scale) and the North23

Ionian Sea driven inflowing waters. Our data show a relationship between reworked coccolith24

abundances, flood frequency across the Southern Alps and the North Atlantic Oscillation25

(NAO) confirming their value as indicator of runoff/precipitation. Changes in the abundance26

of the opportunistic (r-strategist) species Emiliania huxleyi and deep dweller taxa27

Florisphaera profunda were used to reconstruct the upper water column stratification and28

associated changes in coccolithophorid productivity. The negative correlation between29

reworked coccoliths and the N-Ratio (r=-0.44; p=6-7) suggest that fresh water induced30

stratification is a controlling factor of the SAS coccolithophorid production. High31

coccolithophorid productivity levels occurred during dry periods and/or time intervals of32

inflowing salty and nutrient-rich Levantine Intermediate Waters (LIW) favouring convection33

while lower levels took place during high freshwater discharge, mainly during the Little Ice34

Age (LIA) and two centennial scale intervals of weakest NAO around 200 BCE and500 CE.35
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41

Introduction42

Coccolithophores (calcareous nannoplankton) and their fossil remains (calcareous43

nannofossils) are valuable source of information for paleoclimatic studies (Baumann et al.,44

2005). Coccolithophores are single cell calcareous algae whose ecology and vital functions45

are driven by environmental parameters within the ocean euphotic zone (e.g., temperature,46

salinity, sunlight, and nutrient supply). Therefore, abundances of selected taxa have been used47

to reconstruct variations of physical and environmental parameters and their relation with48

climate change and human activity. Their skeletons composed of tiny calcareous platelets49

(coccoliths) are highly abundant in marine sediments making them ideal fossils to produce50

high-resolution time series (Baumann et al., 2005). These microorganisms are usually51

considered to prefer warm, stratified, oligotrophic waters of low and middle latitude regions52

(e.g., Honjo and Okada, 1974; Ziveri et al., 2004). However, local oceanic features such as53

coastal currents, gyres, eddies, upwelling, and river runoff are known to regionally affect their54

productivity (Guerreiro et al., 2013). In addition, reworked coccoliths (i.e., the nannofossils55

which have been removed from their original sedimentary layer and redeposited in a younger56

layer) can provide information on sediment transport (Bonomo et al., 2014; Ferreira et al.,57

2008; Ferreira and Cachão, 2005) and used to reconstruct regional scale runoff and/or58

precipitation changes (Bonomo et al., 2016a; Incarbona et al., 2010; Sprovieri et al., 2006).59

Understanding the trends and variability of the Mediterranean climate at local and regional60

scales has been subject of intense research. (Bonomo et al., 2016a; Cacho et al., 1999; Frigola61

et al., 2007; Martrat et al., 2004; Pérez-Folgado et al., 2004; Rodrigo-Gámiz et al., 2011;62

Rohling et al., 2002, 2015; Sbaffi et al., 2001; Sierro et al., 2005; Sprovieri et al., 2003, 2006;63

Triantaphyllou et al., 2009, 2016a). Shelf sediments of the Adriatic Sea (AS) provide ideal64

natural archives for high-resolution paleoclimatic investigations because of expanded65

Holocene sedimentary sequences and possible use of recurrent tephras for geochronological66
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control (Jalali et al., 2018; Lowe et al., 2007; Marchini et al., 2014; Matthews et al., 2015;67

Siani et al., 2013). Terrestrial and marine paleoclimate proxy data (e.g., calcareous plankton,68

lipid biomarkers, palynomorphs, stable isotopes, lake levels, and speleothems) have shown69

the occurrence of abrupt climate changes during the Holocene (warmer/colder and70

drier/wetter periods) at decadal, centennial to millennial time scales in the Mediterranean71

basin (e.g., Bini et al., 2019; Cisneros et al., 2016; Di Bella et al., 2014; Gogou et al., 2016;72

Goudeau et al., 2015; Grauel et al., 2013; Jalali et al., 2016, 2018; Kouli et al., 2012; Lirer et73

al., 2013, 2014; Margaritelli et al., 2016, 2018; Piva et al., 2008; Sicre et al., 2016; Skampa et74

al., 2019; Triantaphyllou et al., 2009, 2010, 2016b).75

Many studies have focussed on (late) Holocene climate variability and its impact on the76

environment and human activity in the SAS (Caroli and Caldara, 2007; Combourieu-Nebout77

et al., 2013; Di Rita and Magri, 2009; Giunta et al., 2003; Grauel and Bernasconi, 2010; Jalali78

et al., 2018; Leider et al., 2010; Oldfield et al., 2003; Piva et al., 2008; Sangiorgi et al., 2003;79

Siani et al., 2013; Sicre et al., 2016). The recent study of Jalali et al. (2018) in the SAS80

highlighted the links between the centennial scale variability of SSTs and local climatic and81

oceanographic features, and notably the role of the Bimodal Oscillating System (BiOS) of the82

Ionian Sea and North Atlantic Oscillation (NAO). Although there has been a substantial83

number of publications on the investigated area, very few studies have explored calcareous84

nannofossils as a proxy of past climate and environmental changes (e.g., Giunta et al., 2003;85

Narciso et al., 2012; Sangiorgi et al., 2003). Narciso et al. (2012) studied a gravity core close86

to our site between 13000 and 5500 BP, thus focused on the Greenland Stadial 1/Younger87

Dryas, Pre-Boreal, and Sapropel 1 equivalent periods. Giunta et al. (2003) and Sangiorgi et al.88

(2003) reported data from 18000 to 2300 yrs BP at a more southern site, documenting the89

distribution of calcareous nannofossils during the Sapropel S1. As far as living90

coccolithophores are concerned, the only study carried out in the SAS is that of Balestra et al.91

(2008) describing assemblages in the water column and surface coastal sediments of the Gulf92
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of Manfredonia (SAS). Other very recent data were restricted to the Mid and North Adriatic93

Sea (e.g., Cerino et al., 2017; Godrijan et al., 2018; Skejić et al., 2018, and references there94

in) or are part of phytoplankton biomass and productivity assessments aiming at providing95

rough estimates of coccolithophore distribution in open SAS (e.g., Fonda Umani, 1996;96

Ljubimir et al., 2017, and references therein).97

The aim of this work is to evaluate the reliability of Coccolithophores/calcareous nannofossils98

as a proxy of environment and climate variability over the last three millennia in the Central99

Mediterranean. For this purpose, we carried out a high-resolution study from a deep-sea100

gravity core recovered in the SAS and from a second shallow coastal gravity core (C5101

Composite) from the Tyrrhenian Sea (Gulf of Gaeta) obtained within the framework of the102

NEXTDATA Project (http://www.nextdataproject.it). Our data evidence major changes in103

nutricline depth as well as variations of river runoff and precipitation. We explore the cause of104

the observed changes by comparing our results to alkenone derived Sea Surface Temperatures105

(SSTs) and terrestrial inputs derived from higher plant biomarkers (Jalali et al., 2018). We106

also use other indicators of past precipitation changes in the Mediterranean basin: i.e. the107

flood activity in the Southern Alps (Wirth et al., 2013), the reworked coccolith record from a108

Southern Tyrrhenian sea core (Bonomo et al., 2016b), the XRF record from lake sediments of109

the Iberian Peninsula (Moreno et al., 2012) and the reconstruction of the forested fraction of110

usable land in Central and Western Europe (Kaplan et al., 2009).111

112

Oceanographic setting of the study area113

The AS is a semi-enclosed basin located between the Italian Peninsula and the Balkans,114

connected to the Mediterranean Sea through the Strait of Otranto (Fig.1a). The North Adriatic115

(NA) is primarily influenced by the southeast Europe climate, while the SAS experiences116

more arid conditions typical of Mediterranean and Northern Africa climates (Ilijanić et al.,117

2014). The general surface circulation of the AS is cyclonic (Fig.1b,c) (Sellschopp and118
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Álvarez, 2003) and consists of a northward current flowing along the eastern Adriatic coast119

(i.e., the Eastern Adriatic Current, EAC) balanced by southward current flowing along the120

western coast (i.e., the Western Adriatic Current, WAC). The intermediate layer mainly121

present in the southern and mid AS is occupied by the Levantine Intermediate Water (LIW)122

(Artegiani et al., 1997). The deep circulation is characterized by the Adriatic Deep Water123

(ADW) a dense water mass formed by the mixing of the Northern Adriatic Dense Water124

(NADW) and Southern Adriatic Dense Water (SADW) (Manca et al., 2002).125

The SAS is a sub-basin (South Adriatic Pit, SAP, 1260 m max depth) characterized by a126

quasi-permanent cyclonic circulation, i.e. the South Adriatic Gyre (SAG; Gačić et al., 1997)127

(Fig. 1b,c). The physical and chemical properties of SAS surface waters depend on the128

characteristics of inflowing waters into the basin, the strength of SAG, as well as wind stress129

and river discharges. Inflowing waters consist mainly of WAC and NADW from the North,130

the LIW and occasionally Modified Atlantic Water (MAW) from the South. The WAC is131

strongly influenced by river runoff mostly from the Po River, making it fresher and nutrient132

rich. The inflow of LIW and MAW depends on the variability of the North Ionian Gyre (NIG)133

(Fig. 1b,c). According to the BiOS (Bimodal Oscillating System) model, the NIG circulation134

may either be cyclonic or anticyclonic (Civitarese et al., 2010; Gacic et al., 2010). This135

mechanism is sustained by internal processes driven by the density of the ADW outflowing136

the Otranto Strait. When the circulation in the NIG is cyclonic, saltier and warmer LIW enters137

the SAS promoting deep convection and the formation of a denser ADW. In an anticyclonic138

NIG mode, fresher and colder MAW enters the SAS leading to the production of lower139

density ADW. However, some studies invoke the role of more complex driving mechanisms140

involving the whole Ionian Sea circulation and not just its northern sector (Reale et al., 2016;141

Simoncelli et al., 2016; Theocharis et al., 2014). The intensity of the SAG depends on local142

wind intensity and properties of advected waters from the Ionian Sea (Shabrang et al., 2016).143

Shabrang et al. (2016) reported a significant negative correlation between the NAO index and144
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local wind intensity. However, they did not find unequivocal relationship between the NAO145

and SAG variability because of additional effects of the advection of the Ionian waters,146

suggesting that the BiOS mode does not depend on NAO. Nevertheless, Pinardi et al. (2015)147

reported a sustained BiOS anticyclonic circulation during the period of positive NAO in148

1987-1996.149

The surface waters of the SAS are more oligotrophic than those of the NA (e.g., Civitarese et150

al., 1998). The influence of Po River and secondary Apennines rivers flowing into the western151

AS on the nutrient budget of the SAS seems rather weak and limited to a narrow coastal152

current flowing over the Italian shelf (Faganeli et al., 1989). The nutrient supply to the SAS153

occurs mainly via the inflow of LIW lying at about 300 m in the Adriatic Sea (Gačić et al.,154

2002). Nevertheless, according to Civitarese et al. (2010) larger amounts of nutrients are155

advected by the MAW during periods of anticyclonic BIOS.156

157
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Figure 1. Location of the cores SW104-ND14Q (diamond), C5 Composite (dot), C90 (square,158
Lirer et al., 2013), Basa de la Mora (star, Moreno et al., 2012), and Ledro (triangle, Wirth et159
al., 2013). (a): bathymetric map of the Mediterranean Basin and main surface (green arrow)160
and intermediate circulation pattern (red arrow). AC: Algerian Current; MAW: Modified161
Atlantic Water ; ATC: Atlantic Tunisian Current; LIW: Levantine Intermediate Water.162
Numbers 1-6: 1-Alboran Sea; 2-Tyrrhenian Sea; 3-Adriatic Sea; 4-South Adriatic Pit, SAP; 5-163
Ionian Sea; 6 Levantine Sea. The main catchment basins of river flowing into the Adriatic Sea164
are reported (blue thick lines). (b) and (c): bathymetric map and main circulation pattern of165
South Adriatic Sea and North Ionian Sea during cyclonic (b) and anticyclonic (c) mode of the166
BiOS; WAC: Western Adriatic Current; EAC: Eastern Adriatic Water; LIW: Levantine167
Intermediate Water; MAW: Modified Atlantic Water; SAG: South Adriatic Gyre; NIG: North168
Ionian Gyre.169

170

Methods171

Core SW104-ND14Q172

Core SW104-ND14Q (17°37’3.612’’E; 41°17’2.4’’N) was recovered at 1013m water depth in173

the SAS (Fig. 1). The sedimentary sequence was retrieved with a SW104 gravity corer174

system, which preserves the water-sediment interface and allowed the recovery of 116 cm of175

undisturbed and uncompressed homogeneous brown-grey hemipelagic sediments. The176

magnetic susceptibility measured on board with a Bartington Instrument M2 revealed three177

tephra layers (Fig. 2). The age model used here is from Jalali et al. (2018) and has been178

constructed combining radionuclides ages (210Pb activity-depth profile and 137Cs activity) for179

the last ca. 150 years and the additional dates derived from the correlation of three tephra180

layers with well-dated volcanic events onland [Pompei eruption (79 CE); Pollena eruption181

(472 CE); 1631 CE] (see Jalali et al. 2018 for details on tefrostratigraphy). Linear182

interpolation between the tie-points has been used to construct the age-depth profile from the183

top down to the base core documenting a mean Sed. Rate of 0.04 cm/y (Fig. 2). Based on the184

age model, core SW104-ND14Q ranges from 700 BCE to 2003 CE and has a mean temporal185

resolution of 26 yrs.186
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187

Figure 2. SW104-ND14Q age-depth model and magnetic susceptibility signal. Sedimentation188
rate and tephra layers (diamond) were reported.189

190

Core C5 Composite191

To investigate the reliability of the reworked coccoliths as a regional proxy of precipitation,192

we also used the central Tyrrhenian Sea shallow sequence C5 Composite (C5Comp) (Fig.1).193

The location of this site in front of Volturno River mouth makes it particularly suitable for194

reconstructing runoff variability and for comparing coastal and open sea sites (Bonomo et al.,195

2016). The core C5Comp is a composite marine sequence consisting of two cores: the196

SW104-C5 and core C5 (710 cmbsf length) both recovered in the Gulf of Gaeta, at 93 m197

water depth (see Margaritelli et al., 2016 for details). Calcareous nannofossils of the core198

SW104-C5 (back to 1630 CE) was already published by Bonomo et al. (2016). In this work199

we extended their reconstruction back to  400 CE. The chronology used is that of200

Margaritelli et al. (2016) and has been assembled combining radionuclides ages (210Pb201

activity-depth profile and 137Cs activity) for the last ca. 150 years, planktonic foraminiferal202
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event, tephrostratigraphy and oxygen stable isotope correlation with other marine sites (for203

details see Margeritelli et al., 2016). The age-depth profile has been constructed by a linear204

interpolation between the tie-points showing a progressive decrease in sedimentation rate205

from the top down to the base core.206

The analysed time interval of core C5Comp covers the period between  400 and 2013 CE207

with a mean temporal resolution of 10 yrs.208

Calcareous Nannofossils209

116 samples of the SW104-ND14Q core and 108 of the C5Comp were prepared as standard210

smear slides (Bown, 1998) and analyzed with a transmitted light microscope at x1250211

magnification. Some samples of SW104-ND14Q core were analysed with a scanning electron212

microscope (SEM) in order to solve taxonomic identification for smaller placoliths difficult to213

achieve by light microscope (e.g., Emiliania huxleyi). The relative abundance of in situ214

species was estimated only in the SW104-ND14Q core based on the count of at least 600215

specimens. The abundance of reworked nannofossils was estimated in the SW104-ND14Q216

and C5Comp as the number of reworked specimens encountered during the count of the in217

situ coccoliths. All abundances are expressed in percentages. SW104-ND14Q coccolith218

species abundances were also used to calculate the N-ratio as defined by Flores et al. (2000)219

to assess the nutricline depth fluctuations. The N-ratio is based on the absolute abundances of220

the main surface r-strategist species (in our record E. huxleyi and small placoliths) over that of221

F. profunda (lower photic zone taxon). High values of the N-ratio indicate shallow222

nutricline/thermocline (relatively high surface coccolithophorid productivity) while low223

values indicate deep nutricline/thermocline (relatively low surface coccolithophorid224

productivity). As small placoliths, we counted the placoliths not confidently recognizable as225

E. huxleyi and Reticulofenestra spp.226
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Finally, the reworked coccoliths (RC) group includes taxa from different stratigraphic227

intervals (Mesozoic, early Cenozoic) and Cenozoic long-range taxa showing poor228

preservation (etching and/or overgrowth). Raw data are shown in supplementary material.229

230

Ecology of selected taxa231

E. huxleyi tolerates a wide range of ecological conditions and is therefore abundant in nearly232

all oceanic environments (Schwab et al., 2012). This species is considered an opportunistic (r-233

strategist) taxon capable to quickly respond to nutrient availability in both eutrophic and234

oligotrophic areas (e.g., Balestra et al., 2008; Broerse et al., 2000; Dimiza et al., 2008, 2015;235

Haidar and Thierstein, 2001). E. huxleyi is generally more abundant in temperate (cold) mixed236

surface waters (e.g., Hagino et al., 2000; Malinverno et al., 2003), but may also be found in237

stable regimes in terms of vertical mixing with relatively high nutrient availability (Andruleit238

et al., 2005). Ausín et al. (2015) further postulated that E. huxleyi (size >4 μm) can find239

optimal conditions for its development in cold water that are also low-salinity.240

The lower photic zone species F. profunda has a more constrained habitat and has thus been241

widely used to monitor past changes in nutricline-depth and induced changes in surface242

productivity (Beaufort, 1997). The abundance of F. profunda increases with respect to other243

coccolithophores when the nutricline is deep and overlaid by a nutrient-depleted upper photic244

layer (Balestra et al., 2008; Bown et al., 2009; Dimiza et al., 2015; Incarbona et al., 2008,245

2010). These conditions generally reveal stable, stratified, oligotrophic surface waters during246

summer months (Baumann et al., 2005; Malinverno et al., 2009) that can be disrupted under247

increased wind stress and ⁄ or upwelling and divergence circulation (Bown et al., 2009).248

Hernández-Almeida et al. (2019), using F. profunda relative abundance vs MODIS (Moderate249

Resolution Imaging Spectroradiometer) chlorophyll-, show a pronounced temperature250

sensitivity of F. profunda and no correlation whit surface net primary production at latitudes251

higher than 30°N−30°S, such as Mediterranean area. Contrary, Grelaud et al. (2012) showed a252
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strong anticorrelation (R = −0.76) between F. profunda % and chlorophyll- in the Aegean253

Sea (eastern Mediterranean Sea).254

Biomarker analyses255

Sea surface temperature and TERR-alkane reconstructions along the SW104-ND14Q core256

have been published by Jalali et al (2018). The method used for biomarker analyses have been257

described by (Sicre et al., 2002). Fatty alcohol biomarker data were used to calculate the C26258

fatty alcohol / C29 n-alkane + C26 fatty alcohol ratio (C26OH/(C26OH+C29)). This ratio was259

determined along the core to infer information on water oxygenation as proposed by Cacho et260

al. (2000). High values of this ratio presumably correspond to low ventilation and vice versa.261

262

Results263

The coccolithophore assemblages in the SW104-ND14Q core are generally well preserved264

and abundant. E. huxleyi dominates the assemblages with an average abundance of ~80%. F.265

profunda is also well represented with an average abundance of ~10%. Other taxa are largely266

subordinated with percentages ranging between ~1- 3% (e.g. Syracosphaera, Rhabdosphaera267

and Calciosolenia) and no significant variations (not shown). Reworked specimens are always268

present and are found in higher amounts in the upper part of the core. E. huxleyi, F. profunda,269

RC, and the N-ratio data shown in Figure 3 are used for the discussion.270

E. huxleyi abundance range from 65 to 90 % (Fig. 3a). Its downcore distribution pattern can271

be divided into two major intervals. A first one that includes the late Iron Age (IA) and the272

almost entire Roman Period (RP; between ~700 BCE and ~400 CE) with abundance above273

80%. This period is followed by a decline to lower values (< 65%) between ~400 and ~800274

CE, i.e. from the late RP throughout the Dark Age (DA). E. huxleyi returns to moderately275

higher abundances (65 - 75%) at the late DA and during the Medieval Climate Anomaly276

(MCA) (800 to 1100 CE). Then, values remain approximately at these levels but with277

superimposed short-lived oscillations especially during the upper LIA. The distribution of F.278
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profunda (Fig. 3b) reveals three main intervals: the first one runs from the bottom of the core279

till 400 CE and is characterized by fluctuating values between 7 and 9 %. Over the second280

interval, from 400 to 1200 CE, the taxon abundances increase almost continuously, except for281

two time spans of strong decrease centred at 600 and 900 CE. From 1200 CE, F. profunda282

declines till 1550 CE and rises again to Present day values. As shown in Fig. 3d, the N-ratio283

shows similar trends as E. huxleyi, but with more pronounced fluctuations especially in the284

upper half of the core. During the first 1200 years (700 BCE - 400 CE) the N-ratio value is >285

0.9. At 400 CE a sharp drop sets the beginning of a long-term decreasing trend till Present286

that suggests a progressive reduction of coccolithophorid productivity.287

RC percentages (%RC) along the core range from 3 to 25%, and depict a steady increase288

from the bottom core to 800 CE. Then, after a period of lower values around 900 CE and289

1300 CE, %RC increases up to Present with the highest values (17-25%) during the LIA290

(1400 -1800 CE) (Fig. 3c). In the C5Comp core, %RC ranges from 14 to 79% with lowest291

levels found between 400 and 1350 CE.292
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Figure 3. Time domain distribution of (a) E. huxleyi, (b) F. profunda, (c) RC, (d) N-ratio, and294
(e) C26OH/C29+C26OH ratio in core SW104-ND14Q. Raw and three points running average data295
are reported in grey dashed and black full lines, respectively. The age model is from Jalali et296
al. (2018) and the climate period intervals are those of Margaritelli et al. (2016).297

298

Discussion299

Reworked coccoliths and runoff fluctuations300

The NAO is one of the dominant atmospheric mode of variability in the North Atlantic sector301

that has a considerable influence on winter temperature/precipitation in Europe including the302

Mediterranean region (Hurrell, 1995). In the central Mediterranean, positive NAO conditions303

result in colder and drier winters than average, while winters are warmer and wetter during304

negative phases of NAO (Benito et al., 2015; López-Moreno et al., 2011a, 2011b; and305

references within). Bonomo et al. (2016) were able to evidence a negative correlation between306

the NAO index of Trouet et al. (2009) and the %RC in the Central Tyrrhenian Sea core307
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SW104-C5 over the last 400 years. Our results show that this relationship could have308

persisted back to 700 BCE (Fig. 4). The resemblance between the %RC short and long term309

trends the flood frequency in Southern Alps (Wirth et al., 2013) and the Southern Tyrrhenian310

marine record (Gulf of Salerno; Lirer et al. 2013) seems to confirm the link between the %RC311

and runoff/precipitation in the region on longer time span (Bonomo et al., 2016a; Incarbona et312

al., 2010; Sprovieri et al., 2006). This finding is supported by the slight negative correlation313

between the NAO index of Trouet et al. (2009) (r=-0.4 p=5-33, n=34) and Olsen et al. (2012)314

(r=-0.2 p=0.01, n=82) and the %RC along the SW104 record. Our data agree with the315

negative correlation between NAO and winter precipitation, for the 1950–2006 period,316

reconstructed over large areas of Morocco and Tunisia, most of the Iberian Peninsula,317

southeastern France, Italy, the Balkan Peninsula, and large areas of central and northern318

Turkey (López-Moreno et al., 2011a). Notwithstanding the age models accuracy of the319

different cores, the main drier spells recorded in the SAS, in the Central and Southern320

Tyrrhenian as shown by red dots in Fig. 4 might be considered synchronous as well to the321

XRF Si fluctuations found in lake sediments of Iberian Peninsula (Moreno et al., 2012). A322

noteworthy result is the high %RC (RC Acme event) during the late LIA, between 1600 and323

1850 CE, that coincides with a long standing interval of negative NAO and is consistent324

with a regional scale humid period already documented in marine and continental sedimentary325

sequences of the Western and Central Mediterranean (e.g., Barrera-Escoda and Llasat, 2015;326

Goudeau et al., 2015; Vallefuoco et al., 2012; Moreno et al. 2012) .327

Jalali et al. (2018) highlighted similarities between the TERR–alkane record in SW104-328

ND14Q and the forested fraction of usable land (FF) in Central and Western Europe (Fig.4 f,329

i) (Kaplan et al., 2009). Considering that FF fluctuations are indicative of anthropogenic330

deforestation (Kaplan et al., 2009), they concluded that TERR–alkane at SW104-ND14Q331

reflects primarily human activity rather than climate fluctuations. Since the RC signal does332

not match with either the TERR–alkanes or FF index but with the flood activity333



16

reconstruction and the C26OH/(C26OH+C29) ratio (Fig.4), we suggest that RC reflect334

precipitation changes that are also seen in other Mediterranean RC records overall supporting335

the hypothesis that %RC is a reliable index of past runoff/precipitation changes in the region.336

337
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Figure 4. Comparison in time domain between (c) SW104-ND14Q, (d) C90, and (e) C5Comp338
reworked coccoliths, (g) SW104-ND14Q C26OH/C29+C26OH ratio, (b) Si fluctuations (Moreno339
et al., 2012), and (a) Flood frequency reconstruction from Southern Alps (Wirth et al., 2013).340
(f) Terrestrial biomarker concentration (Jalali et al., 2018) and (i) Forest fraction of usable341
land (Kaplan et al., 2009) are reported. The dots mark the dry spells identified in the records.342
The bands highlight the relationship between C26OH/C29+C26OH ratio and negative (h) NAO343
states. The climate periods are from Margaritelli et al. (2016).344

345

N-ratio and South Adriatic hydrology346

Highest N-ratio values almost all along the RP indicate shallow nutricline (surface productive347

waters) during this period considered as generally mild (Figs. 3, 5). This is in contrast with348

the LIA showing deep nutricline (lower surface productivity levels) (Figs. 3, 5), a cold period349

that one would expect to be favourable to water column mixing and growth of r-strategy taxa350

E. huxleyi. Comparable results has been recorded in the North Aegean Sea during the last351

1500 years (Gogou et al., 2016; Skampa et al., 2019). In particularly, in the North Aegean Sea352

Gogou et al.( 2016) and Skampa et al. (2019) recorded periodic occurrence of “E. huxleyi353

dominance” intervals indicating strong water column convection coupled with NAO positive354

shifts , EMT-like events (Incarbona et al., 2016), cool spells, and enhanced continental inputs355

as well. In contrast, the occurrence of F. profunda dominance intervals may be linked to356

enhanced stratification of the upper water column and warm surface waters, potentially357

associated with increased lower salinity Black Sea Water intrusion. During the RP, alkenone-358

derived SSTs show cold oscillations that do not seem to have any relationship with the N-359

ratio (Fig. 5 a, d). Local atmospheric and hydrological conditions (i.e. properties of inflowing360

waters into the basin and strength of SAG) play an important role in the stratification of the361

upper water column and associated changes in productivity (Civitarese et al., 2010; Ljubimir362

et al., 2017; Vilibić et al., 2012). Several studies in open sea SAS waters have linked high363

abundances of coccolithophorids with the inflow of saltier Ionian waters (Fonda Umani,364

1996; Totti et al., 2000). In contrast, Ljubimir et al. (2017) reported higher abundances of365

coccolithophorids in lower salinity SAG waters during years of anticyclonic mode of the366
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BiOS and their absence during cyclonic BiOS years. However, despite the lack of significant367

correlation between salinity and total coccolithophore abundances, increased abundance of E.368

huxleyi has been often related to the inflow of LIW or eastern Mediterranean surface waters369

(Malinverno et al., 2003; Skejić et al., 2018). Advection of saltier LIW by promoting deep370

convection (Gačić et al., 2014) would favour the development of E. huxleyi known to rapidly371

respond to increased nutrient supply to the photic zone (Fig.5 g) (Malinverno et al., 2003).372

Conversely, reduced inflow of LIW, or enhanced input of less salty waters (mainly the WAC,373

and occasionally the MAW), and a weak SAG, would lead to higher surface water buoyancy374

and stratified conditions (Fig.5 f, g). The consequent deepening of the nutricline would thus375

favour F. profunda growth (Fig. 5 f). This conceptual scheme is in agreement with the slight376

negative correlation (r= -0.44; p=6-7) between the N-ratio and %RC values. For instance,377

higher values of %RC associated with sustained negative NAO during the LIA are coherent378

with higher precipitation and runoff (Bonomo et al., 2016a; Incarbona et al., 2010; Sprovieri379

et al., 2006) and the Po River flood record (Camuffo and Enzi, 1996). Rising380

C26OH/(C26OH+C29) ratio to their highest values suggests an abrupt reduction of water381

oxygenation that is also compatible with stratified conditions caused by the large freshwater382

discharge during the LIA and lowest N-ratios. Similar observation can be made for two383

intervals of weaker NAO, i.e. around 200 BCE and around 500 CE.384

Regarding nutrient supply, our results also support the idea of a limited influence of the Po385

River (and secondary Apennines rivers) on the nutrient budget of the open SAS surface386

waters and coccolithophore productivity, as the nutrients are usually rapidly consumed during387

their transport within the WAC. The same have been observed around the eastern Adriatic388

coasts (Vilibić et al., 2012). Overall, our findings suggest that fresh water input due to389

increased precipitation and river runoff impact essentially on buoyancy and subsequent390

stratification in the SAG.391



19

Apart from the LIA and these two major short time intervals that all took place during392

prolonged negative NAO, other N-ratio fluctuations cannot robustly be attributed to NAO and393

high river discharge (Fig. 5). Under weaker freshwater forcing, other factors such as the BiOS394

circulation may have been a more important controlling factor on the SAG dynamics and395

productivity, but this question will need further investigations to be addressed.396
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Figure 5. Schematic view of inferred relationship between (a) SW104-ND14Q N-Ratio and398
(f, g) SAS hydrology. (b) %RC fluctuations, (c) C26OH/C29+C26OH ratio, (d) SSTs fluctuations,399
and (e) winter NAO index (Olsen et al., 2012; Trouet et al., 2009) are reported. The bands400
highlight the N-Ratio during periods of stratified surface water (diagram f). The climate401
periods are from Margaritelli et al. (2016).402

403
Conclusion404

This high-resolution study of calcareous nannofossils from the sediment core SW104-ND14Q405

was used to provide information on paleoceanographic and climatic conditions in the SAS,406

over the past 2700 years. Based on the distribution of E. huxleyi, F. profunda, the N-ratio,407

and reworked coccoliths we were able to evidence hydrological variability and related408

coccolithophore production changes in the SAG.409

One outstanding result is the good correspondence we found between the % reworked410

coccoliths in the SAS and Tyrrhenian Sea cores and flood activity across the Southern Alps,411

highlighting the value of %RC as a proxy for reconstructing regional scale precipitation and412

runoff.413

We also showed that lowest N-ratio took place during extended weakest NAO phases, i.e.414

primarily the LIA and two other intervals (200BCE and 500CE), as a result of large fresh415

water discharge and subsequent stratified surface ocean reducing nutrient supply and416

production of coccolithophorids in the SAG. Outside these periods of strong negative NAO,417

whether and to what extent other factors such as the BIOS may have played a role on the418

hydrology and productivity of the SAG remains an open question.419
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