M. Preiss and G. D. Bothun, Stimuli-responsive liposome nanoparticle Assemblies, vol.8, pp.1025-1040, 2011.

K. Hong, D. S. Friend, C. G. Glabe, and D. , Papahadjopoulos Liposomes Containing Colloidal Gold Are A Useful Probe Of Liposome-Cell Interactions, Biochim. Biophys. Acta, vol.732, pp.320-323, 1983.

H. Kiwada, J. Sato, S. Yamada, and Y. Kato, Feasibility of Magnetic Liposomes as a Targeting Device for Drugs, Chem. Pharm. Bull, vol.34, pp.4253-4258, 1986.

M. De-cuyper and M. , Joniau Magnetoliposomes Formation and structural characterization, Eur. Biophys. J, vol.15, pp.311-319, 1988.

C. Chen, J. Yao, and R. A. Durst, Liposome encapsulation of fluorescent nanoparticles: Quantum dots and silica nanoparticles, J. Nanopar. Res, vol.8, pp.1033-1038, 2006.

C. Sangregorio, J. K. Wiemann, C. J. O'connor, and Z. Rosenzweig, A new method for the synthesis of magnetoliposomes, J. Appl. Phys, vol.85, p.5699, 1999.

A. Wijaya and K. Hamad-schifferli, High-Density Encapsulation of Fe3O4 Nanoparticles in Lipid Vesicles, vol.23, pp.9546-9550, 2007.

R. R. Sawant and V. P. Torchilin, Liposomes as 'smart' pharmaceutical nanocarriers, Soft Matter, vol.6, pp.4026-4044, 2010.

E. Reimhult, Nanoparticle-triggered release from lipid membrane vesicles, New Biotechnol, vol.32, pp.665-672, 2015.

R. T. Pearson, M. Avila-olias, A. S. Joseph, S. Nyberg, G. Battaglia et al., Smart Polymersomes: Formation, Characterisation and Applications, vol.1, pp.179-207, 2013.

R. Chandrawati and F. Caruso, Biomimetic Liposome-and Polymersome-Based Multicompartmentalized Assemblies, Langmuir, vol.28, pp.13798-13807, 2012.

G. Fuks, R. Talom, and F. Gauffre, Biohybrid block copolymers: towards functional micelles and vesicles, vol.40, pp.2475-2493, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00870327

P. L. Luisi, M. Allegretti, T. P. Souza, F. Steiniger, A. Fahr et al., Spontaneous protein crowding in liposomes: a new vista for the origin of cellular metabolism, vol.11, 1989.

S. Mann and J. P. Hannington, Formation of iron-oxides in unilamellar vesicles, J. Colloid Interface Sci, vol.122, pp.326-335, 1988.

C. Bonnaud, C. A. Monnier, D. Demurtas, C. Jud, D. Vanhecke et al., RothenRutishauser, A. Petri-Fink, Insertion of nanoparticle clusters into vesicle bilayers, ACS Nano, vol.8, pp.3451-3460, 2014.

C. A. Monnier, D. Burnand, B. Rothen-rutishauser, M. Lattuada, and A. Petri-fink, Magnetoliposomes: opportunities and challenges, vol.6, pp.201-215, 2014.

E. Viroonchatapan, M. Ueno, H. Sato, I. Adachi, H. Nagai et al., Preparation and Characterization of Dextran Magnetite-Incorporated Thermosensitive Liposomes: An on-line Flow System for Quantifying Magnetic Responsiveness, I. Pharm. Res, vol.12, pp.1176-1183, 1995.

F. Szoka and D. Papahadjopoulos, Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation, Proc. Natl. Acad. Sci. U.S.A, vol.75, pp.4194-4198, 1978.

G. Beaune, M. Levy, S. Neveu, F. Gazeau, C. Wilhelm et al., Different localizations of hydrophobic magnetic nanoparticles within vesicles trigger their efficiency as magnetic nano-heaters, Soft Matter, vol.7, p.6248, 2011.

S. Zheng, Y. Zheng, R. L. Beissinger, and R. Fresco, Microencapsulation of hemoglobin in liposomes using a double emulsion, film dehydration rehydration approach, Biochim. Biophys. Acta Biomembr, vol.1196, pp.123-130, 1994.

A. Rita, O. Rodrigues, P. M. Mendes, P. M. Silva, V. A. Machado et al.,

M. Araújo, R. P. Queiroz, M. S. Elisabete, P. J. Castanheira, and . Coutinho, Solid and aqueous magnetoliposomes as nanocarriers for a new potential drug active against breast cancer, Coll. Surf. B: Biointerfaces, vol.158, pp.460-468, 2017.

A. Yusuf, A. Brophy, B. Gorey, and A. Casey, Liposomal encapsulation of silver nanoparticles enhances cytotoxicity and causes induction of reactive oxygen species-independent apoptosis, J. Appl. Toxicol, vol.38, pp.616-627, 2018.

J. Pichaandi, L. Tong, A. Bouzekri, Q. Yu, O. Ornatsky et al., Winnik Liposome-Encapsulated NaLnF4 Nanoparticles for Mass Cytometry: Evaluating Nonspecific Binding to Cells, vol.29, p.4990, 2017.

, Spray Drying Techniques for Food Ingredient Encapsulation, 2015.

C. J. Brinker, Y. Lu, A. Sellinger, and H. Fan, Evaporation-Induced Self-Assembly:Nanostructures Made Easy, vol.11, pp.579-5885, 1999.

G. M. Rotskoff and P. L. Geisslerb, Robust nonequilibrium pathways to microcompartment assembly, Proc. Natl. Acad. Sci. U.S.A, vol.115, pp.6341-6346, 2018.

J. Lou, X. Zhang, and M. D. Best, Lipid Switches: Stimuli-Responsive Liposomes through Conformational Isomerism Driven by Molecular Recognition. Chem. -A Eur, J, vol.25, pp.20-25, 2019.

J. Lou, A. J. Carr, A. J. Watson, S. I. Mattern-schain, and M. D. Best, Calcium-Responsive Liposomes via a Synthetic Lipid Switch. Chem. -A Eur, J, vol.24, pp.3599-3607, 2018.

S. Wilhelm, Perspectives for Upconverting Nanoparticles, ACS Nano, vol.11, 2017.

S. A. Walker, M. T. Kennedy, and J. A. Zasadzinski, Encapsulation of Bilayer Vesicles by Self-Assembly, Nature, vol.387, pp.61-64, 1997.

S. Simões, J. Moreira, C. Fonseca, N. Düzgünes, and M. C. Pedroso-de-lima, On the formulation of pHsensitive liposomes with long circulation times, Adv. Drug Deliv. Rev, vol.56, pp.947-965, 2004.

E. Fattal, P. Couvreur, and C. Dubernet, Smart'' delivery of antisense oligonucleotides by anionic pH-sensitive liposomes, Adv. Drug Deliv. Rev, vol.56, pp.931-946, 2004.

S. Mura, J. Nicolas, and P. Couvreur, Stimuli-responsive nanocarriers for drug delivery, Nature Mater, vol.12, pp.991-1003, 2013.

K. M. Saerens, J. Zhang, I. N. Van-bogaert, and W. Soetaert, Cloning and functional characterization of the UDP-glucosyltransferase UgtB1 involved in sophorolipid production by Candida bombicola and creation of a glucolipid-producing yeast strain, Yeast, vol.28, pp.279-292, 2011.

N. Baccile, A. Cuvier, S. Prévost, C. Stevens, E. Delbeke et al.,

. Roelants, Self-Assembly Mechanism of pH-Responsive Glycolipids: Micelles, Fibers, Vesicles, and Bilayers, vol.32, pp.10881-10894, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01429922

P. Dhasaiyan and B. L. Prasad, Self-Assembly of Bolaamphiphilic Molecules, vol.17, pp.597-610, 2017.

D. Kitamoto, T. Morita, T. Fukuoka, M. Konishi, and T. Imura, Self-assembling properties of glycolipid biosurfactants and their potential applications, Curr. Op. Coll. Interf. Sci, vol.14, pp.315-328, 2009.

I. N. Van-bogaert, K. Saerens, C. De-muynck, D. Develter, W. Soetaert et al., Microbial production and application of sophorolipids, Appl. Microbiol. Biotechnol, vol.76, pp.23-34, 2007.

N. Baccile, F. Babonneau, I. M. Banat, K. Ciesielska, A. Cuvier et al.,

C. A. Marchant, S. Mitchell, L. Roelants, E. Six, G. Theeuwes et al., Development of a Cradle-to-Grave Approach for Acetylated Acidic Sophorolipid Biosurfactants, ACS Sustain. Chem. Eng, vol.5, pp.1186-1198, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01428412

E. I. Delbeke, J. Everaert, O. Lozach, T. L. Gall, M. Berchel et al.,

M. Brennich, N. Baccile, S. L. Roelants, W. Soetaert, I. N. Van-bogaert et al., Synthesis and biological evaluation of bolaamphiphilic sophorolipids, ACS Sustain. Chem. Eng, vol.6, pp.8992-9005, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01806695

L. Van-renterghem, S. L. Roelants, N. Baccile, K. Uyttersprot, M. C. Taelman et al.,

S. Ledegen, K. Debrouwer, C. Scholtens, and W. Stevens, Soetaert From lab to market: An integrated bioprocess design approach for new-to-nature biosurfactants produced by Starmerella bombicola, Biotechnol. Bioeng, vol.115, pp.1195-1206, 2018.

H. L. Lydon, N. Baccile, B. Callaghan, R. Marchant, C. A. Mitchell et al., Banat Adjuvant antibiotic activity of acidic sophorolipids with potential for facilitating wound healing, Antimicrob. Agents Chemother, vol.61, pp.2547-2563, 2017.

Y. Hirata, M. Ryu, K. Igarashi, A. Nagatsuka, T. Furuta et al., Natural synergism of acid and lactone type mixed sophorolipids in interfacial activities and cytotoxicities, J. Oleo Sci, vol.58, pp.565-572, 2009.

N. Baccile, M. Selmane, P. L. Griel, S. Prévost, J. Perez et al.,

I. N. Soetaert, S. Van-bogaert, and . Roelants, pH-driven self-assembly of acidic microbial glycolipids, Langmuir, vol.32, pp.6343-6359, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01359051

E. Johnson, D. Cascio, M. R. Sawaya, M. Gingery, and I. Schröder, Crystal Structures of a Tetrahedral Open Pore Ferritin from the Hyperthermophilic Archaeon Archaeoglobus fulgidus, Structure, vol.13, pp.637-648, 2005.

R. Massart, IEEE Trans. Magn, vol.17, p.1247, 1981.

R. Massart, V. Cabuil, J. Chim, and . Phys, , vol.84, p.7, 1987.

C. Felip-león, F. Guzzetta, B. Julián-lópez, F. Galindo, and J. F. Miravet, Multimodal Light-Harvesting Soft Hybrid Materials: Assisted Energy Transfer upon Thermally Reversible Gelation, J. Phys. Chem. C, vol.121, pp.21154-21159, 2017.

B. Sana, E. Johnson, and S. Lim, The Unique Self-assembly/disassembly Property of Archaeoglobus fulgidus Ferritin and Its Implications on Molecular Release from the Protein Cage, Biochim. Biophys. Acta -Gen. Sub, pp.2544-2551, 2015.

A. Walter, P. K. Vinson, A. Kaplun, and Y. Talmon, Biophys. J, vol.60, pp.1315-1325, 1991.

L. Tai, P. Tsai, Y. Wang, Y. Wang, L. Lo et al., Nanotechnology, vol.20, p.135101, 2009.

C. A. Monnier, D. Demurtas, C. Jud, D. Vanhecke, and . Nano, , vol.8, pp.3451-3460, 2014.

N. Baccile, R. Noiville, L. Stievano, and I. Van-bogaert, Sophorolipids-functionalized iron oxide nanoparticles, Phys. Chem. Chem. Phys, vol.15, p.1606, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00770911

E. Amstad, T. Gillich, I. Bilecka, M. Textor, and E. Reimhult, Ultrastable Iron Oxide Nanoparticle Colloidal Suspensions Using Dispersants with Catechol-Derived Anchor Groups, Nano Lett, vol.9, pp.4042-4048, 2009.

E. Amstad and E. Reimhult, Nanoparticle actuated hollow drug delivery vehicles, Nanomedicine, vol.7, pp.145-164, 2012.

A. E. , J. Kohlbrecher, E. Muller, T. Schweizer, M. Textor et al., Triggered Release from Liposomes through Magnetic Actuation of Iron Oxide Nanoparticle Containing Membranes, Nano Lett, vol.11, pp.1664-1670, 2011.

G. D. Bothun and M. R. Preiss, Bilayer heating in magnetite nanoparticle-liposome dispersions via fluorescence anisotropy, J. Colloid Interface Sci, vol.357, pp.70-74, 2011.

S. Nappini, M. Bonini, F. B. Bombelli, F. Pineider, C. Sangregorio et al., Controlled drug release under a low frequency magnetic field: Effect of the citrate coating on magnetoliposomes stability, Soft Matter, vol.7, pp.1025-1037, 2011.

, Figure S 1 -TEM images of bare iron oxide NPs, NPs-SLs at pH 6 (NPs SL pH6, sample S5) and NPs-GLs at pH 9