P. M. Ajayan and O. Z. Zhou, Applications of Carbon Nanotubes, Carbon Nanotubes: Synthesis, Structure, Properties, and Applications

M. S. Dresselhaus and G. Dresselhaus, , vol.80, pp.391-425, 2001.

N. Grobert, Carbon Nanotubes -Becoming Clean. Mater. Today, vol.10, pp.28-35, 2007.

Q. Zhang, J. Huang, M. Zhao, W. Qian, and F. Wei, Carbon Nanotube Mass Production: Principles and Processes, pp.4-864, 2011.

X. Jia and F. Wei, Advances in Production and Applications of Carbon Nanotubes, Top. Curr. Chem, p.18, 2017.

C. Cui, W. Qian, C. Zheng, Y. Liu, S. Yun et al., Formation Mechanism of Carbon Encapsulated Fe Nanoparticles in the Growth of Single-/Double-Walled Carbon Nanotubes, Chem. Eng. J, vol.223, pp.617-622, 2013.

M. D. Yadav, K. Dasgupta, A. W. Patwardhan, A. Kaushal, and J. B. Joshi, Kinetic study of single-walled carbon nanotube synthesis by thermocatalytic decomposition of methane using floating catalyst chemical vapour deposition, Chem. Eng. Sci, pp.91-103, 0196.

M. Pumera, Voltammetry of Carbon Nanotubes and Graphenes: Excitement, Disappointment, and Reality, Chem. Rec, vol.12, pp.201-213, 2012.

H. Pan, J. Li, and Y. P. Feng, Carbon Nanotubes for Supercapacitor, Nanoscale Res. Lett, p.654, 2010.

J. Vejpravova, B. Pacakova, and M. Kalbac, Magnetic Impurities in Single-Walled Carbon Nanotubes and Graphene: A Review, Analyst, vol.141, pp.2639-2656, 2016.

N. Matsumoto, G. Chen, M. Yumura, D. N. Futaba, and K. Hata, Quantitative Assessment of the Effect of Purity on the Properties of Single Wall Carbon Nanotubes, Nanoscale, vol.7, pp.5126-5133, 2015.

J. Kruusma, N. Mould, K. Jurkschat, A. Crossley, and C. Banks,

E. , Single Walled Carbon Nanotubes Contain Residual Iron Oxide Impurities Which Can Dominate Their Electrochemical Activity, Electrochem. Commun, vol.9, pp.2330-2333, 2007.

B. S?jukic, C. E. Banks, and R. G. Compton, Iron Oxide Particles Are the Active Sites for Hydrogen Peroxide Sensing at Multiwalled Carbon Nanotube Modified Electrodes, Nano Lett, vol.6, pp.1556-1558, 2006.

L. Wang, A. Ambrosi, and M. Pumera, Carbonaceous Impurities in Carbon Nanotubes Are Responsible for Accelerated Electrochemistry of Cytochrome c, Anal. Chem, vol.85, pp.6195-6197, 2013.

E. J. Stuart and M. Pumera, Nanographite Impurities within Carbon Nanotubes Are Responsible for Their Stable and Sensitive Response Toward Electrochemical Oxidation of Phenols, J. Phys. Chem. C, pp.115-5530, 2011.

L. Wang, A. Ambrosi, and M. Pumera, Carbonaceous Impurities in Carbon Nanotubes Are Responsible for Accelerated Electrochemistry of Acetaminophen, Electrochem. Commun, vol.26, pp.71-73, 2013.

M. Pumera, A. Ambrosi, and E. L. Chng, Impurities in Graphenes and Carbon Nanotubes and Their Influence on the Redox Properties, Chem. Sci, vol.3, pp.3347-3355, 2012.

P. Hou, C. Liu, and H. Cheng, Purification of Carbon Nanotubes, Carbon, vol.46, 2003.

A. B. Makama, A. Salmiaton, N. Abdullah, T. S. Choong, and E. B. Saion, Recent Developments in Purification of Single Wall Carbon Nanotubes, Sep. Sci. Technol, vol.49, pp.2797-2812, 2014.

R. Andrews, D. Jacques, D. Qian, and E. C. Dickey, Purification and Structural Annealing of Multiwalled Carbon Nanotubes at Graphitization Temperatures. Carbon, pp.39-1681, 2001.

H. Zhang, C. H. Sun, F. Li, H. X. Li, and H. M. Cheng, Purification of Multiwalled Carbon Nanotubes by Annealing and Extraction Based on the Difference in van Der Waals Potential, J. Phys. Chem. B, vol.110, pp.9477-9481, 2006.

W. Huang, Y. Wang, G. H. Luo, and F. Wei, 99.9% Purity MultiWalled Carbon Nanotubes by Vacuum High-Temperature Annealing, Carbon, vol.41, 2003.
URL : https://hal.archives-ouvertes.fr/in2p3-00011574

H. G. Cho, S. W. Kim, H. J. Lim, C. H. Yun, H. S. Lee et al., A Simple and Highly Effective Process for the Purification of Single-Walled Carbon Nanotubes Synthesized with Arc-Discharge, Carbon, vol.47, pp.3544-3549, 2009.

G. Mercier, J. Gleize, J. Ghanbaja, J. Mare?he, and B. Vigolo, Soft Oxidation of Single-Walled Carbon Nanotube Samples, J. Phys. Chem. C, pp.117-8522, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01289114

B. Vigolo, C. He?old, J. Mare?he, J. Ghanbaja, M. Gulas et al., A Comprehensive Scenario for Commonly Used Purification Procedures of Arc-Discharge as-Produced Single-Walled Carbon Nanotubes, Carbon, vol.48, pp.949-963, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00498076

C. G. Salzmann, S. A. Llewellyn, G. Tobias, M. A. Ward, Y. Huh et al., The Role of Carboxylated Carbonaceous Fragments in the Functionalization and Spectroscopy of a SingleWalled Carbon-Nanotube Material, Adv. Mater, vol.19, p.883, 2007.

Z. An, A. O. Furmanchuk, R. Ramachandramoorthy, T. Filleter, M. R. Roenbeck et al., Inherent Carbonaceous Impurities on Arc-Discharge Multiwalled Carbon Nanotubes and Their Implications for Nanoscale Interfaces, Carbon, vol.80, pp.1-11, 2014.

A. F. Ismail, P. S. Goh, J. C. Tee, S. M. Sanip, and M. Aziz, A Review of Purification Techniques for Carbon Nanotubes, NANO, pp.3-127, 2008.

T. Park, S. Banerjee, T. Hemraj-benny, and S. S. Wong, Purification Strategies and Purity Visualization Techniques for SingleWalled Carbon Nanotubes, J. Mater. Chem, vol.16, pp.141-154, 2006.

C. Li, D. Wang, T. Liang, X. Wang, J. Wu et al., Oxidation of Multiwalled Carbon Nanotubes by Air: Benefits for Electric Double Layer Capacitors, Powder Technol, vol.142, pp.175-179, 2004.

M. S. Shaffer, X. Fan, and A. H. Windle, Dispersion and Packing of Carbon Nanotubes, Carbon, vol.36, pp.1603-1612, 1998.

T. Bortolamiol, P. Lukanov, A. Galibert, B. Soula, P. Lonchambon et al., Double-Walled Carbon Nanotubes: Quantitative Purification Assessment, Balance between Purification and Degradation and Solution Filling as an Evidence of Opening, Carbon, vol.78, pp.79-90, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01445549

Y. Ando, X. Zhao, and H. Shimoyama, Structure Analysis of Purified Multiwalled Carbon Nanotubes, Carbon, pp.39-569, 2001.

S. R. Vivekchand, A. Govindaraj, M. M. Seikh, and C. Rao,

R. New, Method of Purification of Carbon Nanotubes Based on Hydrogen Treatment, J. Phys. Chem. B, vol.108, pp.6935-6937, 2004.

Y. Wang, L. Gao, J. Sun, Y. Liu, S. Zheng et al., An Integrated Route for Purification, Cutting and Dispersion of Single-Walled Carbon Nanotubes, Chem. Phys. Lett, vol.432, pp.205-208, 2006.

M. R. Smith, S. W. Hedges, R. Lacount, D. Kern, N. Shah et al., Selective Oxidation of Single-Walled Carbon Nanotubes Using Carbon Dioxide, Carbon, vol.41, 1221.

S. Delpeux, K. Szostak, E. Frackowiak, and F. Be?uin, An efficient two-step process for producing opened multi-walled carbon nanotubes of high purity, Chem. Phys. Lett, vol.404, pp.374-378, 2005.

S. Z?rska, D. Kulawik, J. Drabowicz, and W. Ciesielski, A Review of Procedures of Purification and Chemical Modification of Carbon Nanotubes with Bromine. Fullerenes, Nanotubes, Carbon Nanostruct, vol.25, pp.563-569, 2017.

J. L. Zimmerman, R. K. Bradley, C. B. Huffman, R. H. Hauge, and J. L. Margrave, Gas-Phase Purification of Single-Wall Carbon Nanotubes, Chem. Mater, vol.12, pp.1361-1366, 2000.

J. Barkauskas, I. Stankevic?ene, and A. Selskis, A Novel Purification Method of Carbon Nanotubes by High-Temperature Treatment with Tetrachloromethane, Sep. Purif. Technol, vol.71, pp.331-336, 2010.

E. L. Chng, H. L. Poh, Z. Sofer, and M. Pumera, Purification of Carbon Nanotubes by High Temperature Chlorine Gas Treatment, Phys. Chem. Chem. Phys, vol.15, pp.5615-5619, 2013.

G. Mercier, C. He?old, J. Mare?he, S. Cahen, J. Gleize et al., Selective Removal of Metal Impurities from Single Walled Carbon Nanotube Samples, New J. Chem, vol.37, pp.790-795, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01276615

A. Desforges, A. V. Bridi, J. Kadok, E. Flahaut, F. Le-normand et al., Dramatic Enhancement of Double-Walled Carbon Nanotube Quality through a One-Pot Tunable Purification Method, Carbon, vol.110, pp.292-303, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02095717

J. Ma and J. N. Wang, Purification of Single-Walled Carbon Nanotubes by a Highly Efficient and Nondestructive Approach, Chem. Mater, 2008.

Y. Wang, H. Shan, R. H. Hauge, M. Pasquali, and R. E. Smalley, A Highly Selective, One-Pot Purification Method for Single-Walled Carbon Nanotubes, J. Phys. Chem. B, vol.111, pp.1249-1252, 2007.

B. Ballesteros, G. Tobias, L. Shao, E. Pellicer, J. Nogue? et al., Steam Purification for the Removal of Graphitic Shells Coating Catalytic Particles and the Shortening of Single-Walled Carbon Nanotubes, Small, vol.4, pp.1501-1506, 2008.

E. Flahaut, R. Bacsa, A. Peigney, and C. Laurent, Gram-Scale CCVD Synthesis of Double-Walled Carbon Nanotubes, Chem. Commun, vol.12, pp.1442-1443, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00926035

I. W. Chiang, B. E. Brinson, R. E. Smalley, J. L. Margrave, and R. H. Hauge, Purification and Characterization of Single-Wall Carbon Nanotubes, J. Phys. Chem. B, pp.105-1157, 2001.

R. Sen, S. M. Rickard, M. E. Itkis, and R. C. Haddon, Controlled Purification of Single-Walled Carbon Nanotube Films by Use of Selective Oxidation and Near-IR Spectroscopy, Chem. Mater, vol.15, pp.4273-4279, 2003.

A. C. Dillon, M. Yudasaka, and M. S. Dresselhaus, Employing Raman Spectroscopy to Qualitatively Evaluate the Purity of Carbon Single-Wall Nanotube Materials, J. Nanosci. Nanotechnol, vol.4, pp.691-703, 2004.

M. E. Itkis, D. E. Perea, R. Jung, S. Niyogi, and R. C. Haddon, Comparison of Analytical Techniques for Purity Evaluation of SingleWalled Carbon Nanotubes, J. Am. Chem. Soc, vol.127, pp.3439-3448, 2005.

S. Arepalli, P. Nikolaev, O. Gorelik, V. G. Hadjiev, W. Holmes et al., Protocol for the Characterization of Single-Wall Carbon Nanotube Material Quality, Carbon, vol.42, pp.1783-1791, 2004.

A. C. Dillon, P. A. Parilla, J. L. Alleman, T. Gennett, K. M. Jones et al., Systematic Inclusion of Defects in Pure Carbon Single-Wall Nanotubes and

, Chem. Phys. Lett, vol.401, pp.522-528, 2005.

S. Osswald, E. Flahaut, and Y. Gogotsi, Situ Raman Spectroscopy Study of Oxidation of Double-and Single-Wall Carbon Nanotubes, Chem. Mater, vol.18, pp.1525-1533, 2006.

E. Remy, S. Cahen, B. Malaman, J. Ghanbaja, C. Bellouard et al., Quantitative Investigation of Mineral Impurities of HiPco SWCNT Samples: Chemical Mechanisms for Purification and Annealing Treatments, Carbon, vol.93, pp.933-944, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01279104

M. Pumera, Carbon Nanotubes Contain Residual Metal Catalyst Nanoparticles Even after Washing with Nitric Acid at Elevated Temperature Because These Metal Nanoparticles Are Sheathed by Several Graphene Sheets, Langmuir, vol.23, pp.6453-6458, 2007.

T. Kolodiazhnyi and M. Pumera, Towards an Ultrasensitive Method for the Determination of Metal Impurities in Carbon Nanotubes, Small, pp.4-1476, 2008.

X. Jin, G. Zhang, Y. Hao, Z. Chang, and X. Sun, Residual metals present in ?metal-free? N-doped carbons, Chem. Commun, vol.51, pp.15585-15587, 2015.

N. Dementev, S. Osswald, Y. Gogotsi, and E. Borguet, Purification of Carbon Nanotubes by Dynamic Oxidation in Air, J. Mater. Chem, vol.19, pp.7904-7908, 2009.

B. I. Rosario-castro, E. J. Conte?, M. Lebro?-colo?, M. A. Meador, G. Sa?chez-pomales et al., Combined Electron Microscopy and Spectroscopy Characterization of As-Received, Acid Purified, and Oxidized HiPCO Single-Wall Carbon Nanotubes, Mater. Charact, vol.60, pp.1442-1453, 2009.

Y. Xu, H. Peng, R. H. Hauge, and R. E. Smalley, Controlled Multistep Purification of Single-Walled Carbon Nanotubes, Nano Lett, vol.5, pp.163-168, 2005.

D. Tasis, N. Tagmatarchis, A. Bianco, and M. Prato, Chemistry of Carbon Nanotubes, Chem. Rev, vol.106, pp.1105-1136, 2006.

D. Claves, H. Li, M. Dubois, and Y. Ksari, An Unusual Weak Bonding Mode of Fluorine to Single-Walled Carbon Nanotubes, Carbon, vol.47, 2009.

F. Chamssedine, K. Gue?in, M. Dubois, E. Disa, E. Petit et al., Fluorination of Single Walled Carbon Nanotubes at Low Temperature: Towards the Reversible Fluorine Storage into Carbon Nanotubes, J. Fluorine Chem, pp.132-1072, 2011.

P. E. Pehrsson, W. Zhao, J. W. Baldwin, C. Song, J. Liu et al., Thermal Fluorination and Annealing of SingleWall Carbon Nanotubes, J. Phys. Chem. B, vol.107, pp.5690-5695, 2003.

W. Zhao, C. Song, B. Zheng, J. Liu, and T. Viswanathan, Thermal Recovery Behavior of Fluorinated Single-Walled Carbon Nanotubes, J. Phys. Chem. B, vol.106, pp.293-296, 2002.

D. Erbahar and S. Berber, Chlorination of Carbon Nanotubes, Phys. Rev. B: Condens. Matter Mater. Phys, vol.85, p.85426, 2012.

M. Ijas, P. Havu, and A. Harju, Interaction of Chlorine with StoneWales Defects in Graphene and Carbon Nanotubes and Thermodynamical Prospects of Chlorine-Induced Nanotube Unzipping, Phys. Rev. B: Condens. Matter Mater. Phys, vol.87, 2013.

Y. V. Fedoseeva, M. Dubois, E. Flahaut, O. Y. Vilkov, A. Chuvilin et al., Effect of Hydrogen Fluoride Addition and Synthesis Temperature on the Structure of Double-Walled Carbon Nanotubes Fluorinated by Molecular Fluorine, Phys. Status Solidi B, p.1700261, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01707865

A. E. Prodromides, C. Scheuerlein, and M. Taborelli, The Characterisation of Non-Evaporable Getters by Auger Electron Spectroscopy: Analytical Potential and Artefacts, Appl. Surf. Sci, pp.300-312, 2002.

I. Pelech, U. Narkiewicz, D. Moszynski, R. Pelech, A. Desforges et al., Dramatic Enhancement of Double-Walled Carbon Nanotube Quality through a One-Pot Tunable Purification Method, J. Mater. Res, vol.27, pp.292-303, 2012.

M. E. Itkis, D. E. Perea, R. Jung, S. Niyogi, and R. C. Haddon, Comparison of Analytical Techniques for Purity Evaluation of Single-Walled Carbon Nanotubes, J. Am. Chem. Soc, vol.127, issue.10, pp.3439-3448, 2005.

Y. Li, N. Yang, T. Du, X. Wang, and W. Chen, Transformation of Graphene Oxide by Chlorination and Chloramination: Implications for Environmental Transport and Fate, Water Res, vol.103, pp.416-423, 2016.