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A YOUNG EUROPEAN SOCIETY ESTABLISHING 
A TRADITION FOR SCIENTIFIC CONFERENCES 

 

CERME 2 was the second conference of the new society ERME, i.e. the 
European Society for Research in Mathematics Education. CERME 1 was held 
in Haus Ohrbeck (near Osnabrück, Germany) in August 1998. The Programme 
Committee under the chair of Barbara Jaworski established a new culture for 
scientific conferences in the field of mathematics education in Europe. Work 
was mainly done in working groups. The spirit of communication, co-operation 
and collaboration was meant to be a characteristic trademark for this new series 
of European conferences on research in mathematics education.  

CERME 2 was held in Mariánské Lázně from February, 24th to 27th 2001 
in the Czech Republic. The Programme Committee decided to follow in the 
footsteps of CERME 1 and to plan CERME 2 again in a style of collaborative 
group work. The intention was that each group would engage in scientific debate 
with the purpose of deepening mutual knowledge about topics, problems and 
methods of research in this field. The scientific programme consisted mainly of 
this group work. This time even plenary lectures were complete omitted. 

CERME 2 was organised by the following Programme Committee: 

• Elmar Cohors-Fresenborg (chairman, Germany) 
• Christer Bergsten (Sweden) 
• Tommy Dreyfus (Israel) 
• Barbara Jaworski (United Kingdom) 
• Maria Alessandra Mariotti (Italy) 
• Jarmila Novotná (Czech Republic) 
• Julianna Szendrei (Hungary) 

 

Setting up the Groups 

The Programme Committee first had to consider the topics for the groups. The 
final list was a result of a process in which the continuation of working groups 
from CERME 1 and new proposals from PC members or members of the 
ERME-Board were involved. Eventually, themes were agreed upon and group 
leaders were sought for the 7 groups. First, the PC invited group co-ordinators, 
acknowledged experts, each having research interest and expertise in the topic of 
the group. In several cases, the colleagues asked could not accept the invitation, 
therefore, other decisions had to be made. In a second step, the PC, together with 
the group co-ordinators, looked for group leaders with the aim that � depending 
on the estimated size of the group � 2 to 4 group leaders from different countries 
should form the leading team. A balance of nations was sought in the group 



European Research in Mathematics Education II 

 8

leadership. Of course, not every person invited was able to accept. So some 
compromises on this balance had to be made. 

The groups chosen and the group coordinator and group leaders who 
finally participated were as follows: 

 Theme Coordinator Further group 
leaders 

1 Building Structures in 
Mathematical Knowledge Milan Hejný (CZ) Graham Littler (UK)

Pessia Tsamir (IL) 

2 Tools and Technologies in 
Mathematical Didactics Keith Jones (UK) J-Bapt. Lagrange (F)

3 
Theory and Practice of Teaching 
-from Pre-service to In-service 
Teacher Education 

Fulvia Furinghetti 
(I)  

Barbro Grevholm (S)
Konrad Krainer (AT)

4 Social Interactions in 
Mathematical Learning Situations

Götz Krummheuer 
(D) Gérard Sensevy (F) 

5 Mathematical Thinking and 
Learning as Cognitive Processes Inge Schwank (D) Pearla Nesher (IL) 

6 Assessment and Curriculum Ole Björkvist (FIN) Klára Tompa (H) 

7 
The Role of Metaphors and 
Images in the Learning and 
Understanding of Mathematics 

Bernard Parzysz (F) Nuria Gorgorio (E) 

The team of group leaders organised a process of reviewing the delivered 
research papers. In some groups, the reviewing process was done among the 
group leaders, in others, group leaders identified other suitable and competent 
reviewers. As an outcome of this reviewing process, papers were accepted or 
rejected or a proposal was made to transfer the paper into another group where it 
would fit the topic better. The reviewers were asked to give supportive 
comments on the papers; even in the case of acceptance, the writers of the 
papers should receive support to improve the paper. The intention was that these 
accepted papers should form the first step of the scientific debate of CERME 2. 

The decision in CERME 1 that there should be no �oral delivery� of a 
paper within the group at the conference was identified as a good decision by 
most of the participants. Due to the fact that it takes some time to become 
acquainted with this new style of scientific conference, these goals were not 
fully achieved in the first conference. Therefore a new attempt was made with 
CERME 2 to promote this new idea of preparing and executing a scientific 
conference as a forum of scientific debate. The change of scientific traditions 
and the establishment of new styles need a lot of staying power. It has to be 
understood more as a process than as a breaking point. Considering this, 
CERME 2 has made a big step forward. 
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Publication of Conference Proceedings 

During a meeting at the end of the conference, the members of the old and the 
newly elected ERME-Board discussed ways of how to improve the scientific 
level of European research in mathematics education and what role the 
publication of the outcome of the conferences could play.  Publication was 
regarded as a third step in the scientific debate: The first step consists of writing, 
reviewing and re-writing of papers.  The second step consists of debating the 
scientific themes within the working groups; here, the accepted papers are 
merged into the debate because they have been read by the members of the 
groups before the meeting.  The third step consists of a new process of rewriting 
and reviewing the papers, as a result of the scientific debate, for publication in 
the proceedings. It was decided that only those papers which had finally been 
accepted by the team of the group leaders for each group should be published in 
the conference proceedings. 

We are glad that we can now present the results of this intensive scientific 
debate to the public. We take the opportunity to thank, very warmly, Jarmila 
Novotná as head of the local organising committee for the marvellous work 
which she and her team did to draw nearer to the common goal of promoting 
European research in mathematics education. We also thank the many unknown 
helpers, not only before and during the conference, but on the occasion of 
writing the preface also in terms of all the technical support. As a result, an 
interesting and stimulating research publication can now act as a catalyst in 
strengthening and enriching the research in our growing discipline. 
 
Elmar Cohors-Fresenborg 
on behalf of the CERME 2 Programme Committee, December 2001 
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INTRODUCTION TO WG1 

BUILDING STRUCTURES 
IN MATHEMATICAL KNOWLEDGE 

Milan Hejný1, Graham H. Littler2 
1Charles University in Prague, Faculty of Education, Czech Republic 

milan.hejny@pedf.cuni.cz 
2University of Derby, UK 

GrahamLittler@email.msn.com 

 

Our brain does not store individual pieces of knowledge separately. Some of the 
pieces are joined together to form a linkage and there are many such linkages in 
our brain. Some linkages are inter-linked by common piece(s) of knowledge. 
We understand the structure of knowledge to be the web of all these linkages. 

The cumulative understanding of the structure of knowledge considers all 
mathematical knowledge to be divided into large linkages such as geometry, 
algebra, logic.... A learning process in this view is understood to be adding a 
new piece of knowledge onto one of the already existing linkages. 

The generic approach to the structure of knowledge considers the 
structure to be dynamic, in which each new piece of knowledge causes a re-
organisation of the existing structure. A form of stock-taking process takes 
place. Does the new piece of knowledge join one or more of the already 
established linkages? Does it cause two or more linkages to join? Is it a 
completely new piece of knowledge which cannot join any existing knowledge? 
This process means the restructuring of the already existing mental structure. 

The majority of the contributions to WG1 were based on the generic 
approach to the building of mathematical structures and in all of these, the 
research interest was focussed on those phenomena which play an important role 
in this process. A broad variety of topics were presented in the papers – algebra, 
arithmetic, 2D and 3D geometry, set theory, logic, argumentation, concept 
creation and research methods.   
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CREATING MATHEMATICAL STRUCTURE 

Milan Hejný1  
Charles University in Prague, Faculty of Education, Czech Republic 

milan.hejny@pedf.cuni.cz 

 
Abstract: Structuring mathematics belongs to the most complex of long-term 
cognitive processes. Some results which we gained whilst studying this 
phenomenon will be presented in this contribution which is aimed at general 
ideas (research methods, the anatomy of the process, different ways of 
structuring), and two other contributions aimed at non-standard structures: the 
finite algebraic structure of �restricted arithmetic� and the infinite arithmetical 
structure of �triads�. 
 

1. The aim of the paper 

In this paper we would like to give a general view of our understanding of what 
creating a mathematical structure means and how it can be studied. Our study is 
influenced by ideas of  L. Kvasz (1998), and P. Vopěnka (2000), based on long-
term experimental education and the research of D. Jirotková, J. Perný, J. 
Perenčaj, B. Rozek, E. Swoboda, M. Tichá and is closely connected to the 
research of N. Stehlíková, J. Kratochvílová presented in our WG1.  

 

2. Internal mathematical structure (IMS) 

The idea of a mathematical structure was profoundly explained in the 
Bourbaki�s famous Architecture of Mathematics. Our aim is to investigate how a 
mathematical structure is created in an individual�s mind. To avoid the danger of 
confusing the two different readings of the term mathematical structure, we will 
add the adjectives external and internal to distinguish the two. The 
differentiation corresponds to Bolzano�s idea which was elaborated by Karl 
Popper into the idea of three worlds (Popper, Lorenz, 1994). For the world of 
individual minds � the second of Popper�s worlds � we use the word internal, 
and for his third world � the world of culture � we use the word external.  

                                                 
1 The research has been supported by the grant VZ J13/98/114100004, Kultivace 
matematického my�lení a vzdělanosti v evropské kultuře. 
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There are several possibilities of how the term internal mathematical 
structure (hereinafter IMS) can be understood. In his study, van Hiele (1986) 
discusses two different ways of how structure can be characterized: 

�For Piaget there are three characteristics:  

1. Structure has a totality,  
2. Structure is achieved by transformations,   
3. Structure is autoregulating. � 

In structural psychology (Gestalt psychology) there are four important 
properties that govern structure:  

1. It is possible to extend a structure. Whoever knows a part of the structure 
also knows the extension of it.   

2. A structure may be seen as a part of a finer structure. �  
3. A structure may be seen as a part of a more-inclusive structure�. 
4. A given structure may be isomorphic with another structure��  

Piaget�s characteristics are too general; we have used them as an 
inspiration. The four properties of Gestalt psychology helped us to understand 
the problem, but they are only focused onto a part of the building process of 
IMS. Moreover, the second sentence in property 1 is, according to our 
experience, not true. In our opinion, the most important phenomenon of IMS is 
its connectedness.  

Bell (1993), when discussing psychological principles that underlie 
designing teaching, starts with connectedness which he characterizes by the 
statement - a fundamental fact about learned material is that richly connected 
bodies of knowledge are well retained; isolated elements are quickly lost.  

The same idea with the stress on a constructivistic approach is expressed 
by Hiebert & Carpenter (1992, p. 66, 67):  We propose that when relationships 
between internal representations of ideas are constructed, they produce 
networks of knowledge�. 

These two ideas, construction and connectedness, give the core of our 
approach to IMS. In our understanding, IMS is a dynamic set of networks with 
different pieces of knowledge like ideas, concepts, facts, relations, examples, 
solving strategies, arguments, algorithms, procedures, hypotheses, � as 
centroids of these networks. IMS binds all these networks together and equipped 
this set with an organization. Networks may be structured like vertical 
hierarchies, or, they may be structured like webs. � A mathematical idea or 
procedure or fact is understood if it is part of an internal network. � The degree 
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of understanding is determined by the number and the strength of the 
connections Hiebert & Carpenter (1992, p. 67).  

In our long term experimental teaching, we observed that a student�s 
ability to built IMS is a deep characteristic of his/her cognitive style and 
profoundly depends on the autonomy of his/her approach to mathematics and on 
his/her structuring appetite i.e. the desire to create different graphs, tables, lists 
and overviews in order to get understanding of how �all these facts are 
connected together�.  

Our comparative analyses of how IMS is built in the traditional 
transmisive vs. the constructivistic teaching showed that the crucial role in 
building IMS is played by concepts. Conceptual knowledge is knowledge that is 
rich in relationships. A unit of conceptual knowledge is not stored as an isolated 
piece of information; it is conceptual knowledge only if it is part of a network. 
Hiebert & Carpenter (1992, p. 78).  

In the transmissive teaching the stress is put on how to deal with it; in the 
constructivistic teaching the stress is put on what it is (see example 1 below).  

 

3. How can IMS be studied? 

Five of the research methods which we have elaborated for the investigation of 
concept creation (Hejný et al, 1990, 28-34) are listed below. The methods were 
focused to networks of particular ideas, concepts and procedures,  hence they 
could be, and were used in analyzing IMS.  

Explain some idea (prime, area, fraction, triangle, Pythagorean theorem) 
to your a) classmate, b) younger friend.  

We found out that if the explanation retained the formal school approach, 
the quality of the student�s understanding of this idea is low, and, as a rule, is 
more procedural than conceptual and the network of this idea, as a part of IMS, 
is usually poor.  

Example 1. An eight-year-old boy asked his older sister Alice what �per 
cent� was.  She showed him formulas:  percentage = 100 rate/base,  b = 100r/p,  
r = pb/100. He was not satisfied and said: �I did not ask you how you can 
calculate it, I would like to know what it is�. The girl was not able to answer this 
question which was focused to the concept �per cent�. Alice�s knowledge was 
rather procedural and formal. Her three-parts knowledge of �per cent� is isolated.  
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Describe a concept in a non-standard way. A student is asked to define a 
�circle� without the concept of �distance�, or a �median of a triangle� without the 
concept of the �midpoint of a segment� or a �L.C.M� without the concept of 
�multiple�.  

Example 2.  University students, future teachers, were asked to define a 
�prime� without the concept of divisor. Their answer was �It is not possible, the 
definition of a �prime� requires the concept of division or multiplication�. The 
same task was perfectly solved by seventh graders: �A number n is not prime, if 
you can arrange n pebbles into the rectangular shape. If you can not do that and 
the only shape is the line of n pebbles, n is prime�. Students used the linkage 
between concepts �area� and �multiplication� to find a new definition of a prime.  

Use a non-standard notation in a counting procedure. E.g. a student is 
asked to use �↑� for addition and �↓� for subtraction; e.g. 5↑2 = 7, 4↑(�3) = 1, 
6↓1 = 5, 2↓(-1) = 3. We observed that fifth graders deal with this notation better 
than eight graders who exhibit a strong tendency to rewrite the arrow notation 
into the usual one. When asked to explain the symbol 5↓↓2, the majority of 
eight graders take it as 5 � (-2) = 7, for majority of fifth graders it was just the 
confirmation of the subtraction (5 � 2 = 3) and for some of them it was the 
doubled subtraction (5- 2 � 2 = 1). One these students gave the following 
argument: he wrote  �5↓↑2� and said �I had 5 crowns, I lost 2 crowns and I 
found 2 crows, so I have 5 crowns; in your case I lost 2 crowns twice, so I have 
just 1 crown�.  

A more demanding task is counting in Roman numerals (LXI times CIL = ?).  

Solve a problem with restricted instruments. E.g. find the midpoint of the 
side of a given rectangle if you only have one straight-edge (not a ruler), or use a 
calculator with a 12-digit display to multiply two 10-digit numbers.  

Derive one idea from an other. E.g. derive the idea of subtraction from the 
idea of addition via �count on� calculation. Derive the formula for the area of a 
trapezoid from the formula for the area of a triangle. Derive the formula for 
sin (α-β) from the formula for sin (α+β).  

 

4. The research on the building of IMS 

A researcher who wants to study IMS and its creation faces at least one serious 
difficulty. The object of the study is a long-term process and if studied �in vitro� 
it gives only particular results. To get a complex understanding of how an IMS 
is built we have to study it �in vivo�.  
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In this respect, a great help for our research was our ten years of 
experimental teaching in a primary school (years 1975-1980 - fifth to eighth 
grades, years 1984-1989 third to eighth grades) during which we not only gained 
valuable experience, but also kept detailed pedagogical diaries which profoundly 
facilitated the understanding the problems.  

Generally speaking, each new piece of mathematical knowledge can be 
regarded as a part of building an IMS. However, we are going to restrict our 
attention to those mental activities, which bring new linkage between already 
existing and/or new pieces of knowledge. We saw such a linkage in example 2. 

In our experimental teaching, we identified many different kinds of such 
building IMS-steps. Probably the most useful were: 

1. the appearance of a question which concerns mathematical structure (e.g. 
What it is? Why does it work? How are these two ideas linked together?) 

2. the appearance of a strategic mathematical problem2 in an individual�s 
mind 

3. finding the linkage between two or more already existing pieces of 
knowledge 

4. finding the connection between new and existing knowledge 
5. introducing some organization into already existing knowledge 
6. the extension (generalization) of a piece of knowledge 
7. looking for new non-standard solving strategies 
8. the need to give an explanation of disharmony if it appears 
9. the reorganization of an already existing structure 
10. finding the linkage between two or more structures 
11. using abstraction to create a new, more abstract structure 
12. organizing the whole structure in a clear, simple written form 

To elucidate some of these building IMS-steps, we will illustrate them. 
The illustrations come from the author�s experimental teaching. We have to add 
that there was no difficulty in observing these IMS-steps, since each student 
who was involved in such an activity had a strong need to discuss his or her 
problem and investigation with the teacher. This will be clearly seen in 
example 4.  

More detailed illustrations of the presented points will be given in the 
above contributions of the author�s colleagues. 
                                                 
2 As an (internal) strategic we mean such a problem which survives in an individual�s mind 
for a long time. In example 3 we will see an illustration: finding strategy for the two-pile 
REMOVE game with the characteristic 4 was the strategic problem for Ben for the period of 
one year. In the history of mathematics (external) strategic problems were e.g. the trisection of 
an angle, the Fermat problem, etc.  
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5. Linkage between pieces of knowledge  

Example 3. A die was on the table and three four graders, Adam, Ben and Cid, 
were asked what number of spots were on the bottom face of the die. All three 
used the strategy of the missing number � they found out that sides 1, 2, 4, 5 and 
6 could be seen, hence the missing number had to be 3. We repeated the 
experiment three more times and then I rolled two dice. This time, Ben 
immediately gave the correct answer for both dice. He explained his strategy: 
�Here, the top number is 1, so the bottom number must be 6. The top and the 
bottom numbers create a pair. It is 2-5, or 1-6, or 4-3.� Adam and Cid grasped 
this idea. Neither of boys found the pattern �the sum of two opposite numbers is 
7�, or even the rule �bottom number = 7 � top number�.  

Next day, we did the same experiment with an octahedron. First, all boys 
applied the missing number strategy. Then Adam took the octahedron and 
looked at it carefully. He tried to remember all four pairs of opposite numbers. 
When the die was rolled for the second time, Adam immediately said the bottom 
number. His answer was correct. Adam said: �You know it is Ben�s trick; pairs 
are (he pointed to the corresponding sides of the die) 3 and 6, 1 and 8, 7 and 2, 
and 4 and 5; you know, it is now easy�. Ben said that Adam had a good 
memory. Adam answered that the task was not so difficult, since in each pair 
�you have one small and one large number�.  

A couple of days later, I played the same game with Adam and Ben. Cid 
was not in school. This time, the die was a dodecahedron, a solid both boys were 
familiar with. Before we started the game, Adam asked me if he could look at 
the die. Ben said that it was not fair but then he changed his mind and started to 
write a list of opposite numbers on this die. The list was not completed when 
Ben exclaimed: �Thirteen, it is thirteen, it must be thirteen, the sum of each pair 
is thirteen.� He was very happy and proud of this investigation. After a while, 
Adam agreed with this idea. He added that it was seven for the hexahedron and 
nine for the octahedron. So I rolled the dodecahedron and both boys used the 
strategy �count on to 13� (top number + ? = 13).  

After that, I prepared an icosahedron die. This time I put the numbers on 
the faces randomly. The rule �the sum of opposite numbers is 21� was not true. 
Some half an hour later, I asked the boys to play the game with the icosahedron. 
They agreed and Ben asked me, how many numbers there were on the solid. I 
answered twenty and rolled the die. The top number was 12. Ben said: �So the 
bottom number must be eight.� I hesitated: �Are you sure?� Adam said �Sure�, 
but he stopped for a moment and corrected Ben�s answer: �It�s nine, you have 
one more.� I repeated my hesitation: �Are you sure?� �Oh yes, nine for certain, 
sure,� said Adam and Ben agreed. So I carefully took the solid and showed the 
bottom number to boys. It was 3. The boys were surprised and Adam took the 
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die in his hands. He observed it for a while and said: �You know, this is a false 
die, we cannot play that game with it.� So I asked Ben and Adam to correct the 
numbers on the false icosahedron which they did successfully. They knew that 
for the correctly numbered (point symmetrical convex) polyhedron the sum of 
numbers on parallel faces must be n +1, where n is the number of faces. They 
also knew that this rule holds for all �suitable� solids and that a pyramid is not a 
suitable solid, since it has no parallel faces.  

In the above experiment, we identify the boys� six discoveries:  

a) the opposite-side numbers create pairs; you have to remember these pairs 
(hexahedron, octahedron and dodecahedron)  

b) in each pair, there is one small and one large number � this helps the 
memory (octahedron) 

c) the rule: the sum of each pair of the opposite numbers in the 
dodecahedron is thirteen (it is an invariant)  

d) the rule holds for the hexahedron and the octahedron and therefore should 
be true for each shape, particularly for the icosahedron 

e) if the rule fails in the icosahedron, the die is false  
f) generalisation of the rule to all suitable polyhedrons. 

Three of these ideas can be classified as steps of the building of IMS.  

The observations b) and c) paves the way for the discovery d) - the rule 
which links six pieces of knowledge, six pairs 1-12, 2-11, 3-10, 4-9, 5-8 and 6-7. 
At the same time, the rule can be regarded as the principle which introduces an 
organisation into the set of six pairs.  

The idea e) transforms the octahedron rule for the hexahedron rule and the 
octahedron rule. The decision f) proves that boys generalised these rules to �all 
suitable polyhedrons� and took it as the criterion of the correctness of a die.  

 

6. Linkage between structures  

Two examples illustrate students discovering of the linkage between structures.  

Example 4. In the fifth grade, we used to play several REMOVE games. 
Students discovered the strategy for some of them. However, the two-pile 
REMOVE3 with the characteristic 4 was too difficult for them. They found the 
strategy for small m, n, but the general strategy was not found.  

                                                 
3 Two piles of m and n stones are given. Two players remove in turn either any number of 
stones from one pile or k stones from each pile, where 1 ≤ k ≤ 4. The player removing the last 
stone wins. 
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A year later, in the sixth grade, we introduced the set of REACH THE 
CORNER4 games. The strategy of such a game can be easily visualised: each 
critical5 square of the board will be marked. To do this we start with marking the 
terminal square (1,1) which is critical. Then we cross all squares from which the 
critical square (1,1) is accessible by one move:                     
{(1,y), 1<y≤v} ∪ {(x,1) 1<x≤u} ∪ {(x,x), 1<x≤5}. The further critical squares 
are (2,3) and (3,2); those uncrossed squares that are closes to the (1,1) square. 
We mark them as critical squares and continue this process.  

When Diana completed such a rectangle for u = v = 20, she exclaimed that 
there was a nice pattern and showed the pattern to the class. Ben said that now 
he was able to win the REMOVE game with the characteristic 4 for any 
numbers of stones in the piles. The boy discovered the isomorphism between 
both games and after some corrections, he was able to describe this isomorphism 
clearly.  

In the above example, the class teacher guided the work of the students to 
create the possibility of them finding the linkage between structures. The next 
example shows how the linkage of structures was found by the student himself.  

Example 5. From the fourth grade on, some students were fond of magic 
squares. During four years, they discovered about two dozens magic squares and 
each such discovery was displayed on the class wall newspaper for several 
months. The majority of these discoveries belonged to Finn. He was very fond 
of all computations and his dream was to find a general procedure how to create 
n x n magic square for any n. As a seventh grader, Finn posed the following 
problem: to find the magic square in which numbers in rows, columns and 
diagonals are not added but multiplied. However, there were no other 
restrictions on the numbers in the square except that there were no two equal 
numbers among them.  

Finn was so excited about the problem and so disappointed by the lack of 
interest from his classmates, that I felt it my duty to be his discussion partner, 
and to be involved. We had two decisive discussions. In the first one, I asked 
him to give me an example. After some hesitation, he refused, saying that it 

                                                 
4 The board is a rectangular grid with u columns and v rows. Unit squares of this board will be 
denoted by the co-ordinate system: the left-bottom square is denoted by (1,1), the right-
bottom square by (u,1), the left-top square by (1,v) and the right-top square by (u,v). At the 
beginning, a counter is placed in the square (u,v). Players move the counter in turn either left, 
down, or in the diagonal left-down direction. Moves to the left and down are not restricted, 
but the diagonal move is limited by k squares (in our case k = 4). The player who reaches the 
(1,1) square wins.  
5 A square is critical if the player making the next move from this square cannot win provided 
his partner will play the best possible way.  
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would be a great hint since any example is, in fact, the explanation of the 
discovery. However, during our communication he told me so much information 
that I was almost sure about his finding: if in any additive square we replace 
each its number n by its power 2n we obtain a multiplicative square. After some 
days I brought a horrible example of the 3x3 magic square with rows 39 366, 
256, 46656 and 9216, 7776, 6561 and 1296, 236196, 1536. Finn took my 
solution of his problem and started checking it. After a while he came back and 
asked me for my solving strategy. �Tell me how you found these strange 
numbers?� I answered �No! It�s my secret. You have yours, I have mine.� He 
was surprised and likely also disappointed and said: �It is not a very nice 
solution. I have a solution where all my numbers are less than one thousand. Try 
to find such a solution.� Next day, I showed Finn my new solution which was 
also Finn�s solution the boy informed me that he understood my solution and 
knew that I knew his strategy.  

This example shows four kinds of IMS-steps listed in section 4:  

1. The existence of a strategical problem in a student�s mind. In Finn�s 
mind, it was a problem of finding a general strategy for the creation of 
magic squares. 

2. Finding the linkage between two structures, namely (N,+) and (N,*). Finn 
applied this procedural knowledge in action (2m*2n = 2m+n) to his 
strategical problem and created an interesting problem.  

3. The need to give the explanation of disharmony if it appears. It was my 
horrible solution which surprised the boy and he did a clever analysis of it 
to discover my strategy.  

4. The extension (generalization) of a piece of knowledge. The boy�s 
previous investigation only concerned powers of number 2, or, possibly 
any other number. My example was constructed as an amalgam of powers 
of 2 and 3.  

 

7. Ways of creating structure 

Within the research, four ways of building structure have been identified so far.  

a) Spontaneously. Dealing with some mathematical field, a student step-by-
step gets a progressively better insight into it and from time to time links 
isolated pieces of knowledge in his/her mind. This process is long-term. 
In our experiments, we used several such fields: grid, additive triangles, 
cubes, arrow diagrams, and triads (see the Kratochvílová�s contribution).  

b) Via generalisation. Two or more particular structures are given to a 
student and he/she has to describe the general structure. Both particular 
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structures should be examples of this general structure. In our 
experiments, the role of particular structures was played by the arithmetic 
structure (arithmetic mean of any pairs of real numbers) and the 
geometrical structure (midpoint of any pair of points).  

c) Via analogy. Transmission of an already known structure to a new 
context. In the research, we used some non-standard metric spaces, and 
non-standard arithmetic. The most deeply elaborated research will be 
shown in the contribution of Stehlíková-Jirotková.  

d) Problem-oriented way. E. Galois found the structure of group when 
analysing the problem of solvability of the equations of the fifth degree. 

 

8. Conclusions 

The results of our research presented here concern the processes of building IMS 
in arithmetic and algebra on the basis of a spontaneous approach and via 
analogy and methods which can be used for such a study. Our next goal is to 
analyse  

(1) Building IMS in geometry and combinatorics (some particular results 
were obtained by J. Perný (1999) and B. Rozek (1997.)).  

(2) Building IMS using problem oriented way (promising experiments and 
analyses are in papers of E. Swoboda (1997) and A. Zeromska (2000) 
and in on going research of D. Jirotková, J. Kratochvílová, N. 
Stehlíková).  

(3) Two types of cognitive styles: problem-solvers and structure-creators. 
(4) The dynamism of the process of building IMS. The main question in this 

direction is �Is it possible to explain the process of building IMS as a 
sequence of stages?�  
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BUILDING THE INFINITE ARITHMETIC STRUCTURE1 

Jana Kratochvílová 
Charles University, Faculty of Education, Czech Republic 

jana.kratochvilova@pedf.cuni.cz 
 

Abstract: The set of all triads (a,b,a+b) ∈ N3, (0 ∉ N), a ≤ b with the mappings 
Lt (the left mapping): (a,b,a+b) → (a,a+b,2a+b), and Rt (the right mapping): 
(a,b,a+b) → (b,a+b,a+2b) creates the structure. This was used as a tool in the 
research aimed at investigating the building of an infinite arithmetic structure. 
Pupils were given problems in this context and their solutions were analysed. 
Two of them are presented. 
 

1. Rationale 

Structural thinking does not take place at the level of discovering relationships 
in an existing structure but at the level of a gradual building of a new structure 
through solutions of adequately demanding problems. While carrying out 
experiments aimed at this area, the author was creating her own ideas of the 
process of structuring and of a structure. If a pupil solves a problem of a certain 
type (3+?=5) for the first time, he/she uses the trial-error method. If he/she 
solves other similar problems (2+?=5, 5+?=6, �), his/her work becomes 
quicker, he/she gains an insight into the situation and new experiences. After 
some time, he/she discovers that the required number can be found e.g. by 
counting on or later on by subtraction. This knowledge changes the original 
strategy of trial-error into the direct counting method and it becomes the basis of 
the building of structure (in this case, an arithmetic one). Next, in other series of 
problems, a pupil discovers other connections, not only among objects, but 
among pieces of new knowledge too. A set of individual pieces of knowledge 
becomes interconnected, more consistent and this process is considered as a 
process of structuring and its result is a structure (M. Hejný in his paper in these 
proceedings uses the term: IMS - Internal Mathematical Structure). 
 

The richest mathematical structure, which is well known by a student of 
lower secondary school, is the structure of integers and possibly rational 
numbers. The building of this structure is a long-term process that goes on 
gradually and intermittently. Therefore it is very difficult to investigate this 
process experimentally. However the researcher�s efforts were focussed on 

                                                 
1 The contribution was partially supported by Research Project Cultivation of Mathematical 
Thinking and Education in European Culture J13/98: 114100004.  
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looking for some area of mathematics where the experimental investigation of 
structuring was realisable.  For example you could use the product of isometries 
(creating of the group of isometries) for your experiment. But the difficulty of 
this area, especially the key concept � product of isometries � does not allow the 
use of this tool for investigation of structural thinking of students aged less than 
15. One solution of this problem is to use the structure of triads. 

2. The research tool 

The structure of triads is an appropriate tool for investigating the first stages of a 
structural process for pupils aged already 10-11. It needs minimal mathematical 
knowledge but it offers various, sometimes even surprising structural situations. 
The important characteristic of the structure is based on its unfamiliarity, the 
pupil works with a new mathematical object and new mappings and he/she 
cannot use nor rely on memory/skills used in the classroom.   

The structure was given to the pupils in three phases. The first phase 
concerned understanding a new object, the triad. The second one concerned 
understanding the mappings Lt and Rt given to extend the set of triads.  In both 
of them pupils were given concrete numerical problems without any theory or 
algebra. The third phase concerned �movements� in the structure with the help 
of a graphical structure � paper with lines 1-10. (See Fig. 1, 2 above). This phase 
also enabled the researcher to observe whether the pupils could follow the 
mappings and whether they did this in a logical or random way. 

3. Overview of experiments 

The experiments were carried out with pupils whose ages were between 10 and 
11 years, thirty in the United Kingdom and eighteen in the Czech Republic. All 
the experiments were done in quiet situations, the researcher working with three 
pupils who could discuss amongst each other. Each meeting in the United 
Kingdom took about three hours. However each meeting in the Czech Republic 
took about one hour because the researcher met the same group of pupils three 
times on a weekly basis. 

4. Scenario of experiment 

The scenario involved the thirteen prototypes of problems and only six of them, 
because of time reasons, were used in the experiments. In future research 
starting, in March and expected to last one-year, all prototypes will be used.  
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The first phase with pupils was focused on the concept of triad. After a 
short explanation, the following problems2 were given to the pupils: 

P1. Create a triad with the numbers: 3,7,4. 
P2. Choose three of the numbers 2, 3, 4, 5 and create a triad. 
P33. Circle the triplets that are triads: (1,5,6); (10,10,20); (3,2,1); (6,4,10); 
(7,5,17); (0,0,2). 
P4. Fill in the missing numbers in the triplets to form triads: (7,9,_); 
(_,9,10); (14,78,_); (7,_,12)4; (75,_,74)4. 
P5. Which number from the following four is necessary to cross out to 
create a triad: (5,6,9,11)? 
P6. Fill in the missing numbers (_,_,8) to create a triad. Find all 
possibilities. 
P7. Fill in the missing numbers (_,6,_) to create a triad. Find several 
possibilities. 
P8.  Similarly for (3,_,_). 
P9 Try to find several triads such that a) all the numbers are even; b) all 
the numbers are odd. 
P10. Try to find a triad with the first two numbers divisible by 7 and the 
third number indivisible by 7.   

The second phase of experiment was focussed on the mappings Lt and Rt. 
The language used in this phase was modified. The phrases �left mapping� and 
�right mapping� were replaced by  �first triad (of the given triad)� and �second 
triad (of the given triad)�. Words in the brackets were often omitted. It was 
introduced to the pupils through the following actions:  

Construction of the first5 triad from a given5 triad was a five-steps procedure: 

− Take the first number of the given triad. 
− This number is the first number of the first triad. 
− Take the third number of the given triad. 
− This number is the second number of the first triad. 
− Complete the first triad by adding its two numbers and putting the result 

in the third position. 
 

                                                 
2 In the pilot experiments the pupils were given the mappings immediately after the 
introduction of concept of triad and it showed as a mistake. Therefore the new set of problems 
was prepared. 
3 The problems marked in bold were used in the experiments. 
4 The last two non-existing �triads� serve as a test if pupils understand the idea of triad 
properly. 
5 The usage of adjectives �first� (�second�) and �given� which seem to be confusing was for 
all pupils quite clear. There was no misunderstanding caused by this terminology. 
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Construction of the second triad from a given triad was described by an 
analogous five-steps procedure. In the notation an arrow was used, e.g. 
(1,3,4)→(1,4,5) for the first triad; (1,3,4)→(3,4,7) for the second triad. 

We can look at the process of creating the structure through the APOS 
theory - action-process-object-scheme (Czarnocha, B., Dubinsky, E., Prabhu, V., 
Vidakovic, D., 1999). In this case by applying the actions (construction of the 
first and second triad from a given triad and construction of the first and second 
triad from the first �new� triad and so on) the scheme creates part of the 
structure. 

After introducing the constructions the following problems were given to 
the pupils:  

P11. Find the first and second triads of the triad: (1,5,6). 
P12. Fill in the missing numbers in the triads to form the triad and its first 
or second triad. (1,_,_) → (1,_,_); (_,6,_) → (_,10,_); (_,_,15) → (15,_,_) 
P13. (_,_,_)→(_,_,_) Choose six of the following eight numbers (you can 
use them twice) and put them into the given arrow scheme: 2, 3, 5, 6, 8, 
11, 14, 18.  
  
The third phase was focussed on the movement in the structure.  The 

pupils were given the paper with lines numbered 1-10 and the following 
problems were given: 

P14. Find further triads on lines 3, 4 and 5. 
P15. What is the smallest triad on line 10? The6 smallest triad is defined 
as the triad whose elements give the smallest sum. 
P16. What is the largest triad on line 10? The6 largest triad is defined as 
the triad whose elements give the largest sum.  

 

5. Methods applied 

The first two phases used in the research resembled class work rather than 
research observation. However even these phases gave valuable information, 
especially observing the pupils� mistakes. The pupils solving the problems in the 
third phase needed to use other abilities and knowledge that were not part of 
previous class work. This was shown by the increasing number of pupils` 
solutions available to help us get an insight into the solving processes. The 
problems and questions (in the third phase) used in the experiments with pupils 

                                                 
6 In the future experiments this sentence will be omitted and we will observe how the terms 
the smallest/largest triad will be used by pupils. 
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were inspired by some of the research methods described in M. Hejný`s paper. 
For instance the method � �Use a non-standard notation� was present in solving 
the problem P14 as a need to reduce the notation. In some of the experiments in 
the third phase the pupils were reminded of the construction of the first and 
second triad and they were asked for inverse construction (re-construction) in 
the sense of M. Hejný�s method � Derive one idea from the other.  

 

6. Experiments 

Two of ten experiments analysed are presented in this paper. In the case of 
�Rebecca�, we will see an interesting attempt to grasp and describe a large 
structure using an �economical� notation. In �Simon�s� case, there are two 
interesting phenomena: 

1. The structure helped the boy to find and correct his mistake. 
2. One formal similarity shows a profound misunderstanding. 

From the methodological point of view, the analysis of the first part of 
�Simon� work was done using Atomic Analysis (Stehlíková, 1995) which was 
elaborated by the Bratislava and Prague research groups. Pupil`s written work is 
broken into the smallest meaningful fragments � the static atoms. The whole set 
of static atoms is ordered in a time sequence. Then the smallest mental 
fragments are looked for � the dynamic atoms that were used for writing the 
static atoms. Finally we try to link all these dynamic atoms into a consistent 
solving process. From our previous experiences Atomic Analysis is one way in 
which it is possible to get a deep understanding of pupil`s written work. 

 

6.1. Case 1 - Rebecca (10-year-old girl) 
 

After the implementing phase, Rebecca was given the problem P11 and P14. 
Rebecca created the triads without difficulty. (See Fig. 1) She found all the 
triads on lines 1, 2, 3 and 4. Then she wrote the eight pairs on line 5: (10,17), 
(22,23), (25,32), (27,33), (26,37), (38,41), (29,40), (39,45). The researcher 
interrupted her work with the question: 

Res. 44: Are you making new triads?  
Rebecca 19: Yes. 
Res. 45: How many numbers do you have in a triad? 
Rebecca 20: (Pause 2 seconds.) It has only 2 numbers. The �triad� (10,17) 
is not a real triad. 
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Analysis  

Two interesting phenomena of Rebecca�s solution deal with the graphic 
organisation of triads: 7 
 

1. The triads on lines 1, 2 and 3 are on the left side of Fig. 1.  

This is a consequence of the position of the triad on line 1 and caused no 
problem to Rebecca�s solving process.   

Fig. 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. The great number of triads on line 5 forces Rebecca to think about a more 
economical notation.    

It is not difficult to understand Rebecca�s idea of her �new� notation. The pairs 
of triads were written down as the pairs of numbers, e.g. there are two triads 
made from (1,8,9), these triads (1,9,10) and (8,9,17) are represented by the pair 
(10,17). Similarly the triads (7,15,22) and (8,15,23) are represented by the pair 
(22,23). 

From the density of line 4 Rebecca saw that the situation on line 5 would 
be graphically very complicated.  She tried to solve the problem in two ways: 

1. She decided to write small numbers. 
2. She introduced her own abbreviation by means of coding a pair of triads 

into an ordered-pair of digits. 

                                                 
7 From now on, the text in italic means an analysis. 
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Both these ideas � small numbers and the ordered-pair - are applied 
systematically: the size of all numbers is same, all eight representatives are 
found without any mistakes. 

Rebecca did not find the ordered-pairs insufficient. The researcher 
expected that she would be in a conflict situation when problems P15 or P16 
were given. By using the same shape of brackets as for the triads Rebecca 
caused communicative misunderstanding which could have been eliminated by 
using different brackets. 

Rebecca was then given the problem P15. She pointed to the smallest 
triads on lines 1, 2, 3, 4 without any difficulties and stopped on line 5. It took 
her two minutes to find how to continue the sequence. She had to overcome the 
obstacle caused by her usage of the ordered-pairs and reconstituted them into the 
two triads for which they stood. The smallest triad on line 5 was found and 
Rebecca continued on line 6 with her notation, writing the ordered-pair (11,19). 
This time, she immediately recognised that her form of coding triads did not 
help with continuing the sequence of the smallest triads. She crossed it out and 
put (1,10,11). Once more on line 7, she tried to use the ordered-pair (writing the 
number 12) and rejected the idea by crossing out this number. From then on, the 
sequence of the smallest triads (1,11,12); (1,12,13); (1,13,14); (1,14,15) was 
written spontaneously. 

 
Analysis 

It seems that Rebecca did not realise that her idea of coding was very weak and 
could not be used in solving the presented triad problems. Rebecca knew what 
she was doing and could translate her coding to her own satisfaction but she 
realised that it was too �condensed� for the problem P15 and so had to revert to 
triad coding. Rebecca�s discovery of the notation was very valuable for her 
interior evaluation as we can see from the fact that it had been rejected and 
after that it appeared twice again.  

Rebecca�s solving process shows her intellectual culture and autonomy, 
her ability to create and test hypotheses. However she did not seem to realise 
that the pair (10,17) could represent more than two triads. 

 

6.2. Case 2 - Simon (10-year-old boy) 
 

The introductory part of the experiment with Simon was the same as with other 
pupils. Then, the work up to line 5 � solving the problem P14 � was done by 
Simon without any help from the researcher. (See Fig. 2) 
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Fig. 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Analysis 

When analysing the first part of Simon�s solution to the problems P11 and P14, 
we first looked for the order in which he wrote the individual symbols on the 
paper. Our solution of this didactic problem is denoted in Figure 2 by small 
numbers which represent this order. There are four kinds of symbols: 1.  triads 
or their parts (0, 3, 4, 9, 10, 11, 15, 19a, 19b, 19c, 19f);   2. line segments (1, 2, 
5, 6, 7, 8, 12, 16, 18); 3. crossings-out ((13), (14), (17), (19e); 4. rewritings 
(19d). 
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The sequence of symbols in Fig. 2 shows that Simon adhered to the 
following procedure: as soon as he finished writing triads on the appropriate 
line, he immediately drew the two line segments for two successors. His 
procedure is evidence of the importance of the tree bifurcated structure for him. 
It is therefore a structure-creating element. 

Solving problem P15 he wrote the sequence of the smallest triads up to 
line 10 without any problems. The rewriting on line 9 is caused by his lack of 
concentration. The regularity of this sequence is still in his mind: the first 
number is 1, the third number equals the second number plus 1, both the second 
and third numbers increase by 1 gradually. When creating the sequence of the 
biggest elements (problem P16), the above regularities played the key role and 
caused the conceptual misconception in the second sequence.  In this process, 
the transfer of the �left� structure to the �right� structure appears, while the 
latter does not correspond to the rules of the creation of the right successor. 

The illustration shows that a pupil�s strong structural thinking can help 
him/her (it happened when Simon discovered the wrong triad 11 and replaced it 
by triad 15), however, it can also be misleading as we have seen on the example 
of the right sequence. Let us say that in the context of the teaching and not 
research we would have shown Simon that his triad (11,28,39) was created in a 
wrong way and let this cognitive conflict take its course. Simon would have 
discovered his mistake and what caused it and made the necessary correction. 
In this research, we only began the whole process.  

7. Conclusions 

The set of triads that is equipped with left and right mappings serves as a good 
tool for research, diagnosing pupils` abilities to build a structure and is an 
educational field within recreational mathematics. The structure of triads as a 
research tool enables us to observe the whole process of creating an arithmetical 
structure because the graphical model of the structure evidences many thinking 
structural processes of the pupils. The research has illustrated the following four 
facts: 

1. Creating a global structure presumes necessarily previous insight into 
local structures (involving from two to five elements � the triads joined by 
the mappings). 

2. The ability to create a concept of the structure of triads is profoundly 
individual. Pupils showing the same level of understanding of the 
structure of natural numbers get insights into the structure of triads at 
different rates. 
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3. A powerful tool for the pupil is the ability to grasp the structure 
graphically and leads to the understanding of structure which does not 
depend whether �a tree�, representing the structure, is orientated up or 
down. (See Fig. 1 and Fig. 2) 

4. As the pupils solved the problems step by step they created other elements 
of the structure. During these activities the pupils had misconceptions. By 
realising this and by understanding the reasons for them, contributed to 
getting an insight into the structure.  

The following four cases of misconceptions were found: 

A. The notation of triads can be reduced, e.g. triads coded as dyads or 
monads. 

B. The triads on a line higher than line 1 can be written down automatically 
without thinking about mappings. 

C. The generated pattern from the left �branch� can be applied to the right 
�branch�. 

D. The number of line can be used as an operator for generating an 
appropriate triad on the line (the triad on line 10 was made by doubling 
the numbers in the triad on line 5). 

The short time spent on the first two phases focussing on the concept of a 
triad and the left and right mappings was a fault of the research. Future research 
will give much more time to these both phases and will include them as a part of 
the research and not only as preparation. 
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Abstract: We trace the guidelines of an in-progress research of didactic 
innovation on the approach to rational numbers from the structural point of 
view. A key element in the implementation of experimental activities is how to 
develop a view of rationals as a numerical extension of natural numbers by 
setting students the problem of defining the operations and order in the new set, 
using their knowledge of natural numbers as a reference point. Here we focus 
on the part of the research devoted to the comparison between the order of 
natural and rational numbers, with reference to the question of density. The 
results obtained show the effectiveness of this approach as far as active 
participation on behalf of the students in the solving of problems is concerned, 
as well of tackling the question of motivation.  However, the results also show 
the need for more time to be given to the study of certain issues and their 
organisation in a more general frame 

 

1. Introduction 

Building the concept of rational numbers is a very long process starting right 
from primary school. Here pupils start with the study of problem situations, 
which, little by little, become more complicated and involve a great number of 
fields of experience and branch out even into fractions by various mathematical 
routes (part/whole, quotient, measure, ratio and operator, according Behr et al. 
1992).  

The importance and breadth of this theme has been documented by 
numerous studies, most of which look at the approach to fractions in the period 
from primary to middle school.  Great attention is paid here to the psychological 
and/or didactic issues which the approach to one of these aspects of fractions 
entails: i) the importance of the context of reference; ii) the iconic and graphic 
representations adopted and the flexibility used to exploit them; iii) the 
incidence of the model of naturals; to name but a few. But there are not many 
studies on fractions from a strictly numerical point of view (Barash & Klein 
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1996, Tirosh 1997) and those on rational numbers from an algebraic-structural 
viewpoint are almost absent.  

Our research concerns a didactically innovative strategy for middle 
schools ranging from fractions to rational numbers, and it is aimed at 
highlighting structural aspects of rational numbers for facilitating the continuity 
between lower and upper secondary schools. This research forms part of a wider 
project aimed at renovating the teaching and learning of algebra. In this project, 
an early use of letters is promoted for expressing relationships, solving algebraic 
problems (even demonstrative ones) and for highlighting relational and 
structural aspects in numerical scope (Malara & Iaderosa 1999, 2001). 

We have to consider that there is a certain amount of epistemological 
divergence between the modern, structural vision of the curriculum (which 
concentrates on the introduction of the various numerical concepts in the sixth 
and seventh years, particularly rational numbers), and the old, consolidated 
teaching tradition (which deals with fractions from a merely operative point of 
view). The classical tradition does not even get to the concept of rational 
numbers as a class of equivalent fractions, while nevertheless studying 
proportions or the function of proportionality in a more general sense. In this 
tradition, the approach to operations is aimed at determining their result for 
particular pairs of fractions though almost never explaining its laws of 
correspondence in general � a process which leads students to carry out 
calculation processes blindly and at times even distortedly (Vinner et al. 1987). 
Moreover, the relationship between rationals and decimals is not well clarified. 
In the praxis, decimals are introduced in primary school as �numbers� for 
expressing measures of magnitude (Brousseau 1981) and, even though they are 
later revised as representations of rationals, issues about coherence or 
compatibility of the operations in the two different systems are usually not faced 
with the students. The comparison between fractions is then usually carried out 
using the decimal representation of the quotient between numerator and 
denominator (of course, usually in very approximate terms), though students are 
not required to reflect on how a fraction varies when its numerator and/or 
denominator varies (Lopez-Real 1998). This approach allows neither for the 
comparison of fractions in general terms, nor for the conceptualisation of how a 
generic fraction changes when its terms of reference do.  

Alongside these aspects, which are typical of current mathematics 
teaching, we must also consider the scarce knowledge many teachers have of the 
subject and the convictions held with regard to teaching practices (Carpenter & 
Fennema 1991). In our research, we therefore tried to operate for and with the 
teachers involved, taking their initial beliefs into account, and encouraging them 
towards new attitudes and concepts through their critical analysis of various 
studies on the topic. 
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2. The Theoretical Framework 

We used several studies in the field as our main points of reference. These were 
analysed and discussed in the awareness-building seminar activities held in 
order for teachers to look at the issues involved.  

One important study was Pitkethly & Hunting�s survey (1996), which 
gathered together the results of research carried out in the first half of the �90s. 
In this survey, the constructive mechanisms for rational number knowledge-
building are taken into consideration. These consist of: a) whole number 
schemes (the use of counting for the identification of individual units as a means 
of division); b) partitioning schemes (halving, dealing, folding or splitting); 
measuring schemes (fractional units seen as chunks or measures); equivalencing 
schemes (the reconfiguration of a certain unit in terms of other ones); relational 
schemes (relational understanding between parts and wholes). The research 
highlights several discrepancies in the findings. a) Discrete vs continuous: 
certain scholars maintain that the continuous approach, associated with 
measuring, is the most suitable to introduce initial fraction concepts, while for 
others, the discrete approach, associated with counting, is fundamental. b) The 
role of natural numbers: for some (like Kieren (1993)), the knowledge of natural 
numbers is productive, while for others (like Streefland (1991)), it is inhibiting. 
A new key result, which has still to be put to the test, concerns the relationship 
between ratio and early fraction learning. It seems that ratio is integral to 
children�s earliest conceptions of fractions. It has also become clear that 
progress in concept development is not linear and that genuine growth in 
understanding involves �folding back� to reconstruct one�s concept of fractions.  

Another study we found particularly interesting was that carried out by 
Kieren (1993), his model of the implicit and generative order of rational number 
thinking (p. 65), fits with our idea of the development of the knowledge of the 
ordered field of rational numbers1. Kieren takes into consideration the 
relationship between rational number knowledge as it is formally characterised 
in mathematics books (ordered, and coherent with formal logic), and conceptual 
knowledge (that is, the interweaving of the intuitive and formal knowledge on a 
personal basis; the ongoing doing constitutes knowing and the enfolding and 
unfolding of such actions). He conceives this relationship in the sense of the 

                                                 
1  The model is structured on four levels: the lowest level contains knowledge based on 

intuitive tools, level II contains sub-construct knowledge, which is subsumed by more 
formal multiplicative thinking, which comes under Level III. Lastly, level IV represents 
the structural knowledge of rationals, that is, their mathematical meaning. 
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implicative and generative orders construct as advocated by Bohm and Peat (p. 
51)2. 

In other studies the approach to rational numbers highlights the role of 
active participation on behalf of the students and the importance of entrusting 
them with the building of their own knowledge. Confrey�s research (1995) may 
be considered part of this clearly constructivist approach. Confrey states that 
splitting and counting are two independent primitive roots of number operations; 
splitting gives rise to multiplication divison and ratio through actions such as 
sharing, mixing or observing similarity, whereas counting leads to addition and 
subsequently multiplication (division) as repeated addition (subtraction). We 
approve of working in parallel, distinguishing between additive and 
multiplicative models and structures.  Another aspect common of our study is 
the great importance given to the teacher, to his/her resources, attitudes, 
experiences, conversations and beliefs about mathematics. Also to his/her ability 
to listen and to draw out different impressions from the students so as to support 
rather than to suppress diversity (an approach which he calls �voice-perspective 
dialectic�). This approach is also to be found in the studies carried out by 
Murray et al. (1996) and Newstead & Murray (1998) in which, alongside the 
constructive aspects, space is also given to meta-cognitive ones. Other studies 
that we have looked at concern more particular aspects, such as the construction 
of classes of equivalence and the question of density (Sanchez & Llinares 1992, 
Gimenez 1990) or the use of the number line (Baturo & Cooper 1999). 

 

3. The Research Hypothesis  

A large part of the wide variety of studies examined are closely bound up with 
the various fields of experience, as well as being based on graphic or iconic 
representation as a strong support to the various learning processes without 
paying any attention to the numeric aspects per se. However, we feel that given 
the very diversity and the reliance on intuitiveness of the classroom experience, 
the students often acquire fragments of ideas and concepts which need to be 
revised and developed. The students need to be led progressively towards the 

                                                 
2 This is conceived to contrast with the explicitly sequential observable patterns that seem 

invariable in a world with dynamic orders that underlie the explicit order. It is from these 
underlying orders that the explicit world draws its meaning. The implied order has the 
dynamic feature of new thought growing out of but enfolding or embedding previous 
thinking; the generative orders observe the unfolding of a central generative intuitive 
theme into a kind of hierarchy of successively more elaborated and sophisticated forms. 
Bohm & Peat suggest that �the really creative act of a mathematician is to perceive the 
germ of this vast structure � that is constantly tested for coherence�� Kieren maintains 
that knowledge-building for the child and the creation of a related curriculum by the 
teacher is a creative act of the same order. 
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purely numerical aspect so as to build bridges for the further development of 
abstract thought. In this sense, we agree with Bonotto (quoted in Pitkethly & 
Hunting 1996), who states: �The child must quickly move away from particular 
concrete situations. The visual representation must not become the unique point 
of reference for the concept. Rather, the context is just one contribution to the 
concept�s formation.�  

In order to help students to develop highly flexible, effective and 
transparent conceptual models for rational numbers, their order and the 
operations between them in general terms, we believe we must lead the students: 
i) to think of fractions as an unifying concept arising from various different 
situations and to co-ordinate the associated symbolic representations; ii) to think 
of a rational number as a class of equivalent fractions and to move flexibly 
across the class; iii) to define the operations between rationals by themselves,  
consciously choosing the most convenient representations given the situation in 
question; iv) to use letters early on to express operations and relationships 
between rational numbers in general terms.  

 

4. The Methodology 

The study, with six middle-school teachers one of whom is also a researcher 
started in 1998/99 and is still in progress. It consists of alternating periods of 
study and the critical analysis of articles from the field, and other periods 
dedicated to the trial, experimentation and analysis of various interventions 
made in the classroom. Thus it is necessary to distinguish between the research 
methodology and the didactical strategy adopted in class. 

The research methodology approach is developed through the following 
steps carried out with the teachers involved: i) a joint study of research literature 
on the chosen theme and the creation of research hypotheses; ii) planning the 
experimental activity needed to verify the hypotheses in their essential points 
and a prior analysis of the potential difficulties for the pupils; iii) joint analysis 
of the protocols produced during experimentation (pupils' output, reports on 
construction discussions and evaluation discussions, etc.); iv) selection of 
documents considered to be meaningful in order to exemplify thinking patterns, 
behaviour and difficulties for the pupils; v) elaboration of the results obtained 
and reflection on the processes that determined them. 

In the classroom, the teachers always work constructively, stimulating and 
orchestrating the pupils' intentions, promoting group reflection on what is 
gradually being carried out until the acquired knowledge is eventually 
institutionalised. Usually they: i) use verbalisation as a tool (the pupils get used 
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to always writing down their ideas, conjectures, reasons for their procedural 
choices, etc.); ii) offer open problem situations, which can be read from many 
points of view so that pupils are provoked to think hypothetically; iii) let the 
pupils analyse other pupils' reasoning and procedures (either individually or in 
small groups); iv) give time for collective discussion so that socially agreed 
conclusions - that each pupil feels as his/her own - arise from comparison and a  
plurality of ideas. 

 

5. The Didactic Development 

The didactic development which we put into practice in the classes may be 
placed between levels II and IV of Kieren�s model (1993). This, as requested by 
the teachers anxious to follow the classic order, is based on the construction of a 
suitable context for absolute rationals and, after the introduction of relative 
whole numbers, that of all rationals (these last aspects are treated in year eight). 
The approaches to directed numbers and rationals are somewhat interweaving, 
giving positive reciprocal outcomes alternately in both fields. A fundamental 
element of the entire strategy appears to be the work done on multiple 
representations of natural numbers, the co-ordination of �a/b� and  �a:b�, the 
reference to decimal numbers, and division quotients as another representation 
of these (despite being in many cases approximate). 

The experimentation covered all the points reported in table 1. These were 
developed mainly in year seven, but preparatory and then more investigative 
work was done in year six and year eight respectively. It must be stressed that 
the experiments were carried out during normal school lessons over a period 
covering the entire school year, together with the other topics of the maths 
curriculum. Generally speaking, the activity was carried out through the 
following stages: a) the class was posed the problem which was then solved 
collectively through group discussion; b) the students were given problems to 
solve individually at home or in class, and then asked to discuss the resulting 
strategies and points of view as a class; c) individual evaluation tests at the end 
of each key stage of the course; d) final evaluation then carried out at a later 
stage to test acquired knowledge. 

For reasons of space, we have decided to concentrate here on the part of 
the research which deals with the question of density of rational numbers, for its 
novelty. The activities reported here took place in the teacher-researcher�s class.  
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Table 1 
The main steps of the experiment 

1. The equivalence of fractions and the construction of rational numbers as 
classes of equivalent fractions. 

2. The construction of the directed and inverse operations of rational numbers 
in general terms, starting from particular cases and considering the questions 
of preservation and coherence as what is already known about natural and 
decimal numbers. 

3. The concepts of opposite and inverse for a rational number different from 
zero and their analogy. 

4. The comparison of rationals in general terms and the character of density of 
the related order structure.  

Table 2 
Summary of the discussion of the first problem 

The teacher starts off by citing particular cases and getting the students to say 
what happens in N. S/he then goes on to rationals and suggests students think 
about whether there are numbers between the 1/5 and 1/2. The kids then go on to 
use finite decimal representation, which induces them to consider the decimals 
0.3 and 0.4 as rationals included within them. The teacher then asks if they can 
continue the �filling in� exercise between 0.4 and 0.5. One student converts 0.4 
into 40/100 and 0,5 into 50/100 and offers up 45/100 as an intermediate rational, 
while another says that there is also 41/100; 42/100; � ; 49/100. The teacher 
resets the problem with the 41/100 and 42/100 pair and the kids get as far as 
thousandths following the previous procedure. It becomes clear from the 
discussion that it is impossible to determine the number of rationals between two 
given numbers as the issue of density comes out. As regards the hypothetical 
number successive to a rational, yet another student (starting from 7/5, that is, 
1.4, writes 0.40001, 0,400001 and says that he has seen with other numbers that 
you can�t establish what comes next because you can put as many zeros on a 4 
as you want and then put on a 1 to make the difference, so every time you get a 
smaller number because you can add an infinite number of zeros making each 
figure slip one place to the right. It�s interesting to note that students also refer 
back to numeric representation on the number line, but soon realise the limits 
inherent in such a system. As one says, �Only space limits the infinity of 
fractions that there are�, and another adds, �Using the number line for natural 
numbers, you go by jumps, while when you use it for rationals, you go by cuts.�  
This vision of rationals between two given points becoming ever denser, a 
vision which is independent of the limits of graphic representation, leads them to 
exclude all talk of successive numbers when dealing with rationals. 

As far as the research already carried out on the building of the concept of 
rational numbers, operations and how to compare rationals is concerned, see 
Malara (2000). 
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The question of density 

We focused on three particular problems proposed. The first problem deals with 
the differences in ordering between natural and rational numbers. 

Can you establish how many and what numbers come a) between two 
natural numbers, b) between two rational numbers? 2.  Can we talk about a 
successive number for rationals like we can with natural numbers? The problem 
is looked at in a group discussion. In order to solve it, the students take part in 
the discussion with different points of view: some turn to decimal 
representation, the �navigation� within the different classes of equivalence, 
number line representation (see table 2). 

A second problem was about ordering rationals. (This question was the 
object of an individual test). The teacher writes: I have a doubt. Seeing that 
between two fractions there are an infinity of others, is the set of rationals an 
ordered or disordered set? Table 3 shows several significant example of pupils� 
elaboration. P1 shows that this student, has more than a good conceptualisation 
of the problem and has a great awareness of the differences between the two 
orderings. P2 shows that the student is fixed on the idea of natural numbers 
which, given the diversity the problems at hand, leads him to exclude that 
rational numbers may be ordered. P3 is a very interesting case. 

Table 3 

Initial elaboration of the second problem 
Despite being at a different level, the following examples exemplify the type of 
activity undertaken and the (mis)concepts nurtured: 
P1:�I don�t think you can just write like we usually do, 1,2, 3, �. with fractions 
but I think that if we have 1/2, 1/3, 1/11,  I can put them into order. I mean, (in 
various ways like decimal numbers and equivalent fractions) I can establish 
which of two fractions is bigger or smaller than the other. I�m thinking that if 
there are an infinity of fractions between any two other fractions, I could still put 
a certain number of fractions in the right order but I will never manage to line up 
all the numbers without leaving any gaps between one and the other�. 
P2: I�ve reached a solution: in a set of rationals, there is never the successor 
number to any given number. For example, after 9/7 you think there is 10/7, but 
there might be 19/14 or 91/70 instead. As you go on and on, you find that it is 
endless and so the successor to 9/7 does not exist. Therefore it is a disordered 
collection. 
P3: I reckon that fractions are ordered because, both with the rational ones and 
the equivalent ones you can put them in order (especially if you look at the 
denominators) both in order from biggest to smallest and smallest to biggest. 
However, it�s a bit of a disordered order, I mean, there are infinite types of 
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fractions and so there can be different types of order. You can take any fraction 
you want and put it in order, but you can�t really do it with all those infinitive 
ones. For example, for 5/6, you can write: 1/6, 2/6, 3/6, 4/6, 5/6, 6/6, 7/6, 8/6, 
�, but if you take 5/6 and 7/14, these can�t go together in the same order, the 
same class, but you can see which is bigger and which is smaller by turning the 
fractions into decimal numbers or by transforming the fraction with the handiest 
denominator and comparing them. For example, 5/6 → 10/12 ; 10/12 �. and  
�.7/14  now you can see which is bigger. 10/12 bigger, 7/14 smaller. 4/6 → 
5*7/6*7=35/42 ; 7/14→7*3/14*3=21/42, now it�s OK. 
 

The student takes into consideration the sequence of multiples of 5/6 in its 
�natural� order, and at the same time the �ordered� class of equivalence 
generated by 5/6.  However, all this is clear to the student, who does not confuse 
the �local� orderings of these sets with those of the classes. 

The third question (see table 4), posed as a final check, highlighted 
several issues which were overlooked in the prior analyses. All three of the 
protocols reported underline erroneous conceptual aspects or incomplete mental 
images. For example, P4�s comment, �The gap between fractions gets bigger the 
further on you go,� shows the student�s understanding of the fact that 
substituting one pair of fractions with another pair of fractions which are 
equivalent but with greater denominators than the second pair lets you �see� a 
greater number of fractions between the two rationals. The term �gap�, however, 
stresses the student�s partial mental image, disconnected from the number line, 
or rather an enlargement of it giving the zoom effect (Maher et al. 1994) which 
stops him from grasping the notion of the �getting denser� between the two 
numbers in the �given� fractions. P5 proves even more problematic, showing an 
erroneous view of the general situation. The student sees the diminishing 
progression of successive powers start from 1/2, but makes absolutely no 
comparison of these powers with 1/5. Elaboration P6 seems initially 
disconnected, but a certain co-ordination between measure and decimal numbers 
and between rational and decimal numbers can be observed. 

Table 4 

A question for the final evaluation 
(The situation and the language used denote the style and philosophy of the 
work in class.) 
Andrea and Matteo sum up the differences and similarities between the 
organisation of natural numbers and that of rationals. Andrea maintains that, 
all in all, the organisation is the same, only that in general, calculations are 
more complicated in rationals. There are hidden traps � for example, you can�t 
just do 3/4  + 5/8, while you can do 11 + 10 � but anyway you can always check 
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out of two numbers which comes first and which comes second. For example, 12 
is before 14 just as 3/5 is before 4/5, and then you can say how many numbers 
there are between two, for example: between 7 and 12 (8, 9, 10, 11) just as 
between I/2 and 1/5 there is 1/3 and 1/4. Matteo takes a deep breath, �puts his 
thinking cap on�, and starts to contradict Andrea. What do you think Matteo will 
say?  
Some significant protocols 
P4: Matteo takes a deep breath and maintains that 3/5 is not followed 
immediately by 4/5, but that between these numbers there is an infinity of 
fractions or decimal numbers and that the divide between the two fractions gets 
bigger the further you go. It�s true that the calculations are more difficult (in Q) 
and there are some hidden traps, but what Andrea implies when he says that 
between 1/2 and 1/5 there�s 1/3 and 1/4 is not true because there are a lot more. 
Therefore, the organisation of rational and natural numbers is not the same, but 
similar. 
P5: If I was Matteo, I would answer by denying the fact that between 1/2 and 
1/5 there�s 1/3 and 1/4 because also 1/8 is between 1/2 and 1/5. Also 1/16 and 
also 1/32 and if we carry on multiplying the denominator by 2, you get all the 
numbers that can fit in the middle; in fact, there are infinite fractions between 
1/2 and 1/5, while in natural numbers, there aren�t. 
P6: I think that between natural numbers like 7 and 12, there aren�t just 8-9-10-
11, but also infinite decimal numbers (infinite between each number) which add 
various bits of another whole number to each whole number. For example, 
between 7 and 8,  7.1; 7.11; 7.2; � . But I agree with Andrea that between 7 and 
12 there are only 8-9-10-11 as natural numbers. On the other hand, as for 
rational numbers, it gets more complicated because: if we take a fraction and 
multiply or divide its divisor and its numerator by the same number, you can 
find other numbers that represent the same value as the initial number (examples 
given). I remember that rational numbers can be represented in decimal 
numbers.  

 
 

Final Considerations 

The experimental studies carried out so far show a good level of participation 
from the students � in their ability to handle the problems set, to approach them 
from a variety of directions, and to solve them. These aspects aside, the issue of 
the stability of knowledge acquired and the insertion of this knowledge in a 
wider frame remains a difficult one. This aspect is shown in the example given 
above. In the group discussion, the question posed about the comparison of 
orders in N and Q+ entailed a whole-hearted response from the class, a general 
sharing of reasoning and the assumption of the discreteness of natural numbers 
and the density of rationals. The individual tests focused on somewhat hazy or 



Working Group 1 

 45

contradictory concepts, while the final evaluation � apart from the matter of the 
clear difficulties in explaining their own ideas � demonstrated the following: a) a 
lack of ability to co-ordinate the individual pieces of knowledge; b) that many 
ideas are still not well formed and in certain cases wrong, even in capable 
students who have made (and usually make) a constructive and important 
contribution to the discussion. From a general point of view, since many 
students find themselves in the zone of proximal development, the matter of the 
timing needed to reiterate and reflect on certain concepts is left open (we must 
not forget that these activities are undertaken during normal school lessons). 
This factor would require a didactic continuity between years eight and nine in 
Italy which is still yet to come. From a more general pedagogical point of view, 
this would also entail greater reflection on the dilemma of the �inter-cognitive 
processes and intra cognitive processes of learning� (Hershkowitz 1999).  
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Abstract: Variables are one of the most important mathematical instruments and 
their learning is one of the goals of teaching. Variables are presented expressly 
in secondary school in connection with algebra and functions. It is possible to 
detect a very precocious use of variables by analysing some standard classroom 
activities for the primary school. The substitutions are the best tool to single out 
these uses. 

 

1. The theoretical frame  

First order formal languages in Mathematical Logic are presented by giving 
arbitrary (infinite) sets whose elements are called variables (or indeterminates or 
unknowns), cf. Bell & Machover 1977. Variables are used to build terms and 
formulae. In formal language interpretations, variables can have different 
meanings, sometimes quantitative ones, depending on the interpretations. 

In the first school approach with algebra or pre-algebra in the sense of 
Linchevski 1995, see also Arzarello 1989, and Boero 1994, variables have 
quantitative origins and meanings. A critical point in algebraic thinking is the 
contemporary presence in variables of extensional and intensional aspects, cf. 
Arzarello & Bazzini & Chiappini 1993 and 1994.  

Here variables, or better indeterminates, are studied in their intensional 
aspects. 

 

2. The hypotheses of the research  

The research starts with the assumption that variables, in logical meaning, are 
used in standard didactic activities, from the first year in school. If pupils are 
requested to manage variables without a specific learning itinerary on that, then 

                                                 
1 The contribution is executed in the sphere of Local Research Unity in Research on 
Mathematics Education of University of Parma - Italy. 
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the hypothesis is that there are capacities or a sort of mental structure that can be 
innate, ready to learn some more abstract topics of Mathematics.  

In order to prove the previous statement, it is necessary to build suitable 
instruments. I propose the use of substitutions, in the sense of Logic 
morphologic operations, for detecting these capacities. In my opinion 
substitutions can also clarify inner processes of some pupils in the solution of 
problems. 

 

3. Variables and natural language  

This first assertion, i.e. that variables are used in standard didactic activities, can 
be proved by analysing textbooks and teachers activities in language learning.  

The learning of natural language, reading and writing is one of the first 
topics for pupils of primary school. Teachers are requested to establish a 
correspondence between phonetics and writing. In order to obtain this 
correspondence they use many different techniques. One of these is the alphabet 
with drawings, representing objects of everyday use and (capital) letters. The 
pupil must know the name of each object represented and at the same time 
she/he must listen to the sound and keep it in memory. The first two years of 
primary school present many activities of this kind. I think that different natural 
languages have similar problems. My experience is with the Italian language and 
some examples I show later are taken from it. I hope the reader can "translate" 
what I show in her/his own natural language. I want to emphasise here those 
aspects that can be treated and explained in Mathematical Logic, reckoning that 
Logic is one of the contents indicated in Italian compulsory school standards by 
National Education Board, even if variables and substitutions aren't present 
explicitly in Italian national standards for primary school. 

The learning of natural language is very complex and abstract. It can be 
said that it is more difficult than the learning of many mathematical topics. With 
a simple example taken from linguistic domain I can explain some aspects of 
logical education. A lot of Italian words are written with two consecutive equal 
consonants; pupils write only one of them, or write two consonants when only 
one is requested, changing in this way the meaning of the word. In order to 
overcome this sort of problem, the teacher presents (semantic) exercises of this 
kind: complete the word pa...a in which the dots are spaces that must be filled2 
and suitable drawings help the pupil. If dots are replaced with pp the word is 
pappa (pap), using only one letter p, the word obtained is papa (Pope). If dots in 
                                                 
2 The same dots appear in the application form for CERME 2! 
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pa...a are replaced with ll, the word is palla (ball), with only one l, the word is 
pala (shovel).3 These exercises are very close to equations in finite domain (the 
alphabet or the "Cartesian square" of the alphabet) and the solutions can be 
obtained by replacing dots with letters in order to get the name of the objects 
represented in each drawing. I will show later a similar mathematical example 
(the square perimeter). In primary school we can find "equations"4 or open 
phrases similar to above linguistic exercises. Find the number such that 3 + ... = 
8, or 2 × ... = 6, and so on, "equations" that can be solved by trials, or by 
considering the previous examples as verbal problems, see Moser 1985a, Moser 
1985b, and more recent and pertinent, Malara 1999.  

The main differences between linguistic variables and mathematical ones 
is that for arithmetical or algebraic "equations" there are algorithms of solution, 
on the contrary linguistic "equation" can be solved only by trials or by 
knowledge of an everyday context. But in the first years of primary school these 
algorithms aren't available, and, even if the algorithms are available pupils can 
refuse to use them, as Basso & Bonotto 1996 evidences. In Italy algebraic 
equations are introduced in Mathematics at 8-th school degree, far from these 
first uses of them. I'm not interested here in the "arithmetical" algorithms, I want 
to stress that in these exercises the dots assume the role of variable and that 
"solutions" are obtained by trials and by substitution, using the semantic context 
given by the pupils' personal experience. Another more subtle difference is that 
in the common knowledge of first degree pupils, quantitative aspects of 
variables are present with a sort of intended semantics of the numbers (e.g. 
"two" is an adjective, i.e. a determination of something else); "pp" in itself has 
no meaning at all.  

In my opinion the same mental structures are required to solve the 
aforesaid linguistic exercises and to learn the first steps in algebra.  

Another phonetic problem can well prove the pupils' awareness of use of 
variables. In Italian language there some "blocks" of letters qu or cu or cqu, that 
have nearly the same pronunciation, similar to one used in the English word 
cuirass. The teacher's strategy is the same: some incomplete words are given 
and she/he asks for their completion: ...adro, a...a, ...oco and from these ones the 
pupil obtains quadro (picture), acqua (water), cuoco (cook). Drawings help to 
determine these words, but what kind of representation can help the students in 
the case of the word quiddità (quiddity)? This philosophical term isn't used in 
primary school, but in the present multiethnic society, also words of everyday 

                                                 
3 In Northern Italy local dialects are poor in double liquid consonants. On the contrary, in the 
regional language of Sardegna, all consonants are in general too strong and become double 
even if it is not the case. Hence this kind of exercise is frequent in Italian schools.  
4 The term "equation" is used here in a rough meaning. 
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use for mother-tongue speaking pupils, are unknown to other people, even if the 
unknown words can be represented by drawings. In this case the semantic by-
trial technique isn't suitable for solving these "equations", since there is too little 
phonetic difference among the proposed "blocks". The solution of the problems 
posed by the word ...iddità or by equation 3 : ... = √7, in primary school have at 
least the same difficulty degree; it may be that the linguistic question is more 
complex than algebraic equations, for which a solution procedure will be 
presented in the following school years. 

The previous simple examples can be checked in textbooks for primary 
school, some with a slightly different presentation: instead of dots, some other 
different graphic notations are used. Hence the exercises can appear in the form: 
complete the word pa□a or □oco. I asked a primary teacher the reason why the 
handbooks preferred this presentation, less befitting from a typographic point of 
view. She told me that pupils sometimes used three letters when there were three 
dots! These wrong answers are produced by two concurrent reasons:  

1. the pupils are unaware that "..." in this context must be regarded as a 
unique thing that must be substituted with a unique linguistic entity, 

2. they use each dot as a name for a variable disregarding a mathematical 
implicit dictum that each occurrence of the variable in an expression must 
be substituted with the same value.  

The sign □ seems to avoid the first problem. Mistakes such as cquoco, 
cquadro, can be motivated for example by the parlour game "hangman" or 
something like that, but in every case these answers reveal an interpretation of 
each dot as a variable that can assume values on the alphabet. 

These examples, and many others, show that pupils face variables in an 
early stage of their development, at primary school. The teacher, on the contrary, 
doesn't explain the "tricks" that must be used in manipulation of variables and 
the pupil is left alone. The consequences of this have long term effects on the 
whole student's curriculum. In each Italian primary school, in the same 
classroom, there are different teachers for linguistic education and mathematical 
education. They can be unaware of the fact that they teach with the same logical 
instruments, cf. Marchini, 1990a. Moreover the teacher for linguistic education 
should not take care of the (mathematical) difficulties shown by pupils in the 
treatment of variables at this stage. Timely measures can avoid major difficulties 
in the learning. 

Unusual symbols (different from x, y, ...) for variables don't prevent us 
from considering them according to mathematical standards. The following 
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problem has been presented to 200 pupils in 4-th year classes5: replace each 
symbol with the same letter in order to obtain meaningful words 

#ie◊e    pa◊◊a    #a##a    ga#ba. 
The results gave 58% correct and 23% incorrect but in the answers the 

symbols were replaced with letters taking into account only one word at a time6 
in order to obtain meaningful words. It can be said that 81% of pupils can solve 
these "equations" and 71,6% of them read the problem as a "system of 
equations". But the solutions of equations or systems of this kind of equations 
require treatment of variables.  

I want to underline these linguistic aspects because they are used very 
early in teaching and they offer good opportunities to begin important 
mathematical learning "outside" mathematics, see Bonotto 1996, or can give 
essential and timely information on pupils' competency. 

 

4. Substitutions  

The topic "substitutions" originated in Mathematical Logic as a morphologic 
operation used in transformations of formulae and terms of a formal language, 
cf. Rasiowa & Sikorski 1963. In Halmos 1962, substitutions are the core of 
algebraic logic. In Mathematics Education researches, the argument was 
partially presented in Freudenthal 1975, Adda 1982, Byers & Erlwanger 1984, 
and Lowenthal 1989. Malara 1997 describes substitutions as metacognitive 
abilities, see also Linchevski & Vinner 1990. Pesci 1990 uses some examples of 
them in a test identifying weak pupils. From a different point of view this 
argument is treated in Laborde's thesis, in Caron-Pargue 1981 and in Janvier 
1987. But there isn't a specific entry for substitutions (and variables) in ZDM 
classification. This research domain seems scarcely explored. The semantic 
concept of interpretation of a first order formal language is another example of 
an application of substitutions, in a sense more general that morphologic one. A 
deeper analysis of substitution can help in the determination of assessment 
criteria cf. Marchini, 1990b. 
                                                 
5 This problem is presented by Pezzi, 1997. The problem is one of a diagnostic set of 
questions used in assessing background knowledge on substitutions and variables before a 
teaching experiment on these arguments. The symbols used in the item are a circle, here 
replaced with #, and a rhomb similar to the one used here. The good results in substitution 
management of 4-th degree pupils involved in Pezzi's teaching experiment, cannot be 
produced by previous experiences with geometry problems, since one of the goals of the 
experiment was to facilitate the learning of perimeters and areas of polygons. 
6 The correct answer is miele (honey), palla (ball), mamma (mummy), gamba (leg); the last is 
the key-word for the solution. In this group of 46 pupils the more frequent answers are piede 
(foot), pappa (pap), bacca (berry), and ganba (an incorrect writing for leg). 
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There are three base points for substitutions: the starting point (initial 
configuration or IC) the destination point (final configuration or FC) and the 
code (CD). In direct substitutions the given CD is the set of instructions to apply 
to the given IC in order to obtain the unknown FC. In inverse substitutions the 
unknown CD must be determined in order to justify the given FC starting from 
the given IC. This taxonomy is consistent with Krutetskii as quoted in Pesci 
1991. In the previous example of □oco, pupil has the IC given by the text and 
the FC is suggested by a drawing. She/he selects CD by trials among the 
proposed qu, cu, cqu; then she/he conjectures the correct FC from her/his 
linguistic experience. Hence this is an example of a sort of inverse substitution: 
the FC isn't completely given, since pupil knows the phonetic of the required 
word, and must translate the sound in a written FC.  

In general, direct substitutions are simpler than inverse ones, since a 
decidable procedure of terms transformation can be applied. Inverse 
substitutions are difficult: in fact if the search of the CD isn't delimited to a 
given context, the procedure can be undecidable. In a lot of linguistic exercises 
the type of substitution required isn't simple to determine: often only the CD, or 
IC, or FC is given. An example of an exercise with only the CD given is: write 
words with ll; in the exercise: write words derived from acqua (water), only the 
FC is given; and so on. In Mathematics the same happens.  

I will give an example of a geometric problem analysed by the means of 
substitutions: find the side of the square whose perimeter is 36. The text of the 
problem gives explicitly only the CD: p = 36. The IC is implicitly present in the 
problem by the information that the figure under examination is a square, hence 
the IC is the formula p = 4×s, where s is the unknown side. Applying the CD to 
the IC we get a (first) FC: 36 = 4×s. This can be treated as a simple algebraic 
equation that can be solved by standard algebraic techniques, i.e. dividing both 
members of the equality by 4.  

The solution of this problem can be obtained in a different way, by 
substitutions, without arithmetic algorithms. In this case neither IC nor CD, nor 
FC are clearly given, but pupil can assume 36 = 4×s as a new IC and searches 
a new FC  in multiplication table,  by inspection of the cells  (of the table with 
entries  from  1 to 12)  in which  appears 36:  36 = 3×12,  36 = 4×9,  36 = 6×6,  
36 = 9×4, 36 = 12×3. The only one that is suggested by the IC 36 = 4×s is (FC) 
36 = 4×9. At the end pupil performs an inverse substitution determining the new 
CD (and the problem solution) s = 9.  

This problem about a square, can be proposed in Italian primary school 
from the 3-rd to the 5-th year; its solution requires managing a complex situation 
in which geometric intuition has little or nothing to do with it. Note also the 
change of point of view: at the first step 4×s is regarded as a whole with symbol 
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awareness, cf. MacGregor & Price, 1999; afterwards the same writing is 
"decomposed" in order to obtain the CD comparing 36 = 4×s with 36 = 4x9. 
Similar remarks can be made for many other inverse arithmetical problems. I 
hope that this mathematical example clarifies that some arithmetical or 
geometrical problems can be solved, using substitutions, disregarding the 
numerical values involved, but with an intensional use of numerals viewed only 
as symbols or icons, cf. Malara & Navarra, 2000. 

 

5. Instruments for detecting capacities of managing variables 

In § 2, I pose the problem of building instruments suitable for evidencing the 
pupils' management of variables in the sense which I explained above. My 
answer to this problem is a proposal: I produced7 a set of questions for primary 
school presented only by graphical means, icons; the choice of using only 
graphical means is motivated by the lack of ability to write in first year 
classrooms.  

I give a version of the test below, typographically reduced through lack of 
space. The original test has one page for each of the eight questions. The three 
lines in each item are spaced and the answer must be written in the empty 
central line. This choice can be unusual but it was necessary to avoid the pupil 
who interprets the drawing as a unique thing (this phenomenon was present in 
the "α-release" of the test given to other pupils). The test was accompanied with 
a drawing (HFT human figure test inspired by Polacek) and other kinds of 
questions addressed to teachers (a sort of profile for each pupil).8 

  

         
 
 
 

 

                                                 
7 With the help of Dott. Franco Priore. 
8 The elaboration of these informations connected with the use of substitutions and variables 
will form the content of other papers. 

1 2
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The sample was of 82 first year pupils (from 5 classes chosen in 3 
different schools). In the 33% of the 656 items variables are correctly used; in 
44% of the 656 items substitutions are correctly performed. The test was given 
in classroom without any preceding activity on the work. The teacher explained 
the task with a few examples presented immediately before the execution of test.  

With the aim to clarify how the test could identify the correct 
management of variables, I reproduce here protocols of two pupils of the same 
class. In my opinion is evident that both apply correctly substitutions, only the 
first pupil succeeds in the management of variables. 

3 4

5

8

6

7
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6. Open problems and didactic perspectives 

The instrument I produced opens up some interesting problems. For instance are 
substitutions and variables connected or are they different kinds of mental 
structures? Until now I have not been able to prepare questions on variables, not 
involving substitutions for pupils aged 6,. But can variables in themselves be 
introduced avoiding (implicit or explicit) substitutions? 

Another difficult question: are the correct answers to questions about 
substitutions and variables determined by learning or by innate talent?  

The number of good solutions to the tests in primary school isn't 
negligible and it suggests that there is at least one specific mental structure since 
pupils had not learnt about variables and substitutions before in school. 

It seems to me that previous arguments show that if the teacher can detect 
at an early stage of schooling what is the pupils' level on this field, substitutions 
are available as simple instruments. Some didactic action can be performed in 
order to improve the results on substitutions and variables. Pezzi 1997 writes 
about it. 

Moreover substitution applies in other mathematical fields and further. 
The mathematical minded reader has present systems of algebraic equations, 
integrals calculus and so on. Substitutions are applied in fields other than 
Mathematics: cf. Marchini 1989, Chirenti & Marchini 1988, Margiotta 1990, 
Margiotta 1991a, Margiotta 1991b, Margiotta 1992. Therefore substitutions are 
instruments for the learning of many subjects presented in compulsory schooling 
and they are involved in many activities adapted for pupils, cf. Alberti 1998. 
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Abstract: We discuss the theory of encapsulating a process (Davis, Sfard, Tall & 
Gray et al, Dubinsky et al). All these papers concentrate on �procepts� in 
arithmetic / algebra / calculus, though the description of the theory is more 
general. (The authors exclude the discussion of procepts in geometry implicitly, 
or explicitly in Tall et al, 2000b).  In this paper we briefly discuss processes of 
learning geometry (like a natural science, Struve 1987) and - on the base of case 
studies in class room interactions (Meissner & Pinkernell, 2000) - we argue that 
there also are procepts in geometry and we will give some examples. 

 

1. Procept Formation 

Which are the cognitive processes when children develop their individual 
mathematical concepts? Vinner (in Tall 1991, p. 65ff) especially discussed the 
role of definitions in learning mathematics and how children may overcome the 
"conflict between the structure of mathematics, as conceived by professional 
mathematicians, and the cognitive processes of concept acquisition". Mathe-
matical definitions mainly describe objects or a static view while the process of 
acquiring new insight often runs in parallel with activities or procedures or 
mental processes in time. Thus there are divergent roots to develop individual 
mathematical concepts and Tall & Vinner (1981) use the term "evoked concept 
image" to describe the part of the memory evoked in a given context. 

How can these inconsistent views, an object on the one hand and 
procedures on the other hand, grow together to form an appropriate 
mathematical concept (or rich and powerful "concept image" with the words of 
Vinner)? Piaget (1985, p. 49) already has pointed out that "actions and 
operations become thematized objects of thought or assimilation". This idea has 
become very powerful today to understand the development of certain concept 
images in mathematics education as a process of "interiorization" or 
"reification" or "encapsulation ". 

We may quote Davis (1984, p.29f): "When a procedure is first being 
learned, one experiences it almost one step at time; the overall patterns and 
continuity and flow of the entire activity are not perceived. But as the procedure 
is practiced, the procedure itself becomes an entity - it becomes a thing. It, itself, 
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is an input or object of scrutiny. All of the full range of perception, analysis, 
pattern recognition and other information processing capabilities that can be 
used on any input data can be brought to bear on this particular procedure. Its 
similarities to some other procedure can be noted, and also its key points of 
difference. The procedure, formerly only a thing to be done - a verb - has now 
become an object of scrutiny and analysis; it is now, in this sense, a noun." 

Sfard (1987) distinguishes also two kinds of mathematical definitions, 
referring to abstract concepts as if they were real objects or speaking about 
processes and actions. "The structural descriptions seem to be more abstract.  ... 
To speak about mathematical objects, we must be able to deal with products of 
some processes without bothering about the processes THEMSELVES." She claims 
(1987, p. 168) that the operational conceptions develop at an early stage of 
learning even if they are not deliberately fostered at school. In Sfard (1992, p. 
64f) she identified a constant three-step pattern in the successive transitions 
from operational to structural conceptions: "First there must be a process 
performed on the already familiar objects, then the idea of turning this process 
into a more compact, self-contained whole should emerge, and finally an ability 
to view this new entity as a permanent object in its own right must be acquired."  

These three components of concept development Sfard calls 
"interiorization", "condensation", and "reification", respectively. "Condensation 
means a rather technical change of approach, which expresses itself in an ability 
to deal with a given process in terms of input/output without necessarily 
considering its component steps. Reification is the next step: in the mind of the 
learner, it converts the already condensed process into an object-like entity." 

Dubinsky (in Tall 1991) and his colleagues (Cottrill et al, 1996) also 
studied the ENCAPSULATION phenomenon and they developed the APOS theory. 
They see three steps (Action → Process → Object) to get mental objects which 
then become part of a Schema S. 

Gray & Tall analyzed the duality between process and concept and came 
to a similar view. They consider (1991, p. 72ff) "the duality between process 
and concept in MATHEMATICS, in particular using the same symbolism to present 
both a process (such as the addition of two numbers 3+2) and the product of that 
process (the sum 3+2). The ambiguity of notation allows the successful thinker 
the flexibility in thought to move between the process to carry out a 
mathematical task and the concept to be mentally manipulated as part of a wider 
mental schema."  They hypothesized that the successful mathematical thinker 
uses a mental structure "which is an amalgam of process and concept". Tall 
(1991, p. 251ff), reflecting the dual roles of several symbols and notations: 
"Given the importance of a concept which is both process and product, I find it 
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somewhat amazing that it has no name. So I coined the portmanteau term 
"procept". In 1994 Tall & Gray proposed the following definitions:  

"An elementary procept is the amalgam of three components: a process 
which produces a mathematical object, and a symbol which is used to represent 
either process or object. A procept consists of a collection of elementary 
procepts which have the same object." In Tall et al (2000a) we find examples for 
symbols as process and concept. 

Especially when discussing advanced mathematical thinking we can 
discover a lot of "procepts". Dubinsky (2000, p. 43) lists such concepts: 
"functions, binary operations, groups, subgroups, cosets, normality, quotient 
groups, induction, permutations, symmetries, existential and universal 
quantifiers, limits, chain rule, derivatives, infinite sequences, mean, standard 
deviation, central limit theorem, place value, base conversion and fractions". For 
more details see http://www.cs.gsu.edu/~rumec/index.htm. 

 

2. Procepts in Geometry? 

Studying the above lists we miss geometry, at least "concrete", visual geometry. 
Are there no procepts in geometry? Is the process of learning geometry that 
much different from the process of learning arithmetic and algebra and calculus? 
Are there no procedures or processes in geometry to become objects on a 
procept level? Most of the work on the "encapsulation of a process to an object" 
concentrates on examples in arithmetic, algebra, and calculus. We do not know 
papers on examples in geometry. 

One of the reasons might be that in many countries geometry is not in the 
center of teaching mathematics and therefore there is not much research on how 
children learn geometry. In German primary school books for example we have 
only about 5% of the pages with geometry topics. (And even less than 5% of the 
time spent for mathematics education in German primary school classes then 
really is used to teach geometry). 

Another reason might be that there still is a method of teaching and 
learning geometry which is similar to an axiomatic approach: We start with 
"definitions" and properties (line, point, circle, square, ...), discover relations and 
prove statements. Of course, it will be difficult then to discover (like in 
arithmetic) "processes which may produce a mental mathematical object". Then 
there also is no necessity in geometry for getting symbols which are used to 
represent either a process or an object. 
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Tall et al (2000b) formulate the hypothesis that there are three types of 
mathematics (space & shape, symbolic mathematics, axiomatic mathematics) 
and that each of them is accompanied by a different type of cognitive 
development. They consider - before focusing on the growth of symbolic 
thinking - "briefly ... the very different cognitive development in geometry". 
There are perceptions of real objects initially recognized as whole gestalts and 
classifications of prototypes. Reconstructions are necessary to give hierarchies 
of shapes and to see a shape not as a physical object, but as a mental object. 

Struve (1987) also analyses how concept images in geometry develop. He 
summarizes, that children in primary and lower secondary classes learn 
geometry like a natural science, they describe and explain and generalize 
phenomena. Thus for them geometry becomes an empirical theory. 

For the author of this paper it is a miracle that we in physics can use 
mathematical formulae and even complex mathematical theories to predict 
future events. We trust - but we cannot prove - that events will occur tomorrow 
in the same mode as yesterday when there will be the same conditions. There are 
big similarities between physics and empirical geometry: Given certain 
assumptions we can predict events - by the use of mathematical theories. 

What does that mean for the theory of procepts? When we analyze in 
"3+2" possible step-by-step procedures of the children we also observe 
"empirical mathematics" with real objects. And like in geometry the children 
generalize and learn to predict future events. We trust, but we cannot prove, that 
"3+2" always "will be the same", but we (as mathematics educators or 
researchers) avoid speaking of a miracle by introducing "counting principles" 
(like axioms in geometry). In this view an elementary procept in the meaning of 
Tall et al (2000a) just is the shift from the empirical stage to the theoretical 
stage. Following these ideas consequently there should be no fundamental 
obstacle also to find procepts in geometry. 

 

3. Procepts in Geometry! 

When we look for procepts in geometry we first need activities or procedures. In 
the beginning they may be "experienced one step at a time". After practicing 
them for a while the user perceives "the overall patterns and continuity and flow 
of the entire activity, the procedure itself becomes an entity - it becomes a thing" 
(Davis). 

Gray & Tall (2000a) distinguish procedure and process. For them 
procedure is like a specific algorithm. Using the example "4+2" there are 
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lengthy procedures (as "count-all"), compressed into shorter procedures (like 
"count-on" or first "count-both" or "count-on-from-larger") or other techniques 
(i.e. "remembering known facts" or "deriving facts"). These different procedures 
all are used "to carry out essentially the same process in increasingly 
sophisticated ways". Our following list may describe the mental development 
(which lateron also will include geometry): 

 

Table 1: Development of an (elementary) procept 

Table 1 especially also describes the development of the elementary 
procept "4+2". Tall et al (2000a) continue: "Soon the cognitive structure grows 
to encompass the fact that 4+2, 2+4, 3+3, 2 times 3, are all essentially the same 
mental object", that means that the procept "6" consists of a collection of 
elementary procepts. 

We see the symbols used (4+2, 2+4, 6, etc.) as abbreviations to describe 
(and to evoke!) the according processes or objects mentioned. In general we 
think symbols are abbreviations to name or to recall a process or an object. They 
serve like key words. In arithmetic/algebra/calculus we use letters a, b, c, d, ... 
and other symbols like +, %, dy/dx, ... to evoke concept images. But other key 
words like "six", "field", "parallel", ... or ",", "◊", ... or "⊕", "⊗", ... or "⊥" ... 
might do the same. Only important for mathematics education is the concept 
image evoked by that symbol or key word. 

Tall et al (2000b) point out that "symbols occupy a pivotal position 
between processes to be carried out and concepts to be thought about. They 
allow us both to do mathematical problems and to think about mathematical 
relationships". Important, there is only one symbol with a dual meaning. And we 
like to add, it is not important what type of symbol or key word it is. 

Thus we think we should expand table 1 by adding consciously the 
process of tagging or naming, that means communication is an essential part of 
developing procept images: 

 
(a)  carry out accurately the given one procedure/technique  
(b)   several procedures/techniques are possible, select one 
(c)    several procedures/techniques are possible, make an efficient choice 
(d)     carry out the process flexibly and efficiently, i.e. determine 

  and select an appropriate procedure/technique 
(e)     discussing, arguing (process becomes an object) 
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Table 2: Development of an (elementary) procept image 

 

4. Examples of a Procept in Geometry 

Analyzing video tapes from class room interactions (Meissner & Pinker-Nell 
2000) we suddenly disagreed on the interpretation of aspects in the following 
situation. 

 
We started discussing if it is necessary for everybody to fold mentally 

before deciding if this drawing is a net of a pyramid. By looking at Fig. 2 an 
experienced geometrician sees that it does not represent the development of a 
solid. He can decide without actually folding the net. In his reasoning the 
process of folding has been encapsulated to the static concept �development�. 
Friederike however has some notion of �development� in which she still needs 
to carry out the process of folding explicitly, as her hands indicate. Thus we 
consider �development� as a procept in spatial reasoning. 

Let us discuss and analyse this case in more detail. First, Friederike gets, 
probably without realising it, two contradictory stimuli at the same time. The 
key word "pyramid" leads to a square because all pyramids Friederike knew till 
now had are a square as the base. However the given solid says that Friederike 
only needs three triangles. She compromises and gets the hole. Obviously she is 

(a)  carry out accurately the given one procedure/technique  
(b)   several procedures/techniques are possible, select one 
(c)    several procedures/techniques are possible, make an efficient choice 
    and explain 
(d)     carry out the process flexibly and efficiently, i.e. determine 

  and select an appropriate procedure/technique 
  and discuss possible alternatives 

(e)      use abbreviations (symbols, key words) for 
  discussing, arguing (process becomes an object)  

   

 
A teacher showed a model of a three sided pyramid (Fig. 1) and 
asked the class: �How did the cardboard paper look like before I 
folded it to make this pyramid?� Friederike (age 8:2) drew a 
square and added three triangles to its sides (Fig. 2). She then 
showed with her hands how to fold the pyramid, pointed to the 
side of the square where there is no triangle, and said: �Then 
there's a hole, isn't it?� Fig. 1 Fig. 2  
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familiar with a mental folding-up procedure, but she has not enough experiences 
to bridge the gap immediately.  

This episode was observed before we systematically introduced activities 
in the class room to draw developments for solids (pyramids, rectangular solids, 
houses): The children learned to make the net of a pyramid by placing a wooden 
model onto a sheet of paper and then repeatedly tilting it from its base onto one 
side and back to the base again, each side being encircled with a pencil. The 
resulting figure would be a star shaped net. Next, we have asked them to make 
the net of a rectangular solid. What we have experienced many times is that in 
strictly following the learned procedure they forget the solid's upper side and 
produce a net that would fold to an open box.  

We then pointed onto the missing side of the given solid asking where this 
was drawn. Very often there was a laughter in the class room and immediately 
the drawing was completed correctly. The procedure �development� they had 
acquired so far was based on an activity of what could be called �tilting from 
and back to the base�. With the rectangular solid this procedure of �tilting� had 
to be revised by extending it. This mental change is typical for the development 
of procepts. Proceptual thinking also includes the ability to revise an 
encapsulated procedure to meet new demands (Gray 1994, p.2). We saw a 
similar expanding of the procedures when we used solids with concave sides.  

To draw the developments the children got a card board and a wooden 
solid. Some of the children just started tilting and drawing. Others first took the 
solid to find an appropriate starting position on the card board (by tilting without 
drawing) to make sure that their drawing will fit on the paper. Here the activity 
already becomes a flexible and efficient process.  

The last lesson of that teaching unit (details see Meissner & Müller-Phillip 
1997) started with an exhibition of about 20 different (plane) developments of 
buildings fixed with tape on the black board. There were only lines drawn where 
to fold later on (but not distinguishing if to fold inside or outside). The children 
(grade 3, age about 8 - 9) had to describe which net might become what type of 
building before they could choose one of the developments to verify their 
guesses. We are sure some of the children just identified simple nets without any 
mental folding. They just saw "that is a tower" (Fig. 3) or "that is a garage" (Fig. 
4) or "that is a house" (Fig. 5). We think for them a simple net had become an 
elementary procept. 
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 Fig. 3    Fig. 4    Fig. 5 

 

But where is the symbol, one of the characteristics of a procept? We think 
the net itself is the symbol. The one interpretation of that symbol is a procedural 
one, "folding up". The other view is static, "this is ..." (an object). 

Symbols of procepts follow syntactical rules. Also from this point of view 
there are reasons to take (at least simple nets) as a symbol. In the following we 
will demonstrate this view by comparing procepts from arithmetic or algebra 
with the procept "net". 

A process is a set of procedures: 
We can describe �6� by �4+2� or �5+1� or �3+3� or ... And we can describe 
�cube� by 

 
        or        or           or 
 

 

Each symbol belongs to a specific process: 
This is true for �6� or �32� or �1/2� as well as for nets shown in figure 3, 4, or 5. 

Symbols can be manipulated according to "syntactical rules": 
Replace �3+4� by  �4+3� (3+4 = 4+3) or replace �2×8� by �8×2� (2×8 = 8×2) or 
replace �3×(4+2)� by �3×4 + 3×2� or ... We also can replace 
 
 
       by      or               or 
 

 

There are "syntax errors": 
The notation of power does not allow symbols like �2x� or � 2x� or � x2� or � 2x� 
or � 2x�. Or the notation of addition does not allow �+2,4+� or �2,4,+� or ... the 
notation �net� does not allow 

. . . 

. . .
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     (missing side)  (neighbored lengths) (number of side surfaces) 
 

Procepts, described by a symbol, can be expanded: 
�3×4� (multiplication of integers) gets expanded to �3.5×6.9� (multiplication of 
decimals). 
 
 
 
   

�tilting�      gets expanded to a   �conscious tilting� 
 

Symbols can be variables: 
We use letters for variables in arithmetic or algebra. A �net� also may have the 
meaning only of a variable, i.e. by giving the spatial shape, but no geometric 
proportion of the specific solid: 
 
 
 
 
 
 
 
 �a� pyramid             �a� rectangular solid             �a� house 

Symbols can be manipulated: 

 

More briefly we will add two other examples. One main theorem in 
geometry is, what we call in German the Strahlensätze. A figure of four lines, 
where two intersecting lines cross two parallel lines, leads to three or four basic 
statements about the ratio of according lengths: 
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We think the symbol or tag of the Strahlensätze is one of the given 
figures. A proceptual thinking of "Strahlensätze" is only possible when we are 
able to regard the above figures as an entity (of related procedures). Then the 
procept "Strahlensätze" is encapsulated in each of these figures. The different 
types of figures can also be seen as manipulations of symbols according to 
syntactical rules. Some more manipulations may be the following: 

 
 
 
 

The last figures even indicate an extension of the original concept. Of 
course all these symbols also implicitly include variables: It is not important 
where the intersection point is in relation to the two parallels nor is the size of 
the angle of the intersecting lines nor the width of the parallels. 

Another example is Pythagoras' Theorem. There are several types of tags: 

 
 
 
 
 
 

Often our students do not achieve a proceptual "pythagorean" thinking. 
They ignore or they do not see the property "perpendicular" or they have fixed 
mental images of how to name the sides of a triangle: 

 
 
 
 
 
 
 

 

5. Summary 

The theory of procepts can be extended. We also have geometrical procepts like 
net of a solid, Strahlensätze, Pythagoras� Theorem, but also triangle, polygone, 
circle, ... 

 

a² + b² = c² 

a b 

c 

a
b

c

a

c

b
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Abstract: The purpose of this paper is to analyse the relationships between 
argumentation and proof. My assumption is that argumentation and proof can 
be compared from two points of view: content and structure. Toulmin's model 
can be a tool to compare the two structures. This paper shows how Toulmin�s 
model can be used to highlight the presence or absence of cognitive unity during 
the solution of geometric problems needing the production of conjectures and 
related proofs. 
 

1. Introduction 

I will consider the solving process of geometric problems in which students 
interact with dynamic environments, in my case the Cabri-Geometry software. I 
consider a situation in which the student produces an argumentation during the 
production of the conjecture and then constructs a proof of this statement. The 
purpose of this paper is to analyse the relationships between argumentation and 
proof. In particular, my research aim is to analyse similarities and differences 
between the structures of the two processes, in order to analyse them from the 
point of view of cognitive unity (Boero, Garuti, Mariotti, 1996).  

In general, in dealing with problems asking for a conjecture, the solution 
is not immediate. Then the production of an argumentation during the 
construction of a conjecture is expected. I gave some open-ended problems to 
12th -grade students in Italy and in France. The students worked in pairs in order 
to favour an argumentation activity between them. They worked on a computer 
running the Cabri-Geometry software. I thought that the software could help the 
student to identify the geometrical proprieties which are beneath the figure 
construction and which are necessary to the production of proof.  

2. Relationships between argumentation and proof 

The relationships between the production of a conjecture and the construction of 
proof has been an object of study from a cognitive perspective. Actually, 
research studies showed the following: 
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�During the production of the conjecture, the student progressively works 
out his/her statement through an intensive argumentative activity functionally 
intermingled with the justification of the plausibility of his/her choices. During 
the subsequent statement-proving stage, the student links up with this process in 
a coherent way, organising some of previously produced arguments according 
to a logical chain� (Boero, Garuti, Mariotti, 1996). 

This phenomenon is referred to by the authors as cognitive unity. 

The hypothesis is that in the proof the student organises some of the 
previously produced arguments into a logical chain. The word �argument� refers 
to a reason given to support or disprove something.  

In this paper the word �argumentation� refers to a discursive activity (cf. 
Grize, 1996) based on arguments. 

During the solving process, which leads to a theorem, an argumentation 
activity is probably developed in order to produce a conjecture. When this 
statement expressing the conjecture is made valid in a mathematical theory, a 
proof is produced. This proof is a particular argumentation based on a 
mathematical theory.  

A conjecture could be provided without any argumentation. A conjecture 
can be a �fact�, directly derived from a drawing, from an intuition and the like. 
In this case there is not an explicit argumentation justifying this fact. But, I am 
interested in the following kind of conjecture. 

I define a conjecture a statement strictly connected with an 
argumentation and a set of conceptions1 (Balacheff, 1994). The statement is 
potentially true because some conceptions allow the construction of an 
argumentation that justifies it. 

The conjecture can be transformed into a valid statement if a proof 
justifying it is produced. 

I define a valid statement a statement which is provided with a proof 
referring to a mathematical theory. The statement is valid because a 
mathematical theory allows the construction of a proof that justifies it.  

I am interested in comparing the processes used to construct a conjecture 
and its validation: argumentation and proof. 
                                                 
1 The formal definition of conception is the following : «� we call conception C a quadruplet 
(P, R, L, Σ) in which: P is a set of problems; R is a set of operators; L is a representation 
system; Σ is a control structure. � » (Balacheff, 1994) 
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3. Cognitive unity in content and in structure 

My assumption is that the argumentative process supported the production of a 
conjecture and the related proof can be compared from two points of view: 
content and structure. The presence or absence of cognitive unity can be studied 
in relation to this assumption. 

It is possible to observe whether there are similarities or differences 
between argumentation content and proof content. Usually, there are many 
similar content elements in the argumentation and proof, and cognitive unity is 
frequently found with respect to the content (Pedemonte, 1998).  

Beside similarities in terms of content, it is interesting to compare 
argumentation and proof from the structural point of view, i.e. to observe 
analogies and differences between argumentation structure and proof structure. 

It is possible to classify (in order to compare) the argumentation and proof 
according to the classic structures like deduction, abduction and induction. In a 
deductive argumentation, the statement is obtained from the data by means of a 
principle (which permits the inference). In an abductive argumentation the 
statement is obtained before the data is identified (Arzarello, 1998). In this case 
a principle allows the assertion of a statement even if all the data are not 
available. In an inductive argumentation the statement is obtained as a generic 
case after research from specific cases.  

Only deductive argumentation can be easily and directly transposed into a 
(deductive) proof. In order to transform an abductive argumentation into a proof 
its structure needs to be reversed. Inductive argumentation has a structure far 
away from the structure of an deductive proof; in this case, a link between 
argumentation and proof can be found only when argumentation is based on the 
�generic case� (Balacheff, 1988).  

According to the previous analysis I can expect that even in the case of 
�cognitive unity� (which concern content) the transition from argumentation to 
proof may demand relevant (and sometimes difficult to perform) changes 
concerning structures �in particular those from abductive or inductive 
argumentation to deductive proof.  

 

4. Duval�s answer 

Differences between argumentation and proof have been deeply analysed in the 
work of R. Duval: despite the use very similar linguistic forms and proposition�s 
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connectives, there is a �gap� between the two processes. According to Duval 
(1991), the structure of a proof may be described by a ternary diagram: data, 
claim and inference rules (axioms, theorems, or definitions). Within proofs, the 
steps are connected by a �recycling process� (Duval, 1992�1993) the conclusion 
of a step serves as an input condition to the next step. On the contrary, in 
argumentation, inferences are based on the contents of the statement. In other 
words the connection between two propositions is an intrinsic connection 
(Duval, 1992�1993): the statement is considered and re-interpreted from 
different points of view. For these reasons the distance between proof and 
argumentation is not only logic but is also cognitive: in a proof, the epistemic 
value2 depends on the theoretical status whereas in argumentation it depends 
completely on the content. Then it is easy to observe the cognitive distance 
between the two processes. 

According to Duval, the distance between these two processes can explain 
why most of the students don�t understand the necessity of a mathematical 
proof: if there is an argumentation that justifies the statement the proof can be 
unnecessary. 

Some doubts are expressed about the nature and the educational relevance 
of the gap between argumentation and proof, as described by Duval (in 
particular see Douek, 1999). I share these doubts. I think that there are some 
very similar elements between argumentation and proof. In particular, assuming 
that a proof is a particular argumentation, both argumentation and proof 
structures can be described by a ternary diagram. This is the reason why I need a 
tool to compare the structure of the two processes. 

 

5. How to analyse or compare the structure of the argumentation process 
and the proof process? 

I have built up a theoretical framework to analyse argumentation structure and 
proof structure. Toulmin proposes a model describing the structure of the 
argumentation (1958). I use this model as a tool to compare the structures 
relating to the two processes: argumentation and proof. 

In any argumentation the first step is expressed by a standpoint (an 
assertion, an opinion). In Toulmin�s terminology the standpoint is called the 
claim. The second step consists of the production of data supporting it. It is 
important to provide the justification or warrant for using the data concerned as 

                                                 
2 The epistemic value is the degree of certitude or conviction associated with a proposition 
(Duval, 1991). 



European Research in Mathematics Education II 

 74

support for the data-claim relationships. The warrant can be expressed as a 
principle, a rule and the like. The warrant acts as a bridge between the data and 
the claim. This is the base structure of argumentation, but auxiliary elements 
may be necessary to describe an argumentation. Toulmin describes three of them 
: the qualifier, the rebuttal and the backing. The force of the warrant would be 
weakened if there were exceptions to the rule, in that case conditions of 
exceptions or rebuttal should be inserted. The claim must then be weakened by 
means of a qualifier. A backing is required if the authority of the warrant is not 
accepted straight away. 

Then, Toulmin�s model of argumentation contains six related elements as 
showed in the following figure. 

Q : qualifier 
D : data                                  C : claim 

 
since W : warrant unless R : rebuttal 

 
on account of B : backing 

Fig.1.  Toulmin�s model of argumentation3 

It is interesting to compare the idea of epistemic value (Duval, 1991) and 
the idea of the qualifier. The epistemic value of the claim is inherited by the 
epistemic value of the data. The claim�s force is inherited by the data�s force. On 
the contrary, the qualifier is given by the data and also by the warrant�s force. 
The warrant�s force is important because the warrant plays a basic role in the 
argumentation.  

If we consider a proof as a particular argumentation, the warrant is an 
axiom, or a definition, or a theorem, in a specific theory.  

Toulmin�s model reveals a very powerful tool to compare the process of 
argumentation and the proof subsequently produced. It is possible to compare 
the argumentation warrants and the proof warrants. For example if the warrant 
in an argumentation is related to an intuitive conception, it is possible to see 
whether in the proof the warrant becomes a theorem of a theory or on the 
contrary if it remains at the level of conception.  

                                                 
3 Let us illustrate this model with the same example used by Toulmin (1958): Claim : Harry is 
a British subject; Data : Harry was born in Bermuda; Warrant : A man born in Bermuda will 
generally be a British subject; Rebuttal :  No, but it generally is. If his parents are foreigners 
or if he has become a naturalised American, then the rule doesn�t apply; Qualifier : True : its 
only presumably so; Backing : It�s embodied in the following legislation :� 
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Within the theoretical framework described above, a research project has 
been designed and is still in progress. In the following section, I illustrate the use 
of this model as an example when the resolution process of an open-ended 
problem will be analysed. 

 

Interview 

The following example is taken from a set of data collected in four 12
th

-grade 
classes in Italy, and in one 12

th
-grade class in France. The students worked in 

pairs on a computer running the Cabri-Geometry software. The experiment 
lasted an hour and a half. The problem proposed was the following: 

 

Problem 

ABC is a triangle. Three exteriors squares are constructed on the triangle�s sides. 
The free points of the squares are connected defining three other triangles. 
Compare the areas of these triangles with the area of triangle ABC (see figure 
pg. 6). 

I will transcribe a part of a solution protocol related to the proposed 
problem. This part is based on the transcriptions of the audio recordings and the 
written productions of the students. 

According to the classification given in the previous section, different 
types of argumentation can be described according different structures. 

A typical deductive argumentation could be the following. Suppose that, 
the student compares the base and height lengths between triangle ABC and one 
of the external triangles (ABC and ICD in figure pg. 6), in order to compare the 
two areas. It is possible to consider the sides of the same square as bases (BC, 
CD) for some triangles and compare the heights (AL, IM) considering the small 
triangles constructed on the heights (ALC, ICM). Observing that the small 
triangles have two equal angles and an equal side permit the conclusion that the 
two triangles are equal under the SAA congruence criterion. Then the large 
triangles have equal areas. 

A typical abductive argumentation could be the following. The student, 
who wants to compare the two areas, realises that the two bases of the triangles 
have the same length, thus it is possible to prove that the heights have the same 
length in order to prove that the areas are equal. The view that the small 
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triangles constructed on the heights are equal can encourage the search for a 
theorem to prove this fact. The congruence criterions are remembered and the 
data needed to apply one of them is sought out. 

A typical inductive argumentation could be the following. The student 
may consider some particular types of the triangle ABC: right-angled triangle, 
equilateral triangle; or he may consider limit cases, for example when the points 
A, B, and C are on the same line. This is an �inductive search� moving from 
particular cases to general laws. One of the particular cases can evolve into a 
generic example (N. Balacheff, 1988) which can lead to a proof.  

 

Example 

Using the model described above, I have analysed an excerpt of the 
argumentation and the proof produced by students. My purpose is to show how 
Toulmin�s model can be used in order to compare the structures of  the 
argumentation and proof.  

In order to analyse the argumentation, I have selected the assertions 
produced by students and reconstructed the structure of the argumentative step: 
claim C, data D and warrant W. The indices identify each argumentative step. 
The student�s text is in the left column, and my comments and analyses are 
reported in the right column. The text has been translated from Italian into 
English. The analysis starts at claim C7; at this point students are comparing the 
area of the triangle ABC and the area of the triangle ICD. Till now the students 
spoke about the construction of the heights of the two triangles. They decided to 
construct the heights in order to compare the areas of the triangles ABC and 
ICD. 

…. Students construct the heights of the 
triangles ABC et ICD 
 
31. L: I�m prolonging the straight line, yes, 

the straight line on the segment� what 
have I done? 

32. G: The straight line by the points B and 
C 

33. L: ah it�s true ! 
34. G: now, we need to do the line 

perpendicular to this line 
35. L: ah there that�s it done but you know 

that it seems they are equal� 
36. G: almost equal ! 
 

The figure as represented from the students 
using Cabri-géomètre 
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37. L: not anymore, it seems that they are 
perpendiculars, I have observed this 
before 

��. � 
 
 
 
 
 
 
44. Students together: hey, these are two 

equal triangles ! 
45. L: it�s true, ALC and ICM these are two 

equal triangles�what do they have?  
46. G: we realized� then AC is equal to IC 

because they are sides of the same 
square 

47. L: wait! 
48. G: AC is equal to IC because they are 

sides the same square, after 
49. L: LC� 
50. G: it�s equal to CM, why ? 
51. L: Then� Because it�s equal to CM� 

in my opinion, it�s better to prove � no 
wait this angle is right and this angle is 
right too.  

�� 

 
 
C7: The heights seem to be equal. 
C8: The heights seem to be 
perpendiculars. 
 
The statements are �facts� where the epistemic 
value is joined to perception of the figure in 
Cabri-Geometry. 
 
 
 
The Cabri-Geometry drag allows them to see 
the small triangles. The students realize that the 
heights are the heights of two equal triangles. 
The statement is now a fact. 
 
C9: The triangles ALC and ICM are equal. 
 
The structure of the speech of the students is: 
 
The triangles                            to find equal 
sides  
are equal                                   and angles  
              congruence criterion 
 
The structure of the argumentative step is an 
abduction: 
     D9= ?                                     C9 
 

       W: CONGRUENCE CRITERION 

 

The structure of the argumentation is that of an abduction. The students 
see that the small triangles constructed on the height (ALC and ICM) are equal 
and they search for a theorem to prove this fact. During the proof, students 
make data D9 explicit in order to affirm that triangles ALC and ICM are equal. 
The abductive structure of the argumentation is transformed into a deductive 
structure in the proof. Once obtained, claim C9 is used to deduce that the heights 
of the triangles ABC and ICD are equal and consequently that their areas are 
equal. 
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The students write the proof: 
 
I consider the triangle ABC and the 
triangle ICD. 
At once I consider the triangles ALC et 
ICM and I prove that they are equal 
triangles for the SAA congruence 
criterion  because we have: 
� AC = IC because they are two sides of 
the same square 
� ALC = IMC because they are right 
angles (angles constructed as 
intersection between the sides and the 
heights) 
� ACL = ICM because they are 
complementary of the same right angle 
(- LCI) 
In particular IM = AL. Then the 
triangles ABC and ICD have the same 
base lengths (as sides of the same 
square) and the same heights, then they 
have the same area. 
 

The proof structure is a deduction: 
 
D9: AC =IC                              C9: the triangles  
      ALC = IMC                             ALC and ICM 
      ACL = ICM                            are equal 
        W: SAA congruence criterion  
 
If the triangles are equal then it�s possible to 
conclude that the heights are equal, and finally 
then the areas are equal because the bases are 
equal. 
 
The conclusion C9 of the previous step is the date 
D10 to apply the inference to the second step. 
 
D10: C9                         C10: the heights are equal 
 
       W: inheritance 
 
D11: C10                                    C11: the areas of the  

triangles ABC and 
ICD are equal

              W: formula of area 

At first glance, the protocol appears to be an example of cognitive unity. 
Indeed, students use the �SAA congruence criterion� both in the argumentation 
and proof in order to justify the statements. Words and expressions used in the 
two processes are often the same (�triangles ALC and ICM are equal�, �heights 
are equal�, and the like). But looking more carefully, we can observe a change 
between the structures of the two processes: we find an abductive structure in 
the argumentation (from D9 to C9) that is transformed into a deductive structure 
in the proof. We cannot undervalue the importance of the structure in the 
comparison between argumentation and proof; it is not unusual that the student 
tries to transform abduction into a deduction during a resolution process 
(sometimes successfully, sometimes without getting an acceptable solution).  

 

6. Conclusion 

In this paper, I have analysed some relationships between argumentation and 
proof; I have used Toulmin�s model as a tool in order to compare the structures 
of the two processes. 

The analysis carried out on the student�s protocols, highlighted deep 
similarities between arguments provided during the construction of a conjecture 
and the proof subsequently produced. Such similarities mainly concern the 
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content of the arguments; on the contrary a careful analysis carried out in respect 
of the structure of the organisation of the arguments, may reveal interesting 
discrepancies. Toulmin�s model clearly reveals the structure of both 
argumentation and proof facilitating the comparison between them. When 
students use abduction during argumentation (and this seems to be natural in the 
production of a conjecture), a structural change is needed and can be detected in 
students� protocols.  

The study reported in this paper is still in progress. Further analysis will 
be carried out in order to clarify the nature of argumentation to find other 
analogies or differences with proof.  
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Abstract: We take abstraction to be an activity of vertically reorganising 
previously constructed mathematical knowledge into a new structure. 
Abstraction is thus a context dependent process. In a previous publication, we 
proposed a model for processes of abstraction. The model is operational in that 
its components are observable epistemic actions. Here we use the model to 
analyse an interview with a pair of grade seven girls carrying out an algebraic 
proof. The analysis reveals how two kinds of knowledge emerge in the students: 
Knowledge of algebraic structures and knowledge about algebra as a tool for 
proof. 

 

Abstraction is a central process in learning mathematics; however, it is 
notoriously difficult to observe. Many researchers have taken a predominantly 
theoretical stance and have described abstraction as some type of 
decontextualization (see Dreyfus, 1991, for a brief review). In a previous paper 
(Hershkowitz, Schwarz & Dreyfus, 2001), we have taken a different approach 
and proposed a model for abstraction that is operational in the sense that its 
components are three observable epistemic actions. We are practitioners who are 
informed about recent theoretical research, but we are also deeply involved in a 
curriculum design, development, and implementation project. We have been 
considering not only what abstraction could mean in the framework of this 
curriculum project but also how processes of abstraction manifest themselves 
empirically in project classrooms. Thus, although our outlook is theoretical, our 
thinking about abstraction has emerged from the analysis of experimental data. 
In this paper, we briefly review our definition and model of abstraction, and then 
illustrate them by means of an interview with a pair of seventh graders dealing 
with a problem situation from this curriculum. The relevant theoretical 
background has been discussed in our previous paper. A more detailed 
description of the model can also be found there. 
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Mathematics educators have proposed that abstraction consist in focusing 
on some distinguished properties and relationships of a set of objects rather than 
on the objects themselves. Abstraction is thus a process of decontextualization. 
According to Davydov (1972/1990), on the other hand, abstraction starts from 
an initial, undeveloped form and ends with a consistent and elaborate final form. 
Similarly, Ohlsson and Lehtinen (1997) see the cognitive mechanism of 
abstraction as the assembly of existing ideas into more complex ones. Noss and 
Hoyles (1996) go even further. They situate abstraction in relation to the 
conceptual resources students have at their disposal and see it as attuning 
practices from previous contexts to new ones. Therefore, according to Noss and 
Hoyles, students do not detach from concrete referents at all. Leaning on ideas 
of these and other authors, we define abstraction as an activity of vertically 
reorganising previously constructed mathematical knowledge into a new 
structure. The use of the term activity in our definition of abstraction is 
intentional. The term is directly borrowed from Activity Theory (Leont�ev, 
1981) and emphasises that actions occur in a social and historical context. It also 
stresses the inseparability of actions from goals, their meaning being perceivable 
only within the activity in which overall motives drive individual actions of 
participants. The reorganisation of knowledge is achieved by means of actions 
on mental (or material) objects: Mathematical elements are put together, 
structured and developed into other elements. Such reorganisation is called 
vertical (Treffers and Goffree, 1985), if new connections are established or some 
inaccessibility is overcome, thus integrating the knowledge and making it more 
profound. 

According to this definition, abstraction is not an objective, universal 
process but depends strongly on context, on the history of the participants in the 
activity of abstraction and on artefacts available to the participants. Artefacts are 
outcomes of human activity that can be used in further activities. They include 
material objects and tools, such as computerised ones, as well as mental ones 
including language and procedures; in particular, they can be ideas or other 
outcomes of previous actions (knowledge artefacts). 

This definition of abstraction in context becomes productive through a 
program of research to experimentally investigate processes of abstraction. As 
abstraction is an activity consisting of actions, the first step in the realisation of 
this program is to identify the kinds of actions involved in the activity of 
abstraction. The actions we identified in the first study belong to the general 
class of epistemic actions, actions relating to the acquisition of knowledge 
(Pontecorvo & Girardet, 1993; Schwarz & Hershkowitz, 1995). For example, 
appealing to a strategy or inferring a consequence from data are epistemic 
actions. In many social contexts, such as small group problem solving or 
teacher-guided inquiry in a whole class forum, participants� verbalisations may 
attest to epistemic actions thus making them observable. The three epistemic 
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actions we identified as related to processes of abstraction are Recognising, 
Building-With and Constructing, or RBC.  

Constructing is the central step of abstraction. It consists of assembling 
knowledge artefacts to produce a new structure to which the participants become 
acquainted. Recognising a familiar mathematical structure occurs when a student 
realises that the structure is inherent in a given mathematical situation. 
Recognising may occur in at least two cases: (1) by analogy with another object 
with the same or a similar structure which is already known the re-cognising 
subject; (2) by specialisation, i.e., by realising that the object fits a (more 
general) known (to the subject) class all of whose members have this structure. 
In terms of actions, the process of recognising involves appeal to an outcome of 
a previous action and expressing that it is similar (by analogy), or that it fits (by 
specialisation). Building-With consists of combining existing artefacts in order 
to satisfy a goal such as solving a problem or justifying a statement. The same 
task may thus lead to building-with by one student but to constructing by 
another, depending on the student�s personal history, and more specifically on 
whether or not the required artefacts are at the student�s disposal. Another 
important difference between constructing and building-with lies in the 
relationship of the action to the motive driving the activity: In building-with 
structures, the goal is attained by using knowledge that was previously acquired 
or constructed. In constructing, the process itself, namely the construction or 
restructuring of knowledge is often the goal of the activity; and even if it is not, 
then it is at least indispensable for attaining the goal. The goals students have (or 
are given) thus strongly influence whether they build-with or construct. If they 
solve a standard problem, they are likely to recognise and build-with previously 
acquired structures. If they solve a non-standard problem, they might be faced 
with an obstacle that causes them to construct by vertically reorganising their 
knowledge to overcome the obstacle. 

The three epistemic actions are the elements of a model, called the 
dynamically nested RBC model of abstraction. According to this model, 
constructing incorporates the other two epistemic actions in such a way that 
building-with actions are nested in constructing actions and recognising actions 
are nested in building-with actions and in constructing actions. The genesis of an 
abstraction passes through (a) a need for a new structure; (b) the construction of 
a new abstract entity; (c) the consolidation of the abstract entity through 
repeated recognition of the new structure and building-with it in further 
activities with increasing ease. We have argued in the previous paper that this 
model fits the genesis of abstract scientific concepts acquired in activities 
designed for the special purpose of learning. In such activities the participants 
create a new structure that gives a different perspective on previous knowledge. 
The model is then compatible with the dialectical theory of abstraction 
developed by Davydov (1972/1990). Moreover, the model is operational: It 
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allows one to identify processes of abstraction by observing the epistemic 
actions and the manner in which they are nested within each other. 

In the remainder of this paper, we illustrate the model and its operational 
nature by means of an interview with a pair of students involved in an activity 
that presented a definite potential for abstraction to them. We will focus on a 
pair of girls who will be identified as Ha and Ne, or collectively as Ha&Ne. The 
students were part of a grade 7 introductory algebra class toward the end of the 
school year. Their algebra course consisted of activities based on problem 
situations that dealt with the generalisation of numerical and visual patterns, 
with the mathematical description of growth phenomena and with comparisons 
between different growth patterns (e. g., linear versus exponential). During these 
activities, the students also encountered some elementary algebraic 
manipulations, including the simple distributive law a(c+d)=ac+ad. 

The interview with Ha&Ne was videotaped and transcribed. The 
transcript was analysed separately by each of the three researchers with respect 
to the occurrence of (combinations of) the epistemic actions that form the 
dynamically nested model of abstraction. Differences between the three analyses 
were resolved in discussion between the researchers. All such differences related 
to minor issues such as whether a constructing action that lasted over about ten 
student utterances should or should not include the tenth utterance (lines 
140/141, see below); or how to classify a statement that included aspects of 
recognising as well as aspects of building-with (line 157, see below). The 
analyses of the three researchers agreed with respect to the kind and substance 
of all extended epistemic actions as well as with respect to the nesting of these 
actions. 

The interview activity was designed for students from whom the use of 
algebra for proving properties could possibly be expected but who had never 
actually done it. The activity was intended to lead students into a situation, in 
which they felt the need to justify a property whose proof requires algebraic 
manipulation. Students were asked to investigate properties of rectangles of the 
same type as the following ones: 

 
7 13 
9 15 

 
3 9 
5 11 

After creating (in Excel) a �seal� that generates such rectangles upon input 
of any number into the upper left cell, and after discovering and investigating 
properties of such rectangles, the students were presented with the following 
(and other) tasks: 
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1. Try to find as many properties as possible common to all rectangles of 
this type. 

2. In each rectangle that you generated by means of the seal, compare the 
sum of the numbers in the diagonals. What did you find? 
Do you think the rule you have just formulated is always correct? 

3. In each rectangle you generated by means of the seal, compare the 
product of the numbers in the diagonals. What did you find? 
Do you think the rule you have just formulated is always correct? 

4. If you build more rectangles similar to the above, will the properties you 
formulated in (2) and (3) hold for all these rectangles? 
Justify your claims and try to convince others. 

The property that the sums of the diagonals are equal (question 2) will 
from now on be called the diagonal sum property or DSP. The property that the 
difference between the products of the numbers in the diagonals equals 12 
(question 3) will from now on be called the diagonal product property or DPP.  
An easy and natural way of justifying the DPP is to use algebraic manipulation 
and compare X(X+8) (the expression for the main diagonal) to (X+6)(X+2) (the 
expression for the secondary diagonal). In addition to reorganising their 
knowledge so as to arrive at a proof of the DPP, this activity presented two more 
opportunities for abstraction to the students. The first such opportunity is the 
construction of the extended distributive law (a+b)(c+d)=ac+ad+bc+bd: The 
students had never used that law yet but needed it in the present activity to 
transform the expression for the secondary diagonal. The second opportunity for 
abstraction more global in that it concerns the entire proof task, namely the 
establishment of the general perspective that algebra can serve as a tool for the 
justification of general properties. 

We now present our analysis of that part of the Ha&Ne interview, in 
which the girls attempted to justify the DPP (lines 111-175). We pay particular 
attention to processes of emergence of knowledge structures, which we deem to 
be new and to give a new perspective for Ha&Ne. We show how the nested 
epistemic actions of constructing, building-with and recognising are indicative 
for such processes. We present evidence that, al the highest level, this part of the 
interview constitutes for Ha&Ne the construction of the perspective that algebra 
can serve as a tool for the justification of general properties. This level will be 
called level 1 and the corresponding constructing action will be denoted C1. This 
C1 will be seen to be composed of a sequence of epistemic actions at a lower 
level (level 2); these level 2 actions are thus nested in C1. The level 2 actions are 
a constructing action (denoted C2) of the extended distributive law, an extended 
building-with action (denoted B2) of the proof of the DPP) and a sequence of 
recognising actions. Similarly to C1, the actions C2 and B2 are themselves 
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133
134
135
136
137
138
139a
139b
140
141

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

1 2 3

Levels of
C      B      R

composed of B and R actions at a still lower level (level 3) 
that are nested in the level 2 actions. This nested structure 
of the epistemic action is schematically presented in the 
accompanying figure. 

In response to Question 1, Ha&Ne produced ten 
properties, most of them elementary. They also included a 
divisibility property (the sum of all four elements is 
divisible by 4) but not the DPP. Interestingly, in response 
to Question 2, Ha&Ne stated the DSP without showing any 
urge to explain why it holds for all seals. After they stated 
the DPP in response to Question 3, the issue of explanation 
came up, and they proceeded to prove the DSP rather than 
the DPP. 

They came back to the DPP when reading Question 
4, where they are explicitly asked to justify their claim that 
the property is universally true. They start by a discussion 
whether or not they had justified the DPP earlier. Then, 
they embark on the computation of the first (main) 
diagonal.  

The extended distributive law. The students were 
familiar with the simple distributive law. When applying it 
to the main diagonal to obtain X(X+8) = 8X+XX they 
expressed their awareness of applying the law: So, like, 
one does the distributive law (H121). Shortly later, the 
following exchange ensued: 

H133 And this [thinks] ... 
N134 It's impossible to do the distributive law 

here. Wait, one can do ... 
H135 This is 6X. 
N136 This is 6X times X and 6X times 2. 
H137 Wait, first, no ... 
N138 Yes. 
H139 No because this is X plus 6, this is not 6X, it's different. Wait. First 

one does ... X; then it's XX plus 2X, and here 6X plus 24. Then ... 

In H133 and N134, the students focus on the second diagonal, recognising 
that it has a more complex structure than the first, and wondering whether it is 
possible to apply the distributive law here as well. While this is not something 
they know from earlier experience, they are motivated by the need to simplify 
this expression in order to progress toward their aim of justifying the DPP. The 
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recognition of the expression 6X (in H135), allows them (in N136) to use 
distributive law: 6X(X+2)=6X⋅X+6X⋅2. Although it is not clear from the 
transcript why the expression 6X arose, recognising it as a single unit gave the 
girls the necessary point of view to realise the applicability of the law, though 
not to the correct expression for the second diagonal. The correction of the 
mistake forces them to separate the 6 and the X (in H139); in spite of this added 
complexity, they are now able to obtain the correct simplification by building 
separately with the X and separately with the 6 and adding the results together. 
To the best of our knowledge, Ha&Ne had not seen the extended distributive 
law applied before this interview. Alternating Recognising and Building-With 
existing knowledge has thus allowed them to construct a new knowledge 
structure, the extended distributive law. 

This process is represented in rows H133 to H139 of the accompanying 
figure as follows: At the lowest level (level 3), recognising and building-with 
actions alternate. There is no strict association of each statement to one of these 
actions since some statements (such as N138) cannot be categorised, whereas 
others (such as H139) include both, recognising and building-with. At the next 
higher level (level 2) these actions, taken together over the entire exchange from 
N134 to H139, constitute the construction of the extended distributive law. This 
is indicated in the diagram by C2: a constructing action at level 2. We note that 
no single action at level 3 has been identified as a constructing action; rather, 
constructing is a composite action in which (alternating) recognising and 
building-with actions are nested. We also note that what happens at level 2 
cannot be fully understood without taking into account what happens at level 1; 
we have given a description of the students� actions without asking what drives 
these actions. We will relate to this issue below.  

The proof of the DPP: After a brief digression (140-151), the students 
proceeded as follows: 

H152 Ah, it's XX plus 8X, but I don't know, like, how this will also be XX 
plus 8X. Like, it has to be. 

N153 Is XX a square root? 
H154 I have the first part. This is XX, so this is OK. 
I155 Yes. 
N156 Is XX a square root? 
H157 � plus 8X. Here I have 6X ... 
I158 Yes. 
H159 Ah, and 2X, can I do this? Because 6X ... 
N160 Is XX a square root? 
H161 You can write this. Ah, yes, XX is X to the power 2, because it is X 

times X. Wait. XX is X to the power 2 plus 8X, wait ... 
N162 Write this. 
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H163 Wait, it's X to the power 2 plus 6X, plus 8X, but there is also, like, 
plus 12. Ah, so, like, plus 12 because this is bigger by 12. 
Understand? 

At the start of this segment, most elements needed for the proof of the 
DPP had been attended to but the students may not have been presently aware of 
all of them. Some elements are technical such as the simplified expressions for 
the diagonals. Others are important for the flow of the argument such as the 
statement of the DPP and the plan to inspect the two diagonals, both of which 
had been explicitly mentioned earlier. In H152, the two diagonals again became 
the focus of attention. The plan is now more specific and detailed than was 
possible earlier. There is explicit reference to a comparison of the two diagonals 
and to the fact that the two corresponding expressions have to match. Ha 
systematically uses the above elements to build-with them the completion of the 
proof of the DPP. She alternates recognising (e.g., H154 and H161) and 
building-with (e.g., H157 and H159) actions at level 3, all of which are familiar 
to her. She combines them artfully but without the need to restructure her 
existing knowledge. The segment culminates in H163 when the number 12 
becomes significant for the students as being the difference between the two 
diagonals. Since this corresponds precisely to the claim that had been made 
earlier, it completes the proof. According to our interpretation that this proof has 
been achieved by combining previously known elements without the need to 
restructure knowledge, we classified this segment as building-with at level 2.  

The culmination of the Construction in H163 is followed by a segment of 
quite a different nature: The students review what Ha has developed during the 
previous segment. They arrive at a clear and convincing formulation of the 
proof. As a pair they are not constructing something new, nor even building-
with the acquired elements but rather recognising, in the literal sense of re-
cognising step by step the previously developed argument. As an individual, Ne 
might be constructing the proof of the DPP but we do not have enough evidence 
to make this claim. 

Algebra as a tool for the justification of general properties. The 
culmination described in the previous paragraph completes the algebraic 
justification, and thus it also completes the C1 construction in which it is nested. 
This C1 construction, in spite of its dialectic nature, is carried out within the 
norms of mathematical proof through its algebraic and Excel notations. Hence, 
we claim that, in addition to the construction of the algebraic justification of the 
DPP itself, a more global and deeper construction occurs, namely the realisation 
that justifications may be expressed algebraically and that some algebraic 
computations (including the C2 constructions) have to be done in the process. In 
this sense C1 has a different nature from C2: From the beginning of their struggle 
to construct the DPP justification, the students are at the level of the C1 
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construction. On this C1 level their progress is controlled and monitored by their 
awareness and their need to accomplish the DPP justification. During this 
process, they face algebraic obstacles. Overcoming these obstacles necessitates 
the construction of new (to them) mathematical structures, which are the C2 
level constructions. These C2 level constructions are controlled indirectly by the 
motive of the C1 construction. They thus make the C1 level into a deep holistic 
construction, which goes beyond the specific construction of the DPP 
justification, and in which the constructions of unfamiliar algebraic structures 
are nested. In this sense C1 is an activity of vertically reorganising previously 
constructed mathematical knowledge into a new mathematical structure, the 
awareness of algebra as a tool for proof. 

We now accumulate evidence to show that Ha&Ne have constructed this 
encompassing knowledge structure during the interview. There were three 
instances during the interview, prior to the segments we reproduced in this 
paper, in which Ha&Ne connected a justification to algebraic computations. In 
the first instance, just after the first explicit statement of the DPP, the students 
asked the interviewer whether they needed to explain. Although the interviewer 
did not give a clear answer, they produced an algebraic computation which, 
however, dealt with the sums rather than the products of the diagonal elements. 
The second and third instances occurred as responses to worksheet questions 
that explicitly asked the students to justify claims. To these requirements for 
justification, they reacted by starting algebraic computations. It is their need or 
wish to justify relationships that drives their computations, whether these 
computations amount �only� to building-with as in H152-H163 or whether they 
result in constructing as in H133-H139. 

Interestingly, in the digression between these two segments, which are 
similar and somewhat technical in character, the students raise, and rather 
quickly discard again, the possibility that the computer could be used to 
convince the interviewer that the DPP is true. We interpret this as a sign that 
some uncertainty prevails as to what counts as a mathematically convincing 
argument. This reinforces our claim, based on the teacher�s report, that algebraic 
proofs are a novelty for the students.  

The students complete the algebraic structure in H163, where they obtain 
two expressions that are identical except for the term 12 that appears only in one 
of them. The link between algebra and justification now works in reverse 
direction: The students realise that the term 12 is significant for the justification 
of the claim. Once again, the (result of) the algebraic computation is linked 
immediately and explicitly to the claim that had to be justified. 

Finally, in the concluding segment of the interview, the link between 
explanation and algebraic formula is mentioned explicitly (see 173): 
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H173 OK, we can explain each one and leave the formula. 
I174 Yes. 
H175 [Writes down, with N's help, what they found.]  X to the power 2 

plus 8X, and here, here it is, wait, these two are X to the power 2, 
this is 2 times X, plus 6 times X, plus 6 times 2. So together it is 8X 
and 2 times 6 equals 12. 

We thus infer that the design of the activity was successful for this pair of 
students and that their construction of the specific DPP proof led, in all 
likelihood, to the more general realisation that algebra is a useful tool for 
proving certain types of general mathematical claims. This realisation 
constitutes a new perspective that has arisen in the course of the interview and 
was driven by the students� desire to achieve the specific proof of the DPP. The 
links between justification and algebraic computation, which were acted out 
during the earlier stages, became conscious and explicit during the later stages. 
We also notice that because of the encompassing nature of the construction, this 
is a process going on during the entire interview rather than in specific 
identifiable segments. Nevertheless, we were able to identify a number of 
specific statements in which the students� awareness of the power of algebra for 
justification became more and more apparent. Almost all of the students� actions 
throughout the entire interview contribute to the justification and thus to the 
students� realisation that such a justification can be achieved by algebraic 
means. It is this realisation which led to the explicit statements at the end. 
Therefore, the epistemic action C1 of constructing the power of algebra as a tool 
for justification comprises the entire interview and is composed of all the other 
epistemic actions nested within C1. These nested actions include not only 
recognising and building-with actions but also the lower level constructing 
action C2 for the extended distributive law. All these actions taken together 
constitute C1, the construction of the power of algebra as a tool for justification. 
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Abstract: The structural cognitive learning process of a domain implies three 
distinct stages: internalizing what we call basic learning units, constructing the 
specific mental structures and practicing them in order to develop specific 
competencies. Every school subject appears as a logical structure, which needs 
to be learned as a structure, with its natural relationships among concepts. An 
effective learning needs specific training of the intellect capacities. Learning 
Mathematics as a school subject supposes the complex structuring of chunks of 
information to be internalized. Its focus is to create mental structures able to 
quickly generate significant models for problem solving strategies within the 
frame of the assimilation-accommodation process.  

 

During a long period of time, throughout the history of the mankind, the 
education system tried to create educational models for stable and rigid social-
professional contexts. Today, the speed, the multitude, the complexity of 
changes do not permit the luxury to learn many things that do not have an 
immediate practical utility. This fact is much more dramatic as far as we do not 
know what knowledge will be useful in the next 10-20-50 years. The solution is 
to shift the relationship between information and formation by directly teaching 
mental abilities.  

The study tries to superpose a cognitive perspective (Glaser, 1988) on 
recent constructivist approaches of learning (Glasersfeld, 1991). Connections 
between the piagetian assimilation-accommodation process, the theory of 
“functional organs” (Leontiev, 1981), the “everyday cognition” (Nunes, 1992), 
and the strategy of generating “powerful representational systems” (Goldin, 
1987-2000; Kaput, 1987) have also been used in developing a learning model 
aiming learning at creating specific structures of thinking.  

We call structural cognitive learning (SCL) of a domain the process by 
which abilities specific to the expert in that domain are created in the one who 
learns. This kind of learning implies a bipolar cognitive construction in the sense 
that, on the one hand, the domain which is to be taught is organically integrated 
in a constructed structure emphasizing clearly specified objectives, and, on the 
other hand, learning each subgroup of the structure implies an active 
reconstruction of its meaning (in the sense of the constructivist definition of 
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learning). Of course, the definition of the structural cognitive learning process 
should be taken into consideration with a series of precautions. The problem is 
not to teach the “novice” everything the “expert” knows; the focus as not at the 
informational level, but at the formational one: the one who is taught will be 
able to react when facing a problem according to his/her psychological age and 
knowledge, as the expert reacts when facing a theory in his/her field. The fact is 
possible because, while specialized information cannot be “lowered down” to 
young ages, beyond certain limits, the mental abilities have no barriers, they 
can be “lowered” from the expert level to any age, providing the accessibility of 
the information that “hides” those abilities and is operating with them.  

Thus, for instance, in this paradigm, at the level of primary education in 
numeracy, the teaching – learning process is centred on sequences of natural 
numbers. The teacher and the student are creating, comparing, developing finite 
series of numbers with different starting points (from 1, from 2 etc. using the 
already known numbers), and different distances between points (counting twos, 
threes,... tens and so on). These series could be ascendant or descendent. The 
expert sees in the sequences of numbers the head stones of the numerical 
system. For the child, in this construction, the number appears both as a moment 
of the sequences and as a possible result of each elementary operation. In its 
turn, each elementary operation – as well as all the elementary operations 
considered together – can generate any number. In this case, operations are the 
nuclei around which the other information spins.   

To make things clearer, in Fig. 1 it is described an example of a basic 
mental learning unit, which should be internalized at the level of grades I and II, 
according to the SCL process. The increasing sequence of even numbers could 
be generated starting from 0 by adding the same number (+2); but addition with 
the same number means multiplication. In this way, a passage from addition to 
multiplication and vice-versa is created through that sequence. Symmetrically, 
the decreasing sequence of even numbers could be generated starting from an 
even number by subtracting the same number (-2); but subtracting the same 
number till zero could be written as division. In this way, a passage from 
subtraction to division and vice-versa is created through that sequence. Together 
with the connection between addition and subtraction, respectively between 
multiplication and division through the inverse operation, the diagram is 
representing the four arithmetical operations with natural numbers in their 
interconnected relationships.  

The experiments showed that if such a structure is built in the child’s 
mind at an early stage, the quality of her/his learning is spectacularly increased.  
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Fig. 1: An example of a basic mental learning unit 

Finally, the primitive structure at the level of grade I essentially keeps a 
distant prototype of the expert thinking: the rapid reorganization of all the 
information from the perspective of any mathematical concept that is acquired. 
Such a pattern is very complex and its formation triggers special teaching 
problems – training mental abilities that permit a high mobility of concepts and 
shape their structure towards new ones, which are to be learned later on.  

Cognitive science makes, in its way, the best use of the old learning 
theories, and this fact is positive, but not sufficient. In fact, human learning does 
not reduce itself to connections or perceptive level structures. The links (all 
kinds of connections taken into consideration by the classical theories of 
learning) express just superficial forms of learning because a new relation can be 
created, for example,  not only between a known stimulus and an indifferent 
one, but also among already known stimuli, related in a way they have never 
been before. At the same time, a new piece of information can get into an 
informational context where it can take various positions: it can be added near 
the existing structure thus filling in a free valence; it can multiply, consequently 
supplementing valences, then it can partially or totally reorganize the existing 
informational system, lastly it can make up the basis for a new organizational 
system. In many cases, studied in a small degree yet, an organizational structure 
rejects the new information, obstructing in this way the learning process. If we 
take into consideration the above, then learning refers essentially, neither to 
information, nor to their mere connection, but to the development of structures.  

The experimental application of the SCL process involved children from 
6-7 to 14 years old with different abilities, from slow attainers to winners of 
national Olympiads. The research indicated to us that we could classify the 
mental structures generated by learning into: rigid structures, mobile 
structures, and dynamic structures.  

The sequence    0    2    4    6   8   10   12    ...... 

Adding 

Subtracting 

Multiplying 

Dividing

–2 

4 6 8 10 12 

–2 –2 –2

4 6 8 10 12 

+2 +2 +2 +2

  2 + 2 + 2 + 2 + 2 + 2 = 12 

12 

2 4 6 8 10 

0 

12 – 2  – 2 – 2 – 2 – 2 – 2 = 0 

10 8
6 4 2 
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To realise a description of these structures we take into account that a 
structure encompasses a discrete component representing the “nuclei” or the 
fixed, stable elements of the structure; a contiguous component, which could be 
“visualized” by a network and a dynamic component representing associations.  

A rigid structure is characterized by over dimension, very stable nuclei, 
a poorly developed network, sometimes totally lacking, and associations that 
function in the area of recognition of a standard situation and its reproduction.  

Such a rigid mental configuration is often exteriorized by the evolvement 
of fixations. The phenomenon frequently appears in classical geometry teaching; 
the student recognizes the isosceles or right-angled triangle only if it is in a 
certain position; any other position is perceived as a new learning element that 
requires a new nucleus in the structure. A rigid structure is usually generating 
the typical errors.  

The emergence of such a structure in the learning process is the 
consequence, on the one hand, of teaching isolated information without 
spotlighting their connections in between and/or without allowing the necessary 
time for an internalizing process, that is required for creating a network and, on 
the other hand, of the excessive focus on already taught information, that also 
hinders the development of the network. A mental structure has a regenerative 
tendency to organize itself, a tendency that can be blocked only by the second 
above-mentioned aspect. In fact, the presence of that tendency actually explains 
the evolvement of learning even with the most inappropriate teaching.  

A mobile structure is characterized by stable nuclei, a developed 
network, and by associations based on recognizing invariant elements in various 
environments. A mobile structure permits problem solving through analogy and 
inductive or deductive inferences when the context is partially familiar. Such a 
structure can enter into relations with other structures, ensuring a coherence of 
the reaction; it is typical for daily learning and could represent the ideal for 
learning school subjects such as history, geography, social sciences, etc. 
Nevertheless, such a model is no longer sufficient for learning mathematics in 
the post-industrial era.  

A dynamic structure implies: flexible nuclei that are or could become 
structures in their turn; complex networks with ramifications and hierarchies; 
dynamic associations allowing the links between one structure and other ones, 
the relation to those structures, as a whole or in part, the self-development of the 
structure, the quick mobilization through the discovery of critical paths. Such a 
structure is extremely flexible; it can totally or partially multiply, it can 
temporarily migrate (while working out a task), or permanently migrate in other 
structures, by generating new stable functional configurations; it can become a 
part of some cognitive bodies together with fragments or multiplied aggregates 
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belonging to the old ones, within the self-creation of the intellect; it can relate 
any element of the structure with others from inside or outside, without 
disturbing the existing network.  

The dynamics of the intellectual structures depends on their training to be 
mobile. Mobility training means to learn some special attributes of mobility: the 
ability to reconstruct the structure starting from any of its points; the ability to 
relate “a point” of the structure to any of the others; the ability to focus the 
whole structure on a given task in order to set new information in as many 
“points” of the structure as possible, or for the purpose of solving a given 
problem; the ability to easily reorganize the structure according to a certain 
working hypothesis and to a creative task; the ability to link it to another 
structure in the nearby or at a distance; the ability to give freedom to each 
“point” of the structure so that it might multiply and it could migrate into 
another structure (the maximum freedom of the elements in the structure); the 
ability to transfer the structure from an abstraction level to another one. The 
schemes contained in Fig.2 can suggestively express the differences among the 
three models of mental structures.  
  
  
  
  
  

 
 
 

Fig. 2: A representation for different types of structures 

In a first stage of concept learning, a mental configuration is created. 
Initially, this configuration is unstable; any new information could perturb it. 
The learning occurs if the information comes into the configuration and 
completes it i.e. if it is producing dynamic and contiguous connections in the 
brain, which generate an acquisition of knowledge and skills with a certain 
stability. The classical training, based on excessively relying on memory for 
learning, makes the stability stronger. Moreover, if the information transmission 
deepens the stability of the configuration, it becomes a negative factor; this is 
the critical point for training the mobility. Maintaining a balance between the 
stability and the mobility of the mental structures generated by learning becomes 
a fundamental problem of a well-driven training.  

Since the SCL process of a domain was defined as the conceptual 
assimilation process of that domain with the purpose of creating, at the 
intellectual level of the one who learns, a similar behaviour to that of the expert, 
it is natural to explain what the results of that kind of learning are. By output 
mental capacity or, in short, by competency we understand the intellect’s 

A rigid structure A mobile structure A dynamic structure 
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potency to optimally mobilize its bio-psycho-physiological resources in order to 
solve a problem within a certain field, or having a specific feature.  

According to the above terminology, it is a matter of the created mental 
structure’s potency to quickly generate and select significant and adequate 
models for a problem-solving situation within the frame of the assimilation-
accommodation process (Piaget, 1971).  

To each organizing set of elements from the reality corresponds an 
organizing block of knowledge and understanding irreducible to its components.  

A cognitive schema consists of structured knowledge simultaneously 
activated, corresponding to a real situation. Any type of learning generates 
mental models.  

We differentiate three types of models, according to the degree of 
conformity to the outside realities (the degree of correlation with the real world).  

• “Trustful” models. In the real world we find situations that correspond 
almost totally to the existent model. The role of these models is important for 
human life. If every object we came across during an ordinary walk was new, 
then we would either give up all attempts of advancement or we would stop each 
time to clear it up, consequently there would be no advance at all. Even during 
the most unusual trips, the things we regard as new are not numerous. Thus, in 
ordinary life we do not pay much attention to what we come across unless it is 
something really new to us, or it causes problems as never before (a tree fallen 
over the night, an acquaintance unusually dressed, something which raises our 
interest, etc.).  

In education, it is the same: while reading a book in our field, we are not 
interested in what we already know; we stop and ponder only on the new 
elements.  

• “Adapting” models. In most cases, the reality is not exactly the same as 
the model and therefore we need to correct the latter. The correction may be 
insignificant, temporary, but also important and permanent. In the second case, 
the intellectual structure acting as a model is completed or a new model is 
generated.  

• “Self-generating” models. New situations create (temporarily or 
permanently) new intellectual structures. The existent intellect structure is 
amplified in two ways: one is by creating new structures with the elements of 
the old structures combined in a different way, or assembling particular 
structures according to new tasks; the other one is by assimilating unknown 
information which requires new structures.  
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The accommodation of mental structures through adequate models is 
expressed at the level of each individual by the manifestation of some specific 
competencies. In the case of the SCL process, the initial stimulus is neither a 
simple “S“ (connectionism), nor an “S” chain (new-behaviorism), nor is it a 
chain of perceptive or intuitive structures (Koffka, 1935; Kohler, 1940). The 
stimulus is a structure of learning units of the nature of the one we presented in 
Fig.1. As far as the domain is assimilated, from an information group to another, 
the mental models extend and grow while being refined and connecting to each 
other in increasingly complex structures.  

In real teaching, the limits of building structures are not so clearly 
marked. At the first contacts with a new field, the focus is laid on 
internalization, on primary development of the mental structures and on 
practicing them in simple situations. Later, the internalization continues, as new 
information is assimilated, but the focus lies on their integration in mental 
structures and on practicing them so that they might become extremely mobile 
in three directions: able to multiply (reproduce) on higher levels of abstraction, 
able to integrate in new structures having the same nature or different natures, 
and able to mobilize with great precision when there is a need of them in solving 
some practical tasks (by their appropriate reduction to the already developed 
intellectual models, or by their temporary changing for the purpose of solving 
totally new tasks). In the process of practical training, the models confront the 
external requirements and they are identified as being known or unknown; in the 
second case, finding a solution implies a creative effort.  

In the external (physical) constructions, the critical paths are drawn up 
according to a series of constraints – a block of flats cannot be built starting 
simultaneously with the foundation, roof, rooms, stairs, etc., and this is not 
because it would not be economical (in fact it would be very economical), but 
because it is physically impossible. However, a construction on the mental plane 
is of a totally different kind; it permits developments, expansions; the 
construction may start and develop simultaneously in several points. Moreover, 
the accumulation of information, even a structured one, is not enough to create 
competencies. Simultaneously with the internalization of the basic structure, for 
developing a SCL process, one applies operations aiming at thoroughly fixing 
and continuously increasing the mobility of each constitutive element of the 
created structure. The attributes of the assimilated model will be in the end: the 
capacity to multiply (on the whole, partly, or only some of its elements) within 
any new structure to which it is related by sense, no matter whether it is a 
structure in the same domain or not, without affecting the basic model (without 
weakening or deconstructing it). The parts of the model will have the same 
degree of dynamics, that is the whole can be restored mentally from any point, 
one may apply to it the most varied thinking operations while taking over new 
information or solving problems.  
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In order to develop a SCL process, the focus on the internal structures that 
are created as a result of learning becomes compulsory. The specific training 
included in the teaching practices leads us to the emergence of an over-learning 
(efficient, effective and creative learning) phenomenon.  

While the physical time cannot be expanded, the didactical time can be 
expanded, or, on the contrary, contracted according to the method that teachers 
use, the philosophy they start from, the quality of the didactical technologies 
they apply. The SCL strategies dilate very much the didactical time by the mere 
fact that thus permit the learning of intellectual capacities, that there is no need 
to wait for their spontaneous formation with a waste of time, because these - the 
mental capacities - become, from the very beginning, instruments for 
assimilating information in what we call Learning thinking.  
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BUILDING A FINITE ALGEBRAIC STRUCTURE1 
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Abstract: The paper deals with the process of building an inner mathematical 
structure. This process is illustrated by the example of a non-standard 
arithmetic structure, through reflections by the first of the authors. The key 
aspects of the process are identified and the specifics of a structure built as an 
analogy to the existing structure are presented. 

 

1. Introduction and framework2 

The paper focuses on the process of building an inner mathematical structure 
(hereinafter IMS) investigated via the construction of a new structure as an 
analogy to an existing structure. The process of constructing an IMS is a mental 
activity, i.e. it is not directly observable and thus �presents a methodological 
problem because construction is a relatively rare event [...] these events might 
often occur when students sit alone and think hard about mathematics� 
(Hershkowitz, Schwarz, Dreyfus, 2001). Concept maps have been used, for 
instance, for investigating how the inner mathematical structure grows and 
changes. In our research, we used (i) methods of introspection, (ii) think-aloud 
interviews, for this purpose. 

It is widely acknowledged by mathematics educators that the cognitive 
processes of concept acquisition do not have to follow mathematical logic. It is 
quite possible that while mathematicians and mathematics teachers consider the 
structure of mathematics logical and �beautiful�, students find it �fragmentary 
and discontinuous� (Merenluoto, Lehtinen, 1999). Nevertheless, university 
mathematics is often taught in the sequence: definition � theorem � proof � 
illustration, �with little opportunity for developing a full range of advanced 
mathematical thinking� (Tall, 1995).3 There is a substantial body of research 
concerning the transfer between elementary and abstract mathematics whose 
                                                 
1The contribution has been supported by the grant GAČR No. 406/97/P132. 
2The contribution reports on the research which has been going on in the framework of 
research into the internal mathematical structure presented in more detail in Milan Hejny�s 
paper within this working group. 
3In his dissertation, Lakatos (1976) tried to show by analysing in great detail the process of 
formulating and solving certain mathematical problems that formalism is at variance with 
reality, that formal structure of mathematics only plays a secondary role in the process of 
doing mathematics. The present teaching of mathematics does not seem to account for this. 
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essential part, �the move from the object → definition construction to definition 
→ object construction� (Gray et al, 1999), presents a serious cognitive 
difficulty. Our experience confirms some research findings that this is also a 
problem in group theory (see e. g. Dubinsky et al., 1994, Almeida, 1999, 
Hazzan, 1999). In this paper, the illustration will be given of how �parrot-like� 
knowledge (i.e. knowledge which was gained only formally without real 
understanding) is vitalised when it enters a creative mathematical process in an 
active way. This idea confirms the need to adhere to the �necessity� principle 
when presenting new knowledge (Harel, Tall, 1989). 

 

2. The tool of research 

The tool of our investigation of an IMS is an arithmetic structure A2 = (A2,⊕,⊗) 
which we call restricted arithmetic. It was elaborated by Milan Hejny especially 
for the purpose of investigating an IMS on the basis of analogy. There is a 
strong analogy between A2 and an �ordinary arithmetic� of integers  
(Z,+,� ,x,<,|). All numbers in A2 will be called z-numbers4. 

The gate to the restricted arithmetic is the mapping r: N → N, which we 
call the reducing mapping and which can be introduced in at least two ways. 
The first one is more �mathematical� and the second has been used in our 
experiments. 

1. Reduction r is mapping r: N → N, defined as r: n → n � 99 · [n/99], 
where [y] is the integer part of y∈R.  

2. Reduction r is introduced as an instruction:  
(i) for n < 100, r(n) = n, 
(ii) for n ≥ 100, split n into two parts: the last two digits and the rest. 
Add these two numbers. Repeat the process until you get a number 
from 1 to 99.  

For instance, r(7305) = 73+05 = 78, 
 or  r(135728) = r(1357+28) = r(1385) = 13+85 = 98, etc.  

Let us have the set A2 = {1,2,3,...,99}. The reducing mapping r is used to 
introduce binary operations of z-addition ⊕ and z-multiplication ⊗ in A2 as 
follows: ∀ x, y ∈ A2, x ⊕ y = r(x + y) and x ⊗ y = r(x · y). 

For instance, 72 ⊕  95 = r(167) = 68, 72⊗95 = r(6840) = r(108) = 9. 
                                                 
4Prefix z will be used for concepts / operations in restricted arithmetic. It comes from the 
Czech language. 
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3. Methodology 

During the last three years, a number of �think-aloud interview� experiments 
have been conducted (partial results have been reported in Stehlíková, 1997, 
1998, 2000). Subjects have been presented with A2 as shown in part 2 and then 
asked to solve some tasks, mainly linear equations. Moreover since 1997, the 
first of the authors herself has investigated the structure of A2. The results 
presented in this contribution originated mainly through her introspection. 
Introspection was chosen because we believe that by studying ourselves from 
the inside we can make inferences about the mental processes of other people, 
we �develop sensitivity� (Mason, 1998). �By introspection we mean constantly 
seeking to discern our individual perceptions of experiences, both past and 
present, and our reactions to them� (Duffin, Simpson, 1997).  

While investigating A2, the first of the authors made introspective notes 
and collected all her solutions of the tasks, which she mainly posed herself. 
Then her whole investigative process was divided into smaller parts according to 
the main topic studied. It was sometimes difficult to do so as all topics are 
interconnected. These parts were then decomposed into phases and in order to 
get a clearer picture of the process, they were described in the form of a table. A 
part of the table can be seen in section 5. Each phase was described by one line. 
The table has been reorganised several times mainly because it transpired that it 
was not detailed enough. Via the process of building the table, various 
phenomena have been identified. Some of them will be presented below. Where 
applicable, reference to experiments with students will be made. Introspective 
remarks will be written in first person singular form. 

 

4. Phenomena of the process of building an inner mathematical structure 

In this section, some results will be presented which we gained via introspection. 
Because it is the purpose of this paper to focus on phenomena particular to the 
building a structure as an analogy, we will only present one phenomenon which 
is attributable to the process of building an IMS as such.   

4.1. Looking for an organisation principle 

Throughout the process of investigating A2, the need frequently arose to 
reorganise the work when the amount of information grew too large. For 
instance, the task �solve quadratic equations� naturally led to the necessity to 
determine which z-numbers were squares. The list of squares was made which 
brought about much different information that had to be organised somehow or 
linked together. In this case, the organisation was achieved through determining 
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regularities and anomalies in the list of squares and investigating them in detail 
afterwards (see the table below, C1, C2). 

Visualisation belongs among organising principles as a way of getting 
insight into the whole structure (Gestalt). When investigating a list of squares I 
wanted to make it more informative so I made an arrow diagram of all squares 
and hence square roots. Its repeated redrawing yielded an instructive picture 
consisting of nine suggestive clusters (one of them is in the figure below � 
22 = 4, 792 = 4, 202 = 4, 972 = 4 etc.) which both motivated and facilitated 
further investigation, particularly of important subsets (see the table below, 
lines F � M). 

Note: In March 1999, about a year earlier, my tutor 
showed me a similar visualisation but I was not ready 
for this information yet. I had not done much 
experimenting with squares and I did not feel the need 
to draw a diagram. I could not understand what he 
was talking about. I had to construct it for myself.5 

Discovering and applying a suitable organisation 
principle can be, and usually is, a lengthy process. 

Two approaches to the organisation can be distinguished:  
1. utilitarian approach � we use the organisational principle which is most 

convenient for the given purpose, e.g. the original simple list of all squares 
is more convenient if we want to solve a given quadratic equation. The 
diagram, however, is more informative if we want to get an insight into the 
structure of squares.  

2. axiomatic approach � we want to find as concise a picture of the situation 
as possible; take the diagram of squares for example, we can go even 
further and describe squares in an even smaller number of rules provided 
that we discover the rule of how to infer from one equality 22 = 4 all four 
equalities (i.e. 22 = 4, 792 = 4, 202 = 4, 972 = 4) or six equalities (when zero 
divisors are involved). 

Let us give one more example of this phenomenon. The sets of numbers 
(clusters) from the diagram of squares were put under close scrutiny as to the 
properties of their elements, closure with respect to basic operations, etc. This 
study yielded much information of a different kind, which again brought about 
the need for a new organisation of pieces of knowledge. This time, the objects 
which were to be organised, were not just numbers, but sets of numbers or even 
some regularities. Subsets of A2 which were additive or multiplicative groups 

                                                 
5Apparently I had not reached a sense of intimacy with the problem yet (see Carlson, 2000). 
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were identified and needed to be summarised. Visualisation of these subsets was 
achieved through a table and they were completed using mathematical theory. 

4.2. Specifics of building a structure as an analogy 

When building a new structure as an analogy to an existing structure, the new 
structure is usually richer in concepts and ideas and enriches the original 
structure. The connections between the two structures are being made at the 
level of objects, operations, strategies, problems, etc. while the differences and 
similarities are being recorded. Our experiments have shown that students� 
success in their investigations of A2 depends to a great extent on their ability to 
distinguish between these two structures. 

4.2.1. Regularities in the new structure 

Regularities are facts which are true for a greater set of objects. Regularities in 
the new structure (i.e. the structure which is being built) can be divided into 
regularities (a) parallel to ordinary arithmetic (for instance, additive inverses 
have the same square in A2), (b) non-parallel to ordinary arithmetic (for 
instance, the fact that (AB)2 = (10 ⊗ AB)2, where A, B are digits such that 
number AB is not zero). 

4.2.2. Anomalies in the new structure 

Anomalies in the new structure are rules, properties, numbers, etc. that 
contradict what we know from ordinary arithmetic, we can describe them as a 
violation of the parallel. At first they seem to be isolated. For instance, number 
55 appeared like a single anomaly first due to its property that 552 = 55. Then 
later it appeared as one possible unit element in a subgroup of the multiplicative 
group. A similar thing happened with number 45. Thus numbers which equal 
their squares and can be a unit element of a multiplicative group make a set 
{1,45,55}.  

If an anomaly is a number, it can become an element of some set of other 
numbers / anomalies with the same properties. If an anomaly is a property or a 
rule, it can be later perceived as a non-parallel regularity (see the example 
above). Non-parallel regularities usually take a long time to emerge, for 
instance, it took me several weeks before I suddenly understood that the two 
rules (AB)2 = (BA)2 and A2 = (A0)2 can be expressed by one rule 
(AB)2 = (10 ⊗ AB)2 where number AB is not zero. 

Anomalies are important phenomena of the process of structuring because 
they are usually perceived more sharply than regularities which confirm the 
parallel. First, they are the source of a cognitive conflict for a student and of the 
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need to re-arrange his/her IMS. Second, anomalies are accompanied by surprise 
which greatly contributes to the person�s motivation � he/she wants to learn 
more and investigate the causes of anomalies. It is one of the driving forces of 
the investigation of the new structure. 

4.2.3. Broadening intuition 

Illustration: After discovering the fact that anomalies do not have to be 
singularities, that they may bunch together and thus create their own structure, 
anytime I encountered any new anomaly I half expected to find a whole set of 
anomalies which had something in common. 

Both introspection and experiments with students6 confirm our hypothesis 
that while at the beginning the only intuition which students probably have is 
that concerning ordinary arithmetic (intuition of regularities in ordinary 
arithmetic), after several similar experiences, they broaden this intuition. As a 
consequence, the emotional power of anomalies diminishes as they are already 
expected to occur. 

4.2.4. Analogies as obstacles 

If the new structure is built as an analogy to an existing structure, which the 
student is familiar with, the connections between these two structures can either 
help or hinder the work in the new structure. It usually takes quite some time 
and needs some erroneous processes before the solver realises that he/she must 
distinguish precisely whether the method he/she is using is based upon analogy 
or upon structural investigation within A2. For example, students often infer that 
because in ordinary arithmetic the neutral element for addition is 0 and 0 is not 
an element of A2, hence there is no neutral element for addition in A2.  

4.2.5. Developing new strategies 

Our experiments have revealed that when students start investigating the new 
structure, they usually stick to the strategies they know from ordinary arithmetic 
and use them without scrutinising them. Only after they had been put in a 
situation in which a certain strategy failed to produce the correct answer, did 
they begin to realise that they had to be careful with the transfer of strategies 
from ordinary arithmetic (they developed a new intuition). For instance, such a 
situation invariably occurred when they were presented with the equation of the 
following type: x ⊕ 68 = 4. Their answer was that either x = −64 or that it had no 
solution because there were no negative numbers in A2.  
                                                 
6By students, we mean those who have no or little experience of creating a parallel structure. 
Our experiments have been carried out with students � future mathematics teachers who were 
in their first year mainly. 
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The situation can be put to good use by challenging students that there 
certainly is an answer. It often leads to their deeper analysis of what it means to 
solve a linear equation, that it is not the rule �take number 68, change its sign 
and put it on the right side of the equation�. Moreover, the student�s knowledge 
is being restructured in that a negative number is not perceived only as a number 
with the minus sign but rather as a structural element which has certain 
properties which can be transferred to a different structure. In other words, they 
realise that even though negative numbers in Z and additive inverses in A2 differ 
in appearance, they are the same on the structural level. In some cases this led to 
the discovery of zero element and additive inverses in A2. Thus, restricted 
arithmetic often enables new concepts to be introduced when needed (necessity 
principle (Harel, Tall, 1989)). 

On the level of metastrategy when working in the new structure, one 
gradually builds new ways of working. For instance, illustrated in the table 
below is how I developed a way of investigating general powers, through the 
investigation of squares. 

 

5. Time sequence of building an IMS � illustration  

In this section, we will describe, in the form of a table, a part of the investigation 
of A2, namely the study of powers and its consequences. The table has been 
constructed via introspection. The process of investigation has been decomposed 
into phases and each phase is described by one line in the table. In the second 
column, the task I gave myself is described, whilst in the third column, the 
process of its solution with selected results7 is presented.  

 Task/challenge My activity 
A Solve quadratic 

equations 
I applied the standard formula and this led me to the necessity 
to find square roots and hence squares. (1997) 

B Make a list of squares. I made a list of squares and investigated it. (1997) 
C Investigate the list  I noticed (a) anomalies, (b) regularities. (1997) 
C1 Find all anomalies 452 = 45, 552 = 55, 222 = 88 and 882 = 22. Hence 45n = 45 (for 

n > 0), 223 = 55. 
C2 Find all regularities 1.(AB)2 = (BA)2, 2. A2 = A02, where A, B are non-zero digits, 

3. AB = 10 ⊗ BA, at least one of the digits A, B is non-zero, 
4. additive inverses have the same square. 

D Justify the results I proved the regularities above. (1998) 

                                                 
7Only the results which we consider, at this stage of research, fundamental with respect to 
investigating IMS will be presented. The year given in each line roughly corresponds to the 
time when I worked on the task. It does not mean that it took a year to prove regularities, for 
instance, but rather that I felt the need to prove them only after some time. 
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E Organise the list in a 
more meaningful way 

I made an arrow diagram of all squares and hence square roots 
(see the figure above). The diagram consists of nine suggestive 
clusters. What does it mean? (March 2000) 

F Investigate the diagram New questions arose. How can the individual clusters be 
characterised? What is the property of numbers with the loop 
(452 = 45, 552 = 55, 12 = 1, 992 = 99)? What is the connection 
among numbers belonging to one cluster? having the same 
square? (March 2000) 

G Work on questions 
which emerged in F 

I divided the diagram into several subsets of numbers, I called 
them important subsets (hereinafter IS). These were numbers 
which are (are not) zero divisors, numbers with the loop, 
numbers from one cluster. (May 2000) 

H Study  IS of squares I realised that the main characteristics of IS is the closure under 
addition and/or multiplication and neutral elements. I 
investigated it for all identified subsets and identified some 
groups among them. (May 2000) 

I Find other groups I decided to study third powers in the same way. (August 2000) 
J Study third powers and 

their subsets 
A diagram similar to the diagram of squares, IS of third powers 
and the identification of subgroups. I felt the need to make the 
study more systematic and it occurred to me that the study of 
general powers might help. (August 2000) 

K Study general powers I investigated general powers of zero divisors and non-zero 
divisors. I classified all z-numbers according to the length of the 
period and found out that the sets M = {ak, a≠99 is a non-zero 
divisor, k∈N} form the group under multiplication. (1998, 
August 2000) 

L Summarise all 
subgroups 

A table of subgroups of the additive group (A2,⊕) of the order 
1, 9, 33, 99 and a table of the subgroups of the multiplicative 
group (G,⊗) of the order 1, 2, 3, 5, 6, 10, 15, 30 was created 
where G is a subset of non-zero divisors without 99 of A2. 
(September 2000) 

M Look for theory Lagrange�s theorem8 used for determining the order of possible 
subgroups. Subgroups of some orders are still missing. (Sept. 
2000) 

6. Concluding self-reflection  

As a university student, future mathematics teacher, I successfully passed 
through all main mathematical subjects and I was given a lot of deep concepts, 
difficult theorems and proofs and complex theories. But I have never before had 
such a complex and long-term experience of doing mathematics. My experience 
with restricted arithmetic completely confirms that �it is the relationship 

                                                 
8I already knew Lagrange�s theorem but I had never used it in as sensible way as this. I saw 
for the first time that this theorem could play such an important role in the process of doing 
mathematics. 
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between the learner and a problem that is of significance, not the perceived level 
of the problem as viewed within some hierarchy of abstraction� (Geiger, 
Galbraith, 1998). My cognitive and meta-cognitive behaviour exhibits nearly all 
the phenomena described in the study of the mathematical behaviour of 
mathematicians (Carlson, 2000). 

If I analyse my three-year experience, the most important matter which 
emerges is that my attitudes towards mathematics both as a branch of science 
and a school subject have changed. My prejudice that mathematics is a rigid, 
ready made, never changing subject has been violated. What are the key factors 
which contributed to this change? 

a. The context is suitable for me with respect to my mathematical 
knowledge and abilities, it is easy enough to be able to carry out real 
mathematical procedures nearly on my own, and on the other hand, it is 
difficult enough to bring sense of real achievement and joy. 

b. The analogy with ordinary arithmetic allows me to pose questions and 
develop solving methods myself. 

c. The context is rich and open enough. The topic in this form cannot be 
found in literature; it is generally elaborated as a part of the complex 
theory of modular arithmetic, which would mean that first the theory of 
congruences, modulo a composite number, would have to be mastered (in 
the way �definition � theorem � proof�). 

d. I can see the usefulness of some concepts and theorems of abstract 
algebra, previously learnt formally and now understood. If such 
knowledge enters the investigation in an active way and helps to solve a 
problem, this brings satisfaction and joy with motivating consequences. 

e. My fear of making a (stupid) mistake diminished and I used mistakes to 
diagnose my problems. 

 

7. Structuring in geometry 

Our research in building IMS has been extended to the geometry of figures. This 
is the preliminary information of our approach and the tool used.  

Contrary to arithmetic where the operations are the centre of attention, the 
basics of geometric structuring are geometric objects, mainly figures and their 
properties. The first experiences have revealed that the effective tool of both 
research and teaching is a game in which one of the players secretly chooses one 
of the figures from the given set. The other players ask yes-no questions 
concerning geometric properties of the figure and try to guess which one it is. 
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For instance, the game related to the figure below went as follows. It was played 
with students � future elementary teachers.  

 Question Answer 
1. Does it have four 

vertices? 
Yes, all have 
four vertices. 

2. Is it non-convex? No. 
3. Does it have a right 

angle? 
Yes. 

4. Are the two opposite 
sides equal? 

No. 

5. Is it a trapezium? No. 
6. Does it have 

precisely two right 
angles? 

Yes. 

7. Is it symmetrical? Yes. 
8. It is a deltoid. Yes. 

The quality of questions  can be judged from the point of view of both 
geometry and strategies. For instance, question 1 points to the erroneous image 
of the inquirer � she only saw three vertices in the figure C. The concept of 
vertex is connected with a tactile perception of pricking. From a strategic point 
of view, only question 4 is good. It divides the remaining set of four figures A, 
D, E, F into two equally numerous parts � (A,D) and (E,F).  Deeper analyses via 
the two presented phenomena enable to diagnose students' geometric images. 

Under  the structure in the geometry of figures, we mean the correspondence 

1. property ↔ a suitable subset of figures, 
2. negation of properties ↔ complement of a suitable subset of figures,  
3. conjunction of properties ↔ intersection of a suitable subset of figures, 
4. disjunction ↔ union of a suitable subset of figures. 

The investigation which at present concerns finite sets of figures will 
concentrate on infinite sets, too. 
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Abstract: This paper investigates the intuitive structures (i.e., primary intuition 
and secondary intuition) of three groups of prospective teachers by examining 
their responses to comparison- of- infinite-sets tasks.  It reports on their intuitive 
tendencies to regard one-to-one correspondence, inclusion and single-infinity as 
acceptable criteria for the comparison of infinite sets.  It also investigated their 
tendencies to claim that these methods could be used interchangeably for such 
comparisons.  The findings show significant differences between participants 
who had studied a traditional or an enrichment Cantorian set theory course and 
those who had not participated in any course.  Those who had taken a course 
frequently accepted one-to-one correspondence as a general method for 
comparing infinite sets and usually stated that one method should be used for 
such comparisons. The participants in the enrichment course performed better 
than the ones in the traditional course. Still, a non-negligible number of those 
who had studied set theory still claimed that inclusion and single infinity are 
also suitable for comparing infinite sets.  

 

This paper examines secondary-school prospective mathematics teachers� 
intuitive structures when dealing with infinite sets.  That is to say, the paper 
investigates prospective teachers� primary intuitions and their secondary 
intuitions regarding infinite sets.  It presents several aspects of Fischbein�s 
theory of intuitive cognition (see, for instance, Fischbein, 1987), and relates to 
Fischbein�s claim that the structure of �appropriate� secondary intuitions can be 
created by �good� instruction.  The paper focuses on two issues: (1) what are the 
primary intuitions of prospective secondary-school teachers of mathematics 
regarding the comparison of infinite sets? (2) What is the impact of different 
types of instruction on participants� intuitive structures? 

Intuition plays a crucial role in mathematics education.  It is highly 
recommended to take into consideration students� intuitive ways of thinking 
when teaching (e.g., NCTM, 1991; 2000).  In his book: �Intuitions in Science 
and Mathematics: An Educational Approach�, Fischbein (1987) presented a 
theory wherein he defined the notion of intuition and the essential role it plays in 
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students� mathematical and scientific thinking processes.  According to 
Fischbein, intuitive knowledge is a self-explanatory cognition that we accept 
with certainty as being true.  It is a type of immediate, coercive, self-evident 
cognition, that leads to generalizations going beyond the given.   

Fischbein differentiated between primary intuitions and secondary 
intuitions.  Primary intuitions were defined as intuitions that  �develop in 
individuals independently of any systematic instruction as an effect of their 
personal experience� (Fischbein, 1987, p. 202).  Secondary intuitions were 
defined as �those which are acquired, not through natural experience, but 
through some educational intervention� (Fischbein 1987, p. 71).  Secondary 
intuitions were defined as evident when formal knowledge becomes immediate, 
obvious, and accompanied by confidence. Secondary intuitions about a certain 
concept or process are often inconsistent with the related primary intuitions 
about the same concepts.  Questions that arise naturally are:  How can we 
identify students� primary intuitions? What intervention can be used for the 
acquisition of secondary intuitions? (How does something we learnt become 
intuitive?) What can we do in order to help our students develop them?  

The present study addresses the mathematical notion of actual infinity. 
Actual infinity plays an important role in various mathematical theories, and it is 
one of the mathematical notions that was identified by mathematicians, 
philosophers and psychologists as being counter-intuitive.  The study examined 
the impact of two types of interventions on students� primary intuitions. 
Research findings indicated that the methods that students applied for the 
comparison of infinite sets were largely influenced by methods they had used 
when comparing finite sets. Still, they usually did not use one-to-one 
correspondence, the criterion that should be used to determine the equivalency 
of two infinite sets within Cantorian set theory (Borasi, 1985;  Duval, 1983;  
Fischbein, Tirosh, & Hess, 1979;  Fischbein, Tirosh, & Melamed, 1981; Martin, 
& Wheeler, 1987; Tall, 1990; Tsamir, 1999; Tsamir, 2000; Tsamir, & Tirosh, 
1994; 1999; Yehoshua, 1995).  It was also found that when students used more 
than one method for comparing infinite sets, they reached contradictory 
conclusions, of which they were usually unaware (e.g., Tirosh & Tsamir, 1996; 
Tsamir & Tirosh, 1999).  

The findings described so far related to the structure of students� primary 
intuitions of actual infinity. Fischbein�s assumption, however, was that, under 
instructional intervention it is possible to develop a new structure of logically 
based interpretations, i.e., secondary intuitions, and that these would supersede 
the primary intuitions. In this context, one may wonder what the interventions 
are that could be considered for developing students� �appropriate� secondary 
intuitions of actual infinity.   
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A number of studies examined the influence of different interventions on 
students� acceptance of one-to-one correspondence as the single method for 
comparing infinite sets (e.g., Sierpinska & Viwegier, 1989; Tirosh, 1991; 
Tsamir & Tirosh, 1999; Tsamir, 1999; Tsamir, 2000; Yehoshua, 1995).  
Nevertheless, these interventions were tried with secondary school students, 
who were not obliged to study Cantorian set theory as part of their curriculum.  
Nowadays, in Israel, Cantorian set theory is customarily taught at the college 
level to mathematics majors and to prospective secondary mathematics teachers.  
It is usually presented in a traditional, lecturing manner.  The present study 
examined the impact of two types of courses on prospective teachers� intuitions 
of actual infinity.  One was the traditional course (T-ST), and the other, an 
enrichment course, that took account students� intuitive tendencies to 
overgeneralize from finite to infinite sets (E-ST).  

 

THE RESEARCH 

Participants 

Participants were prospective secondary school mathematics teachers, 
who studied at Israeli State Teacher Colleges.  Seventy-one of them had never 
studied Cantorian set theory [N-ST], 110 had completed a year-long, traditional 
set theory course [T-ST], and 125 had completed a year long enrichment set 
theory course [E-ST].    

The T-ST and the E-ST Cantorian Set Theory Courses 

The T-ST course consisted of 24 sessions of 90 minutes each.  The 
syllabus of this course included the following topics:  the notion of �set�, finite 
and infinite sets, the cardinal numbers of infinite sets, axiomatic development of 
set theory, relations and operations between sets, functions, the comparisons of 
the number of elements in infinite sets, cardinal numbers, well-ordered sets, 
ordinal numbers, axiom of choice, Zorn�s lemma and paradoxes in set theory. 
This course was presented in a traditional, formalized manner with little or no 
emphasis on intuitive aspects and usually ignoring �peculiarities of the infinite�.  

The E-ST course also consisted of 24 weekly class sessions of 90 minutes 
each.  The first sessions were devoted to discussing connections between 
mathematics and reality; the axiomatic, independent nature of mathematical 
systems and the crucial role consistency plays in determining mathematical 
validity.  The other sessions of the course related to the topics studied in the T-
ST course.  The transition from finite to infinite sets was introduced via several 
activities, aimed at promoting prospective teachers� awareness of their own 
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alternative conceptions (Tsamir & Tirosh, 1999; Tsamir, 1999). The historical 
development of the notion of actual infinity and its connection to students� 
intuitive conceptions were also discussed (e.g., Borasi, 1985).  The discussions 
were then extended to other intuitive beliefs about mathematical notions (e.g., 
�zero is nothing�, �a set includes at least three elements�) illustrating their 
impact on common responses to related tasks.   

Instruments 

The prospective teachers were asked to answer, in writing, a five-part 
questionnaire.  Here one part, which consisted of two tasks, is discussed. The 
first task provided an explanation illustrating the notions of one-to-one 
correspondence, single infinity and inclusion, written as if presented by different 
students in a class. 

In a class, students presented the following claims: 

Betty:  Consider a huge dance hall, where couples (a man and a woman 
in each pair) are dancing. There is nobody in the hall, but the dancers. We can 
easily claim that the number of men in the dance hall is equal to the number of 
women, since each man is paired with a single unique woman and each woman 
is paired with a single unique man.    

Similarly, when each element of set A can be paired with a single unique 
element of set B, and every element of set B can be paired with a single unique 
element of set A, then the sets have the same number of elements (to be called 
�one-to-one correspondence�). 

Danny:  When set A is included in set B, i.e., set B consists of all the 
elements of set A and at least one additional element, then the number of 
elements in set B is greater than the number of elements in set A (to be called 
�inclusion�). 

Tom:  All infinite sets are equivalent, all have the same number of 
elements (to be called �single infinity�). 

Participants had to declare in writing, whether they viewed each of the 
above mentioned methods as suitable for comparing infinite sets.   

The second task asked the participants to express their opinion on whether 
a specific one of the three above-mentioned methods should always be chosen 
for all for the comparison of infinite sets; or whether each problem should be 
examined separately, and any applicable method be chosen.  
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Process 

The participants were given about 30 minutes to answer this part of the 
questionnaire in writing.  After completing the written assignment, 10 N-ST, 10 
T-ST and 10 F-ST participants were interviewed orally, in order to get a better 
insight into their thinking. Primary intuitions were investigated via the reactions 
of the N-ST students to the presented tasks.  The nature of the post-intervention 
reactions, and the examination whether they have become secondary intuitions, 
were judged by analysis of the responses of the T-ST and E-ST participants. 

 

RESULTS and DISCUSSION 

Primary intuitions regarding the comparison of infinite sets  

As can be seen from Figure 1, more than half of the students who had not 
studied Cantorian set theory agreed that one-to-one correspondence could be 
used for the comparison of infinite sets.  Still, 65% of the N-ST participants 
accepted inclusion, and about a third of them accepted single infinity.  Only 
about a third of the N-ST participants responded that �a single method must be 
used for all comparisons� (Figure 2). 

Figure 1: Frequencies (in %) of accepting one-to-one correspondence, 
inclusion, and single infinity for the comparison of infinite sets  
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Figure 2: Frequencies (in %) of declaring the need to use a single method for 
the comparison of infinite sets  

The findings regarding students� claims that more than one method could 
interchangeably be used to compare infinite sets is consistent with findings of 
previous studies, indicating students� tendency to use several methods for such 
comparisons (e.g., Tirosh & Tsamir, 1996). 

The impact of two different interventions on prospective teachers� intuitions 

The study of Cantorian set theory either in T-ST or E-ST courses assisted 
prospective teachers in becoming familiar with the role of one-to-one 
correspondence in Cantorian set theory (Figure1 and Figure 2).   

When asked to judge the acceptability of one-to-one correspondence, 
inclusion and single infinity for the comparison of infinite sets, participants 
exhibited a marked tendency (76% of the T-ST and 95% of the E-ST) to accept 
one-to-one correspondence (Figure 1), which was significantly higher than that 
of the N-ST participants (χ²=47.60, df=2, p<.001 Phi=.39).  They also exhibited 
a marked tendency to reject the other methods, inclusion and single infinity (for 
inclusion χ²=61.24, df=2, p<.001 Phi=.45, and for single infinity χ²=18.84, df=2, 
p<.001 Phi=.24), which was again significantly higher than that of the N-ST 
participants.  Figure 2 shows that there was also a significant increase (χ²=29.6, 
df=2, p<.001 Phi=.31) in prospective teachers� tendency to claim that a criterion 
should be chosen in advance for all comparison-of-infinite-sets tasks.  

Nevertheless, even after the interventions, traces of primary intuitions 
based on experiences with finite sets could be identified.  In spite of 
intervention, about 17% of the T-ST participants and about 10% of the E-ST 
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participants still regarded single infinity as suitable for comparing infinite sets, 
and about 32% and 10% of them respectively, viewed inclusion as suitable for 
such comparisons.  Part of them explicitly claimed that it is possible to use these 
three methods interchangeably. 

It is clearly noticeable that the E-ST course was more beneficial than the 
T-ST course in promoting prospective teachers� awareness of the need to use 
only one method when comparing infinite sets. In their declarations, 
significantly more E-ST than T-ST participants claimed that it is necessary to 
use a single method for all the comparisons of infinite sets (χ²=49.3, df=1, 
p<.001 Phi=.51; see Figure 2), and pointed to one-to-one correspondence as the 
method for such comparisons (See Figure 1;  χ²=36.5, df=1, p<.001 Phi=.54; see 
Figure 1).  While most T-ST participants declared that either inclusion or single 
infinity could be applied, the E-ST participants usually rejected these options. 

Since both, T-ST and E-ST participants had been introduced to the formal 
Cantorian theory and to the use of one-to-one correspondence, it could be 
expected that all would identify this method as the acceptable one for comparing 
infinite sets.  Still, there was evidence of the continued influence of intuitive 
ideas associated with finite sets, which interfered with the ability of the T-ST 
participants to reflect on their judgments and be aware of possible 
contradictions.  The E-ST participants exhibited a greater tendency to work 
within the framework of the Cantorian theory. 

These findings are consistent with Fischbein�s claim that �one has to bear 
in mind that intuitively based conceptions cannot be eliminated simply by mere 
verbal explanations... The development of new� mathematical and scientific 
intuition implies, then, didactical situations in which the student is asked to 
evaluate, to conjecture, to predict, to devise and check solutions� It is certain 
that mathematics education cannot be successfully achieved by simply 
bypassing the intuitive obstacles through purely formal teaching� (Fischbein 
1987 p. 38; 213). 

 

Final Comments 

This study discussed two types of intuitive structures that is, primary intuitions 
and secondary intuitions of actual infinity. We have discussed prospective 
teachers� primary intuitions and their responses after two types of interventions.  
The findings showed that, as expected, the primary intuitions of the participants 
before studying Cantorian set theory were similar to those found among young 
students, as reported in the literature.  The findings also showed that 
participation in a traditional T-ST course, and even more so in an enrichment 



Working Group 1 

 119

course (E-ST) promoted prospective teachers� awareness of the need to use only 
one method for the comparison of infinite sets, preferably one-to-one 
correspondence.  

Still, the data here indicated that commonly, even after intervention, traces 
of primary intuitions based on finite experiences continued to linger in the 
majority of the prospective teachers. They persistently continued to declare 
single infinity and inclusion as suitable for the comparisons of infinite sets, 
claimed that a number of methods could be used interchangeably and remained 
unaware of the contradiction this led to. This problem was also foreseen by 
Fischbein: �Primary intuitions are usually so resistant that they may coexist with 
new, superior, scientifically acceptable ones.  That situation very often generates 
inconsistencies in the student�s reactions depending on the nature of the 
problem� (1987, p.213).  Although a change was exhibited in the E-ST 
participants� post-intervention comparisons of infinite sets, and most of them 
declared the need to stick to one-to-one correspondence and power when 
comparing infinite sets, fragmented remains of finite notions could still be 
identified in their justifications.   

Moreover, participants� answers in the interviews, both before and after 
instruction, were immediate.  In a number of cases they included words like 
�certainly�, �obviously�, �sure� and �clearly�, which indicated feelings of 
intrinsic certainty and self-evidence.  The blend of out-of-class daily, finite 
experiences, and in-class studies of set Theory, seemed to give rise to a new type 
of intuitions.  However, while the participants seem to have acquired new 
intuitions regarding the comparison of infinite sets, these intuitions were not 
consistent with Fischbein�s definition of secondary intuitions.  As mentioned 
before, for Fischbein, secondary intuitions were only those completely in line 
with the formal theory.  He explained, for instance, �if for a mathematician the 
equivalence between an infinite set and a proper sub-set of it becomes a belief � 
a self explanatory conception � then a new, secondary intuition has appeared� 
(1987, p. 68).   There is clear evidence that for most prospective teachers the 
post-intervention intuitions did not comply with Fischbein�s definition of 
secondary intuitions.  However, such responses could no longer be regarded as 
primary intuitions, as they had been engendered as result of an intervention. One 
may wonder, in terms of primary vs. secondary intuitions � what kind of 
intuitions are these? Or is there a need to define a third type of intuition, which 
is post intervention, but not perfectly consistent with the formal theory.  

In light of the findings, there seems to be a need to define a third type of 
intuitions, �transitory intuitions�, which evolve after intervention but are not 
perfectly consistent with the formal theory.  In a way, transitory intuitions can 
be regarded as �advanced primary intuitions�, consisting of a mix of primary 
intuitions and theorems derived from the formal theory.   Such intuitions arise 



European Research in Mathematics Education II 

 120

when, through intervention, which becomes part of the learners� experience, 
new elements are added to, but do not wholly replace primary intuitions.  These 
new intuitions have the �intuitive nature� of secondary intuitions but do not have 
their �formal perfection�.   

The term �transitory intuitions�, pointing to the range between primary 
and secondary intuitions, insinuates a certain direction going towards the 
secondary intuitions.  It may be interpreted as suggesting that secondary 
intuitions must necessarily be achieved.  This, however, is not my claim.  In 
many cases, even after quite extensive interventions, one may still hold 
transitory intuitions, perhaps with a higher portion of formal knowledge, but 
never reach the perfection of secondary intuitions. Since the blend of transitory 
intuitions may consist of various portions of primary intuitions and formal 
knowledge there is a need to further investigate this nature of transitory 
intuitions, and to examine the impact of different didactical approaches on 
students� transitory intuitions regarding various mathematical notions. 
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This set of papers and posters is the work of the Thematic Group Tools and 
Technologies in Mathematical Didactics. The papers build on the work of the 
group at CERME1, where three embedded levels were distinguished when 
analysing the use of tools and technologies: 

• the level of interactions between tool and knowledge; 
• the level of interactions between knowledge, tool and the learner; 
• the level of integration of a tool in a mathematics curriculum and in the 

classroom. 
Bearing in mind these three embedded levels of analysis, the Thematic Group, 
as represented by this collection of papers, worked on the following questions: 

• How can ideas of representation, metaphor and tool help us to understand 
how learners interact with technologies? 

• How do tools and technologies mediate learning?  
• What might be the parallels and contrasts between computer algebra 

system (CAS) use in algebra and calculator use in arithmetic? 
• How does CAS use compare with use of such other tools as dynamic-

geometry software or statistics packages? 
 

Theoretical Ideas 

Theoretical ideas, such as representations, metaphors, mediation and tools,  
proved useful when looking at how students link representatives (artifacts-in-use 
in an activity) to the mathematical function they are meant to represent, through 
actions of interweaving representatives and rejecting those that are incompatible 
with their concept image.  The paper by Landa illustrates the mediation of a 
spreadsheet, showing how students misunderstanding can be clarified not only 
for the teacher but also for the students. In Cerulli’s work can be seen, in the 
software that he designed, the equivalence of a button (a sofware functionality) 
and a statement in algebra. Algebraic knowledge can then be build and used in 
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the same way that a theory is built from axioms by way of proof. Across these 
papers, technology can be seen as means to allow the use of a wider variety of 
metaphors and representatives (see Jones, and Schwarz & Hershkowitz). 

 

 

Algebraic Knowledge when using Spreadsheet and CAS 

The papers by Chiocca and Hošpesová show two contrasting cases of the 
educational use of spreadsheet. The former case showed conceptual difficulties 
shifting from the mathematical  content at stake (statistics) to a “spreadsheet” 
concept (the distinction between absolute and relative references). In the lattter, 
the spreadsheet was reported as facilitating the access to mathematical concepts 
and fostering positive attitudes. In this apparent contradiction, technologies can 
be seen as facilitators or obstacles, depending on the point of view. Spreadsheets 
are, in a sense, quite intuitive. Nevertheless, their use implies understanding 
more or less their operation, especially when the problem is not the direct 
equivalent of a paper and pencil task. Obstacles reported in a task using such 
software do not necessarily imply that this task is to be banished. Educators have 
to reflect on the students’ actual difficulties and on the knowledge involved in 
their resolution. 

Routitsky and Lagrange both present the results from large-scale surveys. 
Routitsky’s is about teachers’ attitudes towards the use of calculators. This, it 
seems, does not have a straightforward relationship with the period of time over 
which teachers have used calculators. When the period is short, the attitude is 
generally good. Then, over a longer period, it declines. Then it grows slowly 
again. This implies that teachers are generally inclined to use calculators at the 
beginning, then they come up against difficulties and they need time to 
overcome these. Lagrange’s paper surveys the literature on the use of 
technology, especially Computer Algebra Systems, to teach and learn 
mathematics. It shows a variety of works and trends, some very optimistic, 
others more aware of difficulties that students and teachers might meet.  

This raises the question of the “instrumental” and “institutional” approach 
to the use of technology. The instrumental approach refers to a technological 
tool as a mental construction by the user. The institutional dimension considers 
the tasks, techniques and theories in a given institution (classroom, educational 
system, …) and the impact of the introduction of technology on these. These 
approaches are complementary to the “epistemological approach” that relies on 
the study of the knowledge in relation to the introduction of technology. 
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Dynamic Geometry Systems (DGS) 

The paper by Gallopin and Zuccheri focuses on how to improve the teaching of 
deductive reasoning. They give an example from their work of how to use as 
didactical instruments, strictly linked, technological tools and mathematical 
theories and concepts. The work of Mogetta relates to the forming of conjectures 
from visual images in DGS, what she called ‘dynamic’ definitions. Olivero and 
Robutti give examples from their research on the role of measuring in the 
proving process. 

 

Open Questions 

The Thematic Group finished with the following open questions: 

1. The influence of the use of technology on proof. 
It appears that we have to look at the process of proving as a specific 
theoretical activity. General software like DGS and CAS can tend to 
encourage empirical activity. Specific settings are necessary to reach a 
more theoretical level. Proving is often difficult, as students may be easily 
convinced by empirical evidence. Working on proof probably implies the 
use of more specific software like Cerulli’s “L'Algebrista”. 

2. The notions of “tool” 
A technology can be used by the teacher as a “didactical tool” or by the 
learner as a means to do tasks and learn mathematics. The notion of “tool” 
is also used for a host of different “immaterial” entities like concepts or 
theories. We have to distinguish these notions when analysing the use of 
technology. Looking at a technological tool for the learner as an 
“instrument” is beneficial because it accounts for the links between the 
appropriation of the tool and the learning of mathematics. 
 

Concluding Comments 

Overall, the work of the Thematic Group covered a variety of software 
technologies (DGS, spreadsheet, CAS, multimedia, distance education, 
calculators), school levels (from primary to university students) and 
methodologies (small scale case studies, software design, big surveys…). The 
outcomes for the participants were that a range of common notions were 
developed and a variety of concerns shared. We hope that this variety is 
captured in this set of papers. 
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Abstract: This paper is exploratory in character. The aim is to investigate ways 
in which it is possible to use the theoretical concepts of representations, tools 
and metaphors to try to understand what learners of mathematics ‘see’ during 
classroom interactions (in their widest sense) and what they might get from such 
interactions. Through an analysis of a brief classroom episode, the suggestion is 
made that what learners see may not be the same as what they get. From each of 
several theoretical perspectives utilised in this paper, what learners ‘get’ 
appears to be something extra. According to our analysis, this something ‘extra’ 
is likely to depend on the form of technology being used and the representations 
and metaphors that are available to both teacher and learner. 

 

Introduction 

�What you see is what you get� (WYSIWYG) was a catchphrase on the 1960s 
US TV show, Rowan and Martin's Laugh-In. In the 1980s it became a byword 
in computer-based desktop publishing, referring to any technology enabling the 
user to see images on-screen exactly as they appear when printed. The 
development of graphical user interfaces (for forms of software that are proving 
useful in mathematics didactics, such as Logo, spreadsheets, dynamic geometry, 
graph plotting and statistical modelling software) has raised questions about how 
learners� interactions with these interfaces mediate their understanding of 
mathematical ideas. This paper seeks to open up discussion about how the 
theoretical resources of representations, metaphors and tools can assist in an 
examination of what learners in classroom interactions with technology �see�, 
what understanding they might get from such interactions, and the implications 
for the theoretical ideas.  

Following an overview of some of the main theoretical ideas, a brief 
extract from a piece of classroom research is considered from several different 
perspectives. The aim is to see in what ways these perspectives might both 
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illuminate and constrain interpretation of the classroom incident. The paper 
concludes with some commentary on the relationship between the various 
perspectives and what they might mean in terms of practical classroom 
responses. 

 

Theoretical Preamble 

There is extensive literature on representations, metaphors and tools in 
mathematics education yet this literature often focuses on one of these 
theoretical ideas and, in the main, does not seek to examine the relationship 
between them. Indeed, each of the terms is reasonably complex in itself, with 
discussion continuing as to what each one is and how the idea might be useful. 
In this section we identify some of the main features of each theoretical idea, as 
a precursor to using them in an analysis of a classroom interaction. 

In the literature on representation, a distinction is often made between 
internal and external representation. An internal representation is a hypothesised 
mental construct; an external representation is a material notation of some kind 
(such as a graph, a table or an equation). As Kaput (1998) observes, such a 
distinction is cognitivist in essence and does not necessarily take account of 
other perspectives on thinking and learning. These other perspectives, including 
socio-cultural viewpoints, for example, raise questions about whether learner 
interactions with screen images are usefully described in terms of internal and 
external representations, or whether such images constitute a new class of 
representation. 

The literature on representation currently makes little reference to notions 
of metaphor even though work on the latter (for example, Lakoff and Nuñes, 
2000) shows how it is possible to point to deep metaphors which are implicitly 
embedded in our language and which are therefore part of the way we talk/think, 
whether we like it or not. Metaphor, in the general sense, characterises the 
substitution of one similar concept for another one. Metaphor is a widely-used 
idea in software design (examples being the desk-top, menus, windows, etc) and 
in human computer interaction. In mathematics, metaphor occurs as translation 
of structure from one domain to another and has been posited as crucial for our 
sense of understanding mathematical ideas. For their part, images (such as 
screen images) are posited as part and parcel of the metaphorical mappings that 
bring new mathematical concepts into existence (see, for example, Sfard, 1997). 
This raises the question of the relationship between ideas of metaphor and 
representation, about which we hope to stimulate discussion through this paper. 
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The notion of tools is widely used in mathematics education. At its most 
straight-forward, the term refers to physical implements. But the use of the term 
has expanded to include not only physical implements but also technical 
procedures (like the algorithms of arithmetic), symbolic resources (such as those 
of natural languages and mathematical and musical notation), and, most 
recently, cognitive processes. Such use of the word tool can be considered as 
metaphorical, as a way of understanding the use of technical procedures, 
symbolic resources and cognitive processes. Computer environments (such as 
microworlds) and electronic calculators are frequently referred to as both 
technological and cognitive tools. These tools, as well as being physical 
artefacts, encompass technical and symbolising capabilities and become objects 
to think with. It is widely recognised that tools change the way that activities are 
carried out and can shape the conceptions of the user (Gutiérrez, Laborde, Noss 
and Rakov, 1999; Lajoie, 1993).  

The wide use of the terms representation, metaphor, and tool in 
mathematics education highlights the complexity of trying to understand and 
describe what may be happening when learners (and their teachers) interact with 
mathematics when using computer software, calculators, or other technology. In 
an attempt to begin to try to clarify the relationships between these terms, and 
perhaps their interactions, a segment of classroom interaction has been taken as 
a catalyst for producing various perspectives on the role of the technological 
imagery in learning.  

 

An Interaction from the Mathematics Classroom 

The task described below was set within what Ainley, Nardi and Pratt (2000) 
call an Active Graphing approach. With this approach, children are encouraged 
to make a scattergraph as soon as they have a few pieces of data. The children 
are then expected to discuss the graph, perhaps with their teacher, and make 
conjectures about any patterns that emerge before deciding what data to collect 
next to test these conjectures. The data extract in Figure 1 is taken from the work 
of two 9-year-old children, Laura and Daniel (both pseudonyms). The children 
were working on a task (introduced verbally by the teacher) in which each group 
was given a 75 cm length of ribbon, and challenged to make a rectangular frame 
which had the largest possible area. The children collected initial data by 
pinning a length of ribbon on to a display board to make the frame, then 
measuring the length and width of the frame. They entered these results on a 
spreadsheet, and, with help, set up a third column with a formula to calculate the 
area of the frame.  
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Figure 1. Children's spreadsheet work on the rectangle task 

The data extract below is taken from their discussion of their first graph 
(see Figure 1). 

Researcher: Okay, so what is this graph saying? 
Laura: It�s a hill. 
Daniel: It�s like a mountain there. 
Laura: I think it�s going to come down again. 
Daniel: and go back to nought. 

The first thing to note is that the spreadsheet technology available to the 
children, while supporting the rapid display of their data, did place constraints 
on aspects of their interaction. For example, the children had to organize their 
data in a particular way, since the software only allows graphs to be made from 
adjacent columns. Further, while the graphing facility within the particular 
software (ClarisWorks) creates a window containing a graph that can be dragged 
to different sizes and proportions, such dragging changes both the appearance of 
the graph and the scaling on the axes. By default, the software selects scales and 
ranges of values on the axes which display the data points centrally in the 
window (as in the example shown in Figure 1). Thus the axes may not start from 
zero with the consequence that the full range of possible values of a given 
variable may not be visible. The recognition of this shaping of student activity 
by the technology is an important prerequisite for a theoretical discussion of 
their learning (see, for example, Jones, 1999). 

 

Analysis 

In this section, the above data extract is subject to analysis from four different 
perspectives, including modelling, multiple representations, co-construction, 
linguistic, etc. in order to examine the convergence, or otherwise, of these 
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viewpoints and to see what they reveal about the roles of representation, 
metaphor, and tool. 

§1 Representation as tool and symbol 

At first sight it seems that the children do not respond directly to the researcher�s 
invitation to read information from the graph. Their first two comments suggest 
that they are seeing the graph as a picture. The fact that they do see a picture, 
rather than a series of separate points, is likely to be significant. They seem to be 
looking through the individual points of the graph to construct a coherent image 
that takes in the whole of the data set. 

The latter two comments are even more interesting. Laura�s comment 
suggests that she is extrapolating to imagine data which has not yet been 
collected, and what is more she is doing this �backwards� to a part of the graph 
(to the left of the current position of the y axis) which does not yet exist on the 
screen. This suggests that she is using the graph as a tool that she can (mentally) 
manipulate to make conjectures about the outcome of the experiment.  

Laura�s use of the words �come down again� may also link to the overall 
purpose of the task. The children are trying to find a maximum area, and the 
�hill� for Laura seems to contain the idea of a value increasing and decreasing. 
The experimental data the children have collected shows that they started with a 
width of 15, tried smaller widths, tried 15 again (though without seeming to 
notice that they get a different area!), and then tried a larger width. This 
sequence reflects a sense of �going up and down� that links closely with the hill 
metaphor. 

The graph as a symbol has as its referent the tabulated data, and the 
rectangular frames which have been created. Nemirovsky and Monk (2000) talk 
about symbolizing as the creation of a space in which the absent is made present 
and ready to hand. This seems quite a useful way of seeing what is happening 
for Laura and Daniel as they look at the graph. The graph symbol allows them to 
hold all the data in one space, so that they can see something about the overall 
pattern of what is happening. The symbol contains all the complexity in a more 
manageable way than the data, and so allows them to talk about how �it� is 
changing. Notice that when Laura says she thinks �it� is going to go down, �it� 
might be any or all of: 

• the trend in the graph,  
• the value of the area in the data,  
• the size of the space within the frames they are making. 
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§2 Representations as tools  

The tabular representation can also be viewed as a symbol in the sense that it is a 
counterpart for the conceptual object of function (actually of several functions in 
this case), via the input-output process. That is, it stands for function in a 
metaphorical sense but may not name or point to it. This representation-symbol 
contains a number of other symbols, including those for specific numbers, and 
the symbolisation of variables in the table using natural language, namely 
�width�, �length� and �area�. For the learner, a tabular representation can assist in 
the construction of understanding of properties of a function, such as its one-to-
one nature (a problem with the data in this table!). However, if a student 
decides, for example, to use the table values to interpolate or extrapolate other 
values for the function, or to calculate the perimeter of the rectangle by adding a 
further column with its associated symbols, then such activity has moved them 
beyond looking through to a stage of acting on the representation. 

Once the table is complete the focus shifts to using the software as a 
graphing tool, for drawing the graph of area against length. In this case the 
students have taken the route the tool directs them in and have drawn a discrete 
set of points to represent the functional relationship with each point symbolised 
by a little cross. One can see this graphical picture either as a counterpart 
symbol, or a representation of a function, comprising other symbolic objects. 
These include the counterpart symbols which are described as axes and the 
language symbols �Length� and �Area�, both of which stand for the independent 
and dependent variables. The little crosses are also symbols pointing to ordered 
pairs in the function, etc. A student can pay attention to this representation and 
construct some properties of a function as a process or an object (Tall et al, 
2000) as with a table, but it becomes more interesting in some sense when the 
student interacts with it and uses it as a tool. The comments such as those of 
Daniel who says of the graph that �it�s like a mountain there.� and of Laura who 
describes it as a hill appear to require a global modelling strategy. They may or 
may not have seen a continuous model of the function in their mind�s eye when 
making these statements, but their interaction with the representation has 
comprised more than looking through it. They see the graph as an entity, an �it�. 
They are imposing a global model on the graph and construing properties of the 
process or an object underlying the model. Later Daniel again identifies a local 
property of the graph, namely that it appears to head �back to nought�. This may 
have been inspired by Laura�s comment about the trend of the values saying 
��it�s going to come down again�, again paying attention to a local property. 
This brief encounter with the activity demonstrates, when modelling functions in 
a computer environment for building understanding, the students� interaction 
with the tabular and graphical representation as tools is crucial. 
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§3 Multiple representations of a real situation 

Tools can be said to both aid and initiate thinking. Before the data are entered, 
the table is a tool to organise the data collected and the graph is a tool to 
organise the table data, whereas once the data are entered the table and graph are 
both representations (models) of the real situation. When the students are 
confronted with a representation, a dialogue with, or interrogation of, the 
representation is operationalised. In the vignette above, that three 
representations (models) can be found infers that students had to think in order 
to change from one representation to another. Wild & Pfannkuch (1999) call the 
thinking that is required to move between representations, or to change 
representations to engender understanding, transnumeration. Overall, using the 
approach of Wild & Pfannkuch would mean characterising the dialogue in terms 
of five fundamental elements � recognition of need for data, transnumeration, 
consideration of variation, reasoning with statistical models, and integrating the 
contextual and statistical. 

The first question confronting the students is what measures should be 
captured from the real system. The children must think how to capture the 
notion of area so they decide to make a rectangle and measure the width and 
length to the nearest cm (transnumeration). These are determined to be the 
relevant measures for the problem. They then represent these measures in a table 
of data as a way of systemising their thoughts (transnumeration). They calculate 
the area using a spreadsheet tool much as they would use a calculator or pencil-
and-paper. The table-of-data representation has no order that easily allows the 
students to interact with the relationship between the variables. Whatever was 
noticed or not noticed by the students, the table of data must be changed in some 
way to convey new or increased meaning. The students have to think that 
perhaps a graphical representation will allow them more insight into the data. 
What variables should they graph? What graphical tool should they choose? 
When they obtain a graphical representation (transnumeration), a dialogue 
between them and the data ensues.  

In this episode only two elements of statistical thinking � reasoning with a 
statistical model and recognition of the need for data � are activated. What 
features can the students see in the data? First they see a hill. The students 
perhaps do not have the language to discuss trends and therefore use the 
metaphor of a hill to describe the pattern they are �seeing�. When they further 
describe the pattern they imagine what the representation might look like if there 
were more data. The statistical-system tools allow multiple representations of 
the real situation to be seen so that students can engage in a dialogue with the 
data in a search for meaning and ultimately understanding about the real 
situation. 
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§4 Co-construction of representational relationships 

A critique of some of the work in mathematics education on multiple 
representations (generally numerical, graphical, and symbolic) is that the various 
representations can be no more than (external) representations of each other with 
no grounding for the learner in any experience. For the learner, they are not 
�representations� since they are not representing anything known to the learner. 
The data extract above illustrates that this does not necessarily have to be the 
case. Here the representations are linked to concrete, experientially-real data; in 
this particular example the construction of rectangular picture frames from a 
fixed length of ribbon. So it could be said that the phenomena of making picture 
frames is at the centre of the activity, and the representations are means of 
understanding and reasoning about the phenomenon.  

The mathematical relationships hidden in the spreadsheet formula used to 
calculate the area of each rectangular frame of ribbon, and, indeed, in the model 
of space that is the Euclidean plane that controls the phenomenon� are also 
models of the phenomenon. So there is a two-way (at least) representational 
relationship. It is a form of co-construction. The forms of representation 
available to, or, more particularly, used by, the learners control, or influence, the 
exploration of the phenomenon just as the phenomenon influences, or controls, 
each representation. 

The forms of representation permitted in the software environment are 
given, or, perhaps more accurately, proscribed, as the learners are not free to 
create their own representations but can only make use of those representations 
provided by the software. The representations that are available, in turn, 
generate imagery which is intimately connected with the metaphor of the 
cognitive tool. The representations available to the learners are not static. The 
active graphing approach exploits the potential of computer-based environments 
for the active exploration of phenomena. The children in this example have 
experience of this approach and, in the last two lines of dialogue, are making 
predictions based on their interpretation of the graph. They seem to be using the 
representations, particularly the graphical representation, as a means of building 
up a sense of the quadratic relationship that models the phenomenon they are 
exploring. 

As Leont�ev (1981, pp. 55-6) argues, �the tool mediates activity and thus 
connects humans not only with the world of objects but also with other people�. 
Thus the process by which learners create meaning is embedded within the 
setting or context and is mediated by the forms of interaction and by the tools 
being used. Here the argument is that the learners create representations, albeit 
limited by the forms of representation available via the tool, and the (available) 
representations create the learner�s ideas of those representations.  
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Discussion on Tools, Representations and Metaphors 

In terms of tools, and taking the spreadsheet in its totality as a tool, in this 
example of classroom interaction the tool is not used here to its full potential. 
For example, for these children in this case, �length� is not taken to be dependent 
upon �width�. Tools are like this �their full potential is rarely used. In addition, 
tools are not mathematical in themselves. They are only used mathematically.  

In terms of representations, it could be said that there are three 
representations in this example: a table, a graph, and a dialogue. Yet the word 
representation carries an implication that a thing is being represented. Here the 
representations are not just different aspects of a mathematical relationship, the 
relationships are different kinds of thing in each case. For example, in the 
classroom example analysed above, the table of data has no �shape�, no sense of 
increasing or decreasing. It is raw, unordered data. Yet it implicitly contains the 
formula relationship between the sides of a rectangle and its area. In contrast, 
the graph does not contain that information: the points on the graph cannot be 
read to the accuracy of the formula. What it does contain is an ordering of the 
data. Finally, the pupil dialogue is about a trend, not about the formula, nor 
about the data as individual points.  

These three things, the table, the graph, and the pupil dialogue, are 
different things in kind. In fact, it could be said that there is not a thing being 
represented at all. When we talk about representations, we talk as if there were 
something to present. This is a metaphor. The metaphor is that mathematics is 
like a thing. Nominalising in mathematics is a metaphor whereby mathematics is 
likened to objects in the world. There are other options, for example we could 
talk about mathematical ideas as actions. 

If talking of mathematical relations as objects is a metaphor, what is it a 
metaphor of? To ask that question is to fall into the same trap: it implies that 
there has to be a metaphor of anything. We talk in metaphors because there is no 
other way of doing it. Mathematics is created by talking about a relationship, 
tabulating it, graphing it, describing it. These are all (Wittgenstein, in Shanker, 
1987) normative activities: the communication lays down the ways it makes 
sense to talk about, describe, or illustrate these ideas. The benefit of having 
many re-presentations is that this mathematical idea has a lot of different aspects 
� no one representation embodies the entirety of the idea.  

In the above analysis, the terms representation, metaphor and tool were 
each given a variety of roles. For example, �tool� was interpreted as a function of 
a representation (§2); �representation� was used as a model (§3), and as a mode 
of description (§4); �metaphor� was used as a linguistic feature (§1 and §3), as a 
relationship between a function and its representation (§2). The lesson here is 
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that we must be careful not to assume the same functionality for our use of such 
terms as well as not assuming consonant interpretations.  

 

Concluding Comments 

Perhaps there is the basis of productive discussion arising from people�s 
different uses of the same theoretical concepts. In terms of our actions as 
researchers, we are reminded that it is essential to be very clear, very early in 
any writing or discussion, that the meaning of our conceptual constructs is 
evident. The other side of this coin is that, when reading the work of others, we 
should not to jump to conclusions about what these constructs mean when used 
by other authors. 

But mostly we are reminded that constructs are just that. They are 
constructed by us, and are therefore useful or not useful. They are not true or 
false. There is no unequivocal thing that can take the name �representation�. The 
consequence of this is that constructs must be judged for how they speak to the 
readers or listeners. Do they help teachers understand learning experiences or 
teaching behaviour? Do they help researchers frame useful questions? Do they 
add to the analytical tools available to mathematics educators? And so on. 

This paper is titled �Is What You See What You Get?� because we want 
to focus on our ability to understand the relationship between technology 
(particularly visual technology) and mathematics learning. Can we make use of 
the ideas of representation, tool and metaphor to discuss what is �seen� and what 
is �got�? At the risk of being glib, the various perspectives used above return the 
following different answers to these two critical questions.  

§1 What is seen is a picture, much of which is able to be inferred through the 
use of technological tools. What the learner gets are symbols that can be 
given meaning (added value?) through metaphors. 

§2 What is seen are representations generated through the use of a tool. The 
representation is a metaphor of the mathematical relation. What the 
learner gets are properties of these representations that have been 
construed from them as objects. 

§3 What is seen is data transformed in different ways. What the learner gets 
is the power to ask questions and to reason. 
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§4 What is seen are representations generated from real experiences. What 
the learner gets is the ability to co- (and/or re-) construct the 
representations in response to the questions they raise. 

In total, what are seen are tool-generated representations of different, yet 
related, things. What the learner gets is a way of communicating mathematics. 
In none of the above is what the learner sees the same as what the learner gets. 
In every case, the learner gets something extra. Perhaps that is the power of (all) 
technology. 
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Abstract: Within the theoretical framework of Vygotsky, this paper presents the 
results of a teaching experiment concerning the introduction of pupils to 
theoretical thinking in algebra. Starting from the results of a previous study 
concerning with the use of Cabri-géomètre to introduce pupils to geometry 
theory, the experiment is based on the use an algebra microworld called 
“L’Algebrista”. An outline of the classroom experimentation is followed by an 
analysis of some protocols, according to the Vygotskian theory of semiotic 
mediation.  

 

Introduction 

As clearly shown by previous research studies, the evolution of algebraic 
symbolism can be described in �procedural-structural� terms (Sfard, 1991). The 
procedural character of pupils� conceptions that relates to literal terms and 
expressions tends to persist; at the same time, although symbolic manipulations 
of literal expressions is largely present in school practice, the absence of 
�structural conceptions� appears evident (Kieran, 1992, p. 397).  

In Italian high schools, pupils begin fairly quickly to be trained in 
simplifying expressions (first numerical and then literal) and this training is 
intensively practiced at grade 9, when the first months of the school year are 
devoted to pupils� introduction to �Algebra�. 

The limitations of a procedural approach to symbolic manipulation have 
been often pointed out. This demonstrates the need for a �structural-relational� 
approach in order to master symbolic manipulation in a productive way 
(Arzarello, 1991).  

Poor strategic decisions made by students with extensive algebra 
experience have been described. Even these students seem unable to identify the 
right transformation to be accomplished. For example, when the task does not 
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explicitly indicate what transformation has to be performed, pupils are unable to 
take a decision and �go around in circles� (Kieran, 1992, p. 397) carrying out 
transformations without any clear goal.  

A key point to a structural approach is the notion of �equivalence 
relation� between expressions. Actually, the manipulation of expressions means 
substituting one expression for one that is equivalent. The meaning of the words 
�expression” and �equivalent” are not univocally, and a priori, determined, but 
it shall be so, once a set of axioms is accepted. We consider “symbolic 
manipulation” as characterised by activities of transformation of expressions 
using the rules given by the assumed axioms and definitions. Thus, symbolic 
manipulation makes sense within a theoretic system. Certainly this perspective 
is not very common in school practice (at least in Italy), yet it is exactly the 
perspective we assumed.  

A previous research study, concerning pupils� introduction to geometry 
theory (Mariotti et al., 1997, 2000), clearly showed how a computer 
environment may offer a support to overcome the well-known difficulties 
related to the theoretical perspective. In particular, Mariotti analysed the 
semiotic mediation that can be accomplished by the teacher using specific 
instruments offered by the Cabri-géomètre environment (Mariotti, in press).  

Using a similar approach, a research project, still in progress, has been set 
up and a computer microworld, L’Algebrista (Cerulli 1999, Cerulli et al. 2000) 
designed that incorporates the axioms defining the algebraic equivalence 
relation. A prototype of the software was realised and used in a teaching 
experiment with ninth grade classes. The basic hypothesis in the project is that 
the axioms, definitions and theorems of algebra are the main elements involved 
in the transformation of expressions. In L’Algebrista, expressions on the screen 
can be manipulated using buttons. Such computational objects may be 
interpreted as signs referring to expressions and axioms (or theorems) within 
algebra theory; the manipulation of such signs corresponds to symbolic 
manipulation. In other terms, in the microworld a physical counterpart of 
expressions and axioms allows the user to visualise and make explicit the 
mathematical entities and relationships which are involved in symbolic 
manipulation. 

Activities within L’Algebrista 

In order to help the comprehension of the discussion in the following sections, 
we describe an example of interaction with L�Algebrista. The user writes 
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Fig. 1:  In a notebook the user writes the expression to work with («2 * 3 + a 2 - 6» in the 
example), then after selecting it the button Inserisci Espressione is clicked, thus L'Algebrista 
creates a new working area where the buttons are active. 

(Fig. 1), in a notebook, the expression to work with (�2*3+a 2 - 6� in our 
example), then selects the expression and clicks Inserisci Espressione (�Insert 
Expression�). L'Algebrista creates a new working environment, where the 
original expression is marked on its left with the label Inizio (�start�). The 
operation of inserting the expression is fundamental because it proclaims the 
entrance into the microworld where it is possible to act only using the buttons 
offered by L'Algebrista. It is interesting to remark that when an expression is 
inserted, its new instance comes out with some changes, in particular every 
subtraction is transformed into sum and every division is transformed into 
multiplication. This follows from a precise didactical choice because we want 
pupils to work in a �commutative environment�. 

Interaction always happens by selecting a part of an expression and 
clicking on a button. The selection was designed so that it is not possible to 
select parts of expressions which are not sub-expressions from an algebraic 
point of view. For instance, given the expression a•b+c it is not possible to 
select b+c, if one tries to do it the software will automatically extend the 
selection to a•b+c; on the other hand one can select a•b or c or a etc. This 
feature corresponds to fact that the expressions of this microworld incorporate a 
fundamental algebraic characteristic of mathematical expressions: their tree 
structure. 

In the example, the expression is transformed by selecting the term a•2 
and clicking the commutative property button; a new expression is produced 
(written just below), the term 2•a is substituted by the term a•2, while on the left 
a label indicates the button used and the sub-expression it was applied on. In the 
next step one part of the expression is transformed using the distributive 
property button, and finally, using the same button, such a transformation is 
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inverted. Coherently with our didactical hypothesis, the buttons incorporate all 
the functions of the properties of operations without advantaging any peculiar 
direction, and furthermore they produce only correct chains of equivalent 
expressions.  

 

Outline of the classroom experimentation 

A first experiment was carried out during the school year 1998/1999 in a 9th 
grade class (Cerulli 1999), and permitted the development of a second version of 
the prototype, which has been experimented in another class at the same level 
during the school year 1999/2000. The second teaching experiment represents a 
junction point between our research concerning algebra and the previously 
mentioned study concerning pupils� introduction to geometrical theory (Mariotti 
et al., 1997, 2000). The idea is to introduce pupils to theoretical thinking at the 
same time in geometry and algebra with the support of the environments offered 
by Cabri and L’Algebrista. A research project on the effectiveness of the joint 
use of such microworlds has been planned for the following school year 
(2000/2001) in 9th and 10th level classes.  

A detailed description of the study is beyond the scope of this paper, 
which aims to analyse some aspects of the experiment within the framework of 
semiotic mediation; here we just indicate the basic ideas inspiring the sequence 
of activities concerning algebra. 

First of all we recall that our educational goal concerns: 
• to introduce pupils to symbolic manipulation; 
• to introduce pupils to a theoretical perspective.  

According to our hypothesis, the concepts of equivalence relationship, 
and of transformation of expressions (by means of axioms), are the basic 
principles underling symbolic manipulation (Cerulli et al. 2000). Thus, they 
represent the starting points of pupils activities. Furthermore, any 
transformation of an expression into an equivalent one is based on axioms, 
definitions, and theorems. As a consequence, it is possible to introduce symbolic 
manipulation taking a theoretical perspective. In our approach this is done 
considering the activities of expression transforming as activities of theorem 
proving (Cerulli et al. 2000).  

In our experiment we introduce the problem of comparing expressions, 
taking into account the fact that, at this school level, pupils consider numerical 
expressions as equivalent when they give the same number as result. Thus it is 
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not difficult to negotiate the interpretation of numerical expressions as 
computation schemes, which will be equivalent if they give the same result.  

The idea of interpreting expressions as computation schemes allows one 
to introduce the properties of sum and multiplication as principles (theory 
axioms) that determine a priori whether two computation schemes lead to the 
same result: if two expressions are equivalent on the base of such properties then 
the computation of the two expressions must lead to the same number. Thus a 
new equivalence relationship between expressions, based on the iterated use of 
the buttons, is introduced:  

if one expression can be transformed into another using the properties of 
sum and multiplication (our axioms), then the two expressions are 
equivalent.  

In the microworld L'Algebrista this corresponds to:  

two expressions are equivalent if it is possible to transform one into the 
other using the given buttons (representing our axioms). 

Once this equivalence relationship is accepted, pupils are asked to 
compare expressions (see an example in Fig. 2). A new terminology is 
introduced: one says that the equivalence of two expressions is proved if one 
expression is transformed into the other using the axioms; vice versa one says 
that the equivalence is verified if the calculation of both the expressions leads to 
the same result. With literal expressions the difference between proof and 
verification becomes even more definite: the use of axioms becomes the only 
way to state the equivalence between two expressions, whilst numerical 
verification (substituting the letters with numbers and computing the 
expressions) becomes the main way to prove that two expressions are not 
equivalent. Coherently with our theoretical perspective, Il Teorematore (Cerulli 
et al. 2000) can then be used to add a selected choice of proven equivalencies to 
the set of buttons that can be used for new proofs (see Fig. 3). 

1. Considera le seguenti espressioni: 
a*b-b*b        a*(a-b)        (a-b)*(b+a) 

a) Quali di esse pensi che siano equivalenti? 
E quali pensi che non lo siano? Perché? 
Sapresti dimostrarlo? 

b) Analizza la dimostrazione che hai fatto nel 
punto precedente ed indica per ogni 
passaggio fatto se hai utilizzato un 
teorema o un assioma 

 

1) Consider the following expressions: 
a) Which of them do you think are 

equivalent? Which do you think are not? 
Why? Can you prove it? 

b) Analyse your proof and specify, for each 
step, if you used a theorem or an axiom. 

 

Fig. 2 � An example of activity concerning expressions comparison 



European Research in Mathematics Education II 

 144

 

Fig. 3 � In the case of the task “Prove that 13• m+m• 17 = 30• m”, Federico, using 
L�Algebrista, produced the proof on the left. After such a task a class discussion led to the 
acceptation of the rule for summing monomials, and the below button was added to the set 
of available buttons in L�Algebrista. 

To conclude this section we remark that the concept of equivalence 
between algebraic expressions is basic in our approach, but we observe that it 
does not come straightforward from the use of the software. Working within 
L’Algebrista may reinforce the concept of equivalence by means of 
transformation rules, whilst it might weaken the concept of equivalence based 
on the substitution of numbers to letters; actually in L�Algebrista is not possible 
to substitute letters with numbers. As a consequence, the teacher  has the 
delicate role of guiding the construction of a correct relationship between the 
two kinds of equivalence.  

 

Semiotic mediation 

Within the Vygotskyan framework of semiotic mediation theory, the signs used 
to mediate mathematical meanings play a central role. L’Algebrista was 
designed as a microworld which could mediate the idea of theory in algebra, and 
the process of theory building. Algebra theory, as far as imbedded in the 
microworld, is evoked by the expressions and the commands available in 
L’Algebrista. According to the Vygotskian theory (Mariotti, in press), 
expressions and commands may be thought as external signs of the Algebraic 
theory, and as such, they may become instruments of semiotic mediation 
(Vygotsky, 1978).  

The process of building a theory, by proving, accepting and using new 
theorems, can be evoked by specific activities within L’Algebrista. Proving that 
two expressions are equivalent in algebra corresponds to proving a theorem. 
Thus, in the microworld, transforming an expression into another, using the 
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available buttons, corresponds to proving a theorem. Furthermore, creating 
using Il Teorematore, a button corresponding two a new equivalence 
relationship, and adding it to the collection of the available buttons, corresponds 
to accepting a new theorem. Finally using a button created with Il Teorematore 
corresponds to using a new theorem. 

In summary, the main instruments of semiotic mediation, offered by 
L'Algebrista, and related to the theoretic aspects of algebra, are:  

• expressions in L'Algebrista are signs of algebraic expressions;  
• given buttons are signs of axioms and definitions;  
• transforming an expression into an other using the buttons corresponds to 

proving that the two expressions are equivalent, the produced chain of 
justified steps (the  justification of each step is reported on its left) 
corresponds to a proof; 

• new buttons, built using Il Teorematore, are signs of theorems;  
• adding new buttons to the set of available buttons is a sign of the meta-

theoric operation of adding new theorems to a theory. 

Some comments, on how such signs can function as semiotic mediators, 
are included in the analysis of some protocols. 

 

Signs derived from L’Algebrista 

The representation of an expression in L'Algebrista incorporates its 
mathematical tree structure, and this structure becomes explicit, �tangible�, 
thanks to the selection function, when the user interacts with the environment.  
 

In the case of a comparison task, an example of how pupils may use the 
selection function as an external sign of control of the algebraic structure of an 
expressions, is provided by the protocol in Fig. 4: Lia (9th grade) tries to prove 
that the two expressions are equivalent, and at each step she underlines (selects) 
a sub-expressions and transforms it using an axiom that applies. This behaviour 
recalls the interaction between the user and L�Algebrista: when transforming an 
expression, one first has to select a sub-expression and then to click on a button 
representing an axiom that applies. Furthermore, in the example, Lia refers 
clearly to the buttons of L�Algebrista using the word button (Ita.: bottone) and 
reproducing the iconography of the buttons of neutral elements (Ita.: elementi 
neutro) and of the computation buttons (It.: bottoni di calcolo) that she is using. 
In particular she refers to the following buttons: 
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• 0+A  A: this button transforms an expression of the kind �0+A� into the 

expression �A�, where �A� can be any expression. This button corresponds 
to the axiom defining the neutral element of the sum operator. 

• 0*A  0: this button transforms and expression of the kind �0*A� into the 
expression �0�. This corresponds to one of the properties of the �zero� 
element concerning the multiplication operator; such a property, in our 
experiment, is assumed to be an axiom. 

• 3  1+1+1: converts a number into its decomposition as a sum of ones, 
and, if applied on a sum of numbers, transforms it computing its result. 
This button corresponds to the definition of sum between numbers, it does 
not apply on letters. 

 

Fig. 4 - In the case of a comparison task, performed in paper and pencil environment, the 
protocol shows that pupils use signs clearly derived from L�Algebrista. In particular the 
selection function, or the iconography of the buttons. 

 

Making conjectures and proving 

Let us consider the problem reported in Fig. 2, which was given in class, with no 
computers; pupils are asked to compare three expressions and to find out which 
of them are equivalent; the produced conjectures are required to be proved.  
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Fig. 5 - Silvio first of all checks the equivalence using his computing skills, once he made his 
conjecture he uses the properties of the operations (i.e. axioms) and a theorem to prove it. A 
translation of each statement is reported on the right of the image. 

I think the 1st and the 3rd are equivalent, but not the 2nd, because applying the 
properties they become equal, while the 2nd does not. 

I applied the distributive property. 
I applied the distributive property on these two pieces. 
I summed the two equal terms –a*b –a*b and I cancelled its result with it 

opposite obtaining 0 for the 1st theorem. 
I cancelled also +b*b with its opposite and as it was –2b*b I obtained –b*b. 
At this point the 3rd expression is equal to the 1st expression 

Silvio (Fig. 5) begins reducing the second and the third expression in a 
form that makes easier comparing them with the first. This part of the protocol 
looks like typical protocols produced by pupils when asked to compute (ita.: 
�calcolare�) expressions. In this case Silvio is not required to compute 
expressions, but he uses his computing skills to produce a conjecture: as a result 
he finds out that the third expression is equivalent to the first. Note that Silvio�s 
explanation of how he produced his conjecture anticipates its proof; the 
properties of the operation, the axioms previously introduced, are used by the 
pupil already during the heuristic phase as tools to accomplish the specific task. 
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In the last part of the protocol, as required, Silvio writes a correct proof of 
the equivalence of the two expressions referring to axioms and theorems. In 
particular he refers to the �1st theorem� that the pupils proved on their own, such 
theorem states that �a-a=0”. From a formal point of view the chain of equivalent 
expressions of the second part of the protocol represent a real proof, while the 
chain reported in the first part does not because steps are not explained referring 
to algebra theory.  

Fig. 6 - Marta substitutes letters with numbers to find out which of the three expressions are 
equivalent; nevertheless she uses axioms and theorems (as she remarks) to prove the 
equivalence of the first and the third expression. 

The first and the third expressions are equivalent, while the second is not 
because giving the same numerical numbers to a and b  the result is not 
the same of the other two. 

Distributivity of multiplication (axiom). 
Commutativity of multiplication (axiom). 
Following our theorem this is 0. 

Differently from Silvio, Marta (Fig. 6), does not use the properties of the 
operations to produce her conjecture: she substitutes numbers to letters and 
computes the obtained expressions. Nevertheless, when proving the equivalence 
between the first and the third expression, Marta produces a correct formal 
proof. She reports, at each step, the axiom or theorem she is using and 
underlines the sub-expression to which each specific axiom/theorem is applied.  

In particular, she correctly specifies (as required) whether any equivalence 
relationship is an axiom or a theorem. This distinction corresponds, in our 
teaching experiment, to the distinction between given principles (axioms) and 
relationships that were discovered and proved by the students (theorems); it 
finds its counterpart in L�Algebrista: axioms are represented by given buttons, 
theorems are produced by pupils with Il Teorematore.  
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Finally, the fact that Marta uses the words �our theorem�, referring to the 
�1st theorem� mentioned by Silvio, shows how she is conscious that she is using 
a theorem she produced together with the other pupils.  

The last example we consider is the case of Marco (Fig. 7); he does not 
give any explanation of how he produced his conjecture and doesn�t seem to be 
sure of what he found out: he says that he �thinks that� � and he is going �to try 
to prove� the equivalence between the second and the first expression. What he 
does is to transform the second expression into the first one referring to the 
properties of the operation and to the buttons of L’Algebrista. Although he 
doesn�t produce a correct proof, as the two expressions are not equivalent and he 
doesn�t use correctly the axioms he mentions, Marco has taken a theoretical 
perspective: he is conscious that he has to produce a proof and he tries to base 
his reasoning on the given axioms and theorems represented by the buttons of 
L’Algebrista. 

Fig. 7 - Marco tries to prove a wrong conjecture arriving to a wrong conclusion. It is notable 
how he is conscious that he is trying to produce a proof and how he tries to base his reasoning 
on the given axioms and theorems represented by the buttons of L�Algebrista. 

I think that the first two expressions are equivalent, and I am going to try to 
prove it: 

Associative property. 
3rd button of neutral elements. 
Risky button. 
Expressions 1 and 2 are equivalent, while number 3 is not. 

Conclusions 

The development of information technologies raised many issues, one of those 
concerns the revision of school curricula taking into account the changes 
brought by this development. The ideas we presented in this paper give an 
example of a new way to approach symbolic manipulation (Ita. "calcolo 
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letterale"). Our proposal is to be considered in the broader perspective of the 
introduction of pupils to theoretical thinking. Thus symbolic manipulation has 
been interpreted taking a theoretical perspective and the particular software 
environment has been designed as embedding Algebra Theory. 

The axioms incorporated in the buttons of L'Algebrista become tools that 
pupils can learn to use to transform expressions in order to attain activities� 
goals, and as such they can function as semiotic mediators. The distinction 
between buttons representing axioms, and buttons for computations, helps 
distinguishing the terms �proof� and �verification�; and may contribute to build 
the meaning of proof as well as the idea of theory. Furthermore the possibility of 
creating new theorems and making them usable, offered by �Il Teorematore�, 
lets the student take part in the activity of theory evolution. 

The presented protocols highlighted how some features of L’Algebrista 
can mediate some specific concepts related to algebra. In particular it is worth to 
observe that in the presented examples a central role, seems to be played by the 
particular set of activities: pupils refer explicitly to the history of the 
construction of their theory by using expressions like �our theorem� or �1st 
theorem�.  

Thus the following questions rise: what kind of activities may a teacher 
set up to exploit a tool to facilitate processes of semiotic mediation? Which of 
such processes may happen merely by using the specific tool? And which of 
them may happen and be effective only thanks to its integration in social 
interaction with peculiar activities? A research project was set up in order to 
study such questions. In particular the triangle Teacher-Microworld-Pupils will 
be studied in terms of semiotic mediation in the case of the joint use of 
L’Algebrista and Cabri-géomètre.  
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Abstract: The authors have tested on a group of secondary school students (15-
16 aged) a didactical path which has the aim of develop logical reasoning and 
to point out the fundamental elements and axioms of classical Euclidean 
Geometry. The basic methodological idea of this path is the use, strictly linked, 
of an unusual geometrical environment (the Mascheroni Geometry) as 
conceptual tool, and of the software Cabri-géomètre as technological tool. The 
path has been obtained, extending and completing a didactical proposal that the 
authors have already published in Italy. In this paper we describe and discuss 
this experience. 

 

1. Introduction 

The authors, and in particular Luciana Zuccheri, who teaches on course for 
mathematical degree of the Trieste University, have observed a decrease of 
logical reasoning abilities in the students that begin the University. This 
observation is validated by mathematical tests proposed to fresher students of 
scientific disciplines (e.g. see: Boiti and Fiori 1997). This fact seems to be more 
serious than a lack of contents, which could be more easily remedied. 

At pre-university level, the method of hypothetical-deductive reasoning 
may be mainly learned studying Euclidean Geometry and in Italy this matter 
must be treated in the two first years of secondary school (14-16 years old 
pupils).  Nevertheless generally the teachers devote to Geometry few time and 
deal with this subject superficially. In opposite trend to this teaching praxis, 
recently many authors have underlined the importance, to formative aims, of the 
rational method in Geometry teaching (e.g. see: Bernardi 1997, Mammana and 
Villani 1998) and the pedagogical and didactical value of the geometrical 
constructions (see: Avron 1989). We think that one of the reasons of 
misunderstanding of the rational method by the pupils is that, at the beginning of 
secondary school (14-15 aged pupils), the teacher cannot point out in formal 
way the axioms of Geometry and must carry out the proofs partially using 
intuition, so at the end the pupils get an unsatisfactory idea both of Geometry 
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and of rational method. Therefore starting from the second year of secondary 
school (15 or more aged pupils) would be fruitful propose to the pupils a deeper 
analysis of the fundamental geometrical concepts, that they have learned earlier. 
But at this stage it is not possible to get back to the beginning and it is necessary 
a motivation, which excites the curiosity and the intuition of the pupils. 

To reach this goal, we have tried to link an unusual (and old) geometrical 
environment (the Mascheroni Geometry) and a modern technology (the 
computer with the software Cabri Géomètre), using them as didactical tools, the 
first as a conceptual tool and the second as a technological one. The reasons of 
our choice are the following: 

− In the Mascheroni Geometry, even if we remain in Euclidean 
environment, we must consider any geometrical object in a new aspect 
and we had the conviction that this could force the pupils to discuss again 
all the necessary theory related with the fundamental entities and axioms

1
.  

− Sharing the opinion of several authors (e.g. see: Noss and Hoyles 1996), 
we were convinced that the new didactical technologies and the new 
media could be very useful for suggest more effective ways of teaching 
the rational Geometry. In particular, we believe that a dynamical 
Geometry software like Cabri makes easier the understanding of 
geometrical constructions, it is useful to stress dynamically mathematical 
aspects and to explore new possibilities, and it could create problems 
related to computing approximation, which are interesting to discuss. 
Further the realization of �macro-constructions� points out the limit-
situations and, writing the instructions, the pupils improve their language. 
These convictions come from experiences realized by the authors in pre-
service and in-services courses for teachers, and by teachers of Didactics 
Research Group of Trieste which use Cabri for several years at middle 
school level (see: Rocco M. 1996). The software Cabri is well known and 
there is a very large literature about it (e.g. see the website: http://www-
cabri.imag.fr/; for the Italian literature see the references contained in: 
Boieri 1996, Pellegrino and Zagabrio 1996). 

Using the software Cabri, in a first time we have produced a didactic 
proposal for secondary school teachers (see: Gallopin and Zuccheri 1999). This 
contains a didactical path for 15 or more years old pupils, which leads step by 
step to the proof of Mohr-Mascheroni Theorem, which states that "Every 
geometrical problem, which can be solved by means of ruler and compasses, can 
be also solved by compasses only". To give the proof of the Theorem we 
constructed a little set of linked propositions, which is easy to review globally at 
the end.  
                                                 
1 We refer, at this stage, only to the classical axioms of Euclid's Elements. 
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In a second moment, in the last months of the school year 1998/99, we 
have planned and realised the experience that we describe in the following. 

 

2. Aims of the experiment 

The principal aim of this experience was extend and complete a part of the 
didactical proposal contained in Gallopin-Zuccheri 1999, and to test it, 
observing in particular: 

a. About the mathematical contents, if they could excite the interest and if 
they are understandable from 15-16 aged pupils. 

b. About Cabri, if in this case it is useful to improve the comprehension of 
the mathematical contents. 

c. About Cabri, if in this case it is useful to improve the intuition, the 
formulation of conjectures and to suggest strategies for their proof. 

Furthermore, we wanted that the pupils who participate to the experiment 
achieved learning objectives regarding the contents, and we wanted to give them 
a first approach to the university environment. 

 

3. Organisation of the experiment 

In order to realise the experience, we involved eight2 students (15-16 aged) of a 
secondary school of Trieste (a "Scientific Lyceum�); half of them came from the 
third class of a traditional course, while the others came from the second class of 
an experimental course. The sample was composed in the same number of boys 
and girls; they participated of their own free will. 

At the beginning we asked the pupils to fill a short questionnaire about 
their familiarity with computer, their knowledge of Cabri, their interest, and 
school issues in Mathematics. We got the following answers: 

− Three pupils declared a good familiarity with computer, three a sufficient 
familiarity, two a not sufficient familiarity. 

− Nobody knew Cabri. 

− Six pupils declared a lot of interest in Mathematics, two a sufficient 
interest. 

                                                 
2 We considered this a good number to permit that two researchers make a complete observation. 



Working Group 2 

 155

− Three pupils declared very good issues in Mathematics, three good issues, 
and two sufficient issues. 

We developed the experience in three sessions of two hours, after school 
hours. In each of them we carried out a lesson using the following method: 
problem posing and solving, by means of collegial discussion guided by us, and 
individual work. 

The experience took place in computer laboratories of the Trieste 
University. We have used: 9 personal computers (one for each student and one 
for us), a projector connected to our computer, a camera to record the sessions, a 
whiteboard, floppy disks and paper at student�s disposal (they could save their 
Cabri paints and macro constructions, and could draw and help themselves in 
reasoning using traditional tools; at the end of the experiment, we got these to 
support our analysis). Cabri Géomètre version 1.7 for MS Dos, and Cabri 
Géomètre II were loaded in every computer. 

At the end we proposed a new questionnaire with the aim of understand 
what they thought about the experience, the method and the matter they dealt 
with. We will explain and analyse its results in the last section of this paper. 

 

4. Description of the didactical path 

In the following we briefly describe the activities we carried out in the three 
sessions in which the experiment was divided. We analyse in particular the first, 
to explain how we tried to link the conceptual and the technological didactical 
tools. For more details from mathematical point of view, we refer to Gallopin 
and Zuccheri 1999. 

4.1. First session. One researcher (Zuccheri) explains the subject using a 
whiteboard, the other (Gallopin) shows the aspects related to Cabri, using a 
computer connected with the projector.  Each student has a computer, white 
paper and pencil. 

Problem posing. We start with a brief introduction about the constructions 
by ruler and compasses, and their importance from historical and technical point 
of view. In particular, we deal with the three classical problems and we talk 
about the impossibility to solve them with ruler and compasses (the pupils of the 
experimental course just knew it). We explain the rules of these constructions. 
Any construction is formed by a finite number of steps, in each of them we can: 
a) trace a straight line, b) trace a circle, c) intersect two lines, d) intersect a line 
and a circle, e) intersect two circles. We formulate the Mohr-Mascheroni 
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Theorem (it surprises them very much) and propose them to proof it almost in 
part. We suggest that we must consider a), b), c), d), e) by compasses only. 

Discussion. We discuss with the pupils about the meaning of the problem. 
What does "to solve a geometrical problem by ruler and compasses" and "to 
solve a geometrical problem by compasses only" mean? The main problem 
seems to be the construction of a straight line, which seems to be impossible 
using compasses only. 

Deepening.  The discussion leads to consider the difference between the 
ideal geometrical straight line and the line that we trace by the ruler. We 
conclude that a straight line is given if are given two its points (the students 
remember the postulate "through two points passes one - and only one - straight 
line" and recognize that it is not trivial

3
).  We discuss about the possibility to 

find, starting from two initial points, other points of the same straight line. 

Problem posing. Now we propose to find a way to carry out d) with 
compasses only. 

Cabri. We explain the fundamental tools of Cabri
4
. We can use only point 

and circle (by centre and radius). 

Deepening. We stress the connection between this way to assign a circle 
and the third Euclidean postulate ("it is possible to trace a circle with any centre 
and any radius"). 

Cabri. We show that the initial objects can be moved. Each pupil traces: a) 
two points O, Q; b) the circle of centre O passing through Q; c) two points A, B 
not belonging to the circumference, which represent the straight line AB 
intersecting the circle. 

Individual work. Each student has the following tools: Cabri, paper and 
pencil. 

Suggestion. We suggest to remember some well-known situation in which 
circles and straight lines are related. 

First step. Many pupils remember the radical axis of two (or of a sheaf of) 
circles. 

                                                 
3 This is important, because this postulate is so intuitive that it seems obvious. For the 
didactical implications of this fact in learning processes see E. Fishbein 1998. 
4 In this session we have used the version 1.7 for MSDos. 
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Suggestion. We suggest to analyse the situation of any two intersecting 
circles with their radical axis, and to find how we can use it to solve our 
problem. 

Individual work. Each student has the following tools: Cabri, paper and 
pencil. 

Second step. One pupil (A.
5
) says that, if we could trace a circle "equal" to 

the given circle, with respect to A and B (we correct: "symmetric"), we are sure 
that the straight line AB is the radical axis of the two circles. The intersections 
of the two circles are the intersection points of the given circle with the line AB. 

Problem posing. We point out now the new problem: we have to find the 
construction of the symmetric of the given circle, with respect to the axis AB. 

Discussion. Two symmetric circles must have symmetric centres and the 
same radius. The pupils try to find first the symmetric point of the centre O. 

Individual work. Each student has the following tools: Cabri, paper and 
pencil. 

Third step. A pupil (A.) solves the last problem, without suggestion, with 
paper and pencil. He traces a circle of centre A and radius AO, a circle of centre 
B and radius BO and intersects them. Their intersection is O', symmetric point 
of O with respect to AB. He explains the construction drawing on the 
whiteboard. 

Individual work with Cabri. Now, in a part of the worksheet of Cabri, the 
pupils must individually realize the construction of the symmetric point. We 
explain the command intersection of two objects and its importance (in the 
following we don't need to repeat this explanation). 

Cabri. We explain the macro constructions. We realize together the macro 
construction of the symmetric point (the greatest difficulty for the pupils is 
formulate clear and concise instructions for users; they don't use a direct 
speech, like their textbooks). Then we explain how to save the macro (somebody 
has technical problems). Finally we use the macro to get the symmetric of the 
centre O. 

Problem posing. We pose the problem to find the symmetric of the given 
circle, stressing that they must have the same radius. 

                                                 
5 Here we put in evidence only the answers relevant to solve a problem. 
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The solution. A girl (F.) says that we have to find the symmetric of Q with 
respect to AB (we think that this elegant solution has been forced by the way we 
used to assign the circle in  Cabri; in general it is more natural to "transport" 
the radius, but it needs a special construction). She applies the macro 
construction to Q and gets Q'. The intersection of the two circles of centre O, O' 
and radius respectively OQ and O'Q' produces the two intersection points of AB 
and the given circle (we emphasise the solution drawing, and then erasing, with 
Cabri the straight line passing through AB). 

Discussion at the white-board. We discuss with the pupils the solution, 
drawing on the whiteboard. 

Cabri. We use �aspect of the objects� to adorn the figure (the pupils like to 
paint the figures). We use the reconstruction step by step to overview our work 
(all the pupils are very interested and satisfied, and, considering the numerous 
circles which appear, they recognize the utility of the macro construction). We 
start to produce the macro construction of the intersection of a straight-line and a 
circle (the pupils continue spontaneously by themselves); at the end a pupil (M.) 
dictates the instructions for the user (it is late, but they will finish the work). 

Discussion drawing with Cabri. With the pretext of testing the macro 
construction, we explore with the pupils if the solution is complete or not. We 
observe that the macro construction produces correctly the intersection points, if 
they exist (we move the initial points until the straight line AB doesn't intersect 
the circle). Finally we show that, if the initial points A, B are aligned with O, the 
construction doesn't produce the intersection points. We assign to the pupils, for 
the next session, the task to explain it.  

4.2. Second session. In this session
6
 we propose construction problems by 

compasses only: to transport a segment, to double a segment, to bisect an angle. 
Nobody has solved the task proposed in the previous session: we discuss it 
(theoretical and approximation problems arise). The work is individual, with 
final collective discussion (we observe the work style of anyone and give 
individual hints to perform the constructions with Cabri, when it is necessary). 
The pupils can use the computer in the resolution process (we observe that for 
somebody the computer make easier this process, but for others the technical 
difficulties hinder the process, or Cabri give no hints for the solution).  
 
 
4.3. Third session. We have 4 computer and the pupils work in pairs (initially 
we had proposed to work without computer, but the pupils were disappointed). 
We consider more formally the problem to intersect a circle with a straight line 
                                                 
6 In this session we use Cabri II, version for MS-Dos. 
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aligned with its centre (we need it for bisecting an angle). The construction is 
more difficult in this case. We explain the proof on the whiteboard, but it is too 
long and few pupils understand the explanation until the end. Then we lead the 
discussion about the way to establish with compasses only if three points are 
aligned (a property that usually seems to be trivial). This problem interests the 
pupils and they try to find a solution. With a little help they find a method and 
test it using Cabri. 

 

5. Comments and conclusions 

The questionnaire we proposed at the end contained the following questions: 

1. Why did you participate in this experience? 
2. What did you expect of this experiment? 
3. Did you like the experience? Explain why. 
4. Should you like to be involved in other experiences of the same kind? 
5. Do you think that it could be interesting also for your classmates? 
6. Did you meet any difficulty? And, if the answer is �yes�, did it arose from 

the subject or from the use of computer or from both? 
7. Do you think that the computer helped you in the resolution process of the 

problems or, on the contrary, caused other complications? 

The answers were the following: 

1. Three students declared that they participated in the experiment because 
they were interested in the argument, five students in the use of computer. 

2. Their expectation was the same of their motivation. 
3. All pupils liked the made work; the reasons were very different: four 

pupils considered the matter interesting, two were enthusiast about the use 
of computer in geometry, two were satisfied to be actively involved in the 
lesson. 

4. All answers were affirmative. The pupils were very satisfied of the 
experience (successively many of them asked if was possible repeat a 
similar experience the next school year). 

5. Five pupils thought that the classmates could be interested in a similar 
experience; three didn't give a sure answer.  

6. Three pupils didn't meet any difficulty, five declared they met very few 
difficulties, regarding the treated subject (not regarding the use of Cabri). 
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7. One pupil declared that the use of computer caused him more 
complications. Seven declared that the computer helped them, "because it 
makes easier drawing the figure" (6 similar answer) and "because it 
makes easier the solution process" (1 answer).  

Furthermore, we have verified by individual interviews, during the 
experience, the learning of the principal contents, with satisfactory results (we 
didn't test it again in a second time, to verify the keeping of the knowledge after 
a long time, because of the end of the school year). On the basis of this, of their 
answers and of their interest during the work sessions we can conclude that we 
have reached the aim we proposed in Section 2 at a). 

About the aim proposed in Section 2, at b) and c), we observed during the 
experience that Cabri is a very good didactical tool for the teacher to explain and 
to give hints, using all the possibilities (drawing and moving the figures, 
carrying out and verifying macro constructions, repeating the construction step 
by step), with the aim to improve the comprehension and promote the 
formulation of conjectures and problem solving strategies. The teacher plays an 
important role in this process. 

About the possibility of improving the pupils autonomous ability of 
formulating conjectures and strategies for their proof, first of all we want to 
stress that, in our opinion, this sort of abilities need a long time of training and 
maturation to be developed. Indeed, in this short experiment we hoped only to 
get some indications. Observing the pupils' work-styles in problem solving 
activities which took place during the whole experiment, we noticed different 
behaviours. Now we restrict our analysis to the solution process of 5 problems 
of Mascheroni Geometry which we formulated very carefully and which the 
pupils had to solve using compasses only. They are the following: 

1. Find the symmetric of a given point with respect to an axis. 
2. Find the symmetric of a given circle with respect to an axis. 
3. Duplicate a given segment. 
4. Transport a given segment in a given point. 
5. Bisect a given angle. 

With respect to these problems, we observed the following four situations: 

I A. (a boy with very good results in Mathematics) solved 3 problems and 
F. (a girl with good results in Mathematics) solved 1 problem. They 
belonged to the same experimental course. Both worked intensively 
making various conjectures. We observed they worked using generally 
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first paper and pencil, and only in a second moment the computer. 
Therefore we can't get any conclusion about the possibility that Cabri 
helped their intuition in a relevant way. 

II M. (a boy with sufficient results in Mathematics belonging to the 
experimental course) and B. (a girl with good results in Mathematics 
belonging to the traditional course) solved 2 problem, using only the 
computer, without paper and pencil. M. had a good familiarity with the 
computer and liked it. B. declared an insufficient familiarity with the 
computer, but at the end declared that she liked very much working with 
the computer and that the computer helped her in the solution process. In 
this case we can say that Cabri helped their intuition. We think that the 
common reasons of success in these two cases were the strong motivation 
and their immediate familiarization with Cabri. 

III L. (a boy with good results in Mathematics belonging to the experimental 
course) declared a good familiarity with the use of computer (and we can 
confirm it), but he didn't realize autonomously any solution using it or 
using paper and pencil, throughout he seemed to be very happy to use the 
computer. We observed that his interest in computer was so strong that he 
didn't put attention to the geometrical problems. This hindered him to get 
any autonomous result. 

IV D. (a boy with very good results in Mathematics, belonged to the 
traditional course, with a sufficient familiarity with computer), R. (a girl 
with good results in Mathematics, belonged to the same traditional 
course, with not sufficient familiarity with computer), and P. (a girl with 
sufficient results in Mathematics, belonged to the same traditional course, 
with a sufficient familiarity with computer), didn't use paper and pencil to 
solve the problems, but they wanted use only the computer. Cabri didn't 
help them because they didn't solve autonomously any problem. 
Nevertheless at the end of the experience, they declared that the use of 
Cabri helped them: we think that they refer to the comprehension of the 
geometrical explanations given by us and by the other students. In our 
opinion, in these cases, the little knowledge of the use of computer has 
played a decisive role. In fact we observed that they concentrated their 
attention on the use of Cabri rather than on the geometrical problems. 

As we have seen, someone had intuitions also without computer, others 
working with Cabri, others (having or not familiarity with the computer) weren't 
helped by Cabri. On the basis of these observations and considering also our 
personal experiences, we mind that, about the aim proposed in Section 2.c), we 
can conclude that, if the geometrical intuition is sufficiently developed and if the 
difficulties linked to the use of the software are overcome, the use of Cabri 
became conscious, useful and productive also in the direction of formulating 
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conjectures in problem solving activities. 

The difference in the results obtained by B. and by the student of the 
group described in IV (in particular by D. and R., which had results in 
Mathematics and initial familiarity with computer comparable with B.), puts in 
evidence that the familiarization with the software could need different training 
times. We think that it may be interesting to investigate if, after a longer training 
period, pupils with the same characteristics of the group IV can improve their 
abilities in formulating conjectures and in general in problem solving activities. 
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Abstract: This paper describes the results of a pilot study realized in the fifth 
grade of school attendance in the Czech Republic (children aged 11) focused on 
use of spreadsheets in the classroom. The paper discusses some children results 
illustrating how Excel can influence children’s reasoning. 
 

1. Background, aims of the study 

The development of the use of modern technologies in last decade in the Czech 
Republic has been so dramatic that nobody could have expected it 10 years ago. 
From the initial idea, that only young people would be able to handle the 
computer, computers have become, for many people, the daily reality. This 
development should lead not only to the changes in the content of school 
subjects, but also, undoubtedly, large changes in the philosophy of education as 
a whole. This �living� technology could provide the pupil with flexible and 
rational knowledge, skills and competencies. That is why information 
technologies should be implemented into the education as an integral part of 
many activities (compare with global education) not only as a special subject. 
The usage of computer is a preparation on the period when the pupil leaves the 
school and would be expected to work and live in the environment that is not 
more possible without computers.  

In Czech curricular materials it is explicitly said that: �The knowledge and 
skills obtained in mathematics are the prerequisites for understanding in 
sciences, economy, technologies and usage of computers. � The pupils should 
learn simple statistical tables and diagrams, use of formulae and understand it, 
express in words and graphical tools relationships of the quantities in the society 
and nature, ��(Mathematics � curriculum for 1st � 9th grade Czech School, 
1996) To fulfil this target is possible with the support of computer but does not 
result from any activity with technology automatically. As far as the usage of 
computers will stress the procedures and sequences of buttons, it can lead to the 
stress and actually has opposite effects.  

With the task to obtain a view how can the possibility to use computer 
with specific program � spreadsheets � influence the strategies of solving 
problems we conducted a pilot study (Tr�ilová - Ho�pesová, 2000) with a group 
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of 10-years olds.  Children solved 4 problems with the help of computer and 
program Excel. In this study the results of two problems will be discussed.  

We created specific learning environment, constructive, in my opinion, 
that enables the children use computer or not for solving problems. In the course 
of experimental education we perceived the ability of adaptation of the learners 
to this new environment. Excel seems to us more flexible and user-modifiable so 
that the children can use this environment for various purposes. There are sets of 
problems for which spreadsheets are a useful problem-solving tool (activities 
that focus on data that can be collected from variety of sources, explorations into 
relations between numbers). There appears to be a minimum level of syntax, 
which children need to know before they can start to use them. The advantage is 
that a special long training is not necessary. In order to use Excel as 
mathematical tool pupils need only to be able: 

! to orient in the table, 
! to understand the way in which rules can be constructed from values, 
! to understand what happen when the rule in one cell is replicated into 

other cells (compare: Ainley, Nardi, Pratt, 1999). 

The aims of the study: 

! To gain broader understanding of how the experience fit into the larger 
field of current mathematics education.  

! What type of interactions goes on between a child and a computer? 
! Impact in different mathematical domains 

What is the influence of the use of computer on problem solving strategies of a 
child? 

It is possible to use a spreadsheet to do mathematics after only a brief 
introduction. In our study children had no difficulty handling Excel. They 
seemed to understand what they were doing and they frequently could explain it 
well orally often by pointing at the screen, writing down their findings. 

The use of computer strongly motivates the children to solve the problems 
(the outputs have good graphical quality, a lot of computation was done in short 
time). 

Every pair of children solved the problem on their own level of 
understanding (finding some results, finding all results, and/or creating 
generalisation).  
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Method 

In this contribution the study involved four lessons of experimental education. In 
first two lessons the children were given the opportunity to use/or not use the 
computer to solve the projects. In 3rd and 4th lesson were possible to solve the 
problem only with help of computer. Explanation of each spreadsheet�s skill or 
concept was performed via demonstration at the computer or in discussion 
format. To solve the problems children entered numbers to spreadsheet and they 
used them for calculations (they created formulas and used a graphing facility). 
They noted the results in the worksheets. We observed these activities of pupils 
and their discussions in pairs. We focussed on next abilities of pupils: 

• To predict further development according gained results (entering a value, 
examining the results, choosing another value based on newly calculated 
display). 

• To decide what calculations is necessary to be done. 
• To generalise the rule.  

In the study children solved four projects (Tr�ilová - Ho�pesová, 2000) with the 
support of program Excel. Here the results of two of them will be discussed. 

 

Multiplication tables and their patterns  

Problem: 

Hana is the 2nd grade pupil. She learns the multiplication facts. There are some 
pattern in the rows of multiples which can help her to remember them, e. g. in 
the row of multiples of 5 there are only figures 0 and 5 as a number of units. 
Can you help Hana to find more patterns dealing with multiplication facts?  

The main task of the project was to introduce the basic skills of using a 
computer with spreadsheets programme: to orient in the table, to enter number 
and formula in a cell, to copy a formula containing relative references to another 
cells). We suppose that children will solve the problem without the help of 
computer or that they would generate sequences of numbers and look for 
patterns.  

Tables 

Children solved two problems focused on creating and using formulas, 
reverse the formula.  
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Problems: 

Fill in the table; firstly you have to increase each number for 7 and then to make 
it smaller seven times.  

Number 735 959 2 345 3 654      
Changed number     3 787 259 6 594 3 598 4 221 

 

Magic numbers are the products of two following numbers, e. g. 56 is 
magic because it is the product of numbers 7 and 8. Find out the numbers what 
must be multiplied to obtain these magic numbers.  

 1 560    4 830    3 782    552   
           … 

 

Discussion of children’s results 

Multiplication tables and their patterns  

All involved children used computer to solve the problem. They created 
multiplication tables of various numbers and expressed results of their 
observations on different level of abstraction: 

1. Children only created the multiplication tables on computer and rewrote them 
in the worksheet without comments.  

2. Pupils realised the occurrence of different digits in the multiplication tables, 
as in the example given in text of the problem. Some examples of children�s 
solutions are shown in fig. 1. 

Translation:  
In the multiples of number 5 there are in the end numbers, e. g. 25 and 50 always 5, 0, 5, 0 
etc.  
In the multiples of number 78 there are in the end always numbers 8, 2, 6, 0, 4 and again 8, 2, 
6, 0 4 and in multiples of number 98 are in the end always numbers 8, 6, 4, 2, 0, that means 
always – 2, e. g. 8 – 2 = 6 etc.  

Fig. 1 
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3. Children made the rows of multiples of greater numbers and found out the 
similarities between them and basic number facts (fig. 2). 

 to the multiples we write only hundreds, thousands, … but the multiples do not change. 

Fig. 2 

4. Children did not create the multiplication table. They put down multiples of 
some numbers and try to find a pattern (fig. 3). 

multiplying the same numbers we obtain always odd number, even number, odd number, … 

multiplying numbers always bigger for 1 (5 . 6, 6 . 7) even numbers come always out and the 
product is bigger for 2. 

Fig. 3 

Tables 

All of participating children used computer to solve both problems. First of all 
the children create in Excel the same table as they have on work list. After some 
trials they were mostly able to solve the tables, even in case where the output 
numbers were given. The strategies again varied according the level of 
abstraction. 

1. Children put in the formula for each number as in example given in fig. 4.   
  A B C E F 
1 Number 735 959 2 345 =E2/7-7 =F2/7-7 
2 Changed number =(A1+7)*7 =(B1+7)*7 =(C1+7)*7 3 787 259 
3     

Fig. 4 

2. Children put in the formula for the calculation in cell A2 and then copied 
it to other cells. For the computation with given output they put down the 
new formula in cell E1 and copy it for next columns. 
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68*67 

3. Children put in the formula in cell B2 and copy it into some cells in line 2 
(An arrow in Fig. 5 shows it.) In cells F2, G2, �   figure 0 occurred at the 
beginning. Children changed numbers in cell F1 (G1, �) as long as a 
good result occurred. 

 A B C E F G  
1 Number 735 959 2 345  
2 Changed number 106 138 336 0 0 �

 Formula written in 
line 2 =(B1+7)/7   

Fig.5 

To solve the problem with magic numbers three strategies occurred: 

4 556   
4 970   

1. children put in each cell formula for 
multiplication of concrete numbers, they seemed to 
manage their trials according to previous 
experience; 

4 692   

    
A B C 
72 73 5 256 
53 54 2 862 

2. children put in cells the formula for 
multiplication the numbers in columns, they 
managed their trials according to previous obtained 
products; 35 36 1 260 

    
14 15 210 
15 16 240 
… … … 
369 370 136 530 
370 371 137 270 

3. children used formulas to create two columns of 
following numbers and third column of their 
products, and then they picked up the demanded 
�magic� numbers. 

 
While the first and second strategy reminds the use of pocket calculator or 

written multiplication, the third strategy used fully the opportunities of computer 
and it is the starting point to introduce the iterative method of problem solving.  

Working with spreadsheet children demonstrated a relatively high level of 
skill in handling data in all its forms (collecting information, drawing graphs, 
interpretation of collected information and graphs). This seems to be successful 
way in which referenced types of graphs can be introduced to children. 

The move to advanced mathematical thinking involves a difficult 
transition, from a position where concepts have an intuitive basis founded on 

70*71 

=A1*B1

Fig. 6 
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experience. Where to obtain an experience with move, changes, and 
relationships between them? 

Looking at numbers more from the point of view of relationships and 
structures, work with spreadsheets can be used to support pupils in the transition 
from arithmetic to algebra (Sutherland, Rojano). This transition involves 
manipulating general relations, operating on the unknown, working with 
functions and inverse functions, and developing formal algebraic methods. 
Pupils from primary to secondary education can learn to use the spreadsheets 
language to solve mathematical problems, and these experiences form a basis 
from which more traditional algebraic knowledge can be developed. In this 
sense, spreadsheets provide access to the potential of the algebra language, thus 
removing one of the main barriers to learning algebra. In addition the computer 
frees pupils from the arithmetic activity of evaluating expressions, thus enabling 
them to focus on the structural and algebraic aspects of a problem. 

Conclusions 
The adaptive process of the learners, it means the way the learners make sense 
of the feedback and derive from this an understanding of their own activity 
shapes the meaning they construct of the mathematics involved. 
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Abstract: In the field of the educational use of CAS, a great body of research 
papers and reports on experimentation has been published. Still, questions exist 
about the uses of CAS and about the specific contribution of CAS. A meta-study 
of papers on IC Technologies covering research studies and experimentation 
carried out in various countries and published in the years 1994 to 1999 has 
been conducted by a team of researchers. A set of papers on the use of CAS has 
been included. Considering the position of these papers in the meta-study 
provides interesting insight into the specificity of this technology. 

 

Introduction 

Computer Algebra Systems (CAS) have been available for more than 15 years 
and early research studies emphasised their potentialities for enhancing the 
students� practice of mathematics and for providing opportunities for a change 
in teaching. A lot of research studies, innovations, experimentation has been 
done and published. Still, interrogations remain about the uses of CAS and about 
the position of CAS among the other Information and Communication 
technologies. 

• What would be a real integration of CAS into the into students' practices, 
learning and understanding of mathematics?  

• What specific view of the use of Information and Communication (ICT) 
exists in research about CAS?  

An opportunity for investigating these questions arose from a research 
project funded by the French Ministry of Education which offered to make use 
of existing published works to address questions on the use of ICT. 

A team of didacticians belonging to five research teams worked on these 
questions (see notes 1 and 2). We were from various field of the use of ICT in 
the teaching and learning of mathematics. A first idea was the great diversity of 
the approaches and findings of papers in the field of ICT reflecting the 
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complexity of the integration of technology. Thus, as a difference with classical 
meta-studies which �translates results to a common metric and statistically 
explores relations between study characteristics and findings� (Bangert-Drowns 
and Rudner, 1991), we did not try to define a single metric. It appeared to us that 
looking at the integration of technology requires a plurality of perspectives or 
approaches and that a first stage of this �meta-work� would consist in a precise 
identification of these perspectives. 

For this reason, our methodology was to conceive of possible perspectives 
or factors (that we named �dimensions�). Our aim was then to analyse writings 
on the introduction of ICT. As a writing focuses on a necessarily limited number 
of perspectives, we wanted to be able to identify in which dimension(s) its 
contribution is and what specific approach and results it brings into this(these) 
dimension(s). 

Thus, our method was made up of two stages. 

1. Considering a corpus of papers representative of experiments and 
research on the use of technology, to specify our set of dimensions.  

2. Classifying a collection of papers through these dimensions, to determine 
clusters representative of typical perspectives of the use of technology 
and, inside the clusters, to relate the dimensions of analysis to the specific 
results obtained by the papers.  

For us, the analysis should cover the varied fields of the use of computers 
into the teaching of mathematics: (dynamic) geometry, computer algebra and 
other algebraic software, arithmetic and graphical calculators, computerised 
learning environments� Computer Algebra is one of these fields. In the 
prospect of the above questions, I will focus in this paper on this field, drawing 
on the analysis of writings on CAS included in the general corpus. 

 

A representative set of papers  

The method consisted of starting with a corpus as large as possible to cover the 
whole range of publications regarding the nationality of the author(s), the type 
of work (report on innovation, presentation of software, research report, general 
reflection...), the domain of knowledge (numbers, algebra, geometry, 
calculus�) and the level of the students (primary, high school, college and 
university, pre and in service teachers). 

We decided to cover the years 1994 to 1999, which appeared to produce 
enough diversity. We used a variety of international sources (The " Zentralblatt 
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für Didaktik der Mathematik" database with the entry "Computer Assisted 
Instruction", four international journals on mathematical education, seven 
international journals on computers for mathematics learning, books with 
chapters on technology and math education�) as well as French works 
(professional and research journals, philosophical dissertations, research and 
official reports�) 

This resulted in a corpus of six hundred and sixty two published works. 
We analysed these papers first to establish the different dimensions in the 
approach of the use of technology (first stage), then to select a sub-set for a more 
detailed analysis of the dimensions and of the outcomes (second stage).  

Among these six hundred and sixty two publications, one hundred and 
forty six (22%) were about CAS use. Among the other fields, only geometry has 
an approaching percentage. This high percentage could be surprising, because 
CAS technology is offered to a limited number of students of the upper 
secondary, college and university level and it not so widespread in the actual 
practice as compared with, for instance, numerical and graphical calculators.  

This high percentage could be related to our choice of including all the 
papers issued of a journal dedicated to CAS educational use. This journal was 
first published from 1994 under the name "International Journal DERIVE". In 
1997 it changed to the name "International Journal for Computer Algebra in 
Mathematics Education" (IJCAME)... As stated in the editorial of the first 
number after the change of name, "it exists to provide a medium by which a 
wide range of experiences in the use of symbolic algebra in mathematics 
education can be presented, discussed, criticised and best practice assimilated 
into the new curricula of schools, college and universities�" (Berry 1997). So, 
this journal offers a great interesting variety of papers and our choice to include 
all papers of this journal helped to consider a whole range of works, making sure 
that no approach of CAS use is neglected. 

The IJCAME was not our single data source: forty eight publications 
came from a great variety of other journals or books. For instance, eight papers 
came from the proceedings of a European congress held in Montpellier in 1998 
(Guin, 1999), four from the book of the Nato series "Advanced Educational 
Technologies for mathematics and Science" and three from the IFIP 98 book "IC 
technologies in school mathematics" (Tinsley, Johnson, 1998).  

With regard to nationality and type of work the corpus of papers about 
CAS use is close to the general corpus. CAS use is relevant at pre-university and 
university level. Teachers at this level are generally also researchers used to 
writing papers in research journal. Another fact is that symbolic computation 
raises much interest in Math Education, even when not so much classroom use is 
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observed. So the high percentage of the CAS corpus inside our general corpus 
might reflect the great number of papers written in the field. From these 
considerations, a relative representativeness of this corpus in the field of CAS 
use seems reasonable (see note 3). 

The first stage analysis was done by looking at the issues addressed in the 
publications. An abstract of these issues was established for each of the six 
hundred and sixty two publications. From this data, I did a qualitative 
classification of the hundred and forty six papers about CAS educational use. It 
is presented and analysed in the next paragraph.  

Then we selected a sub-corpus for the second stage analysis. This second 
analysis had to enter more precisely into the study of relationship between 
specific questions about the integration of technology in schools and specific 
results obtained. So we identified, in the first stage corpus, publications which 
had sufficiently developed set of questions, methodology and findings. We did 
another selection to avoid papers too close in their analysis and findings. Finally, 
to avoid biases and to respect the diversity of approaches, we did arrangements 
to have a distribution of nations, types of hard and software, domains and levels 
similar to the initial corpus. So, we selected seventy nine papers. Among these, 
twenty one were in the field of CAS use. In a second part of the paper I will 
present this second stage analysis and the findings related to CAS. 

 

A qualitative classification of papers about CAS educational use 

We classified the papers of the CAS field into five great types. 

Technical descriptions and optimistic postulates 
Seventy seven papers (53%) started from a technical description of possibilities 
of CAS. We classified these papers into three subclasses with regard to the 
object they present and analyse. 

1. Twenty eight papers offer just a presentation of technical capabilities of 
Symbolic Computation in a given software or calculator. They generally 
emphasise the potential of these capabilities for visualising, modelling or 
programming. 

2. Sixteen papers refer this presentation to behaviours of students. This 
presentation is generally short and the technical capabilities presented in 
the paper are seen to make students' use of CAS very beneficial.  

3. Thirty three papers are centred on the description of lessons. In some 
cases, they are parts of a new curriculum Sometimes, data is given from 
the authors' experience of teaching these lessons.  
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Argumentative presentations of innovative classroom activities 
Thirteen articles (9%) argued about innovative classroom activities using CAS. 
Contrasting with the above class, these papers gave reasons why CAS might be 
beneficial in these activities. They were teaching issues rather than research 
papers, and so their evaluation was generally based on the author's experience. 

Papers assuming that CAS use will improve teaching and learning 
Eighteen articles (12%) started clearly from assumptions of improvements 
resulting of CAS use by students. We distinguished two sub-classes with regard 
to the specificity of the assumptions 

1. Eight papers started from general assumptions and offered little empirical 
evidence. Assumptions were about understanding, conceptualising, 
problem solving. They offered CAS use as means to save time and allow 
more emphasis on modelling. Authors also often saw CAS as a solution to 
learning problems. 

2. Ten papers started from more specific assumptions, addressing one or 
more of the following issues: improvements of students' mathematical 
abilities by CAS use (problem solving, calculations�), enhancement of 
conceptions, better attitudes towards mathematics, change in the teaching 
strategies. 

The assumptions were tested through the observation of a curriculum 
modified by the introduction of CAS. Papers starting from assumptions about 
students, generally looked for external evidence, comparing "experimental" and 
"control" students. The statistical procedure used in these papers supported not 
always strongly the assumptions. Papers starting from assumptions about 
teaching generally used indicators like the time devoted to the teacher's talk with 
regard to the time of the students' autonomous refection and compared 
observations of classroom situations with and without CAS. Changes were 
observed towards students working more individually or in small groups. 

Paper centred on questions 
Thirty one papers (21%) started from questions about the use of CAS. In 
contrast with the above papers, they did not presuppose advantages of this use. 
The observation of innovations, experimentation or examples of use were not 
presented for themselves, but as a help to address the questions. We 
distinguished six types of questions: 

1. General questions (eight papers): limits and constraints of CAS, problems 
resulting from the use of CAS, types of understanding and thinking 
promoted by CAS use, tasks that CAS more easily tackles, procedures of 
use of CAS, software design and interface, tutorials and teacher training. 
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2. Theoretical questions (three papers): relationship between cognition and 
culture, as seen through the use of CAS, interaction of register of 
expression, discussion of theoretical concepts to help understanding CAS 
use (specific to this use, or general in Math Education). 

3. Questions about students (four papers): use of DERIVE as a tool to 
'diagnose' and remedy students' difficulties, exploitation of the knowledge 
developed through CAS use to help farther learning, difficulties of 
students associated with the use of DERIVE itself or in relating 
mathematical ideas to CAS output, differential attitudes towards CAS and 
other software.  

4. Questions about teaching (three papers): teachers' behaviour or 
difficulties, abilities requested for using new technologies.  

5. Questions about the instrument (two papers): comparison of the TI-92 and 
DERIVE's interface, comparison of calculation procedures and 
conceptions of number with paper/pencil and the TI-92.  

6. Questions about situations of use of CAS (twelve papers): use of CAS 
functions versus menu commands, co-existence of students using 
DERIVE at home and other students, determinants for the resolution of 
non-standard problems using CAS, comparison of procedures using 
various software for a given task, changes of the 'didactical structure' of 
lessons, exams. 

The integration of CAS into the school institutions 
Seven papers (5%) were centred on the use of CAS in the everyday practice of 
teaching and learning in the existing school institutions (we name "integration" 
this introduction of a technology). The upshot is that they considered this use 
generally in the long term. These papers addressed the issue of the "ecological" 
aptitude of CAS to exist in the school institutions rather than the issue of 
"improvements". They got evidence through experimental data but generally not 
with a comparative methodology.  

 

Our interpretation  

The above classification shows a wide range of approaches to the use of CAS 
and specific contributions of these approaches for an integration of CAS into 
teaching and learning. 

Papers with a technical approach of possible use of CAS, prevail. In these 
papers, real references to students' behaviour are scarce. So they cannot directly 
provide a support to the use of CAS in the classroom although they are a basis to 
create and experiment classroom situations.  
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Another approach is to present and argument innovative classroom 
situations. This approach is especially interesting when it reports on long time 
experiment of students' use of CAS. They could advantageously be followed by 
a discussion on the teacher's options. 

Papers starting from assumptions stress on improvements that can be 
expected from the use of CAS. General assumptions on CAS support to students' 
conceptualisation and remedy to difficulties are often followed by optimistic 
conclusions. Other papers specify their assumptions into research hypothesis 
that they try by external comparison often completed by a statistical procedure. 
Ten years or so ago, classroom use of CAS was unusual and not easy to 
organise. So, innovators had to offer strong justifications for this use. The 
comparative approach was certainly consistent with this goal. Its drawback is 
that it gives little real insight in what is really going on when students use CAS. 

It is probably a reason why more papers start from questions, implicitly 
admitting that students' use of CAS is not so straightforward. Very general 
questions have few answers. More precise questions on students, teachers, 
instrumental settings or situations of use bring to a sharper view. They help to 
specify dimensions of analysis of the introduction of technology.  

The last class (type 5) gathers a small minority of papers explicitly 
addressing the issue of integration, which also implies to study questions, but 
with a specific approach to get insight on an ecologically sustainable use of ICT. 
Questions on tasks, procedures and conceptualisation, as well as on CAS as an 
instrument appear as not to be missed. They generally build specific 
methodology to account for the complexity of the integration. 

 

The 'second stage' analysis 

A set of dimensions and questions about the introduction of technology  
In our prospect to look at the introduction of technology with a multi-
dimensional framework, eight dimensions for the analysis of the introduction of 
technology were derived from the study of the papers of the corpus, including 
the above classification of papers in the CAS field. I will restrict in this paper 
my analysis to four dimensions that I found the most present in CAS papers. 

1. the general approach of the introduction (�problematics�, type of 
hypothesis, of methodology, validation processes�) 

2. the epistemological and semiotic dimension (Considering the 
mathematical knowledge at stake in technological settings, the possible 
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effects of its computer implementation. Looking at both the paper/pencil 
and the technological registers of expression and their connections). 

3. the cognitive dimension (The theoretical framework used to analyse the 
student�s functioning and learning processes) 

4. the instrumental dimension (We distinguish here between artefact and 
instrument. While the artefact refers to the objective tool, the instrument 
refers to a mental construction of the tool by the user. Computer based 
technologies for doing mathematics are not just tools or artefacts. As 
instruments, they shape the mathematical activity and thinking. The 
instrument is not given with the artefact, it is built in a complex 
instrumental genesis). 

We specified each of the dimensions by a set a questions. So we obtained 
a questionnaire of 96 questions. The answers to the questionnaire for each 
publication were assumed to give a picture of how this work focus on each 
specific dimension. 

CAS papers 
In the seventy nine papers selected for this second stage analysis, twenty one 
were about CAS use (26%). Like in the other fields, we selected papers with a 
clear analysis of aspects of the use of technology. Thus, the twenty one papers 
come generally from the three last groups of the above qualitative classification 
(papers assuming improvements, papers investigating questions, studies of the 
integration into a curriculum). 

Statistical procedure  
For each of the seventy nine "second stage" papers, we established a detailed 
form with its theoretical framework, its set of questions, its methodology, its 
analysis and its conclusion. These forms were used first to answer the 
questionnaire, then to establish the outcomes and insights issuing from the 
papers. We designed a statistical procedure based on cluster analysis to get 
partitions. The classes (clusters) in these partition gather publications focusing 
typically on specific entries of the questionnaire. We applied the procedure first 
to the whole set of questions of the questionnaire, then to subsets of questions 
based on one or two dimensions. We got 8 partitions and 45 clusters. Among 
these 45 clusters, 19 appeared significant.  

Results 
I look now at the four dimension mentioned above, summing up the 
interpretation we gave for these clusters then considering the CAS papers 
belonging to each cluster in order to have insights on the specificity of analysis 
on CAS among other fields of the use of IC technologies.  
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1. the general approach of the introduction  

A huge cluster gathers nearly half of the papers. The papers in this cluster 
generally focus on the students and investigate questions on effects of the 
introduction of technology ("does technology enhance student's achievement, 
conceptions, views of mathematics..?") with an experimental approach more 
frequently internal (comparing a priori analysis and classroom observations).  

A smaller cluster (10%) considers also the students, but starts from 
assumptions of a better learning that they try to prove through comparative 
(external) evidence (like in the third class of our first stage analysis).  

Papers in the CAS field are 9 in 35 of the first cluster, and three in seven 
of the second cluster. Discourses about the use of CAS (see for instance Pérez 
Fernandez, J., 1998) often put great emphasis on the advantages of CAS as 
appearing in these studies. Our statistical study shows that papers like this, once 
typical of the CAS field, tend to be not so many in the recent years. 

2. the epistemological and semiotical dimension  

A significant cluster in this dimension gathers 12 papers paying much attention 
to the relationship between the content knowledge at stake and the new means 
provided by technology. They look in particular to the changes that technology 
might bring in the mathematical practices, to the possible obstacles and to the 
semiotic aspects. 

A bigger cluster gathers 29 papers with a weaker epistemological 
approach: they analyse the mathematical knowledge without looking precisely 
to the consequences of the introduction of technology.  

We interpreted this as an evidence of the attention paid in the majority of 
papers to the mathematical knowledge at stake when learning with technology, 
but also of the difficulty of considering the consequences of the use of 
technology on this knowledge. 

CAS papers are ten in the big cluster. In contrast, there is only one paper 
about CAS in the other cluster. Thus a weakness of the research on CAS might 
be that it does not consider more acutely the epistemological and semiotic 
influence of the use of symbolic computation. Probably the changes in the 
knowledge, in the registers of representation and the practices are difficult to see 
in CAS use.  
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3. the cognitive dimension  

A big cluster (27 papers) in this dimension reflects a constructivist frame 
emphasising the potentialities of IC technologies for visualisation and action. A 
smaller cluster (9 papers) refers to the cognitive sciences and stresses on the 
support of new technologies to bring new cognitive tools for the students 
activity. Another small cluster (8 papers) draws on situated cognition and on the 
potentialities of IC technologies for connecting knowledge from varied 
experiences. 

We observed that in many papers the constructivist approach of the big 
cluster works more like a formal reference than as a functional theoretical frame. 
In contrast, more specific concepts tend in the smaller clusters to help focus 
sharper on potentialities of technology.  

Not many CAS papers are in these clusters (nine). Most of CAS papers 
present no explicit or implicit cognitive framework. Eight in nine are in the big 
cluster and some are good representatives of the above mentioned tendency to 
use a cognitive approach as a formal reference. 

As a comparison, only two papers about geometry appear in the first 
cluster and nine appear in the small clusters. So, as a difference with geometry, 
the cognitive framework used by research on CAS seems to have not yet 
evolved to more functional concepts. 

4. the instrumental dimension  

In this dimension, we have three clusters. The first one (fourteen papers) focuses 
on a conjunction of several instrumental aspects of technology: the specific 
constraints of a technological tool shaping the action of the learner, the influence 
of instrumental settings (use in a computer room or on privately owned 
calculators), the organisation of classroom activity by the teacher. 

Only two CAS publications are in this first cluster. One is Artigue et al. 
(1998), addressing the question of integration. The other (Drijvers, 1994) is a 
comparison of students procedures to solve the same problems with a graphing 
calculator and with CAS. This study provides insight on the specific constraints 
of different tools and on the role of students' familiarisation with the computer. 
Studies of this kind are rare, maybe because of the (wrong) idea that CAS would 
be directly the best mathematical instrument. 

A second cluster (six papers) considers the importance of the time 
necessary for students to transform a technological tool into a mathematically 
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productive instrument. It is done mainly of papers about geometry and has no 
CAS paper. 

A third cluster (eight papers) focuses on time in a different way. Papers in 
this cluster address the issue of the time that technology could save. Five papers 
in eight are about CAS. The emphasise of time that technology could save for 
the sake of students' conceptualisation is common in general discourses about 
CAS and the five papers address this issue. The interesting thing is that they 
divide in their approaches and findings. Papers like Kutzler (1997) draw 
perspectives for future trends in mathematics teaching from the assumption that 
CAS will save time for experimenting, problem solving � Other papers, like 
Mayes (1994), question this assumption through an experimentation. They show 
that solving problems with technology is not so straightforward for students. 
More complex problems bring heavier cognitive load, and technology does not 
solve by itself all difficulties. Thus time and techniques are necessary to 
investigate problems.  

 

Conclusion 

Was does technology change in the learning? Is it better with technology? 
Obviously, innovations, experiments and research provide no direct answers. All 
depends on how we look at their approaches and findings. Research has to deal 
with the difficulty of accounting for the complexity of the phenomena related to 
the integration. From our meta-study, we offer a multi-dimensional framework 
as a method to look at this complexity from varied perspectives. In this paper, I 
tried to show how this method could help to consider a specific field -computer 
algebra systems� in the integration of technology and confront its approaches 
and findings with the other fields. Looking at the position of this field raises 
questions for the evolution of research. 

1. The great number of "teaching issues" offering examples of educational 
use of symbolic computation is representative of the interest for CAS 
among a part of the teachers. Because they look at the new applications 
appearing day after day, these papers are potentially interesting 
contributions on the use of up to date technology. On the other hand, the 
diffusion of ideas among researchers and teachers is problematic when 
authors do not tackle the complexity of the educational situations. So, 
what research would be necessary to combine this wealth of propositions 
with rigorous and acute analysis? 

2. Postulates on time saving and better opportunities for conceptualising 
marked early research on CAS use and are still a big trend in discourses 
about symbolic computation in education. Our study of papers in the years 
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1994 to 1999 shows a different picture of recent research. Mere external 
comparative studies based on postulates become uncommon and papers 
tend to question the manifold aspects of the changes that CAS brings, 
with less optimistic preconceptions. The issue of time remains a concern, 
although in research results CAS doesn't looks different from other 
technologies like "graphing calculators" or "dynamic geometry"� This 
focus on time to be saved could be a disadvantage when it leaves other 
important instrumental issues in the dark. 

3. More generally, research on CAS use illustrates properly the difficulty to 
tackle the multiple dimensions of the introduction of technology. In the 
little addressed dimensions (situational, institutional, teacher, man-
machine interaction) isolated CAS papers exist like in other fields. In 
more common dimension, like the semio-epistemological, instrumental 
and cognitive dimension, research on CAS use seems to be behind the 
other fields' evolution. In my opinion, this is a consequence of a certain 
isolation of CAS research. So being aware of other's field approaches 
should help CAS research. Reciprocally, innovation and research on CAS 
educational use appears to be a very active field, and the wealth of 
experimentation and research done in this field should benefit the general 
understanding of the integration of technology. 

 

Notes 

1. The five research teams were DIDIREM (Université Paris 7), ERES 
(Université Montpellier II), Laboratoire Leibniz (IMAG Grenoble), LIUM 
(Université du Maine), Equipe TICE (IUFM Bretagne). 

2. A complete documentation on this research, including the material for the 
statistical analysis is available on the Internet: 
http://www.maths.univrennes1.fr/~lagrange/cncre/rapport.htm. See also 
Lagrange, Artigue, Laborde, & Trouche (2001). 

3. Among the seventy four talks offered to the congress ICTMT4, twenty 
three were about CAS use (31 %).  
http://www.tech.plym.ac.uk/maths/ctmhome/ictmt4.html /Presentations at 
ICTMT-4, 9-13 August 1999.htm 
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Abstract: In this paper we show how six pairs of students gave meaning to the 
formal notation of composition of functions through the mediation of a 
spreadsheet. The meaning for mathematical notions involved in activities was 
constructed and shared, mediated by the spreadsheet environment. The 
mediation of the spreadsheet allowed students to realize that one previous 
step—the composition of the argument—is necessary in the composition of two 
functions. Supported by the numerical nature of the spreadsheet and the 
interaction with the teacher, the task, which at the beginning was only 
arithmetical production for the students, acquired a deeper mathematical sense. 

 

Research question and framework 

The use of technology to deal with mathematical notions is a trend that is 
awakening growing interest because of its great potential for facilitating and 
improving learning. Particularly, research reports that spreadsheet environments 
may support the processes of conceptualization and use of algebra (Dettori et al., 
1994; Rojano and Sutherland, 1997; Rojano and Ursini, 1997). However, there 
are no studies focusing on the mediation of the instrument in the development of 
algebraic concepts and its associated use. 

From a Vygotskian perspective, activities are mediated by tools (Werstch, 
1991, Moll, 1990) because it is considered that when a tool is used, �it affects 
the object which is acted upon as much as it does the subject that uses it since it 
changes the type of activity and its cognition� (Kozulin & Presseisen, 1995). 

In this paper, we present a part of a wider study in which we analyze the 
mediation of a spreadsheet when it is used to work with activities related to the 
composition of functions. The main aim of this study was to analyze how 
students give meaning to the formal notation of composition of functions 
through the mediation of a spreadsheet. 
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Here we present an analysis of the process of how students give meaning 
to the formal notation of composition of functions through the mediation of the 
spreadsheet. 

It is known that, with the usual approaches in paper and pencil 
environments, students experience serious difficulties when working with 
composition of functions (Ayers et al., 1988).  In these environments, it is 
necessary to resort to analytical representation, which often creates problems for 
students (Kieran, 1992). In contrast, when the electronic spreadsheet is used, 
composition of functions is worked at a numerical level, resulting in an 
operation with the same level of complexity as addition, subtraction, product or 
division of functions. The spreadsheet permits students to compose functions 
using a process whose complexity they are not always aware of.  The task of 
labelling columns by writing an analytical expression can induce students to 
reflection and allows them to become aware of the operations they are carrying 
out with the computer (Landa & Ursini, 2000) 

 

Methodology 

The study was conducted with a group of 12 students (14-15 years old) working 
in pairs. These students had not yet had formal instruction on the notion of 
function and had had no experience in using the electronic spreadsheet.  After a 
brief introduction to the use of the spreadsheet, students were given tasks that 
involved the idea of composition of functions.  A total of 8 hour-and-a-half 
sessions were conducted in the computer laboratory of the school.  The 
researcher was the group�s teacher.  The students worked in pairs on the 
computer. The data consisted of the students� written reports of the results they 
obtained: the macros of Excel recorded during the sessions, the notes taken by 
the researcher during the sessions and the record of verbal exchanges between 
students and between students and the researcher. 

 

Activities and Results 

The nature of the spreadsheet is arithmetic. Visual priority is on numeric values 
obtained either with arithmetic operations on numbers or with formulas that 
relate the contents of cells to others. The automatic way of producing columns 
of numbers�sweeping the mouse down�eclipses the formulas. Students do not 
spontaneously pay attention to the formulas produced with relative references 
and to the relationship between cells. It is necessary to lead students through a 
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process of reflection in order to help them consider the relationship between 
formulas and the number produced in each cell.  

It is this relationship we are concerned with because it may imply 
composition of functions. Either a column or a row is generated by sweeping 
a formula  with  the  mouse.  For example, to generate the sequence 1, 2, 3, ..., n 
in column A, we can sweep down the formula =A1+1 if the content of cell A1 is 
the  number  1.  Thus,  we  could  consider  f(0)=1;  f(f(0))=2;  f(f(f(0)))=3; ... 
f(... f(0))=n for f(x)=x+1. On the other hand, if we write the formula =sqrt(A1) 
in B1 and sweep the formula with the mouse to generate the row, in each cell we 
obtain numbers corresponding to the formulas =sqrt(B1); sqrt(C1);... which 
could be interpreted as =sqrt(sqrt(A1)); sqrt(sqrt(sqrt(A1))); ... respectively. 

In our research we tried to lead students to this kind of reflection by 
asking them to generate columns of numbers using formulas and produce 
analytic expressions to label the generated columns. This requirement should 
lead students to deduce an algebraic expression representing the general 
formulas from the observation of the structure of the particular formula, for 
example, to generate the analytical expression (x+1/x) from the formulas 
=A3+1/A3; =A4+1/A4; =A5+1/A5;  ...  

After generating the sequence of numbers 1, 2, 3... in column A by 
'adding 1 to the cell above� and to label this column with x, students had to 
produce numbers in column B obtained by subtracting 5 from the numbers in 
column A. They were asked to label column B with an analytical expression that 
would reflect the operation performed. Although they had no difficulties in 
generating column B, a group discussion was needed in order to help them 
produce the expression x - 5 to label the column. After this experience they were 
required to generate column C by �adding 10 to the numbers in column A and 
dividing all by 2�. Without exception, the six pairs of students wrote the formula 
=A3+10/2 (the number 1 was in cell A3). The numeric result obtained, 6, did not 
match the expected result, 5.5. We realized that they were using their arithmetic 
knowledge to control their interaction with the spreadsheet. After mentioning 
that parentheses could be used, all the students wrote =(A3+10)/2, swept the 
mouse down and labelled column C with the expression (x+10)/2. 

The meaning of the symbolic expressions x-5, (x+10)/2 are directly 
related to the corresponding column of numbers. These kinds of expressions 
hold a description of the operations performed in order to generate the columns. 
In order to produce them, it is necessary to focus on the particular operations, to 
deduce the general operation and to express this through an analytical 
expression. Producing these expressions can be considered a first level of 
abstraction in which students no longer pay attention to the specific numbers in 
the cells, but instead they focus their attention on the process performed to 
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obtain them. The symbolic expressions �says� which procedure was done (e.g. x-
5), and at the same time this notation is a generalization of the specific formulas 
=A3-5, =A4-5... . In this way, labelling columns with symbolic expressions 
induces students to take into account all these aspects. 

In a subsequent activity, after generating a sequence of numbers in 
column A, students were asked to generate column B with the square roots 
corresponding to these numbers and column C with the square roots of the 
numbers obtained in column B. Once more they had to label columns A, B and 
C with appropriate expressions. In this occasion students were able to label the 
three columns. They wrote x for column A, sqrt(x) for column B and 
sqrt(sqrt(x)) for column C.  They identified the last expression with the notation 
f(f(x)) (Landa and Ursini, 2000). Moreover, students were able to generate 
columns of numbers with the functions f(x)=sqrt(x) and g(x)=sin(x) when they 
were proposed. After generating a sequence of natural numbers, labelled x, they 
generated columns of numbers corresponding to sqrt(x-5), sin(x+4), sqrt(sin(x)) 
and sin(sqrt(x)) and they labelled them with f(x-5), g(x+4), f(g(x)) and g(f(x)), 
respectively.  

Although the notation used by students suggests composition of functions, 
there is no evidence that students were actually taking this notion into account. 
Their activity during this task was reduced to identifying the symbols f and g 
with the operations performed with numbers. This suggests that students were 
identifying the functions f and g with the operators sqrt and sin respectively 
according to the schema: 

f     (  g    (x)) 
        ↑       ↑ 
                                                      sqrt ( sin  (x)) 

The main idea of composition of functions, that is, to act on an argument 
created by the application of the same or of another function, was missed. These 
results suggest that composing functions in a spreadsheet environment could 
leave out the notion of composition, at least when the functions involved have 
notational names. 

In order to help students work with composition of functions, activities 
involving functions without notational names were designed. Our aim was to 
avoid students� identifying a function with an operator. A worksheet containing 
the following indications was given to students: 

1. Use a formula to produce a sequence of numbers in column A. Name this 
column x. 

2. Use a formula to fill column B by adding its reciprocal to each of the 
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numbers in column A. Name this column f(x). Additionally, label this 
column with the analytical expression corresponding to the formula used.  

3. Produce column C according to the expression f(x)+9. Label this column 
with the analytical expression corresponding to the formula used.  

4. Produce column D according to the expression f(x+9). Label this column 
with the analytical expression corresponding to the formula used.  

Points 3 and 4 werer aimed at helping students focus on the argument of the 
function. 

Students produced column A using a formula. They produced column B 
by sweeping down the formula =A3+1/A3 using the mouse (table 1). They 
labeled it by writing x+1/x. Column C was generated by the formula =B3+9 and 
was labeled x+1/x+9. 

 A B C D 
     1  f(x) f(x)+9 f(x+9) 

2 x x+1/x x+1/x+9  
3 1 =A3+1/A3 =B3+9 10.1 
4 2 2.50 11.50 11.0909091 
5 3 3.33 12.33 12.0833333 
6 4 4.25 13.25  
7 5 5.20 14.20  
8 6 6.17 15.17  
9 7 7.14 16.14  

10 8 8.13 17.13  
11 9 9.11 18.11  
12 10 10.1 19.1  
13 11 11.0909091   
14 12 12.0833333   

Table 1 

It seems that students were identifying the function f(x) with the column 
B (see Table 1, cell C3).  This suggests that f(x) was not seen as a process but as 
an entity to which they were adding the number 9.  

Difficulties arose when they had to work with f(x+9) to fill column D. For 
some students this functional notation evoked multiplication. Several of them 
considered that f(x+9) indicated that the content of column B had to be 
multiplied by (x+9). Therefore, to fill column D they used the formula 
=B3*(A3+9). There were other students asking each other �But who is f here?� 
or claiming �There�s no f here!�. 
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We realized that an obstacle was emerging with this activity. When 
generating numbers in column C according to the expression f(x) +9, the 
argument of the function was not the focus of their attention. Both, the notation 
f(x) +9 and the analytical expression they wrote were expressing the addition of 
two well-defined entities: the function identified with column B and the number 
9. Students were realizing now that f(x+9) was something different from f(x) +9. 
They noticed that parentheses were not in the same position, but they did not 
understand the implication of this difference.  

Until that moment, the spreadsheet had been a useful tool helping students 
to make sense of functional notation. But faced with the notation f(x+9), this 
tool alone did not provide enough support to help them to make sense of the 
functional notation. The researcher�s intervention was needed. The following is 
a dialog sustained with a pair of students. There were similar verbal exchanges 
with the other pairs. 

Researcher: What does f(x) do? 
Student: It adds its reciprocal to x 
Researcher: Which is the value of x considered here? (pointing at cell B3 where 

number 2 was displayed)  
Student: Number 1. (pointing at cell A3) 
Researcher: Now, tell me which value of x was considered here. (pointing at cell 

B12 which displayed number 10.1) 
Student: Number 10. 
Researcher: f(x+9) means that you add 9 to x first and then you apply the 

function f(x) using this new value. What value of x must be considered to 
fill this cell? (pointing at cell D3) 

Student: Number 1. 
Researcher: 1 plus 9. How much is it? 
Student: 10 
Researcher: What is the value of f(x) when x is 10? 
Student: 10.1 (looking at cell A12 and pointing at 10.1 in cell B12) 
Researcher: Therefore, what is the value we expect to have in this cell? (pointing 

at cell D3) 
Student: 10.1   

After verbal exchanges like this, students started to look for a way to 
produce the number 10.1 in cell D3. In this way they were identifying the 
function not only with column B, but with the process leading to its generation. 
They were focussing as well on the argument x+9, which did not have a column 
as reference.  

The verbal exchanges seem to have been effective because students 
started to work in order to overcome the detected obstacle and they followed 
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different strategies in order to make sense of the expression f(x+9), although all 
of them were determined by the constraints of the spreadsheet. Three main 
strategies were observed and these are described below. 

 

Strategy 1 

Using an arithmetic approach, students introduced arithmetic expressions 
=10+1/10, =11+1/11, =12+1/12 ... in cells D3, D4, D5, ..., respectively. The goal 
was to obtain the same numbers in cells D3, D4, D5, ... as those that appeared in 
cells B12, B13, B14, ... (see table 1). The arithmetic expressions introduced 
suggest that to produce them they were considering the argument x+9 mentally 
calculating the numbers on which the function was acting: number 10 
corresponding to 1+9, 11 to 2+9, 12 to 3+9, ... . 

Asked to use formulas in order to generate the same numbers, they wrote 
the formulas =A3+9+1/10, =A4+9+1/11, =A5+9+1/12 in cells D3, D4 and D5, 
respectively, obtaining the expected results. These formulas show the students� 
first attempt at expressing the mental operations which they had previously 
carried out. However, the formulation of the expressions continued to include a 
specific number that they had already calculated mentally, expressing it by 
writing 1/10, 1/11, 1/12 in their formulas. 

After this they swept down the formula =A5+9+1/12 written in cell D5. 
When they did not obtain the expected results in cells D6, D7, D8..., they 
reviewed the formulas used and switched to the formula =A3+9+1/A3+9 in 
which the operation leading to the argument is explicitly displayed but still 
incorrectly written. In the next step they introduced parentheses and swept down 
the formula =A3+9+1/(A3+9). They had no difficulty in producing the 
analytical expression x+9+1/(x+9) to label column D. 

 

Strategy 2 

Students using this strategy produced first a column of numbers using the 
formula =A3+9 in cell D3 (table 2). In this way they were working directly on 
the argument as an isolated entity assigning it a place on the spreadsheet in a 
well-identified column. They labelled it x+9. After this they generated column E 
with the formula =D3+1/D3 and wrote x+9+1/x+9 as its symbolic expression. 
Because they did not need to use parentheses to produce the column of numbers, 
they did not realize that it was necessary to include them in their symbolic 
expression.  
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 A B C D E 
     1  f(x) f(x)+9  f(x+9) 

2 x x+1/x x+1/x+9 x+9 x+9+1/x+9 
3 1 =A3+1/A3 =B3+9 =A3+9 =D3+1/D3 
4 2 2.50 11.50 11 11.0909091 
5 3 3.33 12.33 12 12.0833333 
6 4 4.25 13.25 13  
7 5 5.20 14.20 14  

Table 2 

Strategy 3 

When using this strategy students used the content of cell A12 as the argument 
of the function. They wrote =A12+1/A12 in cell D3 (table 3) and swept this 
formula down with the mouse. They got the expected values and they labelled 
column D with the analytical expression (x+9)+1/(x+9) . 

This strategy suggests that, for these students, the argument x+9 was 
already a well-defined entity and that it was already displayed on the 
spreadsheet, in column A. In fact, the contents of cell A12, A13, etc. correspond 
to 1+9, 2+9, etc. When using this strategy the argument was composed 
�visually.� 

A B C D E F
1 f(x ) f(x )+ 9 f(x+ 9)
2 x x + 1/x
3 1 2 11 = A 12+ 1/A 12
4 2 2.5 11.5 = A 13+ 1/A 13
5 3 3.33333333 12.3333333 = A 14+ 1/A 14
6 4 4.25 13.25
7 5 5.2 14.2
8 6 6.16666667 15.1666667
9 7 7.14285714 16.1428571

10 8 8.125 17.125
11 9 9.11111111 18.1111111
12 10 10.1 19.1
13 11 11.0909091 20.0909091
14 12 12.0833333 21.0833333
15 13 13.0769231 22.0769231  

Table 3 

There were pairs who used only one of the strategies mentioned above 
and pairs who used a combination of two of them.  
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 Conclusions 

How do tools and technology mediate learning? This is an example of mediation 
of a spreadsheet, showing how students� misunderstanding can be clarified for 
the teacher but also for the students. 

The results obtained show that the spreadsheet environment helped 
students become aware of the importance of the argument on which a function is 
acting. This environment offered them the possibility to separate and to make 
the different entities involved explicit in the composition of functions: the 
variable x; the function acting on this variable, f(x); the composed argument, 
x+9; and finally the function acting on the composed argument, f(x+9). In this 
environment the necessity of becoming aware of the composition of the 
argument as a step previous to the composition of functions emerged quite 
clearly. This suggests a temporal order for the composition of functions in which 
argument is dealt with first and then used as the argument of the function. 

Finally, we want to emphasize that the spreadsheet was not only 
mediating  students� construction of the meaning they gave to the formal 
notation of the composition of functions, but also the researchers' observations 
of this process. The spreadsheet became a magnifying glass that allowed us to 
detect the relevant moments involved in this process. 
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A teacher says: It is the examination that controls everything, and it is the 
examination that directs the unofficial syllabus. … The examination is so 
important that it is meaningless to do anything in terms of new pedagogical 
methods if you don’t do something about the examination at the same time. The 
examination represents the entire pedagogy; it is the examination that decides 
what and how people learn.  If I want students to learn more deeply — and I 
really do — then I have to change the examination; that’s the only way that 
really works. 

(Högskoleverket [National Agency for Higher Education], 1997, p. 21) 

 

Introduction 

It is important to realize the weight and importance the examination has when 
discussing possible changes to a course or a program. If the examination is not 
changed, then nothing is really changed in a course. The students rapidly 
interpret the important survival code in a course and adjust their learning and 
performance strategies according to it. We will discuss some experiences from a 
program in teacher education and point out situations, which become more 
visible when teaching and learning mathematics over the Internet. At the 
University of Gothenburg, we offer, among other programs, programs for 
elementary teachers who want to take an examination to become mathematics 
and natural science teachers for grades 1 to 7. We also offer a program for 
mathematics and natural science teachers for grades 4 to 9 to become teachers 
for the Gymnasium (grades 10 to 12) in mathematics and physics. Both are 
three-year programs (which are conducted at half the usual pace) and are given 
entirely by means of distance media, including e-mail, Web pages, video films, 
and �classroom discussion� through the computer conference system First Class.  
The first program started in fall 1997, and every fall since then a growing 
number of students have been accepted into the program.  The program for 
mathematics and natural science teachers for grades 4 to 9 started in the fall of 
2000. 
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To teach and learn mathematics over the Internet 

In today�s education an increasing emphasis is put on students� learning through 
problem-oriented or problem-based educational methods. The underlying idea is 
to improve the quality of students� learning about complex problems or 
phenomena in the world through assignments that give rich opportunities for 
active investigation, analysis, and reflection (Bowden & Marton, 1998; NCTM 
2000). Such methods entail an increased use of a wide variety of different 
information sources. When studying mathematics, students also use tools like 
graphing and symbol-manipulating calculators and a variety of computer 
programs like MS-Excel, Graphmatica, and others. Students use assorted 
textbooks and other reference books, and many of them also use their family 
members, friends, colleagues, or maybe neighbours as a reference group. 

One could argue that the way distance students study is closer to the way 
people ordinarily work than traditional in-class study. In many walks of life, 
people are valued for the everyday jobs or projects they do, their ability to work 
with others, their responses to problem situations, and their capacity to find tools 
or information that will help them to fulfil an assignment. In that kind of 
occupation as well as in distance studies, it is important to be open and flexible 
in one�s learning. It is desirable and would be natural if the examinations in 
distance-education courses in mathematics could mirror that fact. Surprisingly, 
many distance education courses in mathematics, in Sweden as well as in other 
countries, seem to lose their flexibility when it comes to the issue of 
examinations. Students are encouraged to use graphic calculators and suitable 
computer packages when they are studying, but that way of working is not taken 
advantage of in examinations. When it comes to an examination, the students 
must be identified and sit in a guarded and controlled room in a school close to 
where they live. 

During their schooling, students inevitably try to identify, interpret, and 
follow authority (Lingefjärd, 2000; Lingefjärd & Kilpatrick, 1998; Cobb, 1986). 
One interpretation of this social behaviour is that the search for trustworthy 
authority is part of the human survival instinct. That instinct does not disappear 
when students begin their university studies, although the search for authorities 
or survival structures may be more hidden the older and more sophisticated they 
get. Nevertheless, there is always a didactical situation. In the case of distance 
education, there are naturally other sources of knowledge besides the student�s 
personal knowledge that the student can rely upon. 

In the complexity of a situation in which students are always away from 
the teacher when reflecting and learning mathematics at their own convenience, 
using calculators and computers from time to time, it is hard to describe all the 
relations that occur. The discussions in which the students take part nearly 
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always have a third, silent partner: the calculator or computer software and its 
result. The third partner in the discussion changes the didactical contract 
between the students and the instructor at the same time that the situation of 
distance learning also changes the didactical situation. 

 

Assessment & Examination 

Contrary to past views of learning, the cognitive psychology of today (Marton & 
Booth, 1997) suggests that learning is not linear but proceeds in many directions 
at once and at an uneven pace. People of all ages and ability levels constantly 
use and refine concepts. Furthermore, there is tremendous variety in the modes 
and speed with which people acquire knowledge, in the attention and memory 
capabilities they can apply to knowledge acquisition and performance, and in the 
ways in which they can demonstrate the personal meaning they have created. 
Current evidence about the nature of learning makes it apparent that instruction 
that strongly emphasizes structured drill and practice on discrete, factual 
knowledge does students a major disservice (Ramsden 1992, Marton & Booth, 
1997). Acquisition of knowledge skills is not sufficient to make one into a 
competent thinker or problem solver. People also need to acquire the disposition 
to use their skills and strategies, as well as the knowledge of when and how to 
apply them. These are appropriate targets for assessment. 

If one adds the component of existing technology, assessment becomes 
even more complicated. The support to be provided by technology when 
students are being assessed is a difficult issue and the subject of ongoing 
discussion in several places around the world. An essential consideration is 
whether students using, say, a computer program when they are learning should 
therefore be allowed to interact with that program when being assessed in 
mathematics. We have to find ways of assessing what is looked upon as 
important, rather than assessing what is easily measurable. In other words, we 
have to deal with the truism that, in mathematics education, what is assessed is 
what is valued, and what is valued is what is assessed (Arnold, Shiu & Ellerton, 
1996). 

If mathematics teachers allow group work, discussion, and information 
gathering in libraries and over the Internet, and also want students to learn more 
mathematics in collaborative work, then they face great demands on what types 
of problems they should pose. Silver and Kilpatrick (1989) argue for the use of 
open-ended problems in the assessment of mathematical problem solving, 
thereby moving from facts and procedures to concepts and structures. A relevant 
problem should encourage students to make various assumptions and use 
various strategies in which technology can serve as an aid but the technology 
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part in the solving process should never be a goal in it self. The problems 
teachers choose also need to provide the students with opportunities to express 
what they have learned in the course and in previous courses. At the same time 
that the problem should remain nontrivial in the presence of technological tools, 
their use should not be the only performance component that is essential and 
leads to success (Lingefjärd, 2000; Lingefjärd & Holmquist, 2001). 

An essential part of the work inside the assessment process is how the 
teacher delivers student support. It is not always easy to handle the transition 
from conventional tuition to flexible and distance learning tuition. When feeding 
back to students some sense of the progress they are making in the course, a 
teacher is working in the field of informal assessment. Despite the fact that some 
of this is carried out by course material the teacher has the most important role 
in informal assessment. Nevertheless, our focus is more on formal assessment 
carried out by teachers. This is a very important part of students� feedback; it 
could be that such feedback is the most obvious teaching contact they have with 
their teacher during the coursework. Giving such feedback is a difficult task � 
the students will not understand, neither too kind nor too direct feedback in an 
assessment situation at a distance (Simpson, 2000).  

In order to deal with the assessment questions in reality and to investigate 
potentials and obstacles in alternative assessment in mathematics education, we 
are at present running a research project funded by the Distance Education 
Authority (Distansutbildningsmyndigheten [DISTUM]) in Sweden. The study is 
strongly connected to the program for mathematics and natural science teachers 
for grades 4 to 9 to become teachers for the Gymnasium (grades 10 to 12) in 
mathematics and physics. 

The first course in the program, a one-year course in mathematics at the 
University of Gothenburg known as MAL610, has a variety of objectives, all 
related to the main aims of learning and teaching mathematics and to the 
didactics of mathematics (for a definition of �aims� and �objectives,� see 
Rowntree, 1994, p. 50). The fact that the course plan is the first document to be 
accessed on the homepage for the course should, hopefully, give the students an 
overview of the course: http://ma-serv.did.gu.se/matematik/mal610/mal610.htm. 

Course Structure 
The course involves practice in mathematics by means of textbook problems, 
larger project-oriented assignments, and a final examination (Bowden & 
Marton, 1998; NCTM, 2000). The course is based upon working by means of 
information and communication technology (Webb, 1992). Nearly all 
communication is done in that way: individual work, group discussions with 
other course participants, and discussions with advisors (Blomhøj, 1993). 
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Course Model 
To characterize the model used in this course, we use the classification of course 
models by Richard and Rohdin (1995). This course can be classified as being 
close to a third-generation course, with a dominating duplex communication that 
uses a number of facilities to enable maximal communication without interfering 
with independence over time and space (see media below). According to Bååth 
(1996), the course could be classified either as tutorial guidance, where the 
students control the learning but the teacher is available for guidance, or as a 
course with good structure and good opportunities for dialogues. 

Course Media 
The course contains both face-to-face lectures at the start of the semester, virtual 
discussion groups (by way of First Class), e-mail contact, and a telephone 
evening once a month when the students are offered online guidance.  Most of 
the course material (except the related literature) is available on the course�s 
homepage. On the homepage, students can access general course documents, 
exercises, and assignments. This Web page also contains tutorials (via Power 
Point) on the use of graphing calculators and Graphmatica (freeware used in the 
course). The students are also encouraged to make sure that they have MS-Excel 
installed on their computer and to start using it. The Web page is in one sense 
the most important �location� of the whole course: Even though the course 
activities are spread out across different media, groups, and locations, the 
students can always come back to this page to find their way out of the task 
jungle. 

Participants in the Course and in the Study 
In the fall of 2000, the program for natural science teachers for grades 4 to 9 to 
become teachers for the Gymnasium (grades 10 to 12) in mathematics and 
physics enrolled 23 students. They ranged in age from 26 to 49 years, with a 
median of 35.7 years and a mode of 32.5.  Twelve were women, and most of 
them were experienced teachers. They all started the program with a one-year 
mathematics course that may be seen as consisting of four parts: calculus of one 
variable; discrete mathematics; integrals, curves, and series; and calculus of 
several variables. 

Structure of Course Parts 
Based on the idea of constructing a variety of project problems for the course, 
we constructed different problems according to the different content areas 
above. We present one such problem and some reflections connected to this kind 
of assessment. 
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A Project Problem 

Meta cognition 
Meta cognition or what Piaget once called Reflective intelligence is 
something central for many teachers of mathematics as well as researchers 
in mathematics education. To expand ones own thinking on a mathematical 
problem from �just solving it� to actually understand how one solve it is of 
major importance for research on how students learn mathematics.   

See for example The psychology of Learning Mathematics by 
Richard Skemp (1978). 

Solve the following problem and try at the same time to do a careful 
and throughout analysis of how you were thinking when you solved it.  

Problem: Let f(x) be an arbitrary cubic polynomial with the real roots 
a, b & c. Identify (a+b)/2 and draw a tangent to the curve in ( (a+b)/2, 
f((a+b)/2)).  Is this tangent always passing through c?   

Try to solve the problem in at least two ways and carefully examine 
your own thinking during the process. With this in mind, suggest why and 
how this problem would fit into the teaching of mathematics in the Swedish 
gymnasium. 

The mathematics teachers need to understand the interplay between the field of 
study that we call mathematics and the activity of using the mathematics they 
study in the problem-solving process. If we see the two as equally important, it 
is logical to encourage students to make the best use of technology like graphing 
and symbol-manipulating calculators and computer programs. Hence, it is also 
important to try to find appropriate assessment tools and to try matching 
assessment to the teaching and learning process. As is clear from the above 
discussion, the need for appropriate assessment will be especially evident in a 
distance-learning situation. 

 

Views from preliminary findings 

The course activities are monitored by following the discussions in the virtual 
classroom in First Class, as well as by using the tool History in First Class. The 
History tool enables an observer to view which student who has been viewing 
and possible reading a message and if they have answered or not. It should be 
stressed that we naturally are unable to investigate the learning process in a 
direct way; we can only try to observe the learning outcome in terms of external 
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characteristics such as students� written communication, attitudes, and 
performance skills. One conclusion so far is that the students focused much 
more on the traditional final exam than on the written assignments, thereby 
revealing a possible strong opinion that it is the mathematics you can do by 
paper and pencil that is really important.  

One way to shape the educational process is to involve students in the 
assessment procedures. Any advice or instruction to a student on how to express 
the intended outcome will undoubtedly affect the way in which that student and 
his or her peers present the solution.  When students become more involved in 
the process of evaluation, it may be seen as a substantial part of the didactical 
contract being negotiated between student and teacher (Brousseau, 1997).  
Through this interplay, the students can learn to identify the criteria for 
qualitatively good performance.  It makes sense to give learners opportunities to 
analyze strong and weak answers to more open-ended problems (Moran, 1997). 

Many of the participants seemed to view the projects as something less 
important. When for instance a specifically more didactical task were given to 
the participants, including to compare ones own solution to a problem with a 
�model� solution, this was treated as not serious or not real mathematics. It is 
notable that the participants are all aiming at getting a teacher certificate for 
teaching at the Swedish gymnasium (grades 10-12), and that the mathematics 
courses at the gymnasium all stress the importance of communicating 
mathematics in a variety of ways: in writing mathematics, in oral presentations, 
and by traditional paper and pencil methods. Yet, the majority of the participants 
acted as if they were socialized back to the study situation they took part of 
some 20 years ago, with a more traditional and limited view of mathematics. 

One of the students in the class decided to spend most of his study time on 
the problems in the textbook, which were more traditional.  When the dead line 
for the Meta cognition task was approaching, the student discovered that he 
couldn�t solve the problem, and consequently not reflect on the way he solved it. 
When he complained that the problem was too difficult, one of the instructors 
told him that several students in a class at gymnasium level had solved the 
problem. Furthermore students in the pre-service program for mathematics 
teachers had studied the same problem and at least solved it in one way as well 
as analyzed their thinking when doing so. The student became very upset with 
this information and actually demanded a tip that could help him trough, which 
he eventually got. This communication could be seen as an example of how the 
awareness of one�s own perspective on mathematics, teaching, and learning may 
become clearer or at least more visible for both students and teachers. The 
changes in assessment may provoke a discussion of different learning and 
teaching perspectives, a discussion that should take place in all university 
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courses in mathematics taken by both prospective and experienced teachers 
(Romberg, 1993). 

The direct feedback is something that many students seem to see as a one-
way agreement.  Even though several of the students have failed to meet the 
deadline for assignments or exercises that they were accountable for, they at the 
same time have demanded direct feedback from the teachers. The mathematician 
who had the main responsibility for the mathematical content managed to take 
active part in daily discussions.  He also presented exercises and assignments as 
early as possible, he offered solutions to several problems from the textbook, 
and he scheduled course meetings and exams well in advance. Nevertheless 
students often expressed criticism because they considered the virtual classroom 
silent over a weekend or during holidays.  

The appeal for direct feedback was evident in the course when procedures 
had resulted in correct answers or when there was an error in a long calculation. 
Even though the students all are teachers and some have long experience in 
teaching mathematics, most of them demanded guidance when they became 
students themselves. Consequently, they were not so interested in examining and 
judging their own solutions to mathematical problems. It seems that even 
experienced teachers need a long time to take full responsibility for their own 
studies and that the dominance of procedures over concepts when learning 
mathematics is hard to abandon. 

An unexpected problem was the difficulty of communicating mathematics 
in written form that many students demonstrated. While some students showed 
expertise in writing mathematical formulas with their word processor�s equation 
editor and in pasting formulas directly into First Class, others persistently 
communicated with inadequate handwritten reports by fax communication. This 
variety in expertise and in communication proficiency makes it very hard for 
teachers and students to agree on norms and expectations. 

In accordance with the course structure that was used, we observed how 
the students made use of the available information and communication 
technology. At present we are doing our analysis of all the information we have 
about the experiences of students and teachers in the course. From the students 
we have gathered: opinions about individual work, group discussions with other 
course participants, and discussions with the teachers in the course. From the 
teachers we have information about: how they viewed assessing all the different 
responses from the students, arranging examination situations including the 
choice of relevant problems, and delivering student support. From these 
perspectives, our intention is to describe and analyze the observed potentials and 
obstacles in flexible, alternative assessment in mathematics. The results will be 
published in a more detailed project report during the fall of 2001.  
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Abstract: Proving a statement conjectured during the solution of a problem is a 
manifold process, made up of different phases and involving three main 
components: the problem, the agent and the context of solution (including all the 
tools available, other individuals and the situation for devolution of the 
problem). When the context incorporates a dynamic geometry software such as 
Cabri-Géomètre, dynamic tools may be used in interaction with conceptual and 
theoretical tools.  

This paper illustrates and analyses the role of the individual in selecting, using 
and organising the tools available in the different phases of the solution, with a 
special focus on the transition from the production of a conjecture to the 
construction of its proof. Possible conflicts between tools of a different nature 
may arise and affect the proving process: an example of the possible tension 
between ‘dynamic’ concepts and ‘static’ theory is discussed.  

 

Introduction 

The process of proving a statement while solving a mathematical problem is a 
complex one, made up of a number of phases and sub-processes that are not 
linearly linked. Previous studies focusing on the proving process, and 
specifically on the possible continuity between argumentative and deductive 
processes in the solution of a problem, have highlighted that the continuity is 
possible and theoretical constructs have been introduced to better describe and 
analyse such continuity. 

The process of producing a conjecture for a problem and that of 
constructing a proof for it may be very close to each other and involve 
argumentative activities that might be linked. An Italian research group (Boero 
et al. 1996, Garuti et al.1998, Mariotti et al.1997) has elaborated a theoretical 
construct that tries to describe a possible relationship of continuity between the 
two above mentioned processes. The definition of cognitive unity (CU) reads as 
follows: 



European Research in Mathematics Education II 

 204

CU: during the production of a conjecture, the student progressively 
works out his/her statement through an intensive argumentative activity, 
functionally intermingled with the justification of the plausibility of 
his/her choices.  

During the subsequent statement-proving stage, the student links up with 
this process in a coherent way, organising some of the previously 
produced arguments according to a logical chain. (Garuti et al, 1998) 

In the present paper cognitive unity will be considered as an analytical tool to 
interpret and explain some of the processes students engage in when striving to 
organise the informal arguments produced during the solution process into a 
logical chain, that corresponds to mathematical rules. The argumentative activity 
will be discussed in connection with the operations and actions performed by 
means of the available tools in the different moments of the proving process. 

The general hypothesis underlying the discussion is that the individual 
naturally tends to work toward a harmonisation of the conflicts that may arise in 
the transition from the production of the conjecture to the production of its 
proof.  

 

Using tools to solve problems: the construction of a toolkit 

In any problem solving situation three main components may be identified: the 
problem, the agent, i.e. the individual-acting-with-mediational-means (Wertsch, 
1991) and the context of solution (including all the tools available, other 
individuals, be they peers or teachers, and the situation for the devolution of the 
problem). Both discursive and concrete or mental operations are enacted in the 
process of solving a problem and proving the conjectured solution. The focus of 
the present paper will be on the agent as well as on the operations performed by 
means of the available tools: the specific context considered is provided by a 
setting that includes the software Cabri-Géomètre (Baulac et al.,1988). Within 
this context, the word �tool� incorporates many different meanings and refers to 
both concrete and psychological tools. Drawing on the seminal work of 
Vygotsky, tools and signs (i.e. psychological tools) may be distinguished 
according to their function: 

The tool�s function is to serve as the conductor of human influence on the 
object of activity; it is externally oriented; it must lead to changes in 
objects. [�] The sign, on the other hand, changes nothing in the object of 
a psychological operation. [�] the sign is internally oriented. (Vygotsky, 
1978, p. 55) 
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In some cases the distinction cannot be neatly drawn: within a certain activity 
(for instance the process of solving a geometrical problem, as in this paper) 
some of the externally oriented tools may be internalised and function as 
psychological tools. The internalisation process as well as the relationships 
among the tools used within a certain context are complex and manifold. In 
order to describe them I will introduce the idea of toolkit as an organised set of 
tools (both internally and externally oriented) that each individual develops and 
uses in a particular context (in this case a problem solving situation). The idea of 
toolkit is meant to account for:  

• the diverse and manifold nature of its components: mediated action is 
viewed as involving different types of tools (such as language, symbolic 
systems, drawings, constructions and changes of configurations, dynamic 
manipulation, gestures etc. ) 

• the relationships among the components, that change and evolve 
continuously: the individual toolkit available to each agent affects the 
processes enacted during the solution and shapes the mental activities 
through a continuous development and re-conceptualisation of previously 
acquired tools.1 

The individual has a crucial role in the management of his/her personal toolkit: 
the evolution occurring within the context of a problem situation is basically 
subjective and does not follow specific rules. Wertsch (1991) refers to 
�privileging� as a strategy to select one mediational means as more appropriate 
or efficacious in a particular socio-cultural setting. The process of privileging is 
assumed to be a dynamic one and one that follows patterns accessible to 
conscious reflection and hence to self-generated change (ibid. p. 124). The 
management of tools chosen as more efficacious in the particular context of the 
action is peculiar to each agent and depends heavily on the features of the socio-
cultural context where the actions take place. 

Such model has links with the idea of instrumental genesis, introduced by 
a group of French researchers in mathematics education (Rabardel, 1995, 
Verillon & Rabardel, 1995) in order to analyse the use of tools in doing 
mathematics. The model describes a process that transforms an artefact, i.e. 
�the particular object with its intrinsic characteristics, designed and realised for 
purpose of accomplishing a particular task� into an �instrument, that is the 
artefact and the modalities of its use, as are elaborated by a particular user� 
                                                 
1 For instance, a student might use a theorem as an exploration tool in an initial phase of the 
solution, seeking possible properties of the configuration at hand, and later reuse the same 
theorem in order to justify the conjecture. In this case the same conceptual tool �theorem� is 
functionally related to the phase of solution and assumes the value of argument when a proof 
is constructed. 
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(Mariotti, to appear). Schemes of use are individually developed and shape and 
organise the actions performed by an agent within any mediated activity. 

The re-organisation of tools within the specific context of the solution of a 
problem brings about a re-interpretation of tools that had been previously 
appropriated2 by the agent3 as well as the development of suitable modalities of 
use. In the case of conceptual tools the role of the environment providing the 
context of solution becomes crucial. The process of re-interpretation is not 
always successful, since there might be conflicts between the phenomenological 
and the theoretical worlds (Balacheff & Sutherland 1994), which coexist in the 
context where the problem is tackled. Cabri is a microworld that incorporates 
the basics of Euclidean geometry as well as tools that allow a dynamic 
exploration and that give visual and conceptual feedback to the agent: once they 
have been internalised, such tools may control behaviour and shape the process 
of solution. 

In the specific case of this paper, tools may be classified in three main groups: 

• technical tools (including tools of Cabri, like constructions, dragging, 
menu functions etc. as well as drawings, additional constructions, 
measurements) 

• theoretical tools (i.e. axioms, definitions and theorems of Euclidean 
geometry)  

• conceptual tools (i.e. the tools internalised by the individual to function as 
organisers of his/her mental processes. This set includes the �personal� 
theorems and definitions as they have been appropriated by the agent). 

 

Turning ‘dynamic’ perception into geometrical facts: the case of Giulia 

In order to illustrate some of the theoretical ideas discussed in the previous 
section, I will present the analysis of a particular protocol, highlighting the use 
of diverse tools in different moments of the solution. I will focus on some of the 
tools of Cabri, as well as on some of the conceptual tools4 used by a student, in 
                                                 
2 The term appropriation draws on the theories developed by Leont�ev and Bakhtin, who 
expanded and refined the idea of internalisation as introduced by Vygotsky. For a discussion 
see Wertsch (1998). 
3 It is in this sense that I will refer to personal or subjective definitions and theorems, to 
indicate results from the theory that have been previously conceptualised and are re-
interpreted and used in the specific context of the solution of a certain problem. 
4 In this case theorems, definitions, that acquire a subjective connotation when used in 
context, changes of configuration, generic examples and counterexamples will all be included 
among the conceptual tools.  
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order to better describe and define the �role� of such tools as components of the 
student�s toolkit, in the transition from the conjecturing to the proving phase of 
the solution process. 

The excerpts reported here refer to the case of Giulia (12th grade, Liceo 
Scientifico), tackling the following problem5: 

Two intersecting circles C1 and C2 have a chord AB in common. Let C be 
a variable point on circle C1. Extend segments CA and CB to intersect the 
circle C2 at E and F respectively.  
What can you say about the chord EF as C varies on circle C1? 
Which is the geometric locus of the midpoint of EF as C varies on the 
circle?  
Justify the answers you provide. 

 

First episode: harmonisation of technical and conceptual tools 

After an initial dynamic exploration of the figure through dragging, that takes 
into consideration particular configurations corresponding to extreme cases, 
Giulia ends up with the formulation of a general conjecture: 

G: I would need … what can I do here? Now … it is 
the segment which moves … it seems that … the 
distance of the segment from the centre of the circle 
does not change because it seems that the circle 
rotates… the segment rotates and the distance 
between segment and centre of the circle on which I 
take the segment does not vary … therefore they 
should be equal … 
C: hmm … in those four positions … 
G: in all the positions … (see Fig. 1) 

A

B

C

F

E
A

B
C

F
E

Fig. 1 

In this case, the dragging facility is the tool that supports the heuristic 
process leading to the generalisation of a conjecture previously elaborated for a 
specific position of C. Perceptual judgements about rotation and variation seem 
to be the most relevant elements in formulating the conjecture. The perceived 
rotation of chord EF and the invariance of its distance from the centre of the 
circle provide all the empirical elements needed in order to inductively state the 
                                                 
5 The problem was assigned within the context of an interview carried out for a PhD project. 
The student was allowed to use Cabri and encouraged to think aloud while solving the 
problem. The interview was recorded and fieldnotes were taken to trace the operations 
performed. 
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invariance of EF in length. The verbal expression of such inductive process 
assumes a sort of �deductive� form: 

 
the segment rotates  

+  
the distance between segment and centre of the circle does not vary 

⇓ therefore 
they should be equal (all the chords in the different possible positions) 

The causes of the invariance of EF are thus identified in two perceptually 
evident facts: the dynamic behaviour of the figure suggests that the property of 
invariance is an �effect� of the rotation of the chord.  

Giulia seems to establish a sort of relationship of cause-effect between 
rotation (motion) and invariance in length (geometrical property), although she 
stays on a semi-empirical plane. Once spotted, the perceptual invariant must be 
turned into a geometric invariant: the process of argumentation enacted in order 
to realise such change makes use of a number of tools, to be chosen among those 
related to the Cabri world and those related to the theory (i.e. Euclidean 
geometry).  

In the case under exam, the visual evidence of the property (the chord EF 
looks equal for all positions of C) does not find an immediate justification in a 
geometrical theorem. Further exploration through slow dragging and the 
drawing of an additional element characterise the process of refining the 
conjecture into a more suitable form: 

G: I could ... AB is constant ... therefore what varies.... 
well..  if I take the triangle CEF what varies are the 
sides CE and CF, but why is EF constant? EF is 
constant....  
[she is dragging point C slowly along the minor arc] 
G: I can't think about anything .. do you think that 
drawing something would help me?  
C: Well.. maybe drawing AB can help you.... 
G: drawing AB... it’s always equal lengthed because the 
triangles which are formed are similar... 

 

A

B

C

F

E

 
Fig. 2 

The dynamic exploration is temporarily abandoned, to leave room for 
reasoning on a specific static configuration (see Fig. 2), that �shows� two similar 
triangles when the chords AB and EF are parallel. The general validity of such 
property is tested through dragging and a more generic configuration (see Fig. 3) 
is chosen as the basis for a justification of the new conjecture (i.e. triangles ABC 
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and CEF are similar). At this point Giulia draws on well known theorems about 
chords and angles in circles and the following justification is easily produced:  

G: if I think about arcs.. well.. let's see.... it's true! one angle 
subtended  ... well these are angles subtended by the same 
arc and thus they are equal .. this one [<BAE] and this 
one...[<BFE] […]  well ... in this case [see Fig. 3] the 
triangles are similar and therefore if this is constant this 
other one has the same... how do you say that ... times the 
same scale factor... therefore it is equal ... and therefore 
constant ...  

 
Fig. 3 

Dynamic tools and theoretical/conceptual tools are employed jointly by 
Giulia, whose toolkit seems to evolve mainly in terms of the relationships 
established between the actions enacted to find a suitable configuration and the 
actual identification of geometrical properties related to that configuration. The 
process is refined with a continuous movement from a dynamic change of the 
figure to the conjecture of a property: the subsequent testing of its general 
validity goes with the search for a configuration that may express generality (an 
example is provided by the dragging from a situation with parallel chords to a 
generic situation that may show the existence of similar triangles in general). 

Dynamic and conceptual tools seem to be harmonised and lead to a 
correct, although partial6, justification of the conjecture, although the initial 
statement based on the idea of rotation has completely been abandoned in favour 
of a theory-oriented exploration of the problem situation.  

 

Second episode: conflict between dynamic causality and static deduction 

Later in the solution process the conjecture, proved in the most general case, 
becomes an assumption for the second part of the problem, requiring to find the 
locus of the midpoint of chord EF. The conjecture is expressed after a dynamic 
exploration of the situation:  

 

 
                                                 
6 The justification provided by Giulia proves the conjecture only partially: in order to 
complete the proof she would have needed to show that the scale factor between triangles 
ABC and CEF is invariant. Giulia seems to implicitly assume that the rotation of the chord�s 
endpoints around the circle C2 �automatically� ensure the fixedness of the scale factor as C 
moves along circle C1. 
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G: When C moves on the circle the midpoint forms a circle 
around the centre, another circle with the same centre as this 
bigger circle  ... shall I say why? [ ... ]  
Yes … if this segment has to be always the same … if it is 
always equal ... it has always … the same distance from the 
centre, because when you vary the segment ... I mean ... equal 
segments are those … I don’t remember ... they have the same 
distance from the centre … equal segments on the same circle 
have the same distance from the centre, therefore, if I prove 
… actually I have proven that that segment over there is 
always constant […] 
I didn’t prove it because I didn’t prove that this one rotates, 
or something like that… 

A

B
C

F

E

  

A

B

C

F

E

Fig. 4 

A personal theorem is stated by Giulia at this stage: �equal segments on 
the same circle have the same distance from the centre’. Such �theorem� draws 
on the properties of angles subtended by chords in circles, but its use in this 
context leaves such elements implicit. Giulia seems to establish a deductive link 
between the hypothesis, i.e. �EF is constant�, and the stated theorem in order to 
deduce that the locus is a circle. The argumentation is not concluded, though, 
because of a difficulty met in harmonising such theorem with a dynamic 
(personal) definition of locus: Giulia makes explicit her need to prove that the 
chord (and therefore its midpoint) actually rotates, thus generating the locus. 
Three elements of a different nature seem to be conflicting: the concept of locus, 
its representation through the dynamic software and the synthetic proof 
requiring a reasoning on a static configuration and the application of definitions 
and theorems which do not involve any movement.  

After an exploration of the figure aimed at matching her personal 
definition of locus with the properties of the figure, as perceived through the 
Cabri feedback, Giulia reformulates the conjecture, saying that the radius of the 
circle (the conjectured locus), has always a fixed length, in relation to the length 
of EF. The result is easily deduced after constructing the triangle (see Fig. 5) and 
using properties of angles and arcs, analogous to those used in the preceding part 
of the solution. 

Once again Giulia makes explicit the conflict between the static proof and 
the dynamic cause of the generation of the locus (i.e. the movement of rotation):  

G: Now I must also say why the geometric locus is a circle, 
mustn't I? Shall I prove it?[…] 
G:... it crossed my mind that I had to prove also ... no ... 
maybe it is stupid ... that I had to prove that it was rotating 
around the centre.... 

A

BC
F

E

 
Fig. 5 
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C: Oh, right... that it was rotating.... 
G: […] I can see that it forms a circle when I grab the point C 
and drag it around the circle ... but if I take a random point it 
might not form a circle, how can I be sure it forms a circle in 
any case? 

Different possible interpretations may be given to the need to prove the 
rotation of the midpoint of EF to generate the locus. The key point is that Giulia 
seems to have developed (or maybe only made explicit) a personal dynamic 
definition of locus, within the context of this problem, and to have established a 
link between such definition and the initial conjecture, expressed in terms of 
motion (rotation of EF as cause of its own invariance in length). 

Although a synthetic proof is achieved correctly, the conflict generated by 
the use of dynamic tools brings about a sort of rupture: the dynamic definition of 
locus and the traditional geometrical definition are not conceived of as the same 
object. Hence the conjecture is related to a dynamic �world�, while the proof is 
linked to a separate static �world�: for Giulia the proof provided seems to be a 
list of deductions, which do not actually prove the conjecture, since they do not 
cover its dynamic aspects. 

 

The toolkit and the CU construct: some concluding remarks 

The case of Giulia illustrates how exploring the problem situation by means of a 
combination of technical (dynamic) and theoretical/conceptual tools may be a 
productive strategy, in terms of achieving a successful management of the 
toolkit. The bulk of the activity of exploration during the conjecturing phase is 
generally carried out through the use of tools such as dragging, drawings (in this 
specific case within the Cabri environment), constructions, changes of 
configuration (either through dragging or through additional figural elements), 
heuristic techniques (for instance the examination of extreme cases). Although 
the use of such tools may bring about the production of arguments based on a 
perceptual judgement, theoretical aspects may be underlying them and offer 
room for developing arguments into a logical chain. In actual fact, in the phase 
of justification of the conjecture some of these tools may be reused and re-
interpreted with a stronger link to the theory: the toolkit evolves and the newly 
incorporated tools need to be harmonised with and related to other existing 
tools. 

The paper attempts to illustrate the fact that the different phases of the 
solution process present distinct features in terms of the evolution of 
relationships among tools linked to the phenomenological rather than to the 
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theoretical world. In the particular case examined, at the beginning of the 
solution process dynamic exploration serves the purpose of finding relationships 
between figural elements as well as conjecturing the reasons of the underlying 
geometrical properties. As the solution develops, dynamic exploration seems to 
be guided by the identification of theorems and properties that hold for 
particular cases: there is a progressive interaction between technical and 
conceptual tools at this stage, and the properties are still tested by means of the 
dragging test. In the final part of the process the theorems, previously identified 
as holding in the general case, are finally used to (partially) prove the conjecture 
on a static figure, on which the initial relationship of cause-effect between 
motion and theorems disappears. 

A conflict between the dynamic causality, as perceived from the 
observation of the figure, and the static deduction only emerges in the second 
part of the solution process, when the notion of locus is introduced. The personal 
appropriation of such notion by Giulia seems to be originating the conflict: the 
idea of locus seems to have been conceptualised in dynamic terms, and to be 
conflicting with the known static definition. In this case a dynamic management 
of the problem does not prove to be sufficient to make progress in the 
construction of the needed proof, thus making other conceptual or theoretical 
tools necessary. 

Personal theorems and definitions, either previously appropriated or 
developed and contextualised along the solution through the use of dynamic 
tools, may be substantially different in nature from �official� theorems and 
definitions. A possible hypothesis, illustrated here by the case of Giulia, might 
be that a harmonisation of the two types of tools is difficult and a possible 
rupture of the cognitive unity may occur. The argumentative processes enacted 
during the elaboration of the conjecture, and drawing on the idea of dynamic 
causality, may possibly be abandoned when a deductive process is enacted in 
order to produce a proof. 

Hence the individual needs to reorganise the toolkit and to choose a 
different �set� of tools in order to achieve a reformulation of the conjecture and 
prove it after a new exploring process. When a sufficient theoretical control is 
kept along the whole solution process the management and evolution of the 
toolkit might be successful in supporting the process of selection and (more or 
less systematic) organisation of the arguments produced. The issue of the 
achievement of a good theoretical control of the operations and actions 
performed while solving a problem is strictly linked to the issue of the 
appropriate construction of meanings by the individuals within the context of 
solution and, more broadly, within the context of their mathematical experience. 
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Some of the ideas explored in this paper open up avenues for further 
research: more evidence is needed in order to establish whether an appropriate 
management of the personal toolkit each individual develops in particular 
contexts, is linked to the idea of cognitive unity. A germ of hypothesis may be 
formulated: 

there is a tendency to establish or re-establish CU once it is broken. In 
correspondence with possible different causes for the rupture to occur, an 
appropriate management and reorganisation of the toolkit may help the 
agent overcome the rupture. 

Some reasons explaining a possible rupture of the CU have been 
implicitly or explicitly suggested: a particular stress has been given to a possible 
conflict between the dynamic nature of the exploration in Cabri and the 
essentially static nature of Euclidean geometry as theoretical system. More 
reflection is needed and further evidence needs to be provided in order to 
evaluate the actual impact of possible ruptures of the CU on the construction of 
a meaning of proving. 
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Abstract: This paper reports on students’ measurement activity in a dynamic 
geometry environment (Cabri-Géomètre), in the context of open geometry 
problems. In particular, we explore the cognitive role of measurement in the 
production of conjectures and proofs, with respect to the evolution from 
empirical to theoretical practices. Different ways of using measurements have 
been identified. The protocol we present shows how the use of measures 
constitutes a delicate and key point within the evolution towards theoretical 
thinking. 

 

Introduction 

New technological tools are widespread in most classrooms now. However, the 
presence of technology cannot in itself bring about educational change. Simply 
making software available does not mean that people will more or less 
automatically take advantage of the opportunities that it affords (Perkins, 1985). 
Generally speaking, using new technologies in the classroom implies the 
redefinition of contents, methodology and of the role of the teacher (Noss, 1995; 
Bottino & Chiappini, 1999). The role of technology is being widely discussed in 
the debate, currently pursued in many countries, aimed at the development of 
new mathematics curricula (e. g. Crem, 1995; AAVV, 2000; Abrantes, 2001; 
Robutti, 2001). At the same time Mathematics Education research has addressed 
this issue from different points of view, for example investigating from a 
cognitive point of view how the introduction of new technologies change 
learning in the classroom (e.g. Schwartz & Yerushalmy, 1992; Laborde, 1993; 
Hanna, 1996; Artigue, 1997; Mariotti & Bartolini Bussi, 1998; Sutherland & 
Balacheff, 1999; Lagrange et al, 2001). 

Contributing to this discussion, our interest concerns the impact of new 
technologies in the curriculum and is focused on the study of the consequences 
of this impact on the teaching and learning processes. Particularly, our aim in 
the paper is to report on students' approaches to measurement in a dynamic 
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geometry environment and to analyse the cognitive role of measurement in the 
production of conjectures and proofs. First, we set the research problem in the 
perspective of a wide research project focused on the use of dynamic geometry 
in the context of an approach to theoretical thinking. Second, we outline a 
framework for analysing students� measurement activity within that context. 
Finally, we illustrate our thinking with an example of the solution process of a 
pair of students and we draw some preliminary conclusions. 

 

The Research Problem 

The ongoing research project we are currently involved in, is centred on the 
teaching and learning of proof in geometry at secondary school level within a 
dynamic geometry environment, namely Cabri-Géomètre (Baulac & al, 1988). 
Teachers and researchers have developed and implemented classroom activities 
in an attempt to integrate geometry teaching and new technologies, drawing on 
the perspectives of Hölzl, 1996; Laborde, 1998; Hoyles & Healy, 1999. The 
focus of the research is the analysis of students� cognitive processes within the 
proving process, i.e. the process of exploring, conjecturing and proving in an 
open problem. In particular, we observe the students' evolution from an 
empirical approach to mathematical activity, which involves experiences such as 
observing, modifying and identifying invariants, to a more theoretical one, 
which involves the construction of definitions and proofs and the understanding 
of the deductive structure of mathematics, made of axioms and theorems. This 
evolution is to be considered at two levels. As a long term process, it is the 
evolution from an empirical mathematics to the systematisation of some aspects 
of a theory1. As a short term process, the evolution concerns the organisation of 
the perceptual aspects, which emerge from students' exploration of the problem 
in Cabri via an empirical approach, in the construction of a proof. 

In a previous study we analysed the use of the dragging function in Cabri. 
We identified different modes of dragging which students use according to 
different purposes, during the solution process of open problems, and we 
analysed these modes from a cognitive point of view (Arzarello et al, 1998b; 
Olivero, 1999). Recently, we have been studying the different ways in which 
students use measures in Cabri (Olivero & Robutti, 2001). These measures are 
dynamic, i.e. they change on the figure as you drag points. Measuring is a 
powerful tool of Cabri (and of other dynamic geometry software), and it can be 
used by students with varying degrees of confidence.  

                                                 
1 The extent to which the theory can be developed depends on the age of the students, the 
school level and the type of school. 
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In this report we will analyse students' approaches to measurement and 
the cognitive role of measurement in the production of conjectures and proofs. 

 

A Framework for Analysis 

Drawing on the previous study about the use of dragging, we developed a 
framework for analysing students� approaches to measures in Cabri.  

The ways of using measures that we observed can be classified in  two  types. 

1. Use of measures within an ascending process, in order to explore a 
situation, i.e. looking for regularities, invariants, etc. We say there is an 
ascending process (Arzarello et al, 1998a; Arzarello et al, 1999) when 
students move from drawings to theory. Drawings are seen as source of 
exploration and discovery: they are to be �read� in order to get 
information. 

In this first case measurements are used as a heuristic tool (cf. mesure 
exploratoire, Vadcard, 1996) and have a perceptual connotation. The students 
'read' measures in order to get ideas about properties, invariants, and 
relationships of a figure. Measures can be used on a static figure, aiming at 
identifying the properties of one particular configuration (it is not very 
common). Otherwise measures can be used together with dragging (this 
modality is very common), in order to observe how the properties of a figure 
change, e.g. the length of the sides of a quadrilateral, or to identify relationships 
in a figure, e.g. how the length of one side depends on another side, or to 
discover invariants. 

2. Use of measures within a descending process, in order to validate or refute 
conjectures, to check properties, to construct proofs, etc. We say there is a 
descending process (Arzarello et al, 1998a; Arzarello et al, 1999), when 
students move from theory to drawings. Drawings are no longer seen as 
source of discovery, but of validation. As such, they embody the already 
discovered geometrical properties, that is bits of a theory. 

In this second case measurements are used as a control tool (cf. mesure 
probatoire, Vadcard, 1996). They can be used in order to check a prediction; for 
example, if the students perceive a regularity, but cannot judge if this is really a 
geometrical property of the figure, they use measures to check this. Or measures 
can have the status of experimental validation of a theoretical statement, when 
the students have already formulated conjectures or even proofs: the subjects use 
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measurements in order to either validate conjectures or to find logical 
relationships which can contribute to the construction of a proof. 

 

Methodology 

The students involved in the project are Italian Secondary School students (15-
17 years old). All the classroom teachers participate in the Mathematics 
Education Research Group2 at the University of Turin as teacher-researchers 
(Arzarello & Bartolini Bussi, 1998). 

The tasks used in the project are open problems (Arsac et al, 1988), which 
differ from traditional tasks of the form "prove that", in that the students are 
asked to explore a geometric situation, make conjectures and finally prove them. 
They allow students to investigate a geometric configuration using different 
modalities: static, dynamic (Goldenberg, 1995), transformational (Simon, 1996), 
and so on. 

The technological environment chosen is Cabri, which contains a number 
of different tools students may use to tackle the problems: constructions, 
dragging, measures, calculations, etc. Particularly, in this report we concentrate 
on the measurement tools, which allow students to take measurements of 
segments, distances, angles, areas and perimeters of constructed figures. 

In the classroom sessions, the students were presented with an open 
problem and were asked to work in pairs at the computer (with Cabri), trying to 
formulate conjectures and proofs, in a two hours period. 

Two observers were usually present in the classroom and observed one 
pair of students. The data collected are fieldnotes, a videotape of the work of this 
pair and their written production. 

 

A Preliminary Analysis: "What do you trust more: this drawing or your 
proof?" 

To illustrate our thinking, we will analyse some excerpts3 of a protocol taken 
from a 2nd year classroom (15 years old students) of a Liceo socio-psico-
                                                 
2 In this group teachers and researchers collaborate in the development, implementation and 
evaluation of new materials for the classroom. 
3 We chose the parts of the protocol which show students' use of measurements. All the lines 
in the protocol were numbered for easier reference. 
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pedagogico4. These students (A and T) are medium achievers; they have used 
Cabri a few times over the year before this activity, doing construction and 
exploration problems. 
The students were given the following problem (Varignon�s problem): 
Draw any quadrilateral ABCD. Draw the midpoints L, M, N, P of the four sides. 

1. Which properties does the quadrilateral LMNP have?  
2. Which particular configurations does LMNP assume? 
3. Which hypotheses on the quadrilateral ABCD are needed in order for 

LMNP to assume those particular configurations? 
At the beginning the students construct a generic quadrilateral ABCD in 
Cabri and the inside one LMNP with the vertices in the midpoints of ABCD 
(Fig.1). 

[�] 
16. A: Try to take measurements of the sides, it seems that that equals that 

(she points at LM and NP) and that equals that (PL and MN). 
17. T: yes, it is a … 
18. T moves C and stops to observe the figure. 
19. T: it is … a parallelogram 
20. T puts measures on the sides of LMNP (Fig.2). 
21. T: so… 
22. A: so the opposite sides are… 
23. T: congruent…eh… 

  

                                       Figure 1                                                                                    Figure 2 

At the beginning, the students start dragging the vertices of ABCD, 
observing that the opposite sides of LMNP seem to be congruent (165) and they 
want to check this observation by taking measurements of the sides of LMNP 
(16). However, first an observation is made about LMNP being a parallelogram 
(19), then measures are used in order to have more information supporting this 
                                                 
4 The students have 4 mathematics classes per week. 
5 The numbers quoted in the analysis refer to lines in the protocol. 
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conjecture (22-23). Measures are used within an ascending process (type 1), 
together with dragging, in order to discover a conjecture. They add further 
information to an initial perception (of a parallelogram). 

[�] 
38. T: so… it may be a rhombus 
39. T drags B slowly on the left and slows down when it seems she is getting 

a rectangle. 
40. T: it may also become a rectangle! 
41. A: try to make this (ABCD) a square. Let’s see which quadrilateral it 

(LMNP) becomes. 
42. T: So I need to put measures. 

In the second phase of the solution process, the students observe some 
more regularities in LMNP while dragging: it may be a rhombus (38) and a 
rectangle (40). They pay attention to ABCD as well and try to relate the two 
quadrilaterals (41). In order to make ABCD a square they first measure the sides 
of ABCD (42). They use measurements together with guided dragging6 in order 
to achieve a square. 

After having explored the situation and formulated some conjectures, they 
start proving one, which is: “if ABCD is a square then LMNP is a rhombus”. 
[�] 
178. T draws on paper a square ABCD with the sides 12 squares length, 

puts the midpoints of the sides and gets the internal quadrilateral 
LMNP (Fig. 3). 

 
Figure 3 

The conjecture is discovered in Cabri, thanks to the use of measures, 
which seem to represent an essential tool in the ascending process, together with 
dragging. In order to get started with the proof, one of the students makes a 
drawing on paper. The procedure to get a square is the same as the one used in 
Cabri: taking measurements of the sides. This time measures are read in terms of 
the little 'squares' the paper they are using is divided into (178). 
                                                 
6 Guided dragging is dragging the basic points of a figure in order to give it a particular shape 
(Olivero, 1999). 
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[�] 
182. T: all this stuff…these…they are congruent (the halves of the sides of 

ABCD). 
183.  Then T writes down the thesis: LM equals MN, equals NP, equals PL. 

Meanwhile A uses a ruler to measure the sides of LMNP.  
[�] 

194. T: so PL equals MN. The same for …PDN triangle and LBM triangle 
⇒ PN equals LM…Should I do a cross comparison? PDN triangle 
and PAL triangle ⇒ PN equals PL. What’s missing? These two are 
done, these two are done….  

[�] 
198. T: They all have equal angles. So it is a rhombus! Ok! 

In the third phase, the students attempt to construct a proof. The proof is 
produced with a rigorous reasoning, using the congruence of the triangles in 
which the figure is decomposed (182). At the end of this reasoning the students 
are convinced of the validity of their conjecture (198) from a logical point of 
view, because they proved it. They work within the theory, as they construct the 
proof according to the deductive rules of mathematics: they deduce the thesis 
(rhombus) from the hypothesis (square), connecting all the steps with logical 
consequence. However, "there is profound difference between determining that 
something is true and explaining why it is true" (Nunez, 2000, p.3). 

[�] 
208. T: try to make ABCD a square 
209. A drags A and B trying to obtain a square with a side of 6.17 
210. T: is it a rhombus? 
211. A: well…(A points at the sides of LMNP). A rhombus has got equal 

sides…oh no! …It’s not a rhombus! (Fig.4) 

 
Figure 4 

The students feel the necessity of validating their deduction in Cabri. So 
they go back to Cabri and drag ABCD into a square (208), in order to check if 
LMNP is a rhombus and they measure the length of the sides of LMNP. The 



European Research in Mathematics Education II 

 222

students are now using measures in a descending process (type 2). They have a 
theoretical deduction, which holds within geometry; however, they are seeking 
an explanation for that and they want to understand why is that so. They are 
unhappy when they see that the measures do not corroborate their thesis (211). 
A conflict arises, as from a logical (theoretical) point of view they came to one 
conclusion, but the empirical point of view does not corroborate it. So the 
experimental validation provokes a conflict.  

[�] 
225. T: the problem …is that this is not a square (ABCD). 
226. A: it’s impossible. 
227. T: look… no… Because if you say that this equals this (PD and DN) 

and you say  they have an equal angle (D) and then this equals this 
(PN and LM) and this and this (PL and MN)…then this becomes a 
square (LNMP), but we’ve just seen that it is not a square. So it’s all 
wrong! 

These students' attitude towards measurement seems to be of complete 
trust7; in fact they immediately go back to their proof and check each deductive 
step very carefully, thinking there may be something wrong there. And they 
conclude by rejecting that proof: So it's all wrong! (227). The motivation for this 
is that the figure does not look like a square (227): at this moment perceptual 
aspects are very strong and prevail over theoretical considerations (the Cabri 
figure is not a square because the angles are not right angles). This seems to be a 
final decision, however the conflict is not yet solved for them. 

[�] 
251. I8: what is the conjecture you’re proving? 
252. T: if ABCD is a square… then the other should be a 

rectangle…because the measures (in Cabri) show that the opposite 
sides are congruent, so it is a rectangle. 

[�] 
257. T: however I do not understand this, it doesn't make sense. 

The conflict is recognised by the students (257). It is interesting to notice 
that T starts explaining the teacher what the figure and the measures in Cabri 
(252) show (LMNP rectangle) and not what they got in the proof (LMNP 
rhombus). The use of conditional sentences (if…the other should be…-252) 
shows that she does not really give the status of truth to this fact. 

                                                 
7 "I feel equally convinced that our most prevalent notions both about the function of 
measurement and about the source of its special efficacy are derived largely from myth" 
(Kuhn, 1977, p. 179). 
8 I is the teacher. 
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258. I: why? What puzzles you? 
259. T: because…if this is the midpoint (she points at P) then it divides this 

side in two equal parts (she points at AD and AP and PD). 
260. T: so it should be: if it is a square, the quadrilateral inside is a square 

too. 
261. I: right! 
262. T: why the figure doesn't show that? 
263. I: what do you trust more: that drawing or your proof? 
264. T: my proof! (laughing). 

T goes back to the proof again; this time she reconstructs it on the figure 
without reading the one they got before. Her conclusion is a conjecture (260), 
which is different from the one the figure shows (262). This time she seems to 
be more convinced of the proof, as she is asking why the figure does not show 
what she has just proven true (262). The teacher's intervention focuses the 
attention on the two aspects of empirical validation and theoretical proof. 

Discussion of Results 
The overall evolution of the proving process the students carried out in the 
previous example can be summarised as follows. First, the students explore the 
situation in Cabri, make a conjecture, they are convinced of that conjecture and 
they prove it: the conclusion is that the conjecture holds. Second, they want to 
better understand the situation and they want an explanation for their conjecture; 
so they go back to Cabri and use measurements. This experiment does not 
confirm their proof. So, at first they refute the proof; then they re-construct the 
proof, and they seem to be convinced by that. However, the measures in Cabri 
still do not validate it. What is the problem? 

A conflict (262) between the theoretical result (proof) and the empirical 
answer given by Cabri (the figure does not look like a rhombus) arises. This 
happens because the students, in their descending process, try to validate the 
proof at an empirical level. This is not wrong, but it requires looking at the 
figure from another point of view, not only empirical, but also theoretical. In 
fact, during the ascending process, the figure is looked at from an empirical 
point of view, because the aim is to explore and look for properties and 
conjectures. In the descending process, instead, the geometrical properties of the 
figure need to be accounted for: the figure must be seen as a generic example 
(Balacheff, 1992). In our example, when validating the proof the pupils �read� 
the figure at an empirical level (211), in the same way as at the beginning of the 
ascending process. They 'read' the properties of ABCD from the measurements 
on the figure, concluding that ABCD is a square because it has got equal sides. 
And in the same way they 'read' the properties of LMNP from the 
measurements: it does not have equal sides therefore it cannot be a rhombus. 
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The students do not consider that their hypothesis is ABCD square while the 
Cabri figure is not a square because the angles are not right angles. Instead of 
'reading' the Cabri figures, they should have looked at them from a theoretical 
point of view, according to which ABCD is an 'approximation' of a square and 
LMNP is an 'approximation' of a rhombus. The proof would have then been 
validated. 

Continuous back and forth shifts from ascending to descending processes 
can be frequently observed as cognitive activities during the proving process and 
they reveal rich mathematical activities. However, in order for the evolution to 
theory to happen, it is necessary that every time you go to the figure you see it 
from a different level, adding the information provided by the geometric 
properties that were discovered before as conjectures. 

 

Issues for Further Research 

The analysis of students' measurement activity in software environments such as 
Cabri sits within two major research strands: the study of the mediation 
technological tools offer in the context of problem solving and the study of 
students' cognitive processes. The purpose of our research is to analyse the 
mediation of Cabri (or other tools), linking the cognitive aspects discussed in 
this paper with other elements playing a role in the interaction between students 
and tools. For example, epistemological and conceptual aspects related to the 
knowledge, which comes into play in problem solving activities within 
technological environments, need to be considered. These aspects are to be 
tackled from two points of view: the point of view of technology and the point 
of view of the subject knowledge, i.e. mathematics. 

In the general framework aiming at linking research and practice aspects 
(Robutti et al, 2000), understanding the relationships between epistemological 
and cognitive aspects proves relevant to define the role of the teacher in the 
management of the classroom activity and in the curricular planning. 
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Abstract: In 1995, the Victorian Board of Studies accepted a recommendation 
from the VCE1 Working Group to allow students to use graphics calculators in 
VCE mathematics examinations as from 1997 (Victorian Board of Studies, 
1995).  In 1997, Victoria became the first state in Australia to permit the use of 
graphics calculators in final external examinations.  The use of graphics 
calculators has become quite widespread.  With the support of the Board of 
Studies, a survey of secondary schools was undertaken to gauge the response of 
teachers to these tools.  This paper provides information on choice of 
mathematics topics for which the graphics calculators were used and how 
teachers view graphics calculator use in secondary mathematics courses. 

 

Introduction 

Mathematics instruction traditionally involves teaching of a procedure or 
algorithm which training makes routine �so that the process can be suppressed to 
a lower level of consciousness� (Tall, 1993). In theory this gives the possibility 
to move on to the next stage in which the clichéd procedure is used to explore 
new mathematical objects that are more general.  In practice, however, many 
students are not trained in basic manipulations to the extent that allows them to 
use these processes automatically and concentrate on the meaning of more 
abstract mathematical objects. With the calculator and/or computer carrying out 
some of these processes even those students who did not master enough their 
basic skills can concentrate on the conceptual knowledge while technology 
performs for them routine algorithms. For example, while teaching Statistics, 
technology gives the opportunity to concentrate on interpretation of statistical 
graphs, while statistical software or graphics calculator performs the routine 
procedures of graphing. A comprehensive review of previous research on all 
aspects of teaching and learning with graphics calculators is provided by 
(Penglase and Arnold, 1996). 

                                                 
1 Victorian Certificate of Education (VCE) is awarded to students on a satisfactory 
completion of two final years (Year 11 and 12) of secondary school in Victoria (Australia). 
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However, despite all positive features, that technology could ideally bring 
to the classroom, one could imagine that, if this technology is not easily 
available for both teachers and students, or, if teachers did not have time to 
familiarise themselves with this technology, then theoretically useful tool 
becomes useless in practice. Therefore, the purpose of this paper is, to examine 

• How the availability of graphics calculators associates with teachers’ 
attitudes toward this tool? 

• Are there any other factors like gender, age, or teaching experience that 
associates with the attitudes toward graphics calculator? 

• How attitudes and availability associate with implementation of graphics 
calculators into curriculum? 

 

Background 

In Australia graphics calculators became available at the end of 1980�s and 
Victorian educators began to pay attention to this teaching and learning tool. 
From the early 1990�s staff from Swinburne University of Technology, The 
University of Melbourne, and some other educators began to introduce graphics 
calculators to the Victorian teachers (Jones, 1997; Tynan and Dowsey, 1997). 
However, until 1997 the ban on the use of graphics calculators in external 
examinations applied universally in Australia (see Tobin, 1997, for a discussion 
of the impact using a graphics calculator would have made on VCE mathematics 
papers prior to 1997). 

In 1995, the Victorian Board of Studies accepted a recommendation from 
the Mathematics Key Learning Area Committee to allow students to use 
graphics calculators in VCE mathematics examinations as from 1997 (Victorian 
Board of Studies, 1995). Concerns were raised by public and media on equity 
issues and appropriateness of the use of this technology in external 
examinations. 

To underpin the Board�s policy decision a state-wide survey of schools 
was initiated in 1997 by Swinburne University of Technology with the support 
of the Board of Studies. The survey aimed to assess the level of availability of 
calculators in the classroom and to determine teacher attitudes to this tool.  
There had been little previous research published on teacher attitudes and all in 
the USA (Chamblee, 1995; Jost, 1992; May, 1995).  

A previous paper (Routitsky and Tobin, 1998) raised the issue of teacher 
support for the decision to use graphics calculators in VCE examinations and 
found that there was broad agreement for the policy across all sectors, regions 
and school types.  This support level ranged from 64% to 70%, depending on the 
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VCE subject, and this occurred, despite there being a similarly common 
perception (about 73% of respondents) that the use of calculators raised serious 
equity issues in terms of student access. The policy implications of the survey 
were that �for 1999 examinations in Mathematical Methods and Specialist 
Mathematics setting panels will assume that all students will have access to the 
approved graphics calculator. For Further Mathematics, this requirement will 
come into effect in 2000� (Victorian Board of Studies, 1999). 

Taking up this theme, Routitsky, Tobin and Stephens (1998) analysed 
further the data on teachers who disagreed with the Board's policy.  The purpose 
of this investigation was to determine if this were linked to their personal level 
of access to graphics calculators, or whether it related to the level of access 
which their students had, either through ownership or school access.  The results 
of that analysis demonstrated, perhaps unsurprisingly, that teachers who 
disagreed with the Board policy tended to come from schools where they and/or 
their students had limited access to a graphics calculator.  This is consistent with 
a previous study on teacher attitudes to use of graphics calculators in a college 
algebra course in the USA, where it was found that the only significant variable 
on level of teacher support was degree of familiarity of the user (Chamblee, 
1995). Reduced familiarity is an immediate consequence of limited access.  

 

Methodology 

At that time our main concern was about availability of graphics calculators. We 
recognised that this problem had two sides: school policies and how these 
policies were implemented from the teachers� point of view.  That is why the 
survey was organised in two parts.   It had two aims.  The first to determine 
from school Mathematics Coordinators what policies were implemented by 
schools to make graphics calculators available for teaching.  The second to 
determine teachers and students access to the graphics calculators, teachers 
attitudes to its use, and actual use of graphics calculators in the classroom. The 
main target group of the survey was teachers of VCE mathematics subjects.  
This spans years 11 and 12 and includes the five subjects, Mathematical 
Methods 1 & 2, General Mathematics Units 1 & 2, Mathematical Methods Units 
3 & 4, Further Mathematics Units 3 & 4 and Specialist Mathematics Units 3 & 
4.  It is only the unit 3 & 4 subjects which have external examinations affected 
by the new policy - these are ninety-minute papers involving multiple choice, 
short answer and analysis tasks. 
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According to its aims, the survey had two different target populations, 
Victorian Mathematics Coordinators2 and Victorian Mathematics Teachers, and 
two different instruments. The brief coordinator questionnaire included 
information on school sizes (indirectly), calculator models, booklisting3 
policies, class sets, student access and estimations of student calculator 
ownership. The focus of this questionnaire was school penetration of the 
graphics calculators. 

The focus of the teacher survey (four pages) was on attitudes to the 
Board's calculator policy and attitudes to the graphics calculators themselves as 
well as on the availability of the graphics calculators in the classroom.  This 
teacher survey enables us to assess any variations in responses between school 
regions, types or sectors as information on these was gathered also. 

There are seven educational regions classified by the Department of 
Education in Victoria. The three sectors are Government Secondary (including 
TAFE), Catholic, Independent. The three types of educational providers 
classified were boys� schools, girls� schools, and coeducational schools. 

As it was said before, there has been little previous research undertaken 
on teacher attitudes towards graphics calculator. In the USA, Jost (1992) 
examined interrelations between teaching style and the frequency of use of 
graphics calculators during instruction. She found that teachers that use the 
inquiry-oriented methodologies used the calculator more during instruction (and 
this was the rationale for the question about teaching style). Chamblee (1995) 
investigated the association between teachers� attitudes toward graphics 
calculator and various personal characteristics on a comparatively large scale. 
May (1995) examined teacher concerns, teacher training and curriculum issues 
related to the integration of graphics calculators. From the survey of 33 teachers, 
May found that teachers� greatest concerns were �outdated curriculum�, lack of 
professional development, �lack of time, and inequities of ownership�. This 
work supported our initial intention to include some questions about 
professional development and topics taught with graphics calculator alongside 
with questions about ownership and attitudes toward graphics calculator. 

                                                 
2 Mathematics Coordinator is usually a senior experienced teacher in Victorian Secondary 
school, who supervises mathematics teachers, coordinates curriculum policies in Mathematics 
in the school, has similar responsibilities to the head of department, if school is big. 
3 Booklisting policies in this case are the school policies that either recommend students to 
have a certain type of calculator or do not do so. 
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Every Victorian school and TAFE4 college which provided Mathematical 
Methods 3&4 to its students (the most popular Year 12 mathematics subject) 
received one Coordinators� Questionnaire and five Teachers Questionnaires with 
the covering letter in which we asked Coordinators to answer his/her 
Questionnaire and to give the teachers their questionnaires.  This study design 
had its limitations. Teachers were not sampled, because there was no sampling 
frame to do so at the time of the survey. To reduce the impact of this limitation 
the comparison of population distribution of different types of schools and the 
achieved sample of schools was performed and post-stratification techniques 
were used to reduce possible bias. 

Both surveys had good response rates. 73% of all Victorian Mathematics 
Coordinators returned their questionnaires after two mail-outs and a follow-up 
telephone survey.  The achieved sample was representative across all regions, 
school sectors and school types.  46% of teachers returned their questionnaires.  
It made more than 1000 teachers from all Victorian regions, school types, and 
sectors.  However, there was slight over representation of teachers from 
Independent schools and rural regions.  Specifically the methodology of data 
collection, response rates, profile of respondents, and possibilities of bias of 
estimates have been discussed in previous papers (Routitsky and Tobin, 1998).  
This paper is based mostly on the results from the second (Teachers�) survey 
and tried to answer the questions listed in the introduction. 

 

Results 

1. Teachers’ and students’ access to graphics calculators. 

The majority of Mathematics Coordinators or 99.7% (334 out of 341) answered 
�Yes� to the question: Are graphics calculators used in the school? 

Teachers were asked a similar question but about themselves rather than 
about their school.  The question was: Do you use graphics calculators in your 
teaching?  The majority of teachers answered �Yes� to this question 77.6% (831 
out of 1071). 

However, the aim of analysis was to investigate this issue deeper than 
that. We were interested whether school policies on the one hand, and students� 
and teachers� access to graphics calculators on the other hand, varied across 
school sectors (Government Catholic, and Independent Non-Catholic), school 
types (Boys�, Girls� and Co-educational), or regions.  Overall 53.4% of schools 
                                                 
4 Institutes of Tertiary and Further Education (TAFE) are vocational institutions in Victoria. Some of 
them also provide VCE subjects for those who left school earlier. 
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had at least one class set of graphics calculators and 78.6% prescribing 
(�booklisting�) graphics calculators. Information on booklisting by schools 
shows that Independent Non-Catholic schools were much more likely to 
prescribe calculators than Government schools.  Catholic schools were also 
more likely to �booklist� calculators than their Government counterparts - 
though to a lesser degree.  Coordinator results demonstrate that 9% of all 
respondents (10% after weighting to assist over representation of Independent 
schools) neither booklisted calculators nor provided any class sets for students in 
1997.  This figure is higher than the proportion of schools that do not use 
graphics calculators.  Possibly some schools used graphics calculators for 
demonstration purpose, but neither have a class set, nor prescribe graphics 
calculators for students. 

Teachers were asked two questions about accessibility of graphics 
calculators for them and their students in the lesson.  In this section the answers 
to the following questions will be analysed:  Do you have access to the graphics 
calculator for use in your teaching?  Do your students have access to a class set 
of graphics calculators in your lessons? 

The answers were graded from 1- �NEVER� through �RARELY�, �SOME 
TIMES�, �OFTEN� to 5-�ALWAYS�.  In Year 11 and especially in Year 12 the 
permanent availability of graphics calculators in the classroom is essential for 
developing students� skills in their preparation for external examinations. 

Research shows (Steel, 1996) that mean improvement in assessment 
performance (for example, in such topics as Functions and Graphs) of students, 
who use calculators every lesson is twice as higher compare to those of them 
who use calculators every second lesson.  Therefore, even those students who 
can use and whose teachers can use graphics calculators �OFTEN� are 
disadvantaged against those who can use and whose teachers can use graphics 
calculators �ALWAYS�.  As for those students who are able to use the class set 
of graphics calculators �NEVER�, �RARELY�, or �SOME TIMES� (more than 
35% of classes), these students most likely do not gain much from the use of 
graphics calculators especially if they don�t have their own graphics calculators.  
That is why categories �ALWAYS�, �OFTEN�, �NOT OFTEN� were used, 
where category �NOT OFTEN� combines three categories: �NEVER�, 
�RARELY�, and �SOME TIMES�. 

The trend we have in Table 1 was not unexpected. The percentage of 
those teachers who could not regularly use graphics calculators varied from 16% 
in Government Sector to 8% in Independent Sector. Statistically differences in 
the availability of graphics calculators across sectors were significant (χ2 = 
40.19 DF = 4, p < 0.001 for teachers, and χ2 = 24.17, DF = 4, p < 0.001 for 
students).   
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It is interesting that although Independent Schools tended to purchased 
class sets of graphics calculators less than Government schools, students of 
Independent schools were more likely to use them on a regular basis than their 
Government counterparts.  50% of Independent schoolteachers reported that 
their students could use graphics calculators �ALWAYS� against 34% 
Government school teachers. 

Table 1 Access to Graphics Calculators across School Sectors 
 Teachers’ access (%) Students’ access (%) 
Sector GOV. CATH. INDEP. Total GOV. CATH. INDEP. Total
ALWAYS 61% 73% 83% 68% 34% 47% 50% 40%
OFTEN 24% 17% 9% 19% 29% 21% 17% 25%
NOT OFTEN 16% 10% 8% 13% 37% 33% 33% 35%
Sample size 527 194 218 939 520 193 207 920

It was not expected, that differences across school types in the availability 
of graphics calculators would also be significant (χ2 = 19.97, DF = 4, p = 0.001 
for teachers and χ2 = 18.20, DF = 4, p = 0.001 for students).  The percentage of 
those teachers who can not regularly use graphics calculators varies from 16% 
for Boys� schools to 7% Girls� schools (see Table 2).  For students these figures 
are 43% and 25% consequently.  We can clearly see that availability of graphics 
calculators is much higher in Girls� schools than in Coeducational or Boys� 
schools (both types are mostly private schools in Victoria). 

Table 2 Access to Graphics Calculators across School Types 
 Teachers’ access (%) Students’ access (%) 
School Type GIRLS� BOYS� COED. GIRLS� BOYS� COED. 
ALWAYS 82% 69% 65% 55% 34% 37% 
OFTEN 10% 15% 21% 20% 23% 26% 
NOT OFTEN 7% 16% 14% 25% 43% 37% 
Sample size 165 62 712 161 61 698 

Both Tables 1 and 2 suggest strong association between teachers� and 
students� access to graphics calculators in the classroom. There were the same 
trends in students� ownership of graphics calculators as they were for 
availability of graphics calculators in the classroom (Routitsky and Tobin, 
1998).  

 

2. Teachers’ attitudes toward graphics calculators 

In the survey teachers were asked to respond to several statements about use of 
graphics calculators for teaching and learning even if they have not used the 
graphics calculator.  Responses were collected on a scale from 1 �NEVER� to 5 
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�ALWAYS�.  In this section, we will look at the responses to the following 
statements (the name of the corresponding variable is given in the brackets): 

• The graphics calculator is useful in your teaching (USEFUL) 
• Teaching with graphics calculators reduces the time needed for 

explanation (SAVES TIME) 
• Teaching with graphics calculators makes learning mathematics easier 

for students (EASIER) 
• Graphics calculators improve students’ understanding of mathematics 

(UNDERSTAND) 
• Usefulness of graphics calculators in your lessons depends on your 

teaching style (TEACH STYLE) 

The preliminary analyses showed that extreme attitudes �NEVER� and 
�ALWAYS� have smaller percentages compare to categories �RARELY� and 
�OFTEN� in responses to all statements.  That is why all attitudinal variables 
were recoded from five categories to three: �NEVER or RARELY�, �SOME 
TIMES�, �OFTEN or ALWAYS�.  The recoding did not lead to the loss of 
information but made this information clearer.  For further analysis these 
variables were used in the three categories form. 

Figure 1 Teachers’ Attitudes toward Graphics Calculator Use for Teaching 

Figure 1 shows some similarity in responses to the statements about 
usefulness of graphics calculators and dependence of it on teaching style.  
Teachers are more positive about these two statements than about others.  More 
than 50% of teachers, who responded to these statements, believe that graphics 
calculator is �ALWAYS� or �OFTEN� useful in their teaching and that 
usefulness depend on their teaching style.  Teachers overall are not so positive 
about the statement that teaching with graphics calculators makes learning 
mathematics easier for students, nor so positive about statement that graphics 
calculators improve students’ understanding of mathematics.  More than a 
quarter of all teachers who responded to these statements believe that this 
happens �NEVER or RARELY� and around one third of them think that it 
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happens only �SOME TIMES�.  As for saving time for explanation, more than 
50% percent of all teachers responded to this statement believe that it happens 
�NEVER or RARELY�.  

 

3. Interrelations between teachers’ attitudes toward graphics calculators and 
access  

Figure 2 shows that there was an inverse relationship between teachers� access 
to graphics calculators and negative attitudes to usefulness of graphics 
calculators in teaching.  The better access to graphics calculator the less 
proportion of teachers� responded that graphics calculator was useful �NEVER 
or RARELY�.  This is consistent with a previous study on teacher concerns 
about the use of graphics calculators in a college algebra course in the USA, 
where �for total concerns score, only graphing calculator expertise rating was 
found to be a significant predictor� (Chamblee, 1995).  Limited access is a major 
reason for reduced expertise rating. 

However, positive attitude interrelates with access in a more complicated 
way.  30% of teachers who never had access to graphics calculators supposed 
that it was useful �OFTEN or ALWAYS�. Between those teachers who had 
access to graphics calculators �RARELY� this consideration dropped to 14% and 
then began to increase with the increase of availability of graphics calculators.  
Yet, those teachers who had access to graphics calculators �SOME TIMES� 
(hypothetically more often then �RARELY�) still are not so positive about 
usefulness of this tool for teaching as those who can not use it at all. This 
attitudinal behaviour corresponds to the well-known psychological scheme: 
Unconscious Unskilled → Conscious Unskilled → Unconscious Skilled → 
Conscious Skilled. Usually when we unaware of difficulties we are more 
optimistic then when we begin to use a new method.  However, when skills 
increase teacher confidence increases as well. 

Figure 2  Graphics Calculators Useful in Teaching (interrelations between 
teachers’ access to graphics calculators and teachers’ attitudes). 
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Accessibility is a major factor for teachers to improve skills in the use of 
graphics calculator.  Similar trends are found for interrelations between 
students� access to a class set of graphics calculators and teachers� perception to 
its usefulness.  Interrelations between accessibility of graphics calculators and 
other attitudinal variables are similar but not so distinctive, although for all 
attitudinal variables general trends are the same: more access, better attitude. 

 

4. Interrelations between teachers’ attitudes toward graphics calculators and 
teacher’s personal characteristics and experiences 

The following teachers� personal characteristics were examined into relations to 
teachers� attitudes toward graphics calculators use for teaching and learning (a) 
Gender, (b) Age group, (c) Years teaching Mathematics, (d) Time teacher use 
graphics calculator.  Differences between male and female teachers were 
significant in their attitudes toward only two statements: Teaching with graphics 
calculators makes learning mathematics easier for students (variable EASIER 
χ2 = 9.17, DF=2, p=0.010); and Graphics calculators improve students’ 
understanding of mathematics (variable UNDERSTAND χ2 = 6.68, DF=2, 
p=0.035).  However these differences were due to men being more certain than 
women.  Women more often responded �SOME TIMES� and men more often 
took both ends of the scale: �NEVER� or �ALWAYS�. 

Teacher attitudes were significantly different (χ2 = 14.23, DF=6, p=0.021) 
across age groups only toward one statement: Graphics calculators save time 
needed for explanation.  Although, there were approximately half of teachers in 
all age groups who thinks that graphics calculator saves time �NEVER or 
RARELY�, positive attitude toward this statement �OFTEN or ALWAYS� 
monotonously increases from 15% of teachers age 21-30 to 28% of teachers 
who are older than 50.  One would think that these differences were due to 
teachers� experience in their job.  However, this was not the case.  Analysis 
showed no significant differences between teachers who taught mathematics for 
a different number of years, in their attitudes toward different aspects of 
usefulness of graphics calculators in teaching. 

The important issue was the teachers� experience with graphics 
calculators.  Their attitudes toward all statements strongly interrelated with the 
time they use graphics calculator. 
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Table 3  Time Teachers Use Graphics Calculator (in Years) vs Attitudes 

Mean time use GC  USEFUL SAVES TIME EASIER UNDERSTAND TEACH
NEVER or RARELY 0.59 1.44 1.03 1.10 1.50 
SOMETIMES 1.45 1.63 1.60 1.56 1.45 
OFTEN or ALWAYS 2.09 2.16 2.10 2.18 1.78 
F*) 87.11 19.47 47.04 50.01 6.02 
*) (For all variables p <0.005, between groups df=2, within groups df>900) 

It is especially clear for three variables: USEFUL, EASIER, and 
UNDERSTAND (in bold).  For these variables, differences in mean time 
teachers use graphics calculators between the three attitudinal categories (which 
are differences between second and first row and then between third and second 
row) vary from nearly half a year to nearly a year. For example, for USEFUL 
(first column), difference between mean time for USEFUL SOME TIMES (1.45 
years) and mean time for USEFUL NEVER or RARELY (0.59 years) is 0.86 
years. To improve her/his attitude further to USEFUL OFTEN or ALWAYS an 
average teacher needs another 0.64 of a year.  Figure 3 illustrates these 
relationships. 

Figure 3  Time Teachers Use Graphics Calculator (in Years) vs Attitudes 
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5. Interrelations between number of topics taught with graphics calculator by 
teachers and their attitudes toward graphics calculators 

Teachers were asked a number of questions about topics in which they possibly 
use graphics calculators for teaching. Mathematics topics for Years 9-12 were 
listed.  Although the list of topics was not all-inclusive, it was quite 
comprehensive.  Less than 8% of teachers confirmed that they use graphics 
calculators in �OTHER TOPICS�.  There were favourites like Year 12 Statistics 
(nearly 78% of all teachers who use graphics calculator in Year 12) and less 
popular topics like Linear Programming (30.6%).  Out of 77% (831 teachers) of 
teachers who use graphics calculators in any of 9-12 Year levels, the number of 
topics in which thy use it varies from 0 (sic! 12 teachers) to 38 (one teacher).  
The median number of topics across all year levels was 10 per teacher with 
quartiles around 5 and 16 topics.  There was some association between the 
Number of Topics Taught with Graphics Calculator (TOPICSN) and attitude 
toward this tool, although these associations were different for different 
attitudinal variables. 

Figure 4 illustrates a stronger association between number of topics and 
positive attitude to general usefulness (USEFUL), compare to association with 
SAVES TIME. For example, teachers who think that GC is �NEVER� useful in 
average don't teach any topics with GC (mean number of topics is very close to 
0), teachers, who think that GC is useful �RARELY� in average use it 
approximately in 4 different topics, and so on. The increase in average number 
of topics is not so rapid for variable SAVES TIME. While TOPICSN increases 
by four with each attitudinal category for USEFUL, it increases only by two for 
SAVES TIME. 

Figure 4  Association between Number of Topics taught with Graphics 
Calculator and Attitude towards it. 
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One can imagine the cyclic process: the more a teacher uses the tool the 
better attitude she/he has towards it because of experience. On the other hand, 
the better attitude teachers have the more topics in average they try to use the 
tool in. However, compared to such variables as Time teacher use graphics 
calculator and availability, particularly ownership, association between attitudes 
and Number of Topics taught was weak. 

 

6. Interrelations between number of topics taught with graphics calculator by 
teachers, their experience in use of it and the level of students ownership  

Multiple regression shows that the best predictor of Number of Topics taught 
with Graphics Calculator (TOPICSN) is Time teacher use graphics calculator 
and Average Level of Ownership across all year levels (OWNG1), which 
together explains 55.5% of variation in TOPICSN.  When attitudinal variables 
are added to this regression, none of them improves it and none has a significant 
coefficient as well as the combined attitudinal variable USEFULG (the sum of 
four attitudinal variables).  However, when USEFULG is entered into regression 
alone, it explains nearly 20% of variation in Number of topics taught with 
graphics calculator, and regression coefficient is significant.  Since both Time 
teacher use graphics calculator and level of students� ownership (OWNG1) are 
highly correlated with attitudinal variables, the latter does not add to regression 
when OWNG1 and TIME USE are entered. 

 

Summary 

Teacher overall attitudes to usefulness of the graphics calculators positively 
associates with the level of access to the calculators in the classroom and with 
time teacher use graphics calculator but generally does not correlate with 
gender, age or teaching experience in Mathematics.  

Number of topics taught with graphics calculator, is best predicted by 
Time teacher uses graphics calculator and by level of students� ownership 
(OWNG1). There is also some association between teacher attitudes toward the 
tool and number of topics they teach using it. 
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Abstract: Artifacts both mediate our interaction with the world, and are objects 
in the world that we reflect on. As computer-based artifacts are generally 
intermingled with multiple praxes, studying their use in praxis uncovers 
processes in which individuals, the community and tools are involved. In this 
paper, we examine a now common computer-based artifact in mathematics 
classrooms, the representative. This artifact is often in continual transformation 
in the course of action during school activities. We document how several 
praxes with representatives mediate the construction of meaning. We show that 
the ambiguity of computer representatives regarding the examples and concepts 
they represent, boost this construction. The construction of meaning of functions 
is described as a process occurring through social interaction, and the 
interweaving of the ambiguous artifacts through teacher’s creation of states of 
inter-subjectivity. 
 

It is now commonplace to point to the role of artifacts as mediators of human 
activity (e.g., Kaptelinin, 1996). Bødker (1997) recently considered the special 
role of computer-based artifacts in human activities. She claimed that computer-
based artifacts need to be studied as artifacts-in-use-in-a-certain-praxis, as they 
are often involved in various intermingled actions or activities. In other words, 
activities with computer tools involve the computer tool itself as an inherited 
artifact, and material outcomes produced by this tool and transformed by 
participants engaged in such activities. Trivially, (educational) software enables 
users to �produce� prints or displays. But in addition, it generally affords 
multiple forms of automatic transformation of outcomes (e.g., stretching, 
shrinking, cloning, merging). We argue in this paper that the teacher can direct 
the production and transformation of computer artifacts towards the construction 
of meaning.  
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Computer artifacts in the case of the function concept 

The concept of mathematical function is central in mathematics education. It is 
taught in schools using at least three notation systems, the algebraic, graphical 
and tabular representations. Actions or operations that an individual can 
undertake in each representation depend on material tools available. Kaput 
(1992) calls the algebraic representation an action notation system, meaning that 
it involves calculations and transformations. In contrast, he calls graphical and 
tabular representations display notation systems, meaning that the activity of the 
user is generally confined to interpretation. This theoretical distinction between 
action and display notation systems does not hold any more when one uses tools 
providing, in addition to the representations themselves, passage among 
representations and user based manipulations, or what is often called multi-
representational software. All representations become action notation systems: it 
is possible to �walk� on a graph, to stretch graphs, to rearrange a table according 
to a particular criterion, or to refine the step in a table. The most common visible 
outcomes of actions mediated by multi-representational software are the 
representatives (Schwarz & Dreyfus, 1995), that is displays within the 
representations such as specific �windows� for graphs, or specific tables of 
values through which problems are solved. For example, Figure 1 shows three 
graphical representatives of the same function, f(x)=x(30-2x). 

Classroom activities are often intended to encourage students to produce 
representatives as visible outcomes of actions, to interweave them while solving 
problems, and to use them as artifacts in order to talk about mathematical 
entities. A central psychological concern is the nature of the mathematical entity 
constructed through extensive production and interweaving of representatives. 
In environments that are not based on computerized tools, representatives 
produced and used during classroom activities are limited. Graphs or tables are 
often presented to students or constructed according to prescriptive instructions 
(Kaput, 1992). All students in the same class use identical representatives. These 
representatives are often chosen by the teacher to exhibit as many properties of 
the function as possible. For example students are likely to be asked to construct 
a graph such as in Figure 1a, because it displays domain, range, sub-domains of 
increase and decrease, maximum, and axis of symmetry. Instruction often 
concentrates simply on translation skills between representations, and mastery of 
these skills tends to become the central goal of teaching. As a consequence, 
students do not have the opportunity to talk about functions as abstract entities. 
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The use of multi-representational tools turns many of the manipulations of 
representatives into automatic operations. It is then not surprising that students 
produce a variety of representatives. Figures 1 displays 3 representatives of the 
many visible outcomes of actions produced by students in an activity described 
in the next section. Such representatives are generally ambiguous when taken in 
isolation in the sense that they are partial, and thus can refer to different entities. 
For instance, as mentioned above, Figure 1c may refer to a linear function. Also, 
a representative may display properties that are not possessed by the function. 
Intuitively, it would seem that such ambiguity is detrimental to learning and or 
development. However, an analysis of the role of ambiguity in development 
suggests quite the contrary.  

 

Ambiguity and development 

Philosophers of language and psychologists who adopt a dynamic, and 
pluralistic view of linguistic communication (Wittgenstein, 1968; Voloshinov, 
1973; Rommetveit, 1985), have recognized that ambiguity plays a central role in 
the development of language and thought. This socio-cultural pluralistic view 
disputes the constructivist assumption that the child learns about significant 
features of her immediate surroundings in exploration and manipulation of 
material objects. Rommetveit makes clear that there is no such thing as a “literal 
meaning” and that construction of meaning is then a social construct that 
emerges from the ambiguity of states of affairs and from the experiential 
alternatives at a particular moment. External reality is apprehended through 
cooperation and social validation. Meaningful aspects of the adult world are 
brought into joint focus of attention in the child�s interaction with an adult and 
negotiation of the adult�s �truths� and linguistic structuring of attention 
(Vygotski, 1981). Rommetveit (1985) identified the interactions in which such 
restructuring takes place, as �states of inter-subjectivity�. For Rommetveit 
ambiguity creates states of inter-subjectivity possibly leading to the construction 
of a shared social reality: In dyadic interactions, verbal utterances have multiple 
subjective meanings; one participant brings some aspect into focus, it is attended 
by both of them, and each assumes that they mean the same. Similar to words in 
verbal interaction, computer representatives are an inherent part of 
communication in mathematical activities. Our working hypothesis in the 
present paper is that computer representatives often mediate the creation (by the 
teacher) of states of inter-subjectivity in the mathematics classroom leading to a 
shared social reality.  

Mathematical entities, such as the function concept or geometrical 
concepts, are constructs that have been elaborated by the mathematical 
community. These entities are not directly accessible to children but are known 
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through their properties, which are the invariants of this mathematical entity 
across their possible instances. But these invariants can be approached only 
through examples, about which students and teacher talk. Similarly, direct 
manipulations on mathematical entities are impossible. The examples of the 
mathematical entity cannot be manipulated directly either: manipulations are 
possible on representatives only. The outcomes of these manipulations can be 
new representatives, interpretations, problem solving strategies, etc. The 
relations between concept and examples, examples and representatives, or 
concepts and representatives are inherently ambiguous: it is often not clear what 
the examples/representatives mean, and to what they refer. We review here the 
kinds of ambiguities that stem from these relations.  

Examples of a mathematical concept contain all the invariant properties of 
the concept (also called the critical attributes of the concept). In addition to the 
invariants of the mathematical entity, examples also have self-attributes, which 
may change from one example to another. Examples are then ambiguous 
regarding the concept to which they refer. In some cases, students identify such 
self-attributes as critical attributes of the concept. This is because the example is 
the only one the student is familiar with or the one the student prefers to reason 
about the concept (the example is then called a prototype). The self-attributes of 
the prototype are then imposed on all other examples. We designate this 
ambiguity a prototype ambiguity.  

Another type of ambiguity refers from an intrinsic property of 
representatives. Representatives are mostly parts of concept examples (e.g. 
Figure 1). As examples they may bear prototype ambiguity, but because they are 
partial, they are also often ambiguous in the sense that only some of the critical 
properties of the entity are displayed in the representative. This kind of 
ambiguity we designate representative ambiguity. It may lead to two different 
phenomena: (i) difficulty in constructing or seeing the mathematical entity 
through its partial representative; (ii) linking a representative to another entity 
with critical attributes compatible with the representative. Hence, the same 
representative may refer to more than one mathematical entity. Psychological 
findings fit our epistemological analysis. 

Schwarz and Hershkowitz (1999) showed that some students, who learned 
about functions in an interactive computerized environment, took advantage of 
the prototype ambiguity to build or analyze new examples of the function 
concept. For example, they used the prototypical graph of y = x3 to construct the 
graph of y = -2x3. Other students, unfamiliar with graphers could not build 
additional examples from the prototypes they learned, and related to the 
prototype as an exclusive example. For example, they claimed that one function 
only �passes� through two given points, thus imposing this self-attribute of 
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linear functions on all functions. Thus it appears that prototype ambiguity may 
lead to beneficial psychological outcomes (construction of new examples) or to 
detrimental ones (imposition of prototypical attributes).  

Schwarz & Dreyfus (1995) undertook a study of the function concept in 
Grade 9 students, using a questionnaire with items exhibiting ambiguity of many 
kinds. They measured the effect of the use of multi-representational software on 
problem solving involving functions, by comparing the achievement of an 
experimental and a control group. The most significant differences between the 
two groups were on items in which ambiguity was relevant. The study showed 
that intensive production and use of representatives (with multi-representational 
software) improved the learning of the function concept. 

The two studies reported that the gains of students using computerized 
tools originated from the fact that such tools enabled the students to produce 
more examples of functions and that students could act on representations and 
pass from one to another. However, such interpretations did not focus on 
mechanisms that may explain such gains. We claim that the students� gains may 
originate from the fact that representatives can be produced, transformed, and 
interwoven easily while students solve problems. In the following section we 
describe and analyze an activity in which a teachers took advantage of the 
representative ambiguity to create states of inter-subjectivity that boost shared 
social construction of mathematical meaning.  

 

The research: Representatives as artifacts-in-use in an activity 

We document several praxes in a parochial school Grade 9 class studying an 
introductory course on functions. The course was based on a curriculum 
designed for the upper 60% ability level of the population, organized around 
problem-situations. Students had graphic calculators at their disposal. Many 
interactions took place in the classroom: among students in small groups, 
between the teacher and students, or between individuals/groups and 
computerized tools. Typically, activities consisted of a few phases as following: 
(i) problem solving (in groups of four); (ii) the writing of group reports on the 
ideas raised during the problem solving; (iii) synthesis in the form of debate 
orchestrated by the teacher; (iv) a homework assignment based on ideas raised 
in the group reports. Ideas raised in phases (ii) and (iii) were evaluated, 
approved or refuted. Therefore, when students (as individuals or in small 
groups) reported on their work, they knew that the teacher would use some of 
their reports to discuss issues further in the class. The teacher was explicit about 
the fact that writing accurate reports eventually helps the class to learn better. 
Hence, when reporting on their collective or individual work, students knew that 
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it would not serve exclusively for assessment and they grasped �reporting� as a 
communicative act that invests them with some of the responsibility for their 
own learning. The fact that the teacher generally did not use fictitious reports, 
also harmonizes with the fact that meaning was negotiated in the class. Both 
teacher and students took it for granted that each of them assumed the other to 
hold the same belief about the construct under consideration. 

 

The fence: A typical task 

The Fence was given at the beginning of the year as a group evaluation task, 
after the three first sessions of instruction during which students performed a 
series of tasks on functions with graphical calculators. The three sessions were 
all about problem situations in which the mathematical objects were cubic, 
quadratic and linear functions (in that order!). In each problem situation, 
students were invited to construct and/or interpret representatives in the 
algebraic, graphical, and tabular representations. The approach in these initial 
activities was informal and students were not led to systematically articulate 
properties of specific functions. Rather, students passed to a new representative 
in a new or same representation (what we have called �to interweave� 
representatives) when they felt it was needed. The formulation of the Fence was 
then given to the students:  

Oranim school received a 30m long fence to enclose a lot to serve as a 
rectangular vegetable garden. The lot is contiguous to the school wall, so that 
the fence has three sides only (see Fig. 2). 
a. Find four possible dimensions for the lot, 

and the corresponding areas. 
b. For which dimensions does the lot have 

the biggest area? 
c. If one of the dimensions is 11m, what is the area of the 

lot? Can you find another lot with the same area? If yes, 
find its dimensions, if not, explain. 

d. How many lots with the following areas are there: 80m2, 150m2? 

Eight groups of four girls solved the Fence, resulting in eight group 
reports. One week later, the teacher gave a homework assignment on the basis of 
the group reports. 32 individual homework assignments were collected and 
analyzed. The reporting and the whole design were communicative actions by 
means of which representatives were shared by the whole class. In the 
following, we study how the teacher capitalized on the ambiguity of the 
representatives in homework assignments in which individuals constructed the 
meaning of mathematical objects. 

Figure 3Figure 2 
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The role of computer artefacts in the fence 

Diverse strategies were evidenced in the group reports. For example, several 
groups used an inductive strategy that led to generalization: they organized their 
numerical examples of the dimensions of the lot as a table with three entries per 
row: first side, second side, area. Then, they generalized the numerical values in 
algebraic terms: x, 30-2x, x(30-2x). In other reports, students used a trial-and-
error strategy, constructing a table and finding the maximum by successive 
approximation. Yet other groups used a modelling strategy: they first 
constructed a formula and used the calculator to draw a suitable graphical 
representative and read the maximum of the function by walking on it. The 
diversity of strategies evoked was accompanied by an even more diverse 
collection of representatives and by various strategies for interweaving them. 
The following are some examples from the group reports. 

Example 1: This excerpt exemplifies a group who was �in a hurry� to find 
a formula, inserted 30 � 2x (the formula for the second side) as the formula for 
the area, and reported on the surprise caused by the graphical representative 
obtained.  

We drew the graph on the calculator, according to 
the formula 30-2x, with a range of 0-15 for x and a 
range of 0-150 for y (Fig. 3a). It did not seem OK 
because we had to find the area and the formula 
fitted the second side; so we understood that the 
formula was wrong and we decided to replace it by 
(30-2x )x because this is the area formula (two 
arrows pointing to x and to 30-2x and labeled first side and second side, 
appeared in the group report). We looked for the largest area. We got a graph 
that seems to us a more correct one (Fig. 3b). Note: we did not change the 
range, only the formula.  

The students were surprised by the first graphical representative they 
produced. So, they turned back to the algebraic representation, and corrected the 
formula to obtain what they called a �more correct graph�. It seems that the 
students rejected the first two representatives because the second one (the graph) 
did not make visible the intrinsic attributes of their mental representation of the 
situation. Consequently, they produced two more representatives and accepted 
the second one, because it made visible the requested property of the 
corresponding function, having a maximum at some point. This example seems 
to show that students link representatives to the function they are meant to 
represent, through actions of interweaving representatives and rejecting those, 
which are not compatible with their concept image.  

Figure 3 
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The teacher collected all representatives and �redistributed� some as 
artifacts for subsequent homework. For example, she used the representative in 
Figure 4a in the following question: 

A few students drew this straight line as the area graph (see Fig. 3a). 
Most students said that this graph does not fit the area. Explain why. Give as 
many reasons as you can.  

This question could be answered directly and quite simply by invoking 
only local properties of the linear graph. For example, it is clear that when x = 0, 
the area is 0, but for the linear graph, when x = 0, the area is not 0. However, 
only 7 students gave such answers. The remaining 25 students preferred to 
compare the linear graph presented in the homework sheet with representatives 
they had already constructed, as shown in Example 2: 

I know that for the side zero, there is no area. Also for the side 15, there is 
no area. So I know that between zero and 15, there must be an arc ... and so for 
1, 2, it increases until it must go down in order to get to 15 (where there is no 
area). And on this graph, (Figure 3a) it always goes down.  

In her group report, this student and her peers had first constructed a table 
of values (with 0 and 15 as x-values), then modeled the formula of the area, and 
drawn the graph in Figure 1a. She could have used this graph as a whole to 
dismiss the proposed linear representative. Instead, she used the properties 
represented by the representative produced by her group, to show that the linear 
representative does not have the required attributes: �her� graph showed no area 
for the two extreme values x=0, and x=15, a fact that matches the Fence. Thus, 
such a graph must increase and then decrease. It may seem strange that the 
student used such a sophisticated justification. But, students were accustomed to 
handle ambiguous outcomes-representatives whose meaning was clarified by 
comparing them with other representatives, and by deciding whether they refer 
to the same meaning. This example shows an additional type of interweaving of 
representatives leading to constructing mathematical meaning - by comparing 
them. 

In sum, when the teacher found the students with the linear graph, she 
created a state of inter-subjectivity in which the ambiguous linear representative 
led students to ask whether it may refers to what they solved the problem in their 
groups. The decision relied on a critical attribute of the function, the domain of 
increase/decrease. It appears then that the teacher�s selection of an artifact 
produced by groups in the class, and its distribution to create a state of inter-
subjectivity within this class, led students to cope with a mathematical construct. 
Inter-subjectivity in this example was attained through representative ambiguity. 
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The next example shows a similar phenomenon, where both prototype and 
representative ambiguity are capitalized on. 

Example 3: In an additional homework assignment, the teacher took 
advantage of the fact that one group used another variable to express the side of 
the lot, and area of the lot, to ask:  

Some students chose the side perpendicular to the wall as x; the formula 
for the area is then (30-2x)x and the graph looks like this (see Fig. 4a): 

Other students chose x for the side parallel to the wall; the formula for the 
area is then x(30-x)/2 and the graph looks like this (see Fig. 4b): 

If you draw the two graphs on the same coordinate system, do they 
coincide? Give as many reasons as possible. 

The teacher makes it clear that she redistributed two representatives 
produced by two different groups. The answers to this question were interesting. 
For example: 

Yes. The graph is the same. The second side is with jumps of two, whereas 
the jumps for the first side are of one. So the graph of the side 1 is like that (Fig. 
4a) and the graph for the second side is the same (Fig. 4b), the jumps on the x-
axis being of two (Fig. 4b). 

Again, students know that many representatives have been produced by 
members of the community, but here, in contrast to other examples, they are 
asked whether the representatives referring to two different mathematical 
objects can be identical as material entities. Ambiguity is thus clearly 
prototypical, meaning that the same prototypical example (a parabola) may 
represent two different entities. This ambiguity is also a representative, because 
the teacher drew the two representatives without scaling. Again, the teacher 
brought students to a state of inter-subjectivity in which they were invited to 
construct a higher mathematical construct; i.e., that replacing x by 2x in a 
function �shrinks� its graph by half. Expressing this property was mediated by 
the two artifact-representatives redistributed by the teacher. And indeed, most of 

a b

x

x

figure 6

Figure 4 
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the students did not rely on discrete considerations to differentiate between the 
two representatives or to decide whether they might overlap. Rather, they 
usually appealed to general properties (critical attributes). As each student had 
produced representatives referring to one of the two functions, x(30-2x) and 
x(30-x/2), she could take advantage of her representatives and of the graphs 
redistributed by the teacher and interweave them by comparison in order to 
respond to the challenge introduced by the teacher. Therefore, the two artifacts 
constructed by different groups and selected by the teacher to cope with the 
issue of whether they can coincide led students not only to answer in the 
affirmative, but also to identify a new attribute. But there is even more. The 
attribute quasi-articulated in the present homework assignment -- replacing x by 
2x has the same effect on the graph of a function as shrinking the scale by two, 
leads students to link two different mathematical objects belonging to the same 
family. The two functions having a common (and �perfectly ambiguous�) 
representative relate to the same family of quadratic functions. Of course, at the 
beginning of the year, the relation between the two examples of quadratic 
functions is still embryonic, but the same ambiguity was used later to lead 
students to construct the meaning of the concept of quadratic functions.  

 

Discussion: Computer artefacts and construction of meaning  

The present study has shown that representatives produced via the mediation of 
the calculators, helped in the social construction of meaning of functions. We 
showed that, although the relations between concept and examples, examples 
and representatives, or concepts and representatives, are inherently ambiguous, 
dealing with and relating to many examples or acting on representatives did lead 
to the construction of the meaning of mathematical entities. We showed that 
representative ambiguity the production of various representatives and the need 
and ability to interweave them, helped to extract invariant properties o f 
functions. We also showed that the plethora of examples and representatives 
produced by the graphic calculators upon need, and the actions facilitated by 
them to produce new representatives, led students to clarify ambiguities. More 
specifically, we showed that students took advantage of the partiality of 
representatives because they were put in a situation of dilemma in which they 
had to reconcile apparently different representatives. The computerized tool 
enabled students to compare them, to produce new representatives and to 
integrate or reject (partial) representatives. Advantage was taken of partiality to 
view the intrinsic attributes of the function by refining through interweaving 
representatives (e.g., by passing to another representation and/or by 
manipulating representatives in order to reduce ambiguity).  
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Resolving ambiguities was not only an outcome of the manipulation of 
computer representatives. The teacher had a central part in leading students in a 
dialectical activity leading to the resolution of ambiguities. Figure 5 shows the 
different phases of the Fence from the perspective of the teacher. In a first stage, 
groups of four students (shown as �clouds�) solve the Fence and report on their 
actions during the solution.  

The reports include numerous representatives. Some of these 
representatives may reflect �correct� actions (such as the algebraic 
representatives y = x(30 � 2x) and y = x(30 � x)/2 and all graphical 
representatives derived from these formulae), some may reflect incorrect ones 
(such as the formula y = 30 - 2x and the linear graph obtained). As they are the 
footprints of the idiosyncratic moves undertaken by each of the groups, most of 
the representatives are different in form. A short analysis of the reports (as in the 
first and second examples) shows that most of the groups coped with the 
diversity/ambiguity of the representatives to solve the Fence.  

The role of the teacher in the home assignment was indirect. After 
collecting representatives in the reports as raw material, she selected some of 
them having the potential to lead to the construction of further meaning. It was 
clear to students that these representatives were private outcomes of particular 
groups. Their redistribution in homework assignments created then states of 
inter-subjectivity in which students were faced with representatives from same 
or different representations, possibly referring to different functions. The 
construction of shared social reality followed states of inter-subjectivity created 
by prototypical ambiguity. 
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The teacher first imposed an implicit community by forming groups of 
students at the beginning of the year to solve problem situations. She supported 
reporting and criticizing as communicative actions that gave the actors a visible 
role: The teacher redistributed some of the representatives in the homework 
assignment, to be the property of the whole class. Although we do not report 
here on the actual interactions that took place in the class during the Fence 
activity, we suggest that the class began then to function as a new community 
whose overall motive moved gradually from reaching the solution to reflecting 
on acceptable solutions. In this community, students progressively became 
encultured to the fact that any report can be shared by the community. Artifacts 
were integrated-transformed or discarded by the community according to their 
compatibility with previous outcomes/representatives. Critique was generally 
done at the global level of all the transformations a particular 
artifact/representative can undergo without altering what it means (in other 
words, the properties of the function). Our suggestion relies on one study 
undertaken in the same class at the end of the year (Hershkowitz & Schwarz, 
1999) in which we reported on the reflective practices in that same class and on 
how previous outcomes (hypotheses, methods, graphs, etc.) were transformed 
during successive phases of an activity.  
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DEVELOPMENT OF INTELLECTUAL SKILLS  
OF THE PUPILS WITH COMPUTER TECHNOLOGIES  

Lyudmyla Bilousova 
Kharkov State Pedagogical University named after G.Skovoroda, Ukraine 

belousova@kgpu.sa.net.ua  
 

Keywords: Mathematics teaching; real-life problems; computer technologies 

Practical usage of computer technologies for mathematical modeling in Excel 
environment in education is considered (on example of science course at high 
school level). For this purpose an amount of real-life problems are proposed: the 
shortest way problem, Teplitsky's problem (problem about glider), problem 
about a defeat of the moving purpose, problem about a pursuit. 

Numerical methods for solving these problems and their visualization 
offer to explore solutions for great variety of parameters what stimulates interest 
to math, developing of math intuition, and forms intellectual skills of the pupils. 

Our results show that Excel is suitable environment for designing the 
course of computer modeling, which integrates all the science courses together. 
It seems to be beneficial to arrange the international collaborations in this area 
under ERME.   

 
 
 

STUDENT'S PROJECTS ARE A TOOL 
FOR THE FORMATION OF INVESTIGATING SKILLS  

Tatyana Byelyavtseva 
Kharkov State Pedagogical University named after G.Skovoroda, Ukraine 

byelyavtseva@kgpu.sa.net.ua  

 

Keywords: Mathematics teaching; pupil research skills; computer technologies 

In this paper some problems of formation of pupils� research skills are 
considered. For this purpose the teacher organizes the study researches during 
mathematics lessons and scientific projects using information technologies.   
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Solution of such great problems now not under a force to all 
comprehensive schools of Ukraine, but school of a new type: educational 
complexes, lyceum, gymnasiums, the colleges,  so and  number of 
comprehensive schools already have begun work in this direction and already 
have achieved noticeable outcomes. The use of modern information 
technologies and computing experiment of realizations of primary study 
researches at mathematics lessons is on our sight actual. This work receives the 
further development in student's projects conducted by the Small Academy of 
sciences, international school projects, including telecommunicative ones. 

Discussion of the most interesting results of such researches to our mind 
would be useful for ERME group. 

 
 
 

BASIC STRUCTURIZATION AND INTERACTIVE 
ALGORITHMIZATION IN MATHEMATICAL EDUCATION 

Oleksandr Chumak 
Kharkov State Technical University of Radioelectronics, Ukraine 

chumak@kture.kharkov.ua 
 

The offered technology of structurization and algorithmization in mathematical 
education is based on extraction from an educational material of those 
components, which are basic (main) for chosen course: definitions, theorems, 
problems.On the basis of selected components it is offered to create the 
teaching, interactive environment, which is founded on creation computer files 
(word-files): basic didactic materials (BDM); algorithmic didactic materials 
(АDM). Creation of the BDM and ADM will give the opportunity to achieve the 
following results: to make more active feed-back in educational process with the 
use of dialogue; to give pupils models of methods and algorithms of proofs of 
theorems and ways of solutions of problems us; to create of computer files with 
didactic materials, which are free from language barriers; to organize 
collaboration of teachers for creation of database BDM, ADM for any school 
and university mathematical course; to use BDM and AMD in Internet 
technology for education: HTML files; Java files, didactic testing, algorithmic 
testing. 
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THE MATHEMATICS OF THE BOYS/GIRLS:  
EXCHANGE OF EXPERIENCE AMONG BOYS/GIRLS  

OF THE SAME AGE  

Daniela Leder1, Cinzia Scheriani2, Luciana Zuccheri3 
1Scuola Elementare �Foschiatti�, Trieste, Italy 

carled@tiscalinet.it 
2Scuola Elementare "G.Carducci", Trieste, Italy 

cscheria@tin.it 
3Dipartimento di Scienze Matematiche, Università di Trieste, Italy 

zuccheri@univ.trieste.it 

 

Keywords: Mathematics teaching; student interaction in mathematical learning 
situations; social interaction in mathematical learning situations 
We present a very complex work, which can be examined from various points of 
view. In this poster we describe the methodology, which is, we mind, its most 
original side. The experience was planned and carried out already three times 
(years 1996, 1998, 2000) by a university researcher (L. Zuccheri) and a group of 
ten teachers of different pre-university school level. It consists in various phases. 
At the beginning of the school year, each schoolteacher planes a didactical 
project in Mathematics, which will be developed with their pupils/students 
during the following months. This project is discussed and focused in the 
research group and involves actively the pupils, leading them to produce 
autonomously a presentation of a mathematical topic. In a second moment the 
pupils/students participate to a meeting in which they explain to other pupils and 
students these topics, with the methodologies that they think to be more 
appropriate. At this meeting, called "The Mathematics of the boys/girls: 
exchange of experiences among boys/girls of the same age", is also invited, as 
visitor, any class which require it. It takes place in a school. The organisation of 
the meeting is quite different from that of a meeting among adults: each 
"speaker-class" organises a laboratory activity and carry out it in a classroom, 
where it receives one "visitor-class" at once, to work with it during a fixed time. 
The visitors can be also older or younger as the speakers can. During the three 
editions of the meeting the number of involved pupils (6-16 aged) increased 
from 500 to approximately a thousand. This experience has reached various 
positive goals, as we have seen in the valuation given by the teachers, and 
analysing 94 reports made by pupils. Some information is available at the 
website: www.nrd.univ.trieste.it 
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A VIDEO ABOUT MATHEMATICS 

Consolato Pellegrino1, Luciana Zuccheri2 
1Dipartimento di Matematica, Università di Modena, Italy 

cpellegr@mail.unimo.it  
2Dipartimento di Scienze Matematiche, Università di Trieste, Italy 

zuccheri@univ.trieste.it 

 
 
Keywords: Mathematics teaching; popularisation of mathematics; audio-visual 
media 
Mathematical thought has reached results that are unthinkable for non-
specialists and has opened a way that became the main road for the cultural, 
scientific and economic development of human society. Owing to the 
importance of Mathematics in youth education and for the development of 
rational thinking, the UNESCO supported the proposal of the I.M.U. to declare 
2000 as the World Year of Mathematics; still, only a few people are aware of the 
role played by this discipline. Today�s resorting to computer science makes 
many people unaware even of the Mathematics they actually use, and the image 
of Mathematics is overshadowed by prejudices and commonplaces that have 
taken root in the collective imaginary. The reasons for it are many, and it is not 
easy to contrast them, also because many people think that it�s impossible to 
popularise Mathematics (see ICMI Study 1989). On the basis of these 
considerations, we have produced a video which is an attempt to explain in a 
simple way methods and aspects of Mathematics. It is addressed to all people 
and it doesn�t include the latest research result; but by using the game of 
Tangram as a metaphor, it aims at going against the main commonplaces about 
Mathematics and at explaining aspects that have always characterised its 
development. With these intentions we have developed and extended the basic 
idea of a didactical path experimented at middle school level. The video, called: 
"What are we playing: Tangram or Math?", has been realised with the co-
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operation of the Trieste University Television Service. It was presented during 
many lectures and meetings, and shown experimentally in various schools. It is 
now available (by streaming) at the website: www.univ.trieste.it/~nirtv/tanweb, 
where you can find its text and its references. 

 

 

MATHEMATICAL PACKAGES AS A TOOL  
OF A CONSTRUCTIVE APPROACH IN MATHEMATICAL 

EDUCATION 

Sergey A. Rakov 
Kharkiv State Pedagogical University named after G.S. Skovoroda, Ukraine 

Rakov_S@mail.ru , Rakov@rcnit.kharkov.ua  
  

 

Keywords: Mathematics teaching; computer technologies; teaching materials 

The possibilities for supporting a constructive approach in plane geometry 
course in the environment of the original dynamic geometry package DG (the 
original package designed in KSPU) at the high school level are discussed. 

The problem-posing lesson is discussed as a form of implementing a 
constructive approach in educational practice (on example of a problem field 
described in Japan materials on the ICTM-9).  Advantages of using DG in this 
context are discussed as well as common methodological questions about using 
DG in solving different kinds of geometric problems. 

The conclusion about the most perspective kinds of mathematical 
packages for IT support of Constructive Approach in Math Education is 
proposed: the pedagogical adaptations of the most powerful professional 
mathematical packages: CAS and DGS (Computer Algebra Systems and 
Dynamic Geometry Systems). 

The crucial point for implementing Constructive Approach in real 
pedagogical practice is designing the high quality didactic materials (the top 
level of which are distance courses integrated with appropriate packages). One 
of the main tasks of ERME is to arrange the European Communications, 
Collaborations and Cooperation in this field. The KSPU is opened for this.   
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WHAT KIND OF OBSTACLES MAY BE EXPECTED IN THE 
SIMULTANEOUS LEARNING OF MATHEMATICS AND 

COMPUTER SOFTWARE? 

Catherine-Marie Chiocca 
Ecole Nationale de Formation Agronomique, Toulouse, France 

catherine-marie.chiocca@educagri.fr 
 
Abstract: Official instructions from the Ministry of Agriculture advise the 
simultaneous teaching of certain mathematical concepts, such as sequences or 
statistical distributions, and of the EXCEL spreadsheet software.  

With reference to the works of P. Rabardel and C. Laborde, the question 
arises as to the possible effect of the �artefact� on the learning of these 
mathematical concepts. 
Résumé: Les instructions officielles de l�enseignement agricole préconisent 
l�enseignement simultané de certains concepts mathématiques, tels que les suites 
ou les distributions d�échantillonnage, et de l�utilisation d�un tableur.  

En se référant aux travaux de P. Rabardel et de C. Laborde, on peut 
s�interroger sur l�influence de l�artefact tableur dans l�apprentissage de ces 
concepts mathématiques.  

USING COOPERATIVE LEARNING TO TEACH PRIMARY 
MATHEMATICS TO AD/HD CHILDREN  

IN A COMPUTER-BASED ENVIRONMENT 

Dimitrios Kontozisis, Jenny Pange 
University of Ioannina, Department of Pre-school Education 

dkont@otenet.gr 
 

Abstract: This research project took place at a Primary school in southern 
England. The Project set as a target the teaching of some mathematical concepts 
(addition of two two-digit numbers and that of fractions) to children with 
attention deficit and hyperactivity disorders AD/HD. The whole project was 
based on multisensory approach in teaching mathematics in which a particular 
multimedia package was used, amongst other tools, in order to reinforce and 
consolidate current knowledge. An integral part of the project was to investigate 
what collaborative aspects were being developed amongst the teacher, the 
children and the computer program, and whether this way of working enabled 
them to better understand the concepts being introduced. The project found that, 
with careful planning, implementation, and evaluation, cooperative learning 
activities can be achieved successfully by most students. 
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INTRODUCTION TO WG3 

TEACHER EDUCATION BETWEEN THEORETICAL ISSUES 
AND PRACTICAL REALIZATION 

Fulvia Furinghetti1, Barbro Grevholm2, Konrad Krainer3 
1University of Genova, Italy 

furinghe@dima.unige.it 
2University of Kristianstad, Sweden 

barbro.grevholm@mna.hkr.se 
3University of Klagenfurt, Austria 

Konrad.Krainer@uni-klu.ac.at 

 
 

The title of the WG3 was “Theory and Practice of Teaching from Pre-service to 
In-service Teacher Education”. We received 18 papers, which were reviewed by 
at least three reviewers. All the authors took part in the process of review. 
Giuliana Dettori (CNR, Genoa, Italy) and Salvador Llinares (University of 
Sevilla, Spain) also acted as reviewers. Three papers were considered not to fit 
the themes of WG3, three were rejected, two participants were not able to attend 
CERME 2. After the conference the authors submitted a revised version of their 
papers, six full papers and two summaries were accepted. All addressed themes 
consistent with the issues which emerged in the Working Group. 

Altogether there were 24 participants to WG3 plus 4 people, who joined 
our groups of special interest. In the conference there were nine presentations, 
which acted as a starting point for developing the discussion. The list of the 
questions raised reported below outlines the themes touched during the 
conference. Participants to the WG3 came from 15 countries. This meant that 
different approaches and theoretical considerations were presented. This 
heterogeneity is also caused by the fact that teacher education is a subject 
strongly influenced by social context, state policy, and so on. More than in other 
fields, the researcher in the field of “teacher education” subject has to balance 
what is suggested by the theoretical considerations and what it is possible to 
realise in practice. The discussion reflected this position and the themes touched 
fluctuated between these two poles. 
 

Questions raised in WG3 (report by F. Furinghetti and B. Grevholm) 

A lot of different and complex issues came up but no issue stood out as of 
primary importance. Here are some questions that focused our discussion: 



European Research in Mathematics Education II 

 266

• Relations between pre-service and in-service training. Is the difference 
going to disappear when we get life-long learning? 

• The role of mathematical knowledge? How can we keep a good balance 
between subject knowledge and pedagogical knowledge? 

• How do issues with regard to primary and secondary level differ? What 
do they have in common? 

• Would the discussions in our group have been different if we were 
educators only and not researchers? 

• What are the relationships with institutions, and the political influences on 
our behalf? 

• How precisely should we define (in our papers etc.) central concepts like 
reflection, improvement, changes, development? 

• What are the effect on teachers of stimuli like writing, reading, and 
technology? 

• How to promote teachers’ awareness, teacher students’ awareness? 
• What is the role of discussion, conversation, communication in promoting 

professional growth? 
• Is the role of technology less strong than in earlier phases? 

 
LONG LASTING ISSUES 

• What is important for future teacher training? 
• How to organize the crucial role of recruitment? 
• How to foster the development in student teachers? 
• What is the relationship between drastic changes in society and 

consequences for new models for teacher education? 
 

SPECIAL INTEREST GROUPS 

1. The future of WG3 (Report by K. Krainer) 

Mission statement 
• To investigate the professional growth of pre-service teachers, qualified 

teachers and teacher educators. 
Philosophical goals 

• To investigate the relationship between theory and practice. 
• To investigate teacher development in the classroom. 
• To investigate the connection between pre-service and in-service training. 
• To investigate the development of teachers’ subject knowledge.  

Strategic goals 
• To elect a group board. 
• To engage in collaborative research. 
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• To expand the group. 
•  To exchange email addresses. 

 
 
2. Classroom Reality and Teachers’ training (Report by H. Sakonidis) 

During the two sessions, a number of points were raised, discussed and analysed 
in relation to the topic of the group. Among them, the following were considered 
as most important:  

• Mathematics teaching practices influence teachers’ training and vice 
versa. This is because teachers’ training programs all over the world draw 
upon these practices in order to help student-teachers acquire a better 
understanding of the mathematics classroom reality. This, in turn, shapes 
the teaching strategies these students are likely to adopt in their future 
school career as well as the relevant research. 

• Learning how to observe a mathematics classroom at work is of particular 
importance for a future teacher. This is because the teachers to be should 
become conscious of the situations and actions needing to be taken by a 
teacher as well as of their effects on the pupils’ understanding of and 
attitude towards the subject matter.  

• In order for the relevant observational skills to be developed, a number of 
means and tools were suggested: videos, transcripts of lessons, schemes of 
analysis / reading of the classroom events, etc.  

• In a number of countries, a person based at school is often appointed by 
the organisers of the teachers’ training course and properly trained 
(usually a well-trained and/or experienced teacher). This person acts as a 
teaching supervisor and her/his responsibility is to attend to the teaching 
of a group of student teachers, discuss with them adjustments and working 
plans, etc. S/he also constitutes the link between the schools and the 
University/Institution where the training is taking place. This was 
considered as a very useful and functional idea.  

Finally, the members of the group agreed that in the future, a cross-analysis of 
some observational data (videotaped lessons) could provide very useful insights 
into the teaching practices in different social, economic and cultural contexts. 
The results of such an analysis would allow for a better understanding of the 
mathematics classroom teaching practices and could be used in the teachers’ 
training to show the diversity and richness of these practices. 
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3. Relation between theory and practice (Report by A. Somaglia) 

The discussion was developed around the schematic frame provided by the 
figure below. The aim was to study how theories may affect the practical 
knowledge of teachers and how teachers themselves perceive that their practice 
fits with theoretical issues of mathematics education. 

practice 
(beliefs in action)

beliefs on mathematics teaching

personal experiencesubject matter 
knowledge educational (in general 

or mathematical) theories social theories

process of adaptation to the context 
(type of school, location of the school, principal, 
parents, ...)
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DEVELOPING AND RESEARCHING PROFESSIONAL 
KNOWLEDGE WITH PRIMARY TEACHERS 

Nuria Climent, José Carrillo 
University of Huelva, Spain 

climent@uhu.es; carrillo@uhu.es 
 

Abstract: This paper presents a formative-investigative process within the context of in-
service education of primary teachers. We show how the professional development of three 
teachers and the gathering of the research data on the part of the teacher educators-
researchers are complementary. The degree of co-operation between the group members is 
also analysed. The study takes as its starting point classroom practice as a source of 
problems, and emphasises the role of reflection as a key component of the professional 
development process. The analysis of the professional knowledge of the teachers provides 
several suggestions regarding desired professional knowledge and models of pre-service 
teacher education. 

 

1. Introduction 

A university mathematics teacher educator finds it difficult to meet the demands 
of the two main areas of concern: the education of future teachers and research. 
In this article, we assert the importance of university teaching in this area and 
the need for research to locate its object of study and to draw its conclusions in 
the area demarcated by the relation between teaching and research. This relation 
should not be confused with the relation between theory and practice: both 
teaching and research have their theory and their practice. Hence, the frequent 
associations, theory-research and practice-teaching, are imprecise, although not 
devoid of meaning. We hope that the following sections make it clear that our 
study goes beyond such associations. 

One of our major areas of activity is teacher education. Indeed, the 
research presented here was carried out within a project called Professional 
Development Through Collaborative Research on Problem-Solving, funded by 
the Ministry of Education of Andalucía (Spain). This study involved three 
experienced primary teachers (V, P, J) and the two authors of this paper (who 
work in the field of mathematics education and are in charge of primary and 
secondary mathematics teacher education). 

The present paper concerns the practice of research into inservice 
education. On the part of the researchers, this practice is backed up by theory, to 
which we shall refer later. On the part of the primary teachers, their professional 
practice is the point of departure for reflection upon their professional 
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knowledge. Their aim was to articulate their opinions on primary teaching, 
whilst all involved sought for desirable characteristics of the professional 
knowledge of the mathematics teacher at primary level1. This also allows us to 
draw conclusions with respect to teacher education models. In this way, what 
started as research into inservice education, became linked to the teaching on 
preservice teacher education courses, through a network of theories and 
practices. 

 

2. Theoretical framework 

As already mentioned, one of our major areas of activity is teacher education. 
We understand it as “an interaction process (embedded in a social, 
organizational, cultural... context), mainly between teacher educators and 
(student) teachers, but also including systematic interactions among teachers 
aiming at professional growth. At the same time, we can see teacher education 
as a learning environment for all people involved in this interaction process.” 
(Krainer & Goffree, 1999, p. 295) 

Another major area of concern is professional knowledge, taxonomies of 
which can aim either for exhaustive detail, following Bromme (1994), or for 
concision, following Carrillo, Coriat & Oliveira (1999). Independently of the 
chosen taxonomy, one can organise the components of professional knowledge 
into three groups. The first one concerns general psychological and pedagogical 
knowledge (some authors add sociological knowledge to it); in the second group 
we consider those components which are linked to subject matter knowledge; 
last, the third group includes the components that are related to subject teaching 
and learning knowledge2. Matched to each group we consider teachers’ related 
beliefs as part of their professional knowledge. 

To the aim of amplifying scientific knowledge can be added that of 
stimulating the professional development of the participating teachers. This 
professional development should not be interpreted as just a modern version of 
‘professional change’. Whilst this latter encompasses an attitude of superiority 
on the part of the researcher, the former makes it clear that the most important 
thing is to make available opportunities for reflection on one’s own knowledge 
                                                 
1 In Spain there are not specialists in mathematics at primary level. When writing 
“mathematics primary teachers” we mean that we are focusing on primary teachers when 
dealing with mathematics teaching. For these teachers mathematics is only one of several 
subjects (language, social and natural environmental knowledge, arts) they teach. 
2 The frontiers between the second and the third groups are fuzzy. Some research lines 
consider these groups as a joint one. In particular, didactic of mathematics is sometimes 
understood as including the mathematical content, which we include in the second group. 
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and beliefs, this being a possible point of departure for a change chosen by the 
teacher. 

The aim of this paper is to offer a model of professional development as 
well as a means of researching certain aspects of the teachers’ professional 
knowledge. We outline the role of reflection in the process of construction of 
professional knowledge (professional development) following Cooney & 
Krainer (1996), who emphasise “a reflective component of inservice programs 
in which teachers explicitly consider the implications of their own learning 
experiences for their teaching” (p. 1162). We endeavour to supply data which 
haul reflection out of the ambiguity in which it typically finds itself. Likewise, 
we seek to specify the concrete nature acquired during the project of the co-
operative research initially proposed. Finally, we make suggestions for primary 
preservice teacher education. 

Our research covers various aspects of this professional knowledge of the 
teachers. However, faced with the impossibility of presenting the complete 
study, we have decided to focus our attention on the educating/researching 
process which has been carried out, more than on its results. We believe that it is 
possible to extract from this process models of preservice and inservice 
education of primary mathematics teachers, and that, furthermore, the richness 
of the results obtained is due largely to the richness of the process. 

 

3. The process 

Goals 
The project arose from the interest demonstrated by the teachers to undertake a 
process of research on their classroom practice with the aim of modifying it. 
They wanted to create an environment of professional learning, a sub-
community of practice, in which to develop the four dimensions that, according 
to Krainer (1998), characterize professional practice: action, reflection, 
autonomy, and networking. In fact, as it usually happens, they tried to develop, 
above all, reflection, and also networking. They wanted to enlarge the 
environment in which they build their professional knowledge: the 
interdependence between the two autonomous systems that model the teaching 
and learning of mathematics (the students’ learning processes and the interactive 
teaching process (Steinbring, 1998)). For their part, the teacher 
educators/researchers were interested in studying the professional knowledge of 
these teachers. 

In the preliminary design, to which all the participants contributed, it was 
agreed to focus the study on the teachers’ beliefs about the teaching and learning 
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of the subject and on their classroom performance. As far as for both the 
teachers and the researchers are concerned, the aim was to (i) contribute to the 
theoretical and practical development of a proposal for the professional 
knowledge desirable for a primary school mathematics teacher and the role of 
problem-solving in this knowledge, (ii) initiate a process of professional 
development in these teachers, and (iii) obtain outcomes to facilitate the 
professional development of teachers who are involved in processes of inservice 
training. Likewise, on the part of the researchers, the aim was to obtain ideas 
which would contribute to the improvement of preservice teacher education 
courses. 

Preliminary steps 
Following this design, in the first few months of the project, several group 
discussions were held on different aspects of the teaching and learning of 
mathematics at primary level, and the role of problem-solving in the 
aforementioned process. Included in these sessions were discussions of articles 
and research papers relevant to the field. This initial work allowed, in the first 
instance, the exploration and articulation of each teacher’s beliefs to get under 
way, and in the second, the creation of a common language within the group, 
and the familiarization with what would be the tool of analysis of the beliefs: the 
tool of the analysis of the beliefs of the teacher with respect to the teaching and 
learning of mathematics (Carrillo, 1999)3. 

Once the project was underway, we set about gathering data on the 
teachers’ performance. To this end, a video recording of one class by each of 
them was made, and the participants also kept a diary of their classes (always in 
relation to the teaching of mathematics). The sessions were recorded by one of 
the teacher educators, whose presence in the class was that of non-participating 
observer. The camera remained throughout in a fixed position, such that the 
performance of the teacher and their interaction with the children could be 
recorded. The focus of attention, in accordance with the aim being pursued, was 
the teacher herself. With each teacher the following procedure was carried out: 
1) once a recording had been made, this was analysed jointly in a group session; 
this analysis was conducted on the basis of a previous analysis of the recording 
by the trainers, also considering the aspects which the group members were to 
highlight during the group viewing; 2) the diary was analysed (first individually, 
                                                 
3 This tool of analysis was originally designed for secondary teachers, and some of its 
descriptors were now adapted for the primary level. A summary of this instrument is 
organised as a table, which is divided into 4 tendencies: traditional, technological, 
spontaneous, and investigative. Each tendency is described in terms of six categories 
(methodology, subject significance, learning conception, student’s role, teacher’s role, and 
assessment), with their correspondent descriptors. This instrument is similar to Contreras, 
Climent, & Carrillo’s (1999) for the analysis of the role that teachers give to problem-solving 
in the classroom. 
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then in the group); 3) finally, contrasting the analyses and taking into account 
what the teacher had explicitly stated in the sessions that took place before the 
project begun, a profile of this teacher’s beliefs with respect to the teaching and 
learning of mathematics was drawn up (again, individually in the first instance 
and then in joint session). 

It is difficult in this process to separate the points of data collection from 
their analysis. During data analysis we were also collecting data. For example, 
in analysing any one of the videos each teacher reflected her personal beliefs, 
such that her corresponding declarations (noted down) formed part of the data 
collected about her verbalised beliefs. This is the purpose of the previous 
analysis of the recordings by the teacher educators: to use the viewing of these 
and their analysis in order to collect data. 

 

Example: Watching V’s video, V, P and J’s analyses provide information about 
V’s performance, as well as about the beliefs of all of them, which are new data. 
V: One must give a pattern to the children. 
P: But you do not have to give it before they think. 
J: One must reach a balance with respect to when setting a more open activity is 
important and when it is better that the teacher says everything. 

With respect to the drawing up of the profiles of the teachers we would 
highlight two aspects. The first of these reiterates, as in previous research 
(Contreras, Climent, & Carrillo, 1999), that the individual analysis by each 
researcher, followed by joint discussion, appears to us a mode of analysis which 
reduces subjectivity of the process and confers greater rigour, resulting in more 
reliable data. On the other hand, the fact that the very teacher who is subject of 
the analysis is at the same time one of the members of the research group turned 
out to be an extremely important plus in the analysis. The degree of reflection 
and the interest of the teacher in the results led, on several occasions, her to be 
placed, in the joint analysis, in “less desirable” positions than those in which she 
had been categorised by the other members. 

Example: Obtaining V’s profile. 
P: I think that V applies a structured, but not closed, program. 
V: I think the program must be closed. For me the most important thing is to 
close it...In the session which was videotaped I planned a particular goal and 
everything was driven to get it. 
 
Data Collection Data Processing Results concerning ... 
Recording of classroom 
lessons and lesson diaries of 

Discussion of recordings 
(group), analysis of diaries 

MTLB (mathematics 
teaching and learning 
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teachers (group) and discussion of 
profile of each teacher with 
respect to MTLB 

beliefs), SMB (school 
mathematics beliefs) 

Field notes from the group 
discussions about maths and 
its teaching and learning, and 
about the classroom 
recordings 

Serve as evidence in the 
discussion of the profile of 
each teacher 

MTLB, SMB, PCK 
(pedagogical content 
knowledge), Knowledge of 
mathematics, Knowledge 
about mathematics 

Table 1: A study of the teachers’ beliefs 

 

Deepening in the reflective feature 

The events explained above coincide with what had been previously planed, but 
during the realisation of the work various aspects arose which required the initial 
design to be modified and the focus of interest amplified. One of these aspects 
was the unequal involvement of the teachers in the project, and the varying 
degrees of conviction that their professional development might come as the 
result of reflection in and on their classroom practice. The amount by which they 
distanced themselves from such presuppositions was in direct proportion to the 
amount by which they aligned their beliefs about teaching and learning along a 
traditional axis4. As a result, the role of J (with investigative beliefs) stood out; 
in this case the analysis and discussion of her beliefs and practice showed that 
her professional development should come from converting her espoused beliefs 
into in action beliefs5. Thus, this teacher began to be submerged in a process of 
action research on her classroom practice, in which she herself collected data on 
her performance, reflected on them, and drew her own conclusions, which 
caused her to modify her previous practice. It struck the researchers as 
interesting to amplify the observation of the performance of this teacher from a 
single class  (as it was originally done with the three teachers) to a teaching 
sequence, with the aim of studying the process of professional development and 
the professional knowledge of J “in action” (during a longer time). J made very 
clear the advantages of the teacher herself taking on the role of directing the 
research according to her interests (Jaworski, 1998). In principle it was a case of 
two projects, with distinct interests and methods, parallel to the common project 
of the group, in which the interested parties were the teacher and the teacher 
educators. But the discussion which ensued when the questions that this 
                                                 
4 In the terms defined by Schön (1983), this project is based on the teachers’ reflection on 
action. In this way, their reflection in action has been promoted; at the same time, we have 
approached some of the limitations of the reflection in action pointed out by Schön. It is the 
case of the teachers’ didactical tendencies. 
5 According to Ernest (1989), we consider relevant to differentiate the model a teacher shows 
in action (in action model, beliefs…) from the one which is inferred from their declarations 
(espoused model, beliefs…). 
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recording had raised were put to the group appeared to us a good means of 
collecting more information about the professional knowledge of the three 
teachers (going deeper into aspects which had hardly been scratched up to that 
point, such as the pedagogical content knowledge and the content knowledge, 
aspects which in the analysis of J had stood out as the “weakest” of her 
professional knowledge6), and a means of furthering their professional 
development. In this way, it became a question of interest for all the members of 
the project; what was intended to be the study by the researchers of the process 
of professional development of J, outside the work of the research project, and 
J’s own process of action research, become inter-linked, separate but mutually 
beneficial (like a kind of symbiosis) (figure 1). 

 
 
 
 
 
 

The notes taken by the researcher making the recordings7, along with the 
subsequent analysis of the videos by the two researchers, permitted them to 
formulate questions concerned with mathematics and pedagogical content 
knowledge, which had been afterwards put to the three teachers in the project’s 
working sessions. These questions derived directly from situations arising in the 
recorded classes, or from problems arising in these, or from the responses of the 
teachers to the questions. The questions were put to the teachers by the 
researchers, generating different opinions, which were discussed amongst 
                                                 
6 In (subject) content knowledge we include knowledge of and about mathematics (Ball, 
1990). On the other hand, we understand pedagogical content knowledge (Shulman, 1986) as 
closer to subject content knowledge than to a specification into mathematics of general 
pedagogical knowledge (Marks, 1991, uses the name specification for the latter, and 
interpretation for the first). Nevertheless, in the case of primary teachers their understanding 
of the mathematical content can not be taken for granted, at least in some topics, in order to 
build their pedagogical content knowledge on it. For this reason, being aware of the weakness 
of their mathematical knowledge and convinced of the necessity of starting from their 
demands, in our analysis of their pedagogical content knowledge we focus on the knowledge 
of specific aspects of the teaching and learning of some mathematical topics. In particular, 
topics such as pupils’ misconceptions, learning difficulties, use of materials, etc…can not be 
derived from a specification of general pedagogical knowledge, but at the same time they do 
not correspond to a transformation of mathematical content into forms that can be used in 
teaching (which is the usual understanding of Shulman’s pedagogical content knowledge). 
7 All subsequent recordings were made under the same conditions as the previous ones (given 
that the aim remained the same). 

Common project (formative-investigative) 

Action-research by J Research by educators into 
professional knowledge 

Figure 1 
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themselves. The role of the researchers in this case was to guide the discussion 
and to provide questions to ensure that the distinct aspects of their professional 
knowledge related to the situation came into play, as well as to note the 
responses of the teachers. After intervening, the researchers went on to 
participate in the discussion, indicating the aspects of professional knowledge 
that they had made clear and debating with them their deficiencies. 

Example: Situation coming from J’s practice. 
The pupils are asked to divide circles in halves. They draw the following 
different possibilities: 
 
 
 
Pupils: One can draw many, many lines as the above, just rotating the line a 
little. 
A pupil: If the circle is bigger, one can draw more lines than if it is smaller. If 
we go on rotating the lines mm by mm, in the biggest circle there will be more 
mm. 
J decides not to deal with this conjecture, “because this is a different issue”. 
In one session of the project one asks the teachers to deal with this conjecture. 
J: I support that pupil’s conjecture. 
P: If you open the circle you will find an infinite number of points for the 
diameters. 
J: I understand your point, and in this case the amount of halves would not 
depend on the size, but I do not see it intuitively. 

This stage had two facets: educational and investigative. For the trainers 
and J it was investigative, for all the teachers it was educational. Each of the 
teachers was to be profiled according to our plan, both with respect to their 
beliefs and their subject matter knowledge and pedagogical content knowledge. 
At the same time, in the same way that the group had discussed the teachers’ 
beliefs, which were now being reconsidered, we aimed at raising their awareness 
of their subject matter knowledge and pedagogical content knowledge, and to 
stimulate their development (via formative processes). The discussion of the 
questions raised accomplished this goal, as it was through the discussion 
process, along with the results of the analysis by the researchers of the group 
sessions data, which allowed the profiles to be drawn with respect to subject 
matter knowledge and pedagogical content knowledge (this, in conjunction with 
the process of action-research by J, comprised the investigative facet of this 
stage of the process). 
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Data Collection Data Processing Results concerning... 
Video recording and 
observation by one of the 
researchers of a series of 
lessons by J 

Analysis by researchers (Knowledge of and about 
mathematics and PCK) of J 

Discussion of classroom 
situations arising from 
observation of J 

Observation and analysis by 
researchers 

Knowledge of and about 
mathematics8 and PCK 

Mathematics problem solving Observation and analysis by 
researchers 

Knowledge of and about 
mathematics 

Table IIa: Investigative process (with respect to subject matter knowledge and pedagogical 
content knowledge) 

1st Phase 2nd Phase 3rd Phase Results 
Classroom situations 
and mathematics 
problems raised by 
researchers 

Discussion by 
teachers 

Discussion with the 
trainers 

Consciousness-
raising and 
restructuring of 
Knowledge of and 
about mathematics 
and PCK 

Table IIb: Formative process (with respect to subject matter knowledge and pedagogical 
content knowledge) 

Summarising 
The resettling of the original project design not only meant the study was 
broadened, but that the roles of the participants, and even the kind of research, 
were also altered. The project was originally conceived as collaborative research 
(Feldman, 1993), in which all the participants would be researchers, and some 
(the teachers) would also be informants. This distribution was respected so far as 
the beliefs of the teachers was concerned. With respect to the study of the 
teachers’ pedagogical content knowledge, and knowledge of and about 
mathematics, the teacher educators acted as researchers, and the teachers only 
acted as informants, although they participated in the discussions about the 
results of the analysis by the teacher educators. 

In the case of the beliefs, the discussion of papers relating to the teaching 
and learning of mathematics and of research into teachers’ beliefs allowed them 
to receive training as researchers. However, in the case of the study of their 
subject matter knowledge and pedagogical content knowledge, circumstances 
did not permit for an appropriate medium-term training programme from which 
the necessary data could be derived. 

 

                                                 
8 Unless otherwise specified, reference is to all three teachers. 
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4. Conclusions 

The process described here become a way of initiating professional development 
for the participating teachers which we are sure will be continued in an 
autonomous fashion (although not isolated, as a result of the improvement of 
networking). We propose that the process be adopted as a model for inservice 
teacher education. Group work is also of particular value, whereby small 
numbers of teachers and researchers/teacher educators share a process of 
research-professional development9. The process should favour critical thinking 
on the part of the teachers, encouraging them to reflect on the subject matter, its 
teaching and learning, its characteristics and professional requirements and, 
above all, their own awareness of and decisions about the process of 
professional development. A process, in short, which takes the teacher’s own 
practice as the source of challenge, and which enhances the role of self-
reflection. 

With respect to preservice teacher education, the cases which arise in the 
formative-investigative process comprise, on the one hand, a good point of 
departure for the elaboration of materials for use in the classroom, and on the 
other, a source of information about the teachers’ knowledge, both the 
knowledge that is really brought into play, and the knowledge that is considered 
desirable for the successful management of the primary mathematics teaching-
learning equation. As we mentioned at the beginning of this paper, it is difficult 
to fully attend to both teacher education and research; this kind of research 
opens the way for university teaching (preservice teacher education) to nourish 
itself from the process and from the results of the educational research in the 
context of inservice education. 

Among the results that were obtained concerning the professional 
knowledge of the project’s teachers, we found that for them the only 
mathematics which made sense was school mathematics, and their only point of 
reference was everyday mathematics, and that of the textbooks; there was no 
knowledge about mathematics (about the value of examples and 
counterexamples, systems of proof, the accuracy of a definition, and so on); 
teachers’ knowledge of mathematics was restricted to the primary curriculum 
and their depth of knowledge was not greatly deeper than that acquired by some 
of their students on finishing at this level. They were particularly lacking in the 
area of geometry, and their knowledge of arithmetic (where primary teaching 
has traditionally focused its efforts) was mechanical, based on the mastery of the 
algorithms, and showing difficulty in the manipulation of non-integers real 
numbers. They lacked strategies for solving mathematical problems, and tended 
to avoid them rather than face up to them. The three teachers showed different 
                                                 
9 This model includes the case that educators have only educating goals, and no research ones. 
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degrees of pedagogical content knowledge. J displayed greater knowledge, but 
as this was the result of her own experience and self-development, it was limited 
and somewhat superficial when broaching the kind of questions related to these 
aspects. 

Finally, we would like to close this paper by reaffirming our conviction, 
as teacher educators, of the need to take these results on board in the design of 
our teacher education programmes, both initial and inservice. 
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Abstract: More and more initiatives in teacher education in Europe establish 
learning environments where (student) teachers are supported in planning, 
carrying out and analysing investigations into practice. At a second level, 
researchers investigate the professional growth of their (student) teachers. The 
research reports usually contain a variety of arguments for the success of the 
initiative, putting an emphasis on the importance of investigations. This paper 
takes three teacher education initiatives as an example, looks at the reasons for 
the success and tries to find out supportive factors that seem to be crucial for 
(student) teachers’ professional growth. The three initiatives are analysed 
through the lens of a four dimension-model of teachers’ professional practice. 
The analysis shows that the freedom of defining one’s own research questions, 
professional support by teacher educators (e.g. through clearer goal definition 
or bringing in theoretical considerations) and rich opportunities to reflect on 
and to share experiences with others are decisive factors promoting (student) 
teachers’ growth. The paper concludes with a list of success indicators that 
might be taken into account when planning, carrying out and evaluating teacher 
education initiatives that focus on (student) teachers’ investigations into 
practice. 

  

1. Background 

The recent development of European mathematics teacher education shows a 
trend towards closer interconnections between teacher education as a field of 
practice and as a field of research (see e.g. Krainer, Goffree & Berger 1999, 
Krainer 2000). Above all, more and more initiatives in teacher education 
establish learning environments where (student) teachers are supported in 
planning, carrying out and analysing investigations into practice. At a second 
level, researchers investigate the professional growth of (student) teachers. The 
research reports usually contain a variety of (data-enriched) arguments for the 
success of the initiative, putting an emphasis on the importance of (student) 
teachers’ investigations and the development of an investigative attitude. In the 
following the term “investigation” is used with a broader meaning, ranging from 
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the first systematic reflections by student teachers to more elaborate research by 
experts. However, in all cases the goal of the activities is a better understanding 
of practice. 

This paper aims at looking more deeply at the reasons for the success of 
teacher education initiatives and at finding out supportive factors that seem to be 
crucial for (student) teacher’s professional growth. Based on that, the 
considerations will lead to a list of success indicators that might be taken into 
account when planning, carrying out and evaluating teacher education initiatives 
that focus on (student) teachers’ investigations into practice. 

As an example, two pre-service initiatives and one in-service education 
initiative are briefly described and discussed. The analysis of these three cases is 
based on the papers describing the initiatives and the research results. In all three 
cases at least one author also had the role of the teacher educator, therefore the 
papers have to a large extent aspects of self-evaluation of their teacher education 
initiative, reflecting explicitly or implicitly on the success of the initiative with 
regard to the professional growth of the participants.  

All three initiatives are regarded through the lens of the four dimension-
model of teachers’ professional practice (see Krainer 1998). This means that 
they are analysed how they relate to the following four dimensions: 

Action: The attitude towards, and competence in, experimental, 
constructive and goal-directed work;  

Reflection: The attitude towards, and competence in, (self-)critical and 
one’s own actions systematically reflecting work; 

Autonomy: The attitude towards, and competence in, self-initiated, self-
organised and self-determined work; 

Networking: The attitude towards, and competence in, communicative and 
co-operative work with increasingly public relevance. 

In the following, a brief description of the interaction between these four 
dimensions of teachers’ professional practice is given. The situation of teachers 
at schools is mostly dominated by action and autonomy, there is a lack of 
reflection and networking in the sense of a critical dialogue about one’s teaching 
with colleagues, mathematics educators, etc. In many cases, their work in the 
classrooms shows the same pattern: the students neither get enough time to 
reflect on what they are learning nor share their experiences with their co-
learners, thus joint construction of meaning is not adequately promoted. One of 
the most important reasons for this pattern (action predominates reflection, 
autonomy predominates networking) is that traditional (pre- and in-service) 
teacher education itself causes and contributes to that situation: joint reflections 
by (student) teachers’ are not seen as important features of the learning process. 
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Therefore, it seems to be crucial to promote more reflection and networking in 
teacher education. Experience shows that a further development with regard to 
these two dimensions also has a positive impact on the other two dimensions. 
For example: an increased competence in reflection raises the quality of action, 
and the knowledge of views of others enlarges the view of one’s own situation. 
Summing up, more reflection and networking contribute to a higher quality of 
autonomous action. This in turn improves the quality of reflection and the 
construction of shared meaning. This means that teacher education has to look 
carefully at the interaction between these four dimensions. 

In the following, the three initiatives are described. Then – taking the four 
dimensions as criteria – the analysis is focused on working out factors that lead 
to the initiatives’ success in fostering (student) teachers’ growth. 

 

2. Description of the three teacher education initiatives 

The three initiatives stem from two different countries in Europe, namely from 
Portugal (APOA) and The Netherlands (MILE), and from Israel (Tomorrow 98) 
which has close connections to European research in mathematics education. 
The APOA-participants are (secondary) student teachers who have had no 
teaching practice before, the ones from The Netherlands are advanced (primary) 
student teachers with some teaching experience, and in the case of Tomorrow 98 
the participants are practising (secondary) teachers. However, also the further 
development of teacher educators is explicitly seen as a goal of this project.  

 Kind of tea-
cher education 
/ Primary or 
Secondary 

Number of 
(student) tea-
chers / teacher 
educators 

Intended main 
activity of 
(student) 
teachers 

Main research 
focus of tea-
cher educators / 
researchers  

APOA: 
Portugal 

Pre-service / 
Secondary 

12-15 / 1 (+1 
researcher) 

Observing and 
analysing 
teaching 

Stud. teachers’ 
formation of 
profess. identity 

MILE: The 
Netherlands 

Pre-service / 
Primary 

2 / 1 (+1 
researcher) 

Analysing video 
fragments of 
teaching 

Stud. teachers’ 
knowledge 
construction 

Tomorrow 
98: Israel 

In-service / 
Secondary 

120 / 20 (+1 
researcher) 

Implementing 
innovative 
teaching 

Profess. growth 
of teachers and 
teach. educators
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APOA: Student teachers’ investigations as an entrance door to a discourse 
community concerned with professional practice (Portugal) 

APOA (standing for Pedagogical Activities of Observation and Analysis) is a 
regular course for secondary mathematics student teachers in their fourth year of 
study at a university in Portugal (the fifth year of their study is dedicated to an 
internship at a school). It aims at (further) developing student teachers’ 
investigative attitude through using and reflecting on some skills of observation 
and analysis. The outcome of this course is investigated by a researcher and the 
teacher educator of this course (Ponte & Brunheira 2000). 

The course is based on three assumptions: the observation of practical 
situations is important to provide student teachers with the opportunity to reflect, 
question, and theorise about school and mathematics teaching and learning; the 
observation needs planned and constant inquiry by student teachers in an 
environment that encourages free expression of opinions; the identification of 
specific questions for observation and reflection, the choice of appropriate 
methods, the collection of relevant data, and the presentation of conjectures and 
conclusions constitute an investigative activity for student teachers. 

APOA classes are run by a mathematics educator and have at most 12 to 
15 student teachers in order to allow a close teacher-student teacher relationship.  

The research shows that the student teachers regard field work and its 
analysis as valuable activities and highlight the importance of observation and 
reflection. The course also contributed to the formation of their professional 
identity. The student teachers stated that the activities had broadened their views 
on teaching practice. Sharing and comparing different points of view led 
partially to a change of their own views. The authors conclude that the 
discussions in the group in particular fostered the growth of a “discourse 
community” of student teachers concerned with professional practice. 

The project leaders argue that almost all important theoretical issues 
appear in practice, and it is immediately possible to indicate relevant theories. 
Even in later more theoretical seminars it would be possible to refer to practical 
experiences within the project. The internal collaboration among teacher 
educators as well as the collaboration of the teacher education college with the 
practice school is promoted. 
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MILE: A multi-media environment as a research data base for student 
teachers’ learning about teaching (The Netherlands) 

The MILE (Multimedial Interactive Learning Environment) project in The 
Netherlands (see e.g. Goffree & Oonk 1999a, b) aims at developing a multi-
media environment which can be used in mathematics teacher education in order 
to promote student teachers’ learning about teaching. This approach is based on 
the assumption that “practical knowledge” and “knowing about practice” cannot 
only be acquired in real life situations, but also – and maybe even better –  
through the investigation of digital representations of real life situations in 
classrooms. In this case the student teachers are not restricted to one teacher as a 
supervisor and a few classes, and thus can see a broader spectrum of teaching 
and they are freer in their observations and analyses.  

The MILE environment so far consists of lessons, split narratives in the 
form of video fragments (from mathematics teaching grade K1 to 6) with an 
average length of 1 to 2 minutes, including transcripts. The fragments and 
transcripts can be accessed with a search engine. 

Research was conducted at two levels: at the level of (pairs of) student 
teachers’ investigation into classroom practice via MILE-narratives, and at a 
meta-level in terms of a university team’s systematic research on student 
teachers’ knowledge construction in a computer supported collaborative 
environment. The student teachers were supported by a teacher educator having 
the roles of a coach and an expert, for example stimulating them to view a 
situation from a different perspective or providing theoretical considerations.  

Dieneke and Hayet, two student teachers in the MILE project, highlight in 
their reflections on their activities that the investigations broadened their view of 
students’ learning, led them to new questions and, also to the insight that 
teachers must be able to deal with the subject matter with (more) flexibility.  

The research on student teachers’ investigation processes led to the 
observation of four levels of student teachers’ knowledge construction: 
“assimilation” (student teachers “copy” teachers’ actions and beliefs from the 
video), “accommodation” (student teachers “modify” teachers’ actions and 
beliefs and adjust them to their own purpose), “seeing new links” (student 
teachers establish (new) links between events on a video and a theoretical 
discussion or their own training experiences), and “theorising” (student teachers 
design their own “local theories”). The investigation process of student teachers 
in MILE manifests itself as a cyclical process of planning, searching, observing, 
reflecting and evaluating. 
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Tomorrow 98: Interweaving the professional development of teachers and 
teacher educators (Israel) 

The Tomorrow 98 project in Israel is a five-year professional development 
programme for about 120 high school mathematics teachers (Zaslavsky & 
Leikin 1999). It aims at a variety of goals, among others, at preparing teachers 
for innovative and reform oriented approaches to mathematics teaching and at 
changing from a transmission metaphor to a constructivist perspective to 
teaching. The teachers are supported by about 20 teacher educators who 
themselves are seen as learners (in their role as teacher educators) and are 
supported by the project director.  

The teacher educators provide learning experiences for the teachers, 
which they apply in workshops for teachers or in their classroom. The 
experiences gained in the workshops and the classrooms are reflected in joint 
meetings. In addition, the teacher educators investigate their own practice within 
the project, write down their experiences and discuss their findings with their 
colleagues in several meetings. 

The research conducted within the framework of the project investigated 
the professional growth of teachers and teacher educators. The methodology 
followed the paradigm of grounded theory, and refers to several theoretical 
considerations by other researchers.  

The results indicate that both groups, the teachers as well as the teacher 
educators, show progress in their professional growth. However, Zaslavsky & 
Leikin (1999, 155) highlight differences in the extent and nature of their growth. 
Whereas the progress of the teacher educators is stressed through expressions 
like “become more competent with respect to innovation”, the progress of the 
teachers is described far less spectacularly, like “become more aware of the 
potential of innovative approaches”. The researchers also point out that the 
teachers felt less committed and accountable for their role in the project. 

 

3. Looking at the three initiatives through the lens of the four-dimension-
model - supportive factors for (student) teachers’ professional growth 

In the following, the three teacher education initiatives are briefly analysed 
concerning the dimensions action, reflection, autonomy and networking. For 
each dimension those factors have been selected that appeared to be most 
supportive for (student) teachers’ professional growth.  
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APOA:  

Action: The authors put much emphasis on carefully planning and guiding 
the student teachers’ observations, indicating that these “must be led by a 
problem and be carried out with some instruments” (Ponte & Brunheira 2000, 
6). Concerning the analysis, the student teachers were able to choose topics that 
attracted their attention for developing a further inquiry. There are several 
quotations showing that the student teachers found the observation goals and 
tasks challenging. 

Reflection: Student teachers’ observations led to interesting (partially 
written) reflections on their observation activity and on their (future) 
professional identity, for example: “With this experience I could put myself in 
the ‘place of the teacher’ and imagine how I would react in very different 
situations ...” (Dora in Ponte & Brunheira 2000, 7). This is also an indicator that 
the APOA student teachers developed an investigative attitude.  

Autonomy: The quotation above (like many others) also shows that 
observations gave the student teachers enough freedom to refer their reflections 
to their own situation, reflecting the transition from a student via a student 
teacher to a teacher. 

Networking: It is a main goal of the initiative to foster the development of 
“common meanings” or establish a “discourse community”. Among others, this 
helped the student teachers to see how different people can observe the “same” 
events and interpret it in different ways, and it broadened their views on 
teaching practice. 

 

MILE: 

Action: The student teachers have a clear task, namely to analyse MILE-
narratives under an individually chosen research question. The teacher educator 
(as a coach and expert) gives support by stimulating them to view a situation 
from a different perspective or providing theoretical considerations.  

Reflection: The student teachers’ investigations lead to interesting 
reflections, for example: “ ... the interview [with one teacher on the video] made 
the most impression on me. It was looking in the head of the teacher and finding 
out secret information.” (Hayet in Goffree & Oonk, 1999b, 43) 

Autonomy: The student teachers have great autonomy in devising their 
own research questions (e.g. “How does Minke [a teacher on a video] build his 
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lessons up? Which situation does he take into account in the beginning and what 
does he want to achieve?”). This enhances an investigative attitude (e.g. “MILE 
is addictive ...”, Hayet in Goffree & Oonk, 1999b, 62) and supports the wish for 
getting new views and sharing experiences. 

Networking: The student teachers share their experiences and thus enrich 
their personal views, for example: “It was useful to discuss our different viewing 
perspectives.” (Hayet in Goffree & Oonk, 1999b, 62). “The discourse motivates 
and encourages the students [student teachers], especially stimulating them to 
undertake further research.” (Goffree & Oonk, 1999a, 197). The search engine 
and the support by a tutor facilitates the process of generating new views. 

 

TOMORROW 98: 

Action: Whereas the teachers had the task of implementing innovative 
approaches to teaching, the teacher educators had a double role: on the one hand 
they had to facilitate the teachers’ activities, on the other hand they also were 
learners (intensively supported by the project director). 

Reflection and Networking: The teacher educators had more time and 
opportunities to reflect on and to share their experiences than the teachers. Tami 
(one of the teacher educators), for example, stated: "Today, I am much more 
open to many different ways of facilitating teachers’ and students’ cooperative 
learning in mathematics. I now accept and use methods that are not very 
structured, that seem to give way for many different kinds of cooperation to 
different extents." (Zaslavsky & Leikin 1999, 156) 

Autonomy: There is some evidence that the teacher educators had more 
freedom to define their investigation process in the project than the teachers (e.g. 
Ronit in Zaslavsky & Leikin 1999, 156: “I found myself dealing with questions 
that interested me, because I asked the questions ...”).  

 

Some short remarks concerning the dimension of networking: Whereas 
the APOA course mainly builds on the heterogeneity of joint experiences and 
reflections (e.g. including questions concerning the collaboration between 
teachers, organisational issues or educational reform by student teachers) and 
aims at giving the student teachers a first systemic insight into the complexity of 
teachers’ tasks at their school, the investigations within the MILE project are 
mainly limited to a set of video-recorded situations in classrooms, but give the 
student teachers much scope to define their own questions and to go deeper with 
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their research. In the case of APOA we might use the term “horizontal 
networking” and with regard to MILE “vertical networking” (see e.g. Cooney & 
Krainer, 2000). In the case of Tomorrow 98, horizontal and vertical networking 
happened. The description of the project seems to indicate that the teacher 
educators had more time and opportunity for both levels of networking. 

Summing up, the following factors supporting (student) teachers’ 
professional growth have been found in all three cases: 

Action: There are challenging goals and tasks for (student) teachers and 
helpful theory-based support by teacher educators. Thus the (student) teachers 
found better ways to link theoretical and practical aspects of knowledge.  

Reflection: Student teachers’ investigations lead to interesting reflections 
on their own professional identity and role and those of others. This increased 
their repertoire for (future) action. 

Autonomy: The (student) teachers had some autonomy in defining their 
observation or research interests and thus were able to relate their findings to 
their own situation and background. This autonomy allowed them to start where 
they are, namely at their own situation and pre-knowledge.  

Networking: The (student) teachers share their experiences with other 
participants or with the teacher educators, they use electronic means and 
research literature, and thus enriched their personal views (and those of others).  

An additional aspect: Model function of teacher educators: In all three 
cases, the teacher educators not only promoted (student) teachers investigations, 
but – at a second level – also investigated the professional growth of their 
(student) teachers. The fact that the teacher educators themselves have a 
research interest in (student) teachers’ professional development not only leads 
to a clearer focus on goals and design of the teacher education initiatives but 
also leads to an enrichment of teacher educators’ actions based on the research 
results and the reflections on their actions. Both aspects seem to be essential for 
improving theory and practice of teacher education. Furthermore, this 
investigative attitude of the teacher educators might contribute to (student) 
teachers’ views that investigations are really decisive for promoting professional 
growth and that writing – as an additional process of reflection – is an important 
factor that allows a bigger community to share and discuss the findings.  

 
 



European Research in Mathematics Education II 

 290

4. A check list of success indicators as an instrument for teacher education 
initiatives (aiming at investigations into practice) 

In this text, it was only possible to sketch some essential factors promoting 
(student) teachers’ professional growth that can be found in all three initiatives. 
However, the analysis also showed a variety of additional – explicit and implicit 
– views of how professional growth of (student) teachers can successfully be 
promoted. In the following, a list of ten indicators is presented that both builds 
on the analysis of the three cases and on the authors’ own experiences in the 
field. The list might be taken into account when planning, carrying out and 
evaluating teacher education initiatives that focus on (student) teachers’ 
investigations into practice. Of course, such a list can never be complete. 
However, it might be used as a starting point to reflect our goals, both for our 
teacher education practice and for our investigations into that practice. 

 
List of success indicators 

The (student) teachers... 

... are able to explain (and critically reflect on) the goals of the investigation 
(or more general, the whole teacher education initiative). 

... are able to explain (and critically reflect on) the important outcomes of the 
investigations, in particular through identifying parts of (practical and 
theoretical) knowledge and abilities that have been developed further. 

... are able to explain (and critically reflect on) the design of the 
investigations. 

... are able to explain (and critically reflect on) their own role in the 
investigations and those of others. 

... are able to point out research questions that might be worth investigating. 

... are able to express (and critically reflect on) their own professional growth 
(personally, socially, content-related) and those of others, in particular 
through indicating situations that promoted their learning process. 

... are able to sketch their (new) views on teachers’ practice. 

... are able to express (and critically reflect on) consequences for their 
(future) practice, in particular through sketching situations where they 
might apply things learned throughout the investigations. 

... are open to critical reflection on the learning climate, the quality of 
support, the consideration of their interests, wishes and critique.  

... are willing to recommend participation in such an investigation to other 
people and are able to explain its specific strengths and weaknesses. 
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Abstract: In this paper, we present what we call in French PPD (Petites 
Provocations Didactiques) translated in English by Pretty (Good) Didactical 
Provocations. These teachers’ training situations try to provoke and destabilise 
the representations of future teachers on geometry. So they must realise the 
diversity of the geometrical paradigms.  

We suggest three examples intended to clarify the nature of the P(G)DP and the 
pertinence of this type of training situation. All the examples are taken in the 
geometrical frame: it is caused by the fact that the setting up of Didactical 
Provocations needs an epistemological and didactical analysis that we have 
made only for Geometry. 

 

Introduction 

The IUFMs, Instituts Universitaires de Formation des Maîtres (French 
University Training Colleges), have been in charge since 1991 of the formation 
of pre-service teachers. Before the creation of the IUFMs, the teachers for 
primary school (children from 3 to 11) were trained in Normal Schools (“Ecoles 
Normales”). Nowadays, the IUFMs accept, after a first selection, graduate 
students from any University (three years of study). During one year, these 
students prepare in the Institutes a competitive examination to become pre-
service teachers. The mathematical examination part is composed of classical 
mathematical questions and also of questions about the teaching of mathematics 
in primary school (study of pupils’ errors, compared analysis of textbooks). The 
successful candidates receive a theoretical and practical education of one year 
(the “second year”) in all the matters of the primary school; they receive a salary 
and are almost sure to become effective primary school teachers the year after.  

The study of teachers’ training in mathematics in that institutional system 
is our main theme of research. 
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In this article, we introduce the notion of Didactical Provocation as a 
consequence of our researches on the teaching of Geometry for pre-service 
teachers. In our former studies, we have (Houdement. and Kuzniak, 1996) 
introduced a classification of the different kinds of approaches used by teacher 
trainers in the IUFMs to convey a professional education in mathematics to their 
students.  

Then, we focused our attention (Houdement and Kuzniak, 1999) on a 
particular and problematic mathematical theme in the pre-service teachers’ 
training: the teaching of Geometry. In this work, we developed an approach of 
geometry based on a play between different geometrical paradigms. 

The relation between a particular strategy and the different paradigms led 
us to suggest the idea of special training’s situations, the P(G)DP whose 
presentation is the main aim of our present paper. But, to understand this 
approach, we think that it is necessary to give a brief overview of our theoretical 
construction.  

 

Our theoretical background 

On training strategies 
Three types of knowledge: mathematical knowledge, didactical knowledge 
and the “third” knowledge.  

Teaching Mathematics is obviously connected to mathematical knowledge but 
also to other ones that are not automatically owned by a specialist of 
mathematics and that are more or less close to mathematics like history, 
epistemology, didactics, psychology or pedagogy. We classified this large set of 
knowledge in two parts. The first one, that is made explicit and structured 
clearly within the frame of didactical theories, constitutes didactical knowledge. 
The second one, that is not explicitly written and theorised, but exists in the 
professional action of each teacher is what we called “third knowledge”.  

We were a priori more interested in the teaching of the last two types of 
knowledge which are more specific of what is teachers’ training. But the 
following additional questions seemed to be very important: how to combine the 
three types of knowledge and how to give, at the same time, to students who are 
not (and sometimes far afield) specialists of mathematics, a minimum level in 
mathematics. Another very important question is how to transpose the 
theoretical knowledge? This transposition is connected with the conception 
about teaching that the teachers own. 
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The different strategies 
The combination between the three types of knowledge can take different forms: 
they can be suggested to or developed by the students; they can be juxtaposed or 
connected; the connection can be explained or not… 

So we have distinguished four main strategies: 
− the cultural ones,  
− the strategies based on monstration,  
− the strategies based on homology,  
− the strategies based on transposition. 

These strategies differ concerning the explanation of knowledge, the 
combination between these three types, the position they give to the students. 
They also depend on the knowledge considered as dominant and on the 
transposition made by the teacher trainer. Let us summarise these strategies. 

In a cultural strategy the didactical and the “third” knowledge is only 
presented and exposed without special connection with the mathematical one. 
The students receive; they are in charge of the connection between the three 
levels and of the possible applications into the classroom .  

The monstration strategy favours the “third” knowledge and supposes 
students will extract themselves this knowledge if for example they observe a 
mathematical activity conducted by an expert directly in a classroom (or on a 
video). Seeing is privileged. The students are considered as fellow-teachers. 

The strategies based on homology use the lack of mathematical 
knowledge of the students as a pretext for the teacher trainer to build a learning 
situation for their students: this situation is conceived as an epitome of the 
trainer’s conception of teaching. He hopes that the students, by impregnation, 
would utilise the same model in their future own classes. The students are 
considered as pupils, but they are supposed to analyse the situation to pinpoint 
elements of didactical knowledge and the “third” knowledge. 

The strategies based on transposition favour didactical knowledge. The 
trainer tries to control the phenomena of transposition of knowledge which is a 
bias of every teaching situation (Chevallard) In the facts, the control of the 
transposition often follows a first phase of homology: the teacher trainer 
explains and justifies the didactical aids he used during the situation. He 
explicitly refers to elements of didactic theory. The students are considered as 
pre-teachers. The reader could see examples later. 
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On Geometry 
On the other hand (Houdement and Kuzniak 1999), we have insisted on the 
complexity of the term Geometry: for us a coherent definition of the word 
Geometry is necessary. In our conception, Elementary Geometry is a particular 
theory of space, which tends to represent the local properties of the real space. 
Its more elaborate form is R3 with the structure of an Euclidean space. We have 
set and studied two hypotheses: 

1. Different and coherent paradigms are determined by the same term of 
Geometry. This explains, partly, the problems we face at the junction of 
the different institutions: primary school, secondary school and university. 

2. Students (future teachers), teachers and pupils take place implicitly in 
different paradigms; this is a source of misunderstanding. 

To study these hypotheses, we have introduced three kinds of knowledge needed 
to consider Geometry in its relation with space: intuition, experiment and 
deduction. In this conception, Geometry appears as a dialectical synthesis of this 
knowledge that evolves and takes into account the mathematical progress. 

 

We have distinguished three paradigms: 

Natural Geometry (Geometry I) is the basic starting point and constitutes 
the first synthesis: we want to name here Geometry deduced from reality and 
intimately related to it. The legitimacy for validation in the Natural Geometry is 
the correspondence between intuition and the conclusions of an experiment or a 
deduction. The backward and forward motion between the model and the real is 
permanent and is allowed to prove the assertions: the most important thing is to 
convince. 

Next, we meet Natural Axiomatic Geometry (one model is Euclid’s 
Geometry) where the axioms are as close as possible to the intuition of the 
ambient space. This Geometry (Geometry II) is a model of the reality. But, once 
the axioms fixed, the demonstrations inside the system are necessarily requested 
to progress and to reach certainty.  

Last, we have Formalist Axiomatic Geometry (Geometry III) where the 
most important thing is the system of axioms itself with no relation with the 
reality. The system of axioms is complete and independent of its possible 
applications to the world. 

The last contact with geometry of our students before IUFM took place in 
secondary school or at University, they learnt Geometry II or III. In the primary 
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school, Geometry I is predominant. We think that a necessary condition for the 
students to succeed in teaching is to realise that geometry covers different 
paradigms, each paradigm owns its coherence and takes a dominant place in a 
school level. From our perspective, knowledge of the different paradigms could 
be a didactical knowledge if it is introduced with a teaching point of view. 

 

Pretty (good) didactical provocation 

In this presentation, we try to articulate the two precedent approaches (training 
strategies and geometrical paradigms) in the frame of the real teachers’ training. 

From our studies on the training strategies, a cultural approach of 
mathematics is inefficient for almost all the students. It appears disconnected 
from the practice and from their main preoccupations about geometry in the 
classroom. A monstration approach is here inappropriate considering the nature 
of the knowledge to teach (didactical and mathematical). Then, an only 
homological approach is also inefficient because it can’t enable the students to 
keep enough distance with their anterior geometric studies.  

Our idea is to introduce specific and brief situations for the students that 
are geometrical situations near as soon as possible to the level of the future 
pupils of our students (its homological character) and sufficiently astonishing for 
them (its provocating character) to produce a real interrogation on the nature of 
Geometry. It would be interesting if these situations wee at the junction of the 
different paradigms and lead the student to question the situation itself (and not 
to stay in the situation). 

We give now three examples of these kind of situations. 

1) Construct a circle whose an arc is given 
2) The construction of a trapezium 
3) Straight Lines on a cylinder. 

 

Construction of a circle whose a small arc is given. 

In a first phase, four arcs of circle (280°, 180°, 125° and 55°) are given on a 
sheet of paper. The students should construct the whole circle. 
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Mathematical analysis: 
The problem is clearly located in the real space of objects and the given task is 
practical. The circle, partially known, appears as a drawing on the paper. 

To solve this problem, the students could refer at different kinds of 
knowledge taken in our paradigms of Geometry. 

In Geometry I, it could be practical know-how not specifically related to 
mathematics like folding, construction step by step in reporting several times the 
arc of circle copied with a tracing paper. 

In Geometry II, it is possible to draw the centre of the circle by using the 
properties of the perpendicular bisector of a segment or to use the properties of 
the inscription of the right angle in a circle.  

In this case, the geometrical knowledge gives drawing techniques with 
ruler, compass and square. Geometry II plays the role of a technology for 
techniques (Chevallard 1999).  

Didactical analysis and development: 
The problem is not difficult and could appear as a revision problem for the 
students. In this first phase, we are confronted with a kind of social conflict 
between students referring implicitly to different paradigms of Geometry. This 
situation is particularly interesting in the training of future teachers for primary 
school; they have, indeed, very different levels in mathematics and groups of 
such students are generally very heterogeneous.  

Some students try to inscribe a right angle (obtained by a fold paper) in 
the arc: they move the piece of paper to succeed to put the vertex on the arc and 
the sides cutting the arc; it works to find the centre of the arcs bigger than 180°. 
They could know these techniques without any idea of the justification of them: 
they work in Geometry I. At this moment of the situation, students referring to 
paradigms of Geometry II are sure of their position, just surprised by the 
procedures used by the other students.  

When all the students have understood the usual construction, it's time to 
introduce our Didactical Provocation with this new instruction: compare your 
circle drawn on the smallest arc (55°). There exist a great variety of lengths for 
the radius of the circle. The students to justify these differences use different 
arguments but they conclude that theory is inefficient for this kind of practical 
task. The construction of the perpendicular bisector of a segment appears as a 
theoretical fact in the context of Geometry II where constructions are 
idealisation efficient on the ideal figures of Geometry II.  
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Conclusion 
In our precedent studies, we saw that a word appeared commonly when we 
asked in-service or pre-service primary school teachers the meaning of 
Geometry: it was rigor. But the sense of this word was not the same for all these 
teachers. For a part of them (principally the in-service teachers), it was the 
synonym of precision of the drawing and of the measures, for the other it was 
related to the reasoning and to logical thought. This kind of situation permits to 
point this fact and to explain in the frame of a general definition of Geometry 
the limits and the particularities of each approach. 

 

Construction of a convex trapezium with imposed lengths 

The following instruction is given for the students. 
Construct a convex trapezium with lengths of sides: 8 cm, 7 cm, 5 cm and 
2 cm. How many solutions are there? Give justifications. 

Mathematical analysis 
A rapid draw permits to find conditions of existence. 

It is possible to construct the trapezium if the lengths    a,  B - b , c  are 
those of a triangle, B and b corresponding to the sides parallel with  bB > . 

The condition of existence is | a – c | < B – b < a + c       where B and b, 
with bB > ,  represent the lengths of the parallel sides. 

Length for B Length for b Lengths for the triangle The triangle exists 
8 7 1     2     5 no 
8 5 3     2     7 no 
8 2 6     5     7 yes  
7 5 2     2     8 no 
7 2 5     5     8 yes and it’s isosceles 
5 2 3     7     8 yes 

There are three solutions if one considers equivalent the figures that are 
connected by an isometry positive or negative. 
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Didactical analysis 
At first this situation appears to students as a usual construction problem: they 
have to draw an object respecting conditions of lengths and form and they could 
use instruments such as ruler and compass. The problem is set in Geometry I 
and the students would begin to work in Geometry I, considering the problem 
solved if they exhibit a “good” trapezium. The drawing instruments are not 
really imposed, but the usual contract of the course recommends ruler and 
compass and uses the tracks of the auxiliary construction as justification. The 
form is well known and characterised by the parallelism of two sides. The 
difficulty (impossibility) of the construction of some trapeziums may induce 
students to go out of the techniques, to begin to think of possibilities of 
construction. 

This change corresponds for us to a passage from Geometry I to 
Geometry II: working about the drawing was not sufficient, it was necessary 
working about the figure and thinking about its constructibility before its 
realisation with ruler and compass. The students are in face of different 
paradigms for geometry: it’s necessary to precise the characteristic of each of 
them. 

How it progressed with students 
As anticipated, students tried to draw a trapezium with ruler and compass, some 
of them only with graduate ruler. Three reactions existed: some of them didn’t 
succeed; others just succeeded to draw one with luck, as they said, or by using 
graduate ruler or parallelism of the lines of their paper. It produced a short 
interrogation about the utilisation of instruments and a discussion about how to 
determine which trapeziums exist. 

The main difficulty resulted in the fail of synthetic analysis. None of them 
thought of drawing an approximate trapezium to study it. The teacher suggested 
this idea and helped them going out of this paradigm to think theoretically about 
the construction of a polygon. Progressively the students thought of using 
triangles. Then some of them tried to cut the trapezium in a rectangle and two 
right-angled triangles, but renounced because of the impossibility deducing or 
calculating some lengths. Others even tried to inject Thales theorem, but vainly 
(procedure possible but long). A few cut the trapezium into a parallelogram and 
a triangle (the two last decompositions are valid in geometry II because the new 
lengths can be deducted of the sides). None of them used directly the triangular 
inequality to conclude.  

Conclusion on the pertinence of the situation as a Didactical Provocation 
This situation presents several advantages. First, it seems to be a usual 
construction problem to those of primary school, when the teacher asks pupils to 
draw a figure with certain conditions, under the control of the instruments. But 
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under a usual form, this construction is not a question for pupils of the primary 
school: the students realise the necessity of analysing the construction problem, 
particularly concerning the paradigm at work. That justifies the homological 
side of the situation. 

This problem can not be solved in the habitual framework of the primary 
school: it is necessary to introduce another (more theoretical) point of view. This 
new point of view is interpretable as a change of paradigm (Geometry I to 
Geometry II); this new paradigm contains the definitions of geometrical objects 
and the rules of production of properties and new objets. The definitions seem 
natural and near reality, but they are formal. That justifies the character of 
transposition of this situation: a new knowledge, the vision of geometry as three 
coherent paradigms, is necessary to analyse and foresee some geometrical 
problems in a teaching perspective. 

 

Lines on a right cylinder 

We have set the students the following problem: determine the straight lines on 
a right cylinder. They could use rolls or sheets of paper to shape right cylinders. 

Mathematical analysis: 
Here we consider a classical right cylinder. We can, in the way of the English 
writer Abbott in Flatland, imagine an inhabitant on this cylindrical surface. This 
inhabitant will develop a natural geometry which could be base on the notion of 
distance. Here are some of the questions set on this surface: 

Which is the shortest distance from one point to another? 
What are the properties of a triangle and of the other figures? In 
particular, is the sum of the angles in a triangle equal to two rights angles? 
What becomes of the theorem of Pythagore? Etc.  

In this context, we define a line on a cylinder as the shortest distance between 
two points. We explain this approach in the didactical analysis.  

To solve these different problems, it is very useful to have various models 
of the right cylinder. We need to determine the normal space associated with the 
natural geometry of the cylinder: we refer to a particular space, possibly drawn 
in the microspace, which realises and contains the properties of the whole space. 
Its concrete realisation makes possible an intuitive reasoning and allows easier 
vision for people who try to do geometry. 
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To obtain this space in the case of the cylinder we could roll, several 
times, the cylinder up on the 
plan. So we obtain a 
network made of parallel 
lines to D. In this network, 
two points M and M' are 
equivalent if there exits a 
number n and a translation t 
of vector n. U such that 
M'=t(M) where U  is a 

vector whose length is the perimeter of director circle of the cylinder (Model 1). 

A strip of the plane determined by two parallel lines makes a second 
model (Model 2), but only one of the lines belongs to the model. 

Now, we can solve our problem of geodesics on a cylinder using the first 
model. The geodesic on a 
cylinder is the image of a 
straight line on the plane 
model. But there is a small 
difficulty, on a cylinder there 
are two ways to join A to B; 
from the left side or from the 
right side of B. Which is the 
shortest?  

In the plan network (Model 1) associated to the cylinder, the point B is 
equivalent to points B', B" etc.  

The shortest way, AB or AB', depends of the relative position from A to 
the perpendicular bisector of BB'. 

The straight lines drawn on the Model 1 make a constant angle with the 
generator: they are helices on the cylindrical surface in R3. By extension straight 
lines of the cylinder are the lines prolonging the segment of the shortest length 
between A and B. 

Hence, near the helices we have the generators joining two points on a 
parallel to D. Finally, if two points are on a perpendicular to the generator D, the 
line is a director circle of the cylinder. In this case this straight line is bounded 
and is not unlimited as a straight line on the Euclidean Plan. 
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There exist three kinds of straight lines: these helices, the director circles 
and the generators. These different types of lines should pose questions for the 
students and demonstrate the necessity of definition to produce geometry. 

Didactical analysis and development 
In a precedent study (1999), we have asked students, teachers and pupils for 
possible definitions of straight lines. For all these people, the question clearly 
refers to the line into the Euclidean space and to the intuitive shape of straight 
lines in the ambient space. Here, the same question set in an unusual context, 
cylinders’ one should provoke the students to re-examine familiar facts made 
obvious by their use.  

Rolls of cardboard and sheets of paper are given to suggest to the students 
to make effective constructions and to use the link between space and plan 
(cylinder and the model 1). It is important for us to introduce the plan model of 
the cylinder to justify the constructions and to avoid staying in an experimental 
approach.  

During the session in the classroom, two main problems have appeared: 

The difficulty of transforming the notion of the straight line in the context 
of the geometry of the cylinder. The students are perplexed and avoid finding 
definitions of straight lines; they try to draw straight lines on the rolls of paper. 
One part uses a rule and makes roll the cardboard under the rule: we find here a 
definition in action of the line as a stroke made with a ruler (as pupils said in our 
study). An another part tries to make section of the cylinder by a plan to bring 
the problem in a familiar context. 

The second difficulty, perhaps more fundamental and not expected by us, 
is that the students don’t make any relation between the plan and the cylinder, 
even if we only give sheets of paper: the isometric application between Model 1 
and the cylinder is not evident. This observation implies that we must study this 
situation deeper. 

Conclusion 
This situation gives prominence to the difficulty and the necessity of definitions 
in a mathematical approach and is very disturbing for the students. In this sense, 
it constitutes a Didactical Provocation. But, we meet here a fundamental fact in 
a training strategy; the difficulty for the students to think and to speak about 
pedagogy or didactical knowledge when the mathematical task is too important 
for them. Only several Didactical Provocations set on a theoretical frame could 
avoid this problem, as we shall develop in our general conclusion. 
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General Conclusion 

We come back to the main purpose of this paper, the training of the future 
teachers in mathematics within transposition strategy: explain an explicit 
didactical knowledge showing its pertinence and its straight forward relation to 
mathematics. In our opinion, it is very important to give pre-service students 
knowledge about the nature of mathematics. The Didactical Provocations could 
constitute training situations to transmit this knowledge in a close link between 
theory and classroom practice: in fact with these situations the students construct 
for themselves questions that ask for mathematical and didactical answers. In 
this way it seems possible to evoke a certain character of “adidactism” 
(Brousseau 1986) in these Didactical Provocations.  

To produce the most efficient situations, it is necessary to find crucial 
notions and for this to develop theories on the nature of the mathematical objects 
that take into account a didactical and epistemological perspective as we have 
tried to do on the geometry taught at school. 

This fundamental frame, explicitly presented to the students, would be 
used to explain and to understand the different phenomena and difficulties 
encountered during the Didactical Provocations. Without this frame, or another 
of the same kind, students stay fixed on the action when the mathematical 
problem is not easy to solve. However, it is important that they meet this kind of 
situations in their training. 
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Abstract: In this report I attempt to analyse the responses to a questionnaire 
administered to 124 final year ITT (initial teacher training) students. The broad 
aim of the survey was to elicit the students’ attitudes to mathematics. The 
majority of the students will be required to teach mathematics in UK primary 
schools (5-11), and consequently, any negative attitudes could be detrimental to 
the education of future generations of British children. The study has its 
theoretical foundations in the work of McLeod (1988), who linked attitude to 
emotions and beliefs, and was inspired by recent research conducted in the UK 
by Rowland et al (!999) and Green and Ollerton (1998) on the attitude and 
mathematical abilities of primary ITT students. 

 

1. Introduction 

All students intending to teach in UK primary schools have to demonstrate 
mathematical competence before they can be awarded Qualified Teacher Status 
(QTS). The Standards they have to meet are dictated by the government (DfEE, 
1998, annex D), but assessment arrangements are determined by individual 
institutions. Mathematical knowledge is required which goes well beyond that 
normally taught to 11 year old British children (e.g. simultaneous equations, 
algebraic graphs).  Students at my university (following one year postgraduate 
and 3 year undergraduate courses) were audited and tested in the final term of 
their final year. This process was very intensive and involved some trainees 
undergoing remedial support and taking several tests. I became aware that this 
was causing some anxiety and resentment. I was concerned that if trainees were 
leaving with negative attitudes to mathematics, this could be detrimental to 
pupils in their charge. I decided to try and investigate the extent of the problem. 
How widespread was it? Did it extend to all areas of mathematics? 

 

2. Literature Review 

McLeod (1988) defines attitudes to mathematics within the general context of 
the affective domain. He firstly defines affect as all the feelings connected with 
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mathematical learning. Emotion he defines as a kind of passionate response to a 
particular mathematical situation. Typically, emotion is intense, but short lived 
and subject to change. When I administered my questionnaire, most of the 
students had just taken an audit test under exam conditions. (They completed the 
questionnaire immediately following the examination). They were undoubtedly 
emotionally charged. McLeod uses attitude to refer to affective responses which 
are more consistent, long term and stable.  

Mandler (cited in McLeod, 1988) attempts to formulate a theory based 
upon a cognitive science approach to problem solving adapted to the affective 
domain. According to Mandler, emotion arises during a planned session on 
problem solving in which intellectual activity is interrupted, usually, but not 
exclusively, because of some mental blockage. This leads to physiological 
arousal: increased heartbeat, perspiration, muscle tightening. The resulting 
emotions can be panic, frustration, confusion etc. The cognitive evaluation that 
follows the interruption can lead to either positive or negative emotions, leading 
to the formation or reinforcement of positive or negative attitudes. For some 
students, the process of sitting an examination in mathematics could pose a 
whole series of problems as they struggle to answer the questions. The resulting 
negative emotions could lead to reinforcement of negative attitudes. 

Several researchers have reported on their experiences with Primary 
students and their attempts to “meet the standards”. Rowland et al (1999) found 
a strong link between students’ performance on a maths audit and performance 
when teaching number on teaching practice; students who were strong 
mathematically tended to be stronger in the classroom and conversely, 
mathematically weaker students tended to be weaker at teaching number on 
teaching practice. If this is the case then it is clear that the auditing process 
needs to begin much earlier: in the case of one-year students, before the course 
starts.  

Green and Ollerton (1999) collected data on students’ attitudes using a 
mixture of interviews and written statements. They conclude that students’ 
negative attitudes are a result of their earlier experiences in a ‘traditional’ 
setting: “…mathematics which is centred on fixed rules, procedures and 
repetitive examples, learnt predominantly from textbooks…” (p48). This 
contradicts the finding of Clute (1984) that anxious students do less well in so 
called “discovery” lessons than with expository teaching. The remedial sessions 
arranged for my students were definitely in the latter category (one lecturer with 
80 students).  
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3. Research Methodology and Design 

The main research question was concerned with students’ attitudes to maths. 
This was sub-divided in two ways. In the first place, attitude was broken down 
into emotional responses or feelings and beliefs or perceptions. This distinction 
is important because students could well be of the opinion that whereas 
mathematics may well be a useful, challenging and logical subject, nevertheless 
it causes them great anxiety and they could be fearful about teaching it. 
Secondly, I felt it would be useful to explore any differences in attitude to the 
various areas of mathematics (e.g. number, algebra, shape and space, measures, 
mathematical reasoning and statistics and probability). I felt that students would 
accept the need to be knowledgeable about and confident to teach number, shape 
and space and measures, but much less so about the other areas. This question 
also has a link to feelings and perceptions, because negative attitudes to a 
particular topic could be caused by feelings of inadequacy, and conversely, 
positive attitudes could arise out of beliefs about the perceived usefulness of the 
topic. 

I decided the best way to collect this information was via a questionnaire. 
I had a fairly large population (152) and very little time. There are problems, of 
course, associated with this method. In the first place, responses could well be 
unreliable, partly because respondents could be less than honest in their replies, 
and partly because questions could be misinterpreted. Secondly, the extent to 
which respondents actually reflected over their answers is also questionable. The 
majority had just finished an examination and were undoubtedly keen to leave. 
Thirdly, the limitations of questionnaire design leave very little room for 
respondents to express themselves fully. It is difficult to ask the question 
“Why?” The other option, interviewing a small, selective sample would have 
been preferable, because it would have overcome some of these difficulties, but 
was not viable because of time constraints.  

The questionnaire consisted largely of tick-boxes with yes/no responses or 
a 5-point Likert scale (from strongly agree to strongly disagree) (Oppenheim, 
1992) and was therefore quick and straightforward for the students to complete.  

 

4. Analysis 

The questionnaire was administered anonymously to the students immediately 
following the second maths audit test. I received a total of 124 replies from a 
total population of 152 (some were absent due to job interviews). This 
represents a response rate of almost 82%. Almost 90% of the population were 
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females. In terms of other characteristics, such as age, 70% were in the 20-24 
age group. Only 4 students were over 40 years old.  

The early questions sought students’ opinions on maths itself and their 
perceived abilities at maths. Typically, they were statements to which the 
respondents were required to indicate their agreement using the 5-point Likert 
scale described above. For the purposes of simplifying the analysis, I propose 
for the most part, to group the responses as positive (strongly agree, agree), 
neutral, and negative (disagree, strongly disagree). To the statement “I like 
maths”, 44% responded positively, which I thought was encouraging (though 
clearly this means that 56% were either ambivalent or negative). When I 
qualified this by adding “...when I can see a point to it, this figure rose to 78%. 
This statistic illustrates that respondents’ beliefs about mathematics were 
generally positive. The next statement “I like maths when I can do it” produced 
a similar positive response (79%). This demonstrates a possible link between 
achievement and attitude. In response to the statement “I’m hopeless at maths”, 
27% strongly agreed or agreed; this suggests a negative attitude to mathematics 
was held by nearly ¾ of the population. 

I then went on to look at students’ attitudes to the various topic areas 
within maths covered by the UK government standards (DfEE, 1998, annex D). 
These were described above. I felt that there could be significant differences. A 
student might accept that it was important to understand and to be confident 
about number, because of the need to teach it, but could well feel differently 
about algebra or mathematical reasoning, because it doesn’t appear in the 7-11 
curriculum. 

I scored students’ responses using 1 = “strongly agree” through to 5 = 
“strongly disagree” and computed the mean responses to the statement “I like 
(topic name)”. A low score (below the midpoint of the scale, 3) indicates a 
positive response. Analysis reveals that, using the mean score for “ I like maths” 
(2.89) as a comparison, students were more positive about number and shape 
and space (2.17 and 2.26 respectively). In contrast, they were rather negative 
about mathematical reasoning (3.22) and statistics and probability (3.24). 
Surprisingly (to me at least), algebra scored 2.93, i.e. slightly positive. 
Measures scored 2.53. Using the paired samples t-test to compare the means of 
pairs of variables reveals some highly significant results (the appropriate p 
values are given in parentheses): the difference between number and maths is 
highly significant (p<0.001). Similarly the difference between maths as a subject 
and the topic statistics and probability is highly significantly (0.001), as is the 
difference between maths and measures (0.004). There are no statistically 
significant differences between number and shape and space (0.495), or 
mathematical reasoning and statistics and probability (0.935), or maths and 
algebra (0.586). 
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Summarising these results, it would appear that maths as a subject lies in 
the middle of a continuum, with students claiming to prefer number, shape and 
space and measures to mathematical reasoning and statistics and probability. 
Maths and algebra lie in the middle of this continuum, students’ opinions being 
generally neutral. Unsurprising results in some respects, because one might 
expect number, shape and space and measures to be popular (traditional primary 
school topics). Algebra, not normally considered a primary school topic, wasn’t 
disliked by the students. Conversely, statistics and probability, firmly 
established in UK National Curriculum for over 10 years now, appeared to be 
disliked.  

Other related statements were “(maths topic) is hard”, “I feel competent to 
teach (maths topic)”, “(maths topic) is a useful topic for primary students to 
study” and “I wish I was better at (maths topic)”. They were scored using the 
same Likert scale. The results, which are not detailed here due to lack of space, 
are broadly in line with those given above. In general, respondents were positive 
about number, shape and space and measures, and negative about algebra, 
mathematical reasoning and statistics and probability. Students generally had 
more negative attitudes towards mathematical reasoning and statistics and 
probability than algebra. It is not possible to be certain from a survey analysis 
why these results occurred, but one could speculate that the topics which feature 
in the primary school curriculum were popular because (a) they were more 
familiar, and after 24 weeks in school, the majority would have had experience 
of teaching them, and (b) they are conceptually less demanding. This doesn’t 
explain why statistics and probability, which until recently featured strongly in 
the UK National Curriculum, was so unpopular. Again, speculation leads one to 
conclude that maybe if descriptive statistics had been separated from probability 
in the questionnaire, the results would have been very different.  

 

5. Conclusions 

In response to the questions I posed in section 3, I should like to offer the 
following tentative conclusions: 

1. Over one third (36%) of respondents claimed to dislike maths, and could 
therefore be described as holding negative attitudes. Adding the qualifier 
“…when I can see a point to it” to the statement “I like maths” produced a 
much more positive response: 78% either strongly agree or agreed. I 
would argue that this qualifier has a link with beliefs, with respondents 
connecting this statement with their beliefs that mathematics has a utility 
value. This, I would argue, consists of the mathematics teachers need in 
order to be successful teachers at key stage 2 (5-11). It demonstrates that 
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respondents’ beliefs about mathematics were generally positive. On the 
other hand, 79% responded positively to the statement “I like maths when 
I can do it”. This suggests a link between attitude and perceived 
achievement. Negative feelings emerge when subjects’ subject knowledge 
is challenged, as it was in this case. The consequence of this is that the 
negative emotional responses expressed by the majority of the 
respondents could well be temporary. This supports the findings of both 
McLeod (1988) and Mandler (cited in op cit)     

2. The issue of attitude to various mathematical topics has some similarities 
with the above analysis. Three of the topics provoked generally positive 
attitudes (number, shape and space, measures), whilst the remaining three 
(mathematical reasoning, algebra, statistics and probability) generally 
provoked negative responses. It seems reasonable to conclude that 
positive attitudes occurred for topics considered to be less conceptually 
demanding and with a perceived utility, whilst negative attitudes were 
provoked by topics which were seen as difficult and not useful. It is 
surprising that statistics and probability was considered to be difficult and 
not useful. This may be because descriptive statistics was linked to 
probability and respondents’ views may well have been referring 
specifically to probability.    

It would be interesting to conduct a further survey in 12 months time in order to 
establish whether or not respondents’ attitudes have changed. If the negative 
attitudes encountered were caused by short-term, but intense emotional 
responses, then the outcomes could well be very different.  
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Abstract: This paper addresses the preparation in ICT of preservice 
mathematics teachers. We describe the aims, assumptions, and work carried out 
in a course offered at the University of Lisbon and briefly discuss the processes 
involved in the development of professional knowledge and the formation of 
professional identities. Using a qualitative methodology, based on the 
administration of free-response questionnaires to the student teachers enrolled 
in the course in 1999-2000, we analyze their general perspectives about ICT, the 
implications of the use of ICT in their view of teaching methodologies, and their 
development of a professional identity. This work provides suggestions for 
teacher education practice and for further research. 
 

Introduction 

Mathematics teachers may use in their practice a great variety of educational 
ICT (Information and Communication Technologies) materials and resources, 
including general-purpose tools and educational software (NCTM, 2000). The 
World Wide Web may be regarded as a “metatool” where one can find 
information about new developments in mathematics and mathematics 
education, software, sample tasks, classroom ideas, reports of experiences, news 
about meetings and other events, etc. Preservice teachers need to be acquainted 
with these resources and to develop confidence in using them (Bottino & 
Furinghetti, 1999; Ponte & Serrazina, 1998). In Portugal, this is quite 
problematic since they often arrive at this stage of their professional preparation 
with previous little contact with new technologies. Not surprisingly, they are 
rather suspicious regarding the role of ICT in education and have little 
confidence using it. 

Since ICT is an ever expanding world some choices need to be made 
regarding what is most important to know. In addition, learning about ICT and 
its uses in mathematics education must assist preservice teachers in their process 
of developing professional knowledge regarding this domain as well as 
concerning teaching and learning mathematics, since all these aspects are 
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interrelated (Berger, 1999). Also, it may help to develop a professional identity, 
stimulating the adoption of a standpoint and values of a mathematics teacher. 
The purpose of this paper is to discuss the effects of a university course 
dedicated to the use of ICT in mathematics teaching in student teachers’ 
perspectives about ICT and classroom methodologies and their development of a 
professional identity. 

 

The ICM Course 

In Portugal, the school system is made up of several “cycles”. Basic education is 
compulsive and includes three cycles (cycle I for pupils aged 6-9, II for pupils 
aged 10-11, and III for pupils aged 12-14). Secondary level education is 
optional, has different strands and is attended by pupils that may be 15-17 years 
old or older (if previously retained in one or more grades). Mathematics is a 
separate subject taught by a specialist teacher from the beginning of cycle II, 
that is, from grade 5 onwards. 

The mathematics teacher education program at the University of Lisbon 
prepares teachers for grades 7 to 12 (that is, to teach cycle III of basic education 
and secondary education). This program includes three years of mathematics 
studies, followed by one year of education studies and a last year of practicum in 
a school. Usually, 110-120 new candidates are admitted every year in the 
program. 

The ICM course1 which constitutes the focus of this paper integrates the 
7th semester of this program—the first semester dedicated to educational 
studies. We focus on the work done in 1999-2000. The aims of ICM are to 
facilitate the acquisition of competencies in ICT and to promote the 
development of new perspectives about its use in mathematics teaching. The 
main idea is that pupils can learn mathematics by doing explorations and 
investigations and that the processes of discovery and proof are at the core of 
mathematical activity. The use of ICT in mathematics teaching can be very 
useful to emphasize those processes. We decided to work with a limited number 
of pieces of software (The Geometer’s Sketchpad [GSP] and Modellus), as we 
intended student teachers to explore them in depth. They got acquainted with 
these software and their educational applications within present mathematics 
curricula in Portugal. 

Student teachers used GSP in several activities to see its possibilities for 
studying geometry, always through an investigative perspective. Their 

                                                 
1 ICM stands for “Interdisciplinaridade Matemática-Ciências”. 
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mathematical preparation leads them to use a deductive approach to solve all 
kinds of problems, and we used GSP as a powerful tool to show that the 
perspective of mathematical creativity has many forms other than deduction (de 
Villiers, 1997). Student teachers started with simple mathematical questions 
about properties of triangles and quadrilaterals, then they explored certain 
features of conics and later they investigated invariant properties of some 
geometrical transformations. Finally, we explored Javasketch’s possibilities for 
including animations with GSP in webpages. 

Modellus is a software for constructing mathematical models of all sorts 
of phenomena, showing their evolution in time through different types of 
representations. Some student teachers used it in their group project. And the 
Internet was explored in many of its features, research techniques and 
elementary publication techniques and, at the same time, we reflected upon its 
use in schools. 

At the beginning of the year most preservice teachers have limited 
experience with ICT, especially with the Internet. Besides lacking competencies 
in this area, they also lack confidence to work with computers. This prompted us 
to opt for two main characteristics for the course’s methodology: (i) extensive 
practical work with computers and (ii) collaborative group work. The role of the 
instructors was to create stimulating learning situations, to challenge student 
teachers to think, to support their work, and encourage the diversification of 
learning routes.  

The course was attended by 95 preservice teachers. They were divided in 
four classes that met twice a week for two hours. The classroom was equipped 
with 9 computers connected to the Internet that permitted the work in small 
groups of two or three preservice teachers at each computer. They had free 
access to the computers when there were no classes in the room.  

The main component of the work carried out in ICM was the development 
of a project, consisting of the creation and publication of a group homepage 
focusing on a mathematical theme that could be of interest to teachers and 
preservice teachers. Each group was responsible for the choice of the theme and 
for searching materials. The preservice teachers were encouraged to do their 
research on the Internet and to find other sites related to their theme, mainly in 
Portuguese, so that they could have some public impact. In their research, the 
groups also made extensive use of traditional materials such as books, 
textbooks, and journals. 

The Web pages produced cover a large variety of topics in geometry, 
functions, numbers, algebra, probability, and combinatorics, presenting 
theoretical information and practical work. There is a general concern for 
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presenting historical background about the theme and to show some applications 
to the real world and other sciences2. 

 

The development of professional knowledge and professional identity 

Mathematics teachers’ professional knowledge may be regarded as a blend of 
declarative, procedural, personal and strategic knowledge that is used in 
situations of practice (Shulman, 1986). This includes classroom teaching, but 
also other professional roles such as tutoring pupils, cooperating in schools’ 
activities and projects, interacting with members of the community, and working 
in professional groups. Teachers of mathematics need (i) to know about 
educational theories and issues, (ii) a good foundation in their subject, and (iii) a 
strong preparation in the specialized field that concerns their activity: the 
didactics of mathematics. This includes perspectives about curriculum, students’ 
learning, and classroom instruction and assessment (Boero, Dapueto, & Parenti, 
1996). Teachers’ knowledge is rooted in such beliefs and conceptions about 
mathematics and its teaching (Ponte, 1994; Thompson, 1984). To challenge such 
ideas can be regarded as a central aim in teachers’ professional development 
(Carrillo, 1998). 

Teachers’ professional knowlege may also be viewed as mainly tacit and 
originating from practice through a process of personal reflection (Elbaz, 1983; 
Schön, 1983). Therefore, it is not sufficient merely for student teachers to have 
knowledge of mathematics, educational theories and didactics. Since 
professional knowledge is deeply personal and related to action, its development 
requires diversified working contexts and the experience of situations as close as 
possible to professional practice. 

ICT is increasingly important in the activity of mathematics teachers, (i) 
as educational media to support pupils’ learning, (ii) as professional productivity 
tools, to prepare materials for classes, to carry out managerial duties, and to 
search for information and materials, and (iii) as an interactive medium to 
interact and collaborate with other teachers and educational partners. Teachers 
need to know how to use the new equipment and software and also what their 
potential strengths and weaknesses are. These technologies, changing the 
environment in which teachers work and the way they relate to pupils and to 
other teachers, have an important impact on the nature of the teachers’ work, 
that is, on their professional identity. 

                                                 
2 The pages can be found at the address: http://www.educ.fc.ul.pt/icm/pagalunos.htm. 
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Developing a professional identity involves assuming the essential norms 
and values of the profession and an attitude of commitment to improve oneself 
as an educator and the educational institutions. A mathematics teacher must 
carry out the proper professional activities of a teacher and identify personally 
with the teaching profession. That means assuming a teacher’s point of view, 
internalizing the teacher’s role and ways of dealing with professional issues in a 
natural way. For example, choosing to decide about the value of a variety of 
resources available for teachers and learning to use them is an increasingly 
important part of being a teacher. It requires knowledge of exploring software 
and Web sites. It requires an attitude of openness and confidence in using 
computers (Berger, 1999). 

Berger & Luckman (1973) regard the development of a professional 
identity as an aspect of the development of secondary socialization. According 
to these authors, primary socialization refers to the introduction of the individual 
to the society, becoming part of it. The child internalizes the roles, attitudes and 
values of significant others, with little possibility for critical distance. Secondary 
socialization comes later on, as the internalization of “institutional worlds” and 
involves the acquisition of specialized knowledge (including professional 
knowledge). Such specialized knowledge is constructed with reference to 
particular fields of activity that draw on specific symbolic universes. 

The construction of social identities is seen by Dubar (1997) as involving 
two complementary processes. One, the biographical process, is the internal 
construction by individuals through time of the social identities using the 
different categories offered by the institutions in their environment. It involves a 
transaction between inherited and desired identities. The other, the relational 
process, involves external transactions between the individual and significant 
others. It concerns the recognition in a given moment and legitimizing space of 
the identities related to knowledge, competencies, images and values expressed 
in the underlying action systems. 

 

Methodology 

In this study, data was gathered through a written questionnaire completed 
anonymously on the last day of classes by the preservice teachers who attended 
this course. The questionnaire included six free-response questions and ample 
space was provided to answer them: 

1. How do you define your current relationship with ICT? What 
evolution occurred in this regard during this semester? 



Working Group 3 

 315

2. Did this course provide you with the development of perspectives 
about the role of ICT in mathematics teaching? Specify. 

3. How do you see the future of ICT in schools? 
4. How do you evaluate the work that you carried out in this course? 
5. Comment on the working methodologies used in this course. 
6. What suggestions can you give to improve this course? 

 
A set of categories, subcategories and subsubcategories was developed to code 
the answers. The data analysis software NUDIST (version 4.0) was used to 
classify them and to provide reports. In this paper only a few categories are 
used, those most related to the questions we discuss. 
 

Analysis 

General perspectives about ICT. The first question that we want to discuss is the 
contribution of the course to the development of a general perspective about the 
role of ICT in mathematics teaching. 

1. Evolution of student teachers’ perspectives. They recognize that this course 
made a difference to their professional preparation regarding the potential of 
ICT for mathematics teaching. Many of them probably had heard the media 
talking about the importance of ICT in society and in schools, nowadays, but not 
much more than that. According to their answers, it is possible to conclude that 
they evaluate the new perspectives that the course brought to them very 
positively, especially because they think the school system expects teachers to 
be well prepared in this area: 

“In fact, since the beginning of the semester, the educational issues that I 
learned enabled me to move on regarding the use of new technologies, 
somehow. So, if in the beginning I did not understand very well what was the 
purpose of the computer in the classroom, today this opinion not only changed 
as it enriched a lot, through discovering software and techniques to use it in 
mathematics classrooms.” 

2. ICT in the classroom. Most student teachers refer to the Internet, GSP, and 
Modellus as facilitators of the teacher’s role. Many of them regard these 
instruments as sources of motivation: “it is indispensable to use new 
technologies in the mathematics classroom. This is the only way we can make 
mathematics accessible and attractive to our future pupils”. Others consider the 
software explored in the course useful to support learning specific themes, such 
as geometry. As one student teacher says: “The use of GSP showed me that 
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when pupils use it they understand geometry better. Therefore I find it important 
to use GSP with all age level classes”. In fact, this software is referred to by 
many student teachers as having a lot of possibilities in mathematics teaching. 

Another aspect revealed by the data is that many preservice teachers 
consider that the role of ICT in mathematics teaching goes beyond motivating 
pupils. They see it offering the possibility of promoting a new vision of 
mathematics for them, on the one hand, because ICT can make applications of 
mathematics more visible and, on the other, because the use of ICT stimulates 
pupils’ autonomous work. One preservice teacher commented, in this respect: 

“By using new technologies it is possible to provide a smoother 
perspective of mathematics, so that pupils feel motivated to “discover” 
mathematics, since today any youngster can have access to a computer.” 

Student teachers regard the work carried out on searching information and 
publishing pages in the Internet highly. This is considered to be an activity with 
a lot of potential for teachers and pupils. As one of them says: “by using the 
Internet we can easily have access to information from all over the world, which 
enables us to expand our knowledge, also in mathematics”. Regarding the 
pupils, one student teacher says that they “may learn a lot searching in the 
Internet”. Student teachers regard the research activity on the Internet as inquiry 
and point out the possibility of drawing a parallel with pupils’ learning 
processes. One comments that: “it was also important to discover the Internet in 
a more “intimate” way, since that enabled me to see its application in research 
projects that is easy to develop in a mathematics classroom”. 

3. Perspectives about learning with ICT. Some preservice teachers show strong 
evidence of having developed a perspective of ICT use that values 
experimentation and exploration, and pupils’ active role in learning. One of 
them put it very nicely: 

“We can use the computer, Internet, and GSP to do several activities 
through which our pupils may explore mathematics themselves, since as they 
made the discoveries, the classes become active and the pupils become 
autonomous and only in that way may they construct their own learning.” 

This vision about mathematics teaching, emphasizing exploration and 
investigation, that permeated ICM’s classes, has a strong influence on student 
teachers’ perspectives. As one of them says: 

“The work undertaken with the Sketchpad was important since it helped 
us to think, to discover by ourselves geometrical properties regarding the topics 
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that we were given. It is a good methodology that we, future teachers, may use 
in mathematics teaching, if possible.” 

Impact of working methodologies. The second question that concerns us is the 
contribution of this course towards the development in preservice teachers of an 
appreciation for working methodologies that stress an active role of the learner, 
inquiry, collaboration, and group work. 

1. Preservice teachers’ involvement. At the beginning of the course, most of 
them found the tasks very challenging, mainly due to their lack of knowledge 
and familiarity with computers. They consider that to face the challenges they 
needed much determination and hard work, individually and in group. The 
active involvement of the learner is an indispensable condition to significant 
learning; two student teachers testify how much they were committed to their 
work: 

“I can say that personally I felt much involved. (...) Looking back, I think 
that I learned so much, so much, that it was very useful.” 

“It was a very interesting work, that required much devotion, but that 
ended up as something very gratifying.” 

The preservice teachers’ evaluation of the level of involvement required 
reveals that some of them ended up with a sense of personal development, 
namely, having a more positive attitude regarding new learning situations. As 
one comments: 

“First of all, and speaking for myself, it was a mixture of fun (when we 
solved some problem) with deep disgust (when the computer decided to ‘play’ at 
improper hours). But, most of all, it was positive to sweat until we got where we 
wanted (...) I think that the fact that I attended this course was a lot of fun and 
taught me things that will stay for all my life.” 

2. Project work. The projects and the research carried out in this context emerge 
out as the most relevant aspects of the course activity. Some preservice teachers 
were pleased with the opportunity they had to choose the theme for their project 
and to learn more about it, and clearly emphasize the inquiry process. For 
instance, one evaluates the work carried out in the following way: 

“An interesting work on an interesting theme that is still little known (...) 
There was a research work at several levels and after that information was 
collected, it had to be ‘filtered’ and presented in the form of a Web page.” 
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Resulting from this research, carried out within their projects, some 
student teachers comment that they started to do Internet searches more often 
and that they developed a disposition to investigate new software by themselves. 

3. Group work. Many student teachers consider group work as a very positive 
aspect of the course. For some, it increases the quality of the final product: “I 
think that with my colleagues’ cooperation, with the work that we developed 
together, the result was a very successful page”. In some cases, there is also a 
positive reference to the discussions within the group: 

“Group work is a fundamental working methodology. Of course, we may 
have a big mismatch of opinions... However, such mismatches lead to a 
“discussion” and intensive exchange of opinions until we reach a consensus.” 

Besides, group work is regarded as a preparation for professional activity 
in schools. One student teacher says that his experience in this field will be of 
great importance in the future “as the collaboration of teachers is indispensable 
for the evolution (...) of mathematics teaching.” 

Development of a professional identity. A third point of interest is the impact of 
this activity on the development of a professional identity. Student teachers’ 
responses show aspects of this process, especially as they assume new 
perspectives and values that they connect to their future professional role. 

1. Biographical process. Let us consider the following statements: 

“Looking back, I think that I learned so much, so much...” 

“All along this semester (...) I abandoned a wrong idea that I had...” 

“This course... taught me things that will stay for all my life.” 

“[My] opinion (...) enriched a lot, through discovering software and 
techniques to use it in mathematics classrooms.” 

“The use of software in ICM classes helped me to have the notion of the 
diversity of means that we have available to teach our pupils mathematics 
contents using new technologies.” 

Explicitly or implicitly, these sentences have, a projection of future 
activities and roles as well as assessments of past ideas and perspectives that are 
no longer valued. They mark aspects of student teachers’ biographical identity 
defining processes, involving transactions between inherited and envisioned 
identities as they reflect about past ideas and conceptions and show appreciation 
regarding what will be their future work as mathematics teachers. 
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2. Relational process. In other responses we see influences of relational 
processes, involving interactions of student teachers with others, including their 
teachers and other preservice teachers: 

“I enjoyed the instructor’s method, always available, and giving us 
freedom to work.” 

“The relation between teacher and student could not have been better. 
Whenever we needed, the teacher ‘ran’ to help us, requiring, however, that we 
first try to solve the problem that we faced. The work carried out with Frontpage 
developed us as researchers.” 

“Of course, we may have a big mismatch of opinions [in group work]... 
However, such mismatches lead to a ‘discussion’ and intensive exchange of 
opinions until we reach a consensus.” 

“The collaboration of [school] teachers is indispensable for the evolution 
of (...) mathematics teaching.” 

This relational process led preservice teachers to appreciate the value of 
group work, despite all its inherent difficulties, and value the teacher-student 
relationship as a complex interplay of supporting and challenging. They 
recognize the need for negotiations involving different people to reach some 
level of agreement. They also indicate their appreciation of collaboration, an 
important aspect of mathematics teachers’ professional identity. 

 

Conclusion 

Work carried out with ICT based on sophisticated software raises many 
technical problems that may jeopardize the development of the classes according 
to the instructor’s plans. This requires much capacity for on the spot decisions. 
In this course, such problems were common since preservice teachers wanted to 
include rather complex visual effects in their Web pages. Consequently, the 
production of pages tended to take more time than they expected. All this 
strongly suggests the need of careful planning in such a course.  

Despite these problems, data collected in this study shows that the 
experiences provided in this course led student teachers—who often begin their 
educational preparation with rather negative attitudes towards computers—to 
develop confidence in their use of ICT. They also developed new perspectives 
about the use of ICT in mathematics education and an appreciation for working 
methodologies that foster students’ learning. Both are important aspects of the 
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professional knowledge necessary for mathematics teaching. Student teachers 
also took important steps in assuming professional values and attitudes, such as 
the need to discover and investigate by themselves and the constructive role of 
discussions and collaboration in undertaking professional tasks.  

ICT is not just a simple auxiliary tool. It is an essential technological 
element that shapes the social environment, including mathematics education. 
Future teachers need to develop confidence in using this technology and a 
critical attitude regarding it. They need to be able to integrate ICT within the 
goals and objectives for mathematics education. The task of preservice teacher 
programs is not just to help student teachers learn how to use this technology in 
an instrumental way, but to consider how it fits into the development of their 
professional knowledge and identity. The design of this course was intended to 
provide student teachers with deep experiences of working in ICT projects. 
Other working contexts need to be created, taking into account the myriad 
features of this expanding technology, especially its potential for long distance 
interactions and working in a collaborative way.  
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Abstract: In many mathematics classrooms today, the teacher is the ultimate 
source and authority.  Current research suggests that pupils should learn to use 
sources of information other than the teacher in order to become independent 
learners.  The present study examines the way teachers deal with pupils’ errors 
in secondary mathematics classrooms. The results show that the teacher’s 
dominant attitude does not allow them to deal with pupils’ errors other than as 
anomalies to be eradicated. 

 

1. Teachers’ role in the construction of the mathematical meaning 

School mathematics instruction is often ruled by a material-quantitative 
representation of mathematical knowledge, with the teachers devoting 
themselves entirely to the service of the subject matter and to the duty of 
conveying it.  They know what the result has to be, and the pupils also know that 
potential results are already predetermined.  As a consequence, knowledge is 
introduced only by the teacher, who determines the scope of the knowledge 
taught, as well as what counts as valid mathematical knowledge.  Hence, 
mathematical knowledge cannot take on “autonomous corrective or modifying 
function within the process of teaching and learning” (Steinbring, 1991). 

A number of studies have questioned the basic assumption of the 
‘transmission model’ according to which knowledge can be conveyed by the 
teacher to the pupils. For example, Glasersfeld (1983) argues that “mathematical 
knowledge cannot be reduced to a stock of retrievable ‘facts’... (it) is 
constructive and, consequently, is best demonstrated in situations where 
something new is generated, something that was not already available to the 
operator”.  The ‘transmission model’ entails a view of how form and content are 
related in mathematics education:  the predominant role of the teacher is 
justified on the basis “of the clear-cut features of mathematical content. This 
allows them to classify student productions easily as ‘false’ or ‘true’ ”, whereas 
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“the dichotomy of ‘true’ and ‘false’ is enforced via ‘telling’ the students the 
correct ways to perform on content” (Seeger, 1991).  Overcoming this model 
implies a change in the very notion of content, which goes beyond the dualism 
of ‘true’ and ‘false’. This is contradictory to teaching mathematics as a subject 
to be created and explored (Cooney, 1988). 

The above raise once again the old question about whether mathematical 
knowledge can be objectively given or only subjectively constructed.  Steinbring 
(1991) argues that “... the special epistemological prerequisites of mathematical 
knowledge which may have an impeding effect on understanding and which 
cannot be communicated, conveyed, or methodically evaded by the teacher, 
require that ... students must be enabled to cope with the knowledge ‘on their 
own’; (the knowledge) … does not ‘belong’ exclusively to the teacher” 
(Steinbring, 1991). 

 

2. On dealing with pupils’ errors in mathematics teaching 

Current research on teaching and learning mathematics, independently of the 
perspective taken, accepts the premise that pupils are not passive absorbers of 
information, but rather have an active part in the acquisition of knowledge.  
Furthermore, it emphasises the need for mathematics teaching to be much more 
than a study of ready-made mathematics, which is still so prevalent.  Since 
learners always construct their knowledge, the critical issue is the nature of the 
socially and culturally situated constructions (Cobb, 1994).  Thus, the teacher’s 
task is to challenge pupils by introducing effective mathematical activities, and 
maintain a classroom culture that encourages and facilitates independent 
learning. 

In a traditional teaching approach, the teacher presents the intended 
outcome, distinguishes ‘right’ from ‘wrong’ and asks the pupils to follow 
directions, while s/he checks their answers and corrects their mistakes.  In a non-
traditional approach (e.g. constructivist), the pupils are called to take 
responsibility for their learning, to think and express their opinion freely.  It is 
the discussion within the classroom and the validation procedure that give rise to 
the correct answer.  For this reason, the teacher provides hints and directions, 
examines errors rather than judges for accuracy, and the pupils work in groups, 
and discuss and argue.  This process gives rise to a number of questions 
concerning the role of the teacher; the mode of intervention and its 
appropriateness; the questions s/he poses and the answers s/he provides, and the 
way s/he organises the results of the pupils’ work (Jaworski, 1994).  This has a 
number of consequences for teacher training which are mainly concerned with 
(a) how to guide experienced teachers towards new practices, without allowing 
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‘old habits’ to invalidate the new approaches and (b) how to ensure that the new 
practices are not invalidated and, at the same time, lead to desirable results.  
With regard to the first issue, a number of approaches have been suggested, e.g. 
socio-constructivist (Cobb, Wood & Yackel, 1993) while, in relation to the 
second, a number of criteria for the investigation of teaching practices have been 
put forward, e.g. Jaworski’s (1994) ‘teaching triad’ (management of learning, 
sensitivity to students and mathematical change) or Frank et al's (1997) 
examination of classroom practices (providing opportunities for children to 
solve mathematical problems, and listening to children's mathematical thinking 
for making decisions about instruction). 

We believe that in examining teaching practices in mathematics, the 
validation procedures used and the management of the pupils’ errors by the 
teacher are of great importance.  This is because the validation procedures are 
related to the widely accepted view that the individual construction of 
mathematical meaning takes place within the classroom while, at the same time, 
it contributes to the constitution of the classroom's mathematical culture.  
Therefore, in elaborating a mathematical meaning, “it is not acceptable to 
attribute the authorship...to anyone in particular...the meaning is elaborated 
through negotiation” (Cobb & Bauersfeld, 1995). As a consequence, when the 
teacher imposes an answer or a meaning, the individual and cultural 
constructions are torpedoed.  On the other hand, the management of the pupils’ 
errors (i.e., mathematically false outcomes) by the teacher is significant as it 
might allow him/her to identify their possible source and proceed to suitable 
interventions so that the students recognise them.  This realisation by the 
learners is absolutely crucial in the process of the development and 
reorganisation of their mathematical knowledge. 

Research findings support the crucial role of the validation procedures and 
management of pupils’ errors in the teaching and learning of mathematics.  
Thus, it has been found that pupils often accept the results of a mathematical 
activity without evaluating them, especially when there are no indicators about it 
or the result ‘looks’  satisfactory and close to their expectations (Bellemain and 
Caponi, 1992).  Furthermore, they sometimes misinterpret external indicators 
and  adapt them to their existing system of knowledge as this requires less effort; 
this is analogous to the effort needed to accept a ready-made piece of knowledge 
(Brousseau, 1997).  They also frequently attempt to conform to the teacher’s 
expectations or they look for an answer or a sign from him/her indicating the 
expected response. Jaworski (1994) reports the following characteristic episode: 

Pupil. Why don’t you say one and tell us to do it?… We are going to be 
here all day... 

Teacher.  That’s passing responsibility onto me and … 
Pupil.  Does it really matter?  You are the teacher, aren't  you? 
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Both the validation procedures used and the management of the pupils’ 
errors by the teacher are closely related to the notion of the transfer of control 
from the teacher to the pupil.  This notion is a decisive factor in the development 
of autonomy and substantial thinking by the children as it allows classrooms to 
become less judgmental and shifts responsibility for making sensible 
contributions to the children.  Mathematical reasoning and thinking from this 
point of view allows personal sense making rather than depending upon teachers 
and textbooks. We thus believe that this element is crucial and we focus on it in 
the investigation of teaching practices. 

In the Greek educational system, teaching mathematics is rather 
traditional.  All Greek state schools (primary and secondary) use the same 
textbooks, distributed free of charge by the Ministry of Education.  These 
textbooks were first published at the beginning of the 1980s and there have been 
a very small number of minor changes since then. The secondary mathematics 
teachers are graduates of Mathematics Departments (four year courses, with 
great focus on the discipline of mathematics with few, if any, subjects 
concerning education) and they have limited in-service training. 

In earlier studies (e.g. Kaldrimidou, Sakonidis & Tzekaki, 2000) we 
examined how the epistemological features of mathematics emerge in both the 
primary and the secondary Greek classroom, as well as in different branches of 
mathematics, i.e. algebra and geometry.  The results showed that, in all cases, 
teachers, independently of the teaching practice followed, dealt with these 
features in a unified manner.  We argued that this could not be attributed to 
either the teachers’ subject knowledge or to the nature of the mathematical 
knowledge itself.  A possible explanation could be sought in their interpretation 
of their leading role in teaching mathematics, as well as in their attempts to 
manage mathematical meanings through means that are accessible and 
comprehensible to the pupils. In this dominant role which teachers attribute to 
themselves, in both traditional and non-traditional teaching approaches, the way 
they deal with pupils’ errors and manage control appears to be, as argued above, 
crucial.  The study described below focuses on these two aspects of  
mathematics teaching. 

 

3. The study 

The data reported here come from a large project1 that focuses on the teaching 
of mathematics in the nine years of the Greek compulsory educational system (6 
– 15 year olds).  The study aims to investigate the possibility of applying 
                                                 
1The project is financed with resources from the operational plan "Education and Initial Vocational Training" of 
the 2nd Community Framework Support, European Commission, European Social Fund, Directorate General V.   
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alternative, pupil-centered mathematics teaching approaches in the Greek 
school.  However, for the purpose of the present study, only the data concerning 
the three years of the gymnasium (12 – 15 year olds) are considered. 

The research problem addressed here focuses on teachers’ practices in 
dealing with the pupils’ errors and the validation procedures in the teaching of 
mathematics.  This, as argued above, determines to a great extent the degree to 
which the teachers allow the children to take control.  

The data collected consists of 22 mathematics lessons (from 11 teachers) 
observed in various classes of the three gymnasium grades for over a month in 
the northern part of Greece.  For each teacher, two 45 minute sessions on 
different topics, most of them algebraic, were observed; these were then 
videotaped and transcribed.  Teachers were strongly advised to “work as usual”. 
In addition, in order to acquire a wider perspective of teachers’ ideas about 
teaching mathematics, a questionnaire was constructed and answered by a 
sample of 231 teachers from the same area.  There were two items in the 
questionnaire concerning pupils’ errors: “why do pupils make mistakes?” (item 
28) and “how do you deal with them?” (item 29). 

 

4. Presentation of the data 

The analysis of the answers to the two (open) questions showed that 98.5% of 
the sample attributes pupils’ errors to a lack of knowledge, e.g. “…some 
children cannot grasp certain mathematical ideas”; “…they do not study 
enough”; “sometimes, pupils cannot remember the right mathematical 
knowledge needed to respond correctly”.  In trying to deal with these errors, 
50.3% of the subjects repeat or remind, 39.2% provide some examples and 5.4% 
do something else (e.g. anticipate or adjust the lesson accordingly).  These 
results suggest that teachers use pupils’ errors as a tool for diagnosing learning 
difficulties and attempt their eradication mostly through direct methods, such as 
repetition or applications. 

The transcripts of the mathematics lessons were analysed in relation to the 
treatment of the pupils’ errors by the teacher in two phases:  before the error was 
made and after.  For each of the two phases, four categories of treatment were 
identified from the data, which are as follows: 

Before the error was made (BE): warning about the possibility of an error 
(1), intervention concerning morphological or procedural remarks (in order for 
the error to be avoided) (2); drawing attention to the error through questioning 
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(in order to be realised by the pupils themselves and avoided) (3); dictation of 
the answer or provision of clear indications (in order to be avoided) (4). 

After the error was made (AE): rejection of an error and correction by the 
teacher without explanation (1); correction by the teacher with explanation (2); 
drawing attention to the error and correction either by the teacher, or the pupil 
him/herself or another pupil (3), and finally  questioning and putting forward 
criteria for the location of the error (4).  

Below, two characteristic examples for each of the categories of each 
phase are reported in order to provide an overall view of the management of the 
pupils’ errors by the teachers in the sample. 

 

Before the error was made (BE): 

A. Warning about the possibility of an error (BE1) 

Example BE1.1 (The class is trying to simplify an algebraic expression) 
T(eacher). In the worksheet I gave you, I have included a case where ... there 

is a minus in front of the expression (describes).  What will I do? 
P(upil). -2a 
T. -a-1 or, if I don’t want to change it immediately -(a+1).  You should be 

very careful.  This is where most of the errors appear.  Solve as many 
equations as you can, starting from the simplest ones. 

Example BE1.2   
T. It is about one fraction, then.  It is obvious that these two fractions are 

united.  It is a good idea to first put them together and then start 
cancellations. 

B. Intervention concerning morphological or procedural remarks (BE2) 

Example BE2.1  (The pupils attempt to simplify an algebraic expression) 
T. Be careful, we need to multiply here, wait!  Yes, but when we multiply.. 

put a dot here .. when we multiply, children, an algebraic expression by a 
term, where shall we put this expression? 

P. In brackets 
T. In brackets.  That is, the x2y2  in brackets.. Good, ... let’s see what 

Alexandros is going to write now. Well done! You put it in brackets and 
we now carry on as we know.  
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Example BE2.2  (The teacher asks the children to decide which angles are 
equal in a figure with two parallel lines intersected by another line) 
P. When two parallel lines are intersected by ...  
T. No, shall we say it in a simpler way?  We decide which angles are acute 

and which are obtuse and then we know which ones are equal.  

C. Drawing attention to the error through questioning (BE3) 

Example BE3.1 (The pupils are trying to find the values of  a in order for the 
denominator to be ≠ 0) 
P. a²-1=0 ⇒ a²= 1 
T. This is one of the ways.  Are we sure that we will not lose the root? In the 

denominator? And what do we say then? 
P. Will we say a=0? 
T. Square root of 1.  Thus, we get the 1.  How will we get the -1? 
P. We don’t get the -1, because -1 times -1 equals plus ... 
T. We are  fishing in unclear waters.  Any safer way? 
P. Shall we put plus? 
T. No.  The a²-1  can be written as a²-1².  Does this expression remind you 

of anything? 
P (upils). Difference of squares  

Example BE3.2  (The children are trying to factorise an algebraic 
expression) 
T. Ah!  Thomas has a good idea.  a4+b4. Do you agree?  How could we 

write it? 
P. ?? 
T. If it was a x b and all squared, then it would have been a4 x b4. Does this 

hold in our case too?  For which operations are the properties of the 
powers true?   

P (another).  Multiplication and division.  
T. Multiplication and division, not addition... Thus, we cannot apply the 

above property here. 

D. Dictation of the answer or provision of clear indications (BE4) 

For this category, the teacher often tells the student(s) exactly what to do, e.g. 
“take minus out of the bracket, .. write now .. ‘minus, bracket..’ ”. In other 
occasions, the teacher points out to what the children should pay attention to. 
Furthermore, linguistic interaction is very frequently replaced by nuances in 
voice and gesture, which were detected in the videotaped lessons, e.g. the 
teacher gestures negatively when the pupil hesitantly starts writing or saying 
something that is in the wrong direction. 
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After the error was made (AE): 

A. Rejection of an error and correction without explanation (AE1) 

Example AE1.1  (The pupils work with a problem of factorisation) 
P. Madam, in x²-2x, if we write x times x equals 2x?  The x is cancelled and 

then x=2. 
T. Be careful!  Which x’s are going?  ... priority of operations ... first we 

multiply. 
P. Madam, we will do x²= 2x ... x ∗x = 2x 
T. But you have a root! It is not allowed! All right?  You lose a root.  Don’t 

do this  kind of cancellation, because you lose roots.  All right?  However, 
when we take out the common factor, we don’t lose the root. 

B. Correction by the teacher with explanation (AE2) 

Example AE2.1 (The class works on solving equations with denominators) 
T. Different from zero.  Which is the denominator before cancellation and 

after?  The factorised denominator.  Good!  And what do we conclude 
from that?  x is different from what? 

P. From zero. 
T. No!  watch, x-3 ≠ 0.  This is why.  You are right!  We haven’t done this 

before.  Write down clearly: x-3 ≠ 0 implies x ≠ 3 and x-5 ≠ 0 implies 
x≠5.  You are right.  I haven’t shown you a similar example before. 

Example AE2.2 (The class attempts to solve an equation) 
T. It is, thus x=2 is a solution.  But even if we substitute x by –2, is it again 

true? 
P(upils). Yes 
T. It is again true.  Therefore, we shouldn’t lose a solution. We must write 

±√4 
P (Kostas) When we say x2=4, isn’t it x2 = 22? Therefore, since the two 

exponents are equal, isn’t it the case that their bases must be equal? 
T. Well, look, you will learn in the lyceum ... (explains).  Our problem here is 

to solve the equation.  What do we notice? Both 2 and -2 squared make 4. 
Thus, both these values make the equation true.  Therefore, we shouldn't 
lose -2.  From now on, we will always write it this way... In geometry it 
was not necessary to use both signs.  Here it is.  Because we have got the 
root.  When we factorise, it becomes clear which is the one solution and 
which is the other.  When we use this way, it's not clear.  So, be careful, 
don’t get carried away because you will lose a root.  That is, the negative 
root. 
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C. Drawing attention to the error -correction by one of the classroom partners 
(AE3) 

Example AE3.1  (The error is corrected by the teacher) 
T. Hmm, haven’t you missed something outside of the square root? 
P. Yes 
T. Ah, well done! ±, otherwise we lose a root. Now, finish with it.  How many 

solutions does this equation have? 

Example AE3.2 (The correction is made by the pupil) 
T.  Which one? Lambrini says that we should cancel out 3 with 6 and x with 

x.  Olga?  
P.  You cannot cancel because they have not been factorised. 
T. They must have been factorised, eh? We haven’t learnt about this type of 

factorisation. 

Example AE3.3  (The correction is made by another child) 
T. You suggest a separation of terms.  We can’t do this because both terms 

are unknown.  George expressed his opinion.  Anyone else? 

D. Questioning and putting forward criteria for the location of the error 
(AE4) 

Example AE4.1 (The children need to decide about the value of a, for the 
denominator to ≠ 0) 
T. Good! How did you understand it? 
P. 1² is 1 
T. 1² is 1.  Well done, a≠1. Is there anyone who wants to add something? 
P (another). …and a≠ -1 
T. Great!  How did you think of it? 
P. Because (-1)² becomes +1 
T. Right, now ... this was a bit like fishing in unclear waters without knowing.  

Is there any safer way to find which values ... in the denominator? 

Example AE4.2  
T. Now, we are going to do it straightforwardly ... Do you like what Kostas 

wrote? 
P. No 
T. What is the problem? 
P. The brackets ... 
T. Well done Kostas!  Brackets and now? 
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5. Discussion and conclusions 

The analysis of the episodes above shows that teachers keep for themselves the 
control over errors by warning and directing pupils or making the corrections 
themselves.   That is, they believe that errors are something to be avoided (they 
often use strong terms as 'not allowed' with a strong emphasis in their voice, 
'lose', 'safer way', etc).  In this context, they often do not pay attention to pupils’ 
contributions, thus missing opportunities for a fruitful interaction in the 
construction of mathematical meaning.  As a result, teachers invariably use 
morphological or procedural rather than conceptual elements for the elaboration 
of mathematical meaning.  This practice allows them to keep intact their leading 
role in the construction of mathematical knowledge. 

An interesting question raised concerns whether teachers show the same 
attitude in different teaching paradigms. Examining other teaching approaches 
(e.g. problem-solving, activity-based classes) similar tensions from teachers’ 
attempts to keep control of the pupils’ outcomes can be identified.  This appears 
in Jaworski’s (1994) attempt to introduce a constructivist approach to teachers 
“(there was) a tension coming from a desire for students to discover particular 
mathematical facts, and the reluctance of the teachers to tell these facts when it 
seemed that the students were not going to discover these...”. Even when the 
teacher was trying to pass responsibility onto the pupils, s/he emphasised the 
word 'accurate'.  In a similar way, Arsac et al (1992), during an experiment in 
which they were trying to introduce a debate among children about their 
solutions, recorded one teacher-intervention per minute during an 80 minute 
session, despite the fact that the teacher was assigned to only present the 
problem and simply regulate the discussion.  Moreover, the interventions were 
directed to “some special word or meaning that maintained the students’ 
dependence and the idea that the teacher is responsible for the validity of their 
answers” (Arsac et al., 1992). 

The view that learning mathematics is a personal construction of meaning, 
shaped by context, purpose and social interaction, challenges the teacher’s role 
as the ultimate source of knowledge and truth. It assumes a shift of control and 
authority from teacher to pupils.  This implies that pupils’ errors should be 
considered as a natural force for promoting questions, reflection and exploration 
on the part of the children themselves, rather than as an anomaly to be 
eradicated.  Such a change in teacher attitude, although crucial to both teaching 
and teacher education, seems difficult and complex to achieve.  We believe that 
a deeper and more systematic study of the related issues is required. 
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SIMULATORS IN MATHEMATICS TEACHER EDUCATION 

Anastasia N. Ilína1, Oleg A. Ivanov2 

1St. Petersburg High School #30 for Physics and Mathematics 
2St. Petersburg State University, Russia 

Oleg.Ivanov@pobox.spbu.ru 
 

There are serious difficulties that have to be overcome during preservice teacher 
education. The point is that students perceive the task of teaching as revisiting 
classroom settings they themselves experienced; their beliefs about teaching are 
well established by the time students go to the university, and, moreover, such 
beliefs act as a filter through which new information on teaching is sifted. It is 
highly important that initial teaching education programs are actually 
unsuccessful in bringing about beliefs changes unless teachers usr a new 
approach which they subsequently find successful. What we presented cannot be 
treated as a result of study; we simply wanted to discuss an interesting 
phenomenon we have observed, which, to our opinion, leads to important 
conclusions and, furthermore, indicates a field of research. An idea of “simulator 
courses” in mathematics teacher education aiming in shaping and developing 
teacher knowledge is suggested. The point is that a teacher must be accustomed 
to cope with situations of uncertainty. Every teacher must have an experience in 
giving right-minded answers to questions that, at first glance, seem to be 
meaningless or foolish, moreover, he or she must be able to respond 
instantaneously. Examples of the discussion in a classroom based on the so-
called “silly-and-wise” questions are given and possible outputs are indicated. 
Connections with the notion of the substantial learning environment and the 
four-dimensional model of teachers’ professional practice are established. 

 

 

DEVELOPMENT OF CRITICAL THINKING  

Tatyana Oleinik 
Department Mathematics and Physics, Skovoroda Pedagogical University, Ukraine 

olejnik@pu.ac.kharkov.ua  

 

This research concerns the results of the International Project on development 
critical thinking and active learning (“Reading and Writing for Critical 
Thinking”) that we have realized in 2 years term. We carried out special courses 
for undergraduate students of «mathematics-computer science» and workshops 
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for in-service teachers. The Ukrainian “face” of the project realization 
(democratic transformations in education and person/child centered study) 
ibcludes the best traditions of Soviet pedagogical school. The peculiarities of a 
new system of education lies in the fact that it should not only give knowledge, 
but also form the need for its constant and independent acquisition, to mould 
skills and habits of self-education as well as the independent and creative 
approach towards knowledge during whole active life. It means that the level of 
a personality’s social defense is changing now. Only a widely educated person is 
able to flexibly restructure the direction and essence of his/her activity. The 
main purpose of this collaboration is to bring to classroom effective methods of 
instruction, which promote ideal thinking among students of all ages and across 
all course content. In higher education we create new courses that can be used 
for teacher education as well as for freshmen students any faculty, besides it is a 
content and a tool of  discussion and inquiry-based courses. 
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INTRODUCTION TO WG4 
THE COMPARATIVE ANALYSIS IN INTERPRETATIVE 

CLASSROOM RESEARCH IN MATHEMATICS EDUCATION 

Götz Krummheuer 
Johann Wolfgang Goethe – Universität Frankfurt am Main, Germany 

goetzkru@gmx.de 

 

Abstract: Qualitative classroom research in mathematics education is often 
criticized because of its poor and unreflected methodological standards. 
Especially with regard to the attempt of the empirically grounded development 
of theory it will be shown that the comparison of interpretations of different 
classroom episodes is essential for a methodologically sophisticated research 
standard. 

I really haven't thought too much about actual topics, but I do 
know that I will do a case study (Kilpatrick 1999, p. 57). 

 

The epigram chosen from Kilpatrick's plenary address for CERME 1 is part of a 
harsh criticism of the recent practice of qualitative research in mathematics 
education. One of his arguments is the poor scientific standard as exemplified 
above in a quote of a doctoral student about his/her research intentions. He 
finishes his comments with a call for more quantitative research. I agree with 
him that often theoretically and methodologically unelaborated research projects 
try to justify their work by referring to the grounded theory approach or similar 
approaches based on the qualitative research paradigm, and will not refer to any 
example of this project.  

However, I think that there is a need for qualitative research in 
mathematics education. Unfortunately methodological considerations are mostly 
quite underdeveloped. Obviously, the pure attraction of a qualitative research 
approach or the supposed school related relevance of the research questions 
often leads to an underestimation of methodological problems, thus dismissing 
them as an aspect of minor importance (see Bruner 1990; Krummheuer & 
Naujok 1999). Qualitative research also requires an elaborated discussion of its 
methodological basis, especially with regard to common sense about empirical 
research among the rather “quantitatively” thinking majority of classroom 
researchers.  
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My interest in this introduction is to stress the methodical principle of 
comparison which in my view is central for qualitative research. I am not 
intending to lead a meta-theoretical debate about the pros and cons of qualitative 
in comparison with quantitative methods. Although the following considerations 
are the result of methodological reflections within a concrete research project1, I 
am trying to describe rather general issues according to the qualitative classroom 
paradigm. 

Characteristic of interpretative classroom research is a "praxeological" 
understanding of methods, which in the sense of Bohnsack 1996 describes the 
applied research practice as "reconstructive" in two respects: 

• The analysis of the observed classroom episodes is oriented towards the 
reconstruction of the processes of interaction among the students and the 
teacher, which is geared to theories of interaction, argumentation and 
participation. 

• The steps of analysis, which are employed in this action usually have been 
partly developed throughout the concrete research work. The reflection of 
this method of analysis and evaluation is based on the second use of the 
term "reconstructive social science".  

(for both aspects see Bohnsack 1993, p. 8). In the following I mainly would like 
to deal with the second aspect, that is to reconstruct the research practice of a 
concrete project and to reflect these activities from a methodological point of 
view. In the following I formulate these activities in a rather general way: It will 
be explained that as a research scientist dealing with the domain of social 
interaction in primary education, one is usually not in the position to cope with 
an a-priori stock of theories, which are sufficiently developed in order to 
adequately understand a certain classroom situation. In such cases the researcher 
is facing a specific methodological problem: the necessity for constructing 
elements of a theory that claim to generate a theory-consistent interpretation of 
the selected part of reality. The issue of plausibly generating novel elements of a 
theory takes priority over the valid rejection of a theory. This approach will be 
methodologically reinforced in the second section by bringing out the 
“experimental” character of comparative analysis.  

 
 
 
 

                                                 
1  The project had been supported by the German Science Foundation (DFG) for three 
years. The final report is published by Krummheuer, Götz und Brandt, Birgit, 2001 . 
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1. The unavoidability of theory construction  

It is widely accepted that research in social sciences in contrast to natural 
sciences deals with domains, which are distinguished by autonomous acts of 
interpretation of the actors: 

The intellectual objects, which are created by social scientists, refer to and are 
based on intellectual objects, which are created by people who are, in the sense 
of a everyday life, living among their fellow human beings (Bohnsack 1993, 
p. 23; translation by Götz Krummheuer). 

Central concepts of work in social science are therefore those of “meaning” and 
of “negotiation of meaning” (see Bruner 1990, p. 1 - 10). Meanings emerge from 
the definitions of the situation, from the subjectively and intentionally shaped 
attributions of sense by the persons involved. Furthermore they are coordinated 
through interactive negotiations between the involved persons. Interpretative 
research aims at understanding these individual meanings, as well as their 
interactive generation- and clarification-processes. 

Within the established practices of interpretation by the persons involved, 
it is possible that permanently novel interpretations and patterns of interpretation 
are brought up, which for their part again define new social ways of living. The 
setting up of a theory in these cases cannot take place in the sense of the 
hypothetico-deductive model before the empirical phase. It can only be 
performed during the process of empirical analysis. From the perspective of the 
"interactive paradigm"  

... the research on ways of social living can only succeed with the help of 
methods, which allow the discovery of the point of view and of patterns of 
interpretation of the observed without having formulated exactly specified and 
precisely operationalized hypothesis in advance (Kelle 1994, p. 54; translation 
by Götz Krummheuer). 

Processes of interaction in today’s primary education are of such a kind: 

• From the point of view of developmental psychology, children of grade 
school age are in a phase in which they, qualitatively speaking, still go 
through structural changes in their ways of interpretation. Even though 
one is usually able to describe the changes in the child's ways of 
interpretation with the application of corresponding cognitive models of 
development, a prediction which is specific to both the individual and the 
situation in the context of classroom observation is usually not possible. 

• With regard to subject matter primary students in their role as learners do 
not yet (per definitionem) have certain ways of interpretation shaped by 
structures of the subject matter. They still have to be developed and 
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according to all of what is known about these processes, they do not 
linearly proceed in ratified ways of interpretation. On the contrary many 
winding and diversified learning paths are traveled which underlie unique 
change. 

• Historically speaking we are in a phase of rapid and on-going change in 
culturally defined patterns of interpretation. With regard to the persons 
involved these changes continually lead to new ways of interpretation and 
patterns of action which therefore cannot sufficiently be logically 
deducted from already existing theories. The further multicultural 
differentiation of our societies plays an important role at this point. With 
regard to the everyday classroom situation with a multi-ethnic student 
population this leads to an almost complete loss of stable, prognostically 
applicable patterns of interpretation during the course of the lesson. 

Frequently in debates about this "special way" of the social sciences, the 
phenomenon of the impossibility of an a-priori creation of hypotheses is seen as 
a general characterization of such research. As Kelle 1994 convincingly 
demonstrates this is, however, only valid for domains with permanently 
changing definitions of the situation, for:  

As long as definitions of the situation of the persons involved consist of 
culturally stable patterns of interpretations, [...], and as long as the sociological 
researcher for himself has access to these patterns (of interpretation), causal 
models of the structure [of the social reality] for the explanation of social 
action [...] can be formulated with the help of a hypothetico-deductive model, 
that is before contacting the empirical field (ebenda p. 16; translation by Götz 
Krummheuer).  

In the following, however, I will focus on the research practice of domains in 
which "culturally stable patterns of interpretations" are not available. In these 
cases the logical basis of the construction of a theory can be configured in the 
context of interpretative classroom research with the help of the inference of 
"abduction", as it has been developed by Peirce 1978 and Hanson 1970. 
Regarding abduction the following conclusion is drawn:  

The surprising fact, C, is observed; 

 But if A were true, C would be a matter of course, 
 Hence, there is reason to suspect that A is true (Peirce 1978, 5.189). 

Solely the fact that an observed phenomenon is regarded or described as 
surprising, points out the need for the development of a theory. Current theories 
would have expected something else or wouldn’t have made a substantial 
explanation possible at all. By the formulation of an adequate theoretical 
alternative it becomes possible to regard the observed phenomenon as less of a 



Working Group 4 

 343

surprise, that is to explain it. Therefore Peirce characterizes the result of 
abduction as an "explanatory hypothesis" (ebenda, 5.189). 

The abductive conclusion is logical and has a definite form (ebenda, 
5.188). The established hypothesis is an ex-post-facto-hypothesis, which gains 
its plausibility from the fact that it is based on empirical analysis, as well as on 
the reflection of relevant theoretical pre-knowledge. Hence, it does not only 
spring from creative intuition and brilliant speculation. In case that these 
hypotheses are successful such conclusions lead to the formulation of 
empirically saturated theoretical explanations of the observed phenomena (vgl. 
Kelle 1994, p. 22). Abduction is different from induction as usually applied in 
quantitative research. 

Logically speaking it is always possible to construct a multitude of 
alternative rules A to the surprising phenomenon C, so that C is a matter of 
course of these A’s. From a methodical point of view the question about criteria 
for a rational practice of choice between alternative explanatory hypothesis 
arises. Heuristics for an empirically based construction of a theory and an 
evaluation of its plausibility are needed. The term "heuristics" should stress the 
fact that there is no schematism or algorithm for generating a hypothesis. The 
construction of a theory in accordance with the abductive research logic is based 
on a theoretical pre-knowledge and a "local methodology of discovery" (ebenda, 
p. 361).  

In the comparative analysis such a local methodology of discovery can be 
seen. By comparing interpretations of different episodes on the one hand certain 
constructions of theory can be ruled out in case they do not match the 
interpretations. On the other hand such a comparison gives direction to a novel 
theoretical construction, as a confrontation of the initially employed theories 
shows their deficits. Here, the efforts of generating a theory aimed at 
overcoming these deficits are more essential (see Strauss & Corbin 1990, 
p. 176 ff). 

In principle such a heuristic generation of theory is speculative in part. 
However, on the basis of comparative analysis, empirically controlled and 
theoretically oriented conditions of such abductively created theoretical 
elements are produced. In comparison to induction and deduction, abduction is a 
relatively weak conclusion which bears the danger "of extremely fallible 
insight" (Peirce 1978, 5.181(3)). Historically, however, according to Peirce, 
abduction is the type of inference by which most of our current solidly grounded 
theories are developed.  
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2. The experimental character of comparative analysis  

In the context of interpretative methods, comparative analysis represents a 
central activity. Already the Chicago school emphasized this point of view and 
proceeded accordingly while neglecting a systematical methodological review at 
the same time (see Bohnsack 1996). Glaser & Strauss 1967 re-emphasized this 
point and speak of a "Constant Comparative Method of Qualitative Analysis" 
(p. 101). As it especially becomes clear in Strauss & Corbin 1990, the 
comparison of interpretations of different observed parts of reality represents a 
main activity on nearly every level of analysis: from the first interpreting 
approach to the later more theoretical reflection (p. 176 ff). By means of 
comparison two things can be made possible and controlled: 

• the estimation of the ability to generalize the claim of the developed 
theory and  

• the documentation of the complexity of the reality, which could be made 
understandable through the corresponding development of a theory. 

The first aspect deals with the validity of the "conceptual representativeness", a 
description from Strauss & Corbin 1990. They want to make clear that in 
qualitative research the aim is to find the representativeness of the developed 
theoretical concepts within the interpretations of the selected parts of reality, 
unlike quantitative research, which aims at representativeness on the level of the 
sampling (p. 190 f). If the generated new theoretical concepts convey a 
sufficient understanding of (strongly) differing parts of reality, a derivation of a 
relatively global claim is possible based on this contrasting empirical 
development of the theory: 

.. there will be wider applicability of the theory, because more and different 
sets of conditions affecting phenomena are uncovered (Strauss & Corbin 1990, 
p. 190 f). 

The second aspect emphasizes the fact that comparative procedures aim at 
grasping the selected part of reality by their specificity. These efforts strive to 
theoretically describe the unique conditions of the case in the most exhausting 
way (s. ebenda p. 191). This is only tentatively possible, due to pragmatic 
reasons. From a methodological point of view the comparison of interpretations 
of different parts of reality however represents a possibility to identify the 
specific characteristics of these particular cases in relation to each other (see 
Bohnsack 1989, p. 135 ff and Glaser & Strauss 1967, p. 35).  

Thus, interpretations of episodes which contrast strongly with each other 
are especially promising. Such an analysis of contrasting episodes provides the 
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conditions for the possibility of generating an ex-post-facto hypothesis in which 
its generation and its proving coincide (s. Kelle 1994, S. 367). 

Studies, which are performed in the sense of a comparative analyses do 
not represent case studies in the usual sense. Several cases are rather analyzed 
and compared to each other in a reconstructive interpretative way. This point of 
view is easily disregarded in the usual debate about quantitative versus 
qualitative research. If one follows the historical delineation of Hammersley 
1989, this restricted understanding of qualitative research as a "performing of 
case studies" has already infiltrated the methodological controversies of the 50's 
in the USA. 

As indicated in Krummheuer 2000 several qualitative research projects in 
mathematics education can be subsumed under this approach of comparison 
according to their methodological basis. Also the following papers of Working 
Group 4 will show the strength of comparative analyses and the flexibility of 
this methodological approach with regard to specific research questions as well. 
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Abstract: This paper will explore ideas about meaning and focus through 
detailed analysis of the transcript of a lesson in an elementary mathematics 
classroom. This analysis will consider Anna Sfard’s (2000) ideas about focus in 
relation to examples taken from the lesson. Sfard’s analysis is powerful and has 
a strongly reasoned conceptual basis. In her paper she uses her concept of 
discursive focus to explore a lesson on statistics with seventh grade American 
students. It is my suggestion that her analysis is even more significant when 
applied to the teaching of basic mathematical topics to young children and it is 
from such a setting that my examples are taken. 

 

Meaning  

The commonsense, folklore notion that words are containers holding meaning 
inside them so that the meaning of each word is clear and unambiguous seems 
to me to be misguided. I would suggest that meaning is instead constructed by 
the participants in an interaction through their interpretations of each other’s 
contributions. The meaning of the talk of the classroom is bound up with what 
is going on in the lesson, other people’s contributions and the task at hand. 
During the course of the lesson the teacher is involved in strategies that help to 
interpret the meaning of different participants’ utterances. I would consider 
meaning to be developed out of interaction rather than intrinsic to particular 
words or phrases: 

‘the meaning of an utterance is considered, not as a property of the 
utterance itself, but rather as a relation, called a ‘refers-to’ relation, 
between the situation in which someone makes an utterance and a 
situation to which the utterance is interpreted as referring’. (Barwise and 
Perry 1983) 

In this quotation Barwise draws attention to the speaker and the situation to 
which the speaker is referring but leaves the participants’ interpretations as 
implicit rather than overt. 
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Thinking and Communicating 

Anna Sfard (2000) suggests that thinking can be viewed as communication with 
oneself. She describes this as a development of Vygotsky’s belief in the 
developmental priority of communicative public speech over inner private 
speech. This in turn leads to the realisation that the better one understands 
public discourse, the better one will understand dialogue with oneself. This 
implies that the investigation of communication between people is the best route 
to discovering the mechanisms of human thinking.  

The idea that communication has primacy over thinking has important 
consequences for investigations into mathematical thinking. As Sfard says: 

Instead of being merely helpful in constructing and sharing the 
knowledge of preexisting mathematical objects, communication and its 
demands must now be regarded as the primary cause for their existence. 
(p.297) (2000) 

Her work then is organised around the idea of thinking as communicating but 
she is also well aware of ‘the process-object duality of mathematical concepts’ 
(p.298). Even though we may not believe that the world of mathematics is made 
of Platonic mathematical objects, we may act as though they do just because it 
works to do so. 

Sfard then goes on to explore what communication is. She is not prepared 
to accept the idea of communication as the exchange of meanings, ideas, 
feelings and so on because she is wary of the tendency to reify these terms and 
treat them as essentially separate from the people who experience them. Instead 
she adopts Wittgenstein’s focus on the ‘language-game’ and the meanings, 
ideas and feelings as interpretation. She defines communication as: 

An activity in which one is trying to make his or her interlocutor act or 
feel in a certain way. (p.300) (Sfard 2000) 

I would also suggest that the speaker may also be trying to make her listener 
think in a certain way. In her paper, and this one as well, the principal form of 
communication under consideration is verbal and the activity expected from the 
listener will be giving a verbal response to an utterance, although it might also 
be engaging in an activity or behaving in a specific way. The effectiveness of 
the communication will be assessed by the participants by comparing the 
listener’s actual response from the one that was expected. In this evaluation an 
observer is likely to make just as valid an assessment of effectiveness as one of 
the participants but the proviso to any assessment of effectiveness is that the 
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perspective from which it is made must be made explicit and the assessment 
must be regarded as provisional. 

 

Discursive Focus 

It is at this point that Sfard’s analysis becomes powerful and useful as a tool to 
analyse classroom talk. She points out that talk is always about something and 
for it to be effective it is essential that the participants are talking about the 
same thing. This ‘talking about the same thing’ can be termed, she suggests, the 
clarity of the discursive focus. As Sfard says: 

The communication will not be regarded as effective unless, at any given 
moment, all the participants seem to know what they are talking about 
and feel confident that all the parties involved refer to the same things 
when using the same words. (p.303) (2000) 

Her elucidation of the idea of discursive focus is very helpful. She suggests that, 
although discursive focus seems intuitively clear, there can be a discrepancy 
between the words that we use to identify the subject of our attention and what 
we are attending to, looking at or listening to, when speaking. For this reason 
she separates the discursive focus into components. The first two of these are 
the pronounced focus which is what we say, the words we use, and the attended 
focus, which is what we are looking at or attending to. 

The third component to the discursive focus is less tangible than the other 
two. Sfard calls it the intended focus and suggests that it is the speaker’s 
interpretation of the pronounced and attended foci. It involves that whole 
cluster of experiences evoked by the attended and pronounced foci as well as all 
the statements the speaker would be able to make about the focus in question. 

These three aspects of focus deal with different degrees of public and 
private: the pronounced focus is publicly spoken, the attended focus may be 
explicit but usually remains hinted at and the intended focus is mainly private.  

Sfard starts with a consideration of effectiveness and it is this that she is 
concerned with in developing her analysis. She suggests that there are occasions 
when there is a good fit between the pronounced and attended foci but 
ineffective communication or the opposite but that the effectiveness of 
communication depends primarily on the intended focus. As this is usually kept 
private, the effectiveness of the communication can only be assessed through 
interpretation. In this interpretation Sfard suggest that it would be wise to use 
phrases such as ‘compatible in the eyes of the interpreter’ or compatible rather 
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than to suggest that the focus for two or more participants is ‘the same’. I would 
suggest that it may be helpful to use the phrase ‘interpreted focus’ to describe 
the listener’s interpretation of the discursive focus.  

Sfard also considers how focus might function in school mathematics. 
She suggests that the lack of readily available attended foci in many 
mathematics topics tends to make mathematics more difficult and inaccessible. 
This difficulty is further compounded by the fact that the pupils have little if 
any experience outside school of the objects with which school mathematics is 
concerned. As she says: 

The scarcity of perceptual mediation in mathematical discourse may be a 
principal reason many people find mathematics prohibitively difficult, 
almost inaccessible. The students’ task is further complicated by the fact 
that most of the mathematical objects discussed at school, instead of 
being known in advance and tightly related to children’s former 
experiences, are built through the discursive activity itself. (p.308) (Sfard 
2000) 

I would suggest that this is particularly important in considering how children 
develop understanding of some of the most basic mathematical concepts and 
procedures. When Sfard refers to the ‘scarcity of perceptual mediation’ she 
seems to be referring to mediation that is not oral. 

Using this idea of discursive focus, I would like to define the meaning of 
an utterance as the individual’s interpretation of the discursive focus of the 
utterance. This suggests that there are a number of meanings of any given 
utterance as there are a number of speakers and listeners involved in the talk of 
the classroom. The effectiveness of the communication will depend on the 
compatibility between the different interpretations of the discursive foci. This 
begs the question that since we can never see an interpretation how can we 
judge the compatibility of different interpretations? The only possible 
judgements that can be made are on the basis of actions and speech by the 
participants. 

 

Counting On: The Lesson  

I will now consider Sfard’s ideas about focus in relation to the talk of one 
mathematics lesson about ‘Counting On’. The lesson was with a class of 25 
children aged 5-7 years of mixed ability, sex, race and social background. The 
class were used to my presence as a participant observer as I spent one lesson a 
week with them over one academic year. The lesson was typical of this class’ 
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lessons with this teacher and had not been devised especially for the purpose of 
the recording. The teacher was not confident with mathematics as a subject and 
welcomed me for the advice and support she felt that I could give her. She was 
in her second year of teaching at the time of the recording. The data is taken 
from a transcript of the lesson taken from an audio recording. 

The excerpts are taken from the initial phase of the lesson when all the 
children were sitting on the floor at the front of the room and the teacher was 
talking to the whole class. She had fixed a strip of paper to the wall measuring 
30cm by 2m and began the lesson by writing the numbers from 1 to 20 from left 
to right on this paper. This gave a number track although there were no 
divisions between the numbers. The track looked like this, although on a larger 
scale: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

The activity of writing the numbers on the paper strip linked back to work 
done in a previous lesson that aimed to get the children to draw the numerals 
accurately getting seven the ‘right way round’ and so on. The lesson then went 
on to consider ‘Counting On’ problems using the number track as an aid. 

The first excerpt begins as the teacher was about to write the number ten on the 
track. 

Example 1: 

 T: That's right. Number 9 (teacher writes ‘9’) and number 10, 
two numbers or one number? (teacher pauses and looks at 
pupils) 

 Sev. Ch: Two 
 T: What number do we need to go first? 
40 Sev. Ch?: 1 (teacher writes ‘1’)  
 T: and zero (teacher writes ‘0’) Fred's group, which bit is the 

zero? (teacher points to ‘0’) 
 Ch: Units 
 T: Units. No units (teacher points to ‘0’) and 1 ten (teacher 

points to ‘1’ in ‘10’). Right.  
 T & Ch: 11,(teacher writes ‘11’) 12,(teacher writes ‘12’) 13, 14, 15, 

16, 17, 18, 19, 20 (counting together while teacher writes 
on board)   

 T: So. Right. Let's think of a number between zero and 20. Put 
your hands down, I'll choose someone. Andrew would you 
like to think of a number for us?  

 Andrew: Two numbers between zero and 20? 
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50 T: No just one number 
 Andrew: 10 

The first anomaly occurs in the opening question: two numbers or one 
number? The pupils’ first task in interpreting this is to consider what the 
attended focus is: does the teacher mean ‘are 9 and 10 different numbers?’ or 
does she mean something else? She had just written ‘9’ and paused until the 
question was answered. So the pupils at this point are engaged in trying to 
interpret her question.  

Another interpretation would be that ‘two numbers or one number?’ 
refers to the digits in the number 10.  In this case there is a discrepancy here 
between the pronounced and the intended foci. The pronounced focus is 
‘number’ but the intended focus would be the digits in the number 10. It is easy 
to see the teacher’s reasoning behind using ‘number’, as the pronounced focus, 
rather than ‘digit’ here as the children are very young and the teacher is 
probably trying to avoid technical vocabulary. However this leads to lack of 
clarity in the discursive focus and possibly more confusion for the children.  

Despite this lack of clarity, the interlocutor’s response is the intended one 
as several children say ‘two’. The teacher follows this up with ‘what number do 
we need to go first?’ and here the pronounced focus is again ‘number’ with the 
intended focus ‘digit’ but here the clarity would seem to be greater if only by 
virtue of the repetition. The response ‘1’ does match the intended one which 
implies some degree of compatibility of focus. 

The next question follows on after the teacher finishes writing the 
complete number ‘10’ and asks ‘which bit is zero?’ Here the pronounced focus 
is ‘bit’ whilst the attended focus, the number to which the teacher was pointing, 
was the whole number ‘10’. In this the ‘bit’ becomes quite clear to the pupils as 
there are quite apparently two ‘bits’ to the number ‘10’. In this utterance I 
would suggest that there is likely to be a high degree of compatibility between 
the discursive focus of the teacher and her pupils. However at line 43 the 
teacher then says: ‘No units and 1 ten.’ At this juncture she did point first at the 
zero and then at the one in ten but there is a conflict in this working from right 
to left, when she was trying to draw attention to the order in which the number 
‘10’ is written from left to right. This constitutes a conflict between the attended 
focus, the pronounced focus and the intended focus. In this example it seems as 
though none of the aspects of the discursive focus are working together to 
improve its clarity. 

At line 43 the teacher and children work on through the list of the 
numbers from eleven to twenty in order writing each in turn on the number 
track. Here the pronounced focus of the number and the attended focus of the 
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written number are highly compatible and the intended focus of a list of the 
numbers emerges for all to see. I would suggest that here the clarity of the 
discursive focus is about as good as it gets. 

Line 46 opens with two ‘markers’: ‘So. Right.’ Through which the 
teacher draws attention to a change of emphasis or change of phase of the 
lesson. The pronounced focus acts as a signal to pay attention. The use of 
markers to signal shifts in the focus of the lesson has been explored by Voigt 
(1985).  

The teacher’s next request to the pupils to think of a number between 
zero and twenty produces a response from most of the pupils. Instead the 
teacher decides to choose Andrew to answer. Her question to him: ‘Would you 
like to think of a number for us?’ does not permit ‘no’ as an answer! The 
intended focus is that Andrew will supply the class with a number even though 
the request was couched as a question.  

Surprisingly Andrew responds with a question: ‘Two numbers between 
zero and twenty?’ Trying to interpret the intended focus of his question here is 
difficult. He could have been asking whether the teacher wanted a two-digit 
number or two separate numbers. However the response that the teacher gives 
does elicit from him the response she was looking for which suggests that the 
communication was effective. If he had been talking about the digits rather than 
the number one would have expected his suggestion of ‘just one number’ to be 
a single digit number rather than ‘10’. 

This analysis demonstrates the complexity of the different interpretations 
of talking about mathematics that are open to the participants in an elementary 
classroom setting. This hardly seems to be a straightforward scenario in which 
everyone knows what everyone else is talking about. The whole question of the 
compatibility of foci between teacher and pupils is highly problematic. 

The above episode is immediately followed by the introduction of the 
main focus of the lesson. The teacher wants to use the number track, which she 
has now made on the wall with the class, to tackle problems about counting on 
and counting back. It is at this point that the possibilities for misconception 
multiply as the teacher starts to confuse the use of numbers for cardinal and 
ordinal purposes. The number track on the wall amounts to a number frieze with 
the numbers listed in order but without any marked boundary between them and 
without any sense of the value that each number has. The teacher goes on to use 
this frieze to describe counting on without linking this to addition and 
concentrating on counting on as being about ‘jumps’ along the number track: 
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Example 2: 

 T: …when you're doing counting on and counting back you 
always start on the first number. So if we say let's do 
another one 5 count on 4…. Let's do 5 count on 4. You 
always start on 5 (teacher points to 5) the first number OK? 
And then you do a little jump and count on 4 ready? (pupils 
join in counting with teacher)  1,(teacher moves finger to 6) 
2,(teacher moves finger on to 7) 3,(teacher moves finger on 
to 8) 4,(teacher moves finger on to 9)  What's the answer? 

70 Ch: 9 

This whole scenario is intensely problematic for a number of reasons that 
are highlighted by an exploration of the discursive foci involved. Firstly there 
are some problems with actual intended focus of ‘counting on’. If we consider 
the activity of ‘counting on’ itself and take the pronounced focus: ‘Let’s do 5 
count on 4.’ How would we tackle it? Would we take a number track and find 5 
and then count on 4 to arrive at 9? No, we would not. We would say 5 then use 
our fingers, putting up one finger at a time but counting on ‘6,7,8,9’ until we 
had raised four fingers and arrived at nine. There seems to be a fundamental 
problem here with the setting up of the task as a way of looking at ‘counting 
on’. We are arriving at the right answers but the fit between the attended focus 
of the track and the intended focus of the activity of ‘counting on’ seems poor. 

In this excerpt there is compatibility between the pronounced and 
attended foci but little compatibility with the intended focus of ‘counting on’. 
The teacher’s first pronouncement: ‘when you’re doing counting on and 
counting back you always start on the first number’ is a straightforward 
instruction that she makes clearer in referring to the example. Here then the 
pronounced focus of starting on the first number is compatible with the attended 
focus demonstrated by pointing at the first number but the problem arises with 
the intended focus when ‘you do a little jump’. In fact what the teacher and 
pupils are counting are the ‘little jumps’ and the first count coincides with the 
first ‘jumps’ as the teacher moves her pointing finger on to the next number. So 
the idea that ‘you always start on the first number’ is at odds with the attended 
focus of counting the moves. 

The following excerpt comes further on through the lesson once the 
teacher has moved on to examples of ‘counting back’ using the same model. 
Sequences of this type occurred throughout the lesson and the analysis of the 
interaction can be carried out in a similar way to that in the above example. 
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Example 3: 

 T: What's special about the first number? It always has to be  
 Ch: Bigger 
 T: Bigger than the second number. If we're always counting 

back  
100   the first number has to be bigger than the second one. So 

let's do 12, you can do this one for me, count back 3. Put 
your hand up if you can do it. Don't shout out just put your 
hand up. 12 count back 3. Amy? 

 Amy: 9 
 T: Is she right? Start with 12 (teacher points at 12) count back 

3. 1,(teacher moves finger to 11) 2,(teacher moves finger to 
10) 3,(teacher moves finger to 9) Well done! Let’s do 20 
count back 9. Are you ready? (Teacher points to 20) 1, 
(children counting with teacher, teacher points to 19) 2, 
(Teacher points to 18) 3, 4, 5, 6, 7, 8, 9 (teacher pointing to 
each successive number 17, 16, 15, etc and counting with 
children) 

This shows the teacher using the same attended focus of the numbers on 
the number line as before but the intended focus now is the activity of ‘counting 
back’. The initial comments in the exchange focus on the pronounced focus 
‘bigger than’, specifically the first number needing to be bigger than the second 
number when ‘counting back’. Why this should be so remains unaddressed. 
How will this be interpreted by the pupils? It seems to be taken as given that the 
pupils do have an understanding of ‘bigger than’ although the talk in this 
excerpt gives no evidence of this because the participation of the pupils is 
minimal. Sfard stresses the importance of speaking about objects in order to 
construct them and it is difficult to see how pupils might be helped to construct 
‘bigger than’ from this exchange. 

In the ‘counting back’ example the attended focus is the numbers on the 
number track as before with the pronounced focus of the list of numbers. The 
‘counting back’ difference is in the direction that the ‘little jumps’ are made, 
from right to left instead of from left to right, although there is no pronounced 
focus on this. 

In the initial introduction to the lesson the teacher concentrates on 
drawing her pupils’ attention to their writing of numbers. In this part of the 
lesson she refers back to ideas, which the pupils have already explored, about 
the shapes of the number symbols themselves: 
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Example 4: 

 T: …Some numbers are straight and some numbers are round. 
 Ch?: Another way of doing the 4 you do a sort of triangle and a 

line at the right hand side and a line at the bottom 
20 T: That's right. This (pointing at 4 on board which is written in 

the traditional hand written way- like an L with a mark at 
the bottom) is the easiest way to do it. Now 7, 7 is a number 
people always get the wrong way round. Go along here and 
down there  

Here the intended focus is on the signifiers, the symbols used to represent 
the numbers rather than on the meaning of the numbers themselves. The first 
comment by the teacher: ‘Some numbers are straight and some numbers are 
round’ has the attended focus of the list of numbers from 1 to 4 on the number 
track but a pronounced focus that is quite non-specific. The interpretation that I 
would make of the intended focus is that it is on the shapes of the numbers as 
they are written. This is a focus on the signifier rather than the signified. The 
reference to ‘straight’ and ‘round’ may or not make sense to the pupils but there 
is no indication from their responses about this. My concern about these 
pronounced foci would be that they add nothing to the child’s concept of the 
meaning of the numbers that they represent. There is nothing about ‘6’ that is 
related to its ‘roundness’. Sfard comments on the nature of mathematical 
objects, such as numbers e.g. in this case 6. She says that: 

The existence of some special beings (that we call mathematical objects) 
…. is essentially metaphorical and, further, that the phrase ‘construction 
of objects’ does not mean creation of any tangible, self-sustained, mind-
independent entities. These expressions merely signal that people who 
speak about such ‘virtual things’ as numbers, functions, or sets go 
through experiences similar to those generated by the ‘actual reality’ 
discourse and use linguistic forms reminiscent of those usually applied to 
material objects. 

If the teacher’s intended focus is ultimately the nature of numbers themselves 
then it is not clarified by pronounced and attended foci that make reference to 
the shapes of numbers as they are written. 

 

Summary and Conclusions 

Sfard’s paper concentrates on the ways in which discursive foci help to 
construct ‘mathematical objects’. The evidence from my transcript highlights 
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the complex ways in which pronounced, attended and intended foci might work 
together or in conflict to create or fragment the individual’s construction of 
meaning. Even at a very elementary level mathematically the opportunities for 
confusion and lack of compatibility between participants abound. If the teacher 
is to develop ways of talking to children about mathematics that enable them to 
construct mathematical objects that are ‘stable, permanent, self-sustained and 
located beyond the discourse itself’ (p. 326) (Sfard 2000) then she needs a great 
awareness of the discursive foci that she is using. 
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Abstract: This paper reports some early analysis from a study designed to 
examine how English additional language (EAL) students participate in the 
discourse of mathematics learning in a UK primary school. Taking the 
discursive psychology of Edwards (1997) and others as a theoretical and 
methodological framework, the study will examine how small groups of Year 5 
students participate in the joint construction and solution of mathematical 
problems. In this paper I examine a transcript of an EAL/non-EAL student pair 
jointly writing and solving a word problem. There is evidence that orientation 
to a personal narrative frame plays an important part in the EAL student’s 
meaning making, leading her to make sense of the problem which emerges, 
going against research which suggests that students find it difficult to relate 
word problems to ‘real life’. 

 

Introduction 

Despite concern that children from minority ethnic backgrounds under-achieve 
in mathematics in British schools, particularly if English is an Additional 
Language (EAL) [1] (Gillborn and Gipps, 1996; OFSTED, 1999) there has been 
little research with a dual focus on mathematics learning and EAL. Within 
mathematics education research has generally sought quantitative relationships 
between language and attainment (e.g. Clarkson, 1992; Cocking and Mestre, 
1988). As quantitative instruments are necessarily embedded in language there 
are difficulties with this approach, in particular leading to problems of validity, 
since it is difficult to untangle mathematical attainment from linguistic effects. 
Research in applied linguistics has mainly focused on Halliday’s (1978) 
elaboration of the “mathematical register” and the acquisition of mathematical 
language rather than on mathematical learning. There seems to have been little 
research which has investigated the process of learning mathematics when 
English is an additional language: how do EAL students learn mathematics? 
Where such research has taken place (Moschkovich, 1999; Setati, 1998) it has 
generally examined interaction between students and teachers or other 
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professionals. Such interaction tends to be heavily dominated by the adult 
participant(s) and therefore affords a restricted view of EAL students’ use of 
language and participation in classroom discourse. The study reported here 
looks specifically at interaction between students as a way of gaining insights 
into the learning process. 

 

Methodological and theoretical perspective 

Working in multilingual, multicultural classrooms challenges assumptions of 
common understandings, raising questions about how the learning process can 
be investigated. If meanings are seen as subjective and situated within each 
learner’s cultural background, the languages they speak and their previous 
experiences of education and of mathematics, difficulties arise in assuming that 
‘we all know what we’re talking about’. The discursive psychology developed 
by Derek Edwards (1997) and others (Potter and Wetherell, 1987; Edwards and 
Potter, 1992) offers both a theoretical perspective and a methodological 
approach which avoids the problem of making inferences about children’s 
psychological states (including meanings) based on what they say when as 
researcher I have limited access to their language, culture and experience of the 
world. Edwards’ (1997) approach draws on conversation analysis and 
ethnomethodology to develop a discourse analysis which entails an important 
shift in focus. Instead of taking utterances as evidence of what the speaker 
thinks or knows, to be tested against objective reality, the analyst examines how 
reality is constructed in discourse, focusing on the business performed by 
utterances in context. Analysis of classroom discourse asks “not what do 
children think but how do children think” (Edwards, 1993: 216). Language is 
reconceptualised as primarily “a medium of social action rather than a code for 
representing thoughts and ideas...or a grammatical system” (Edwards, 1997: 84, 
original emphasis). This is not to deny that language does not represent ideas or 
cannot be analysed grammatically. Rather it is to foreground social action as the 
primary function of language, which is seen as having evolved through social 
interaction, and therefore as being structured both by and for social interaction 
(ibid.). Discursive psychology seeks to carry out psychological inquiry which 
takes account of this primarily social conceptualisation of discourse. 

Edwards and Potter (1992: 28-29) outline five distinctive aspects of the 
discourse analysis of discursive psychology: 
1. Discourse analysis is of naturally occurring talk and prepared texts, rather 

than talk or text produced for the purposes of analysis, such as in 
psychological experiments, which can be analysed as instances of 
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‘experimental talk’, but not as a way of gaining access to participants’ 
psychological states.  

2. Discourse analysis is concerned with the content of talk and its social 
organisation, rather than linguistic approaches to structure, for example. This 
includes seeing talk as sequential and analysing utterances within the 
sequential context in which they occur, rather than as isolated snippets of the 
mind (Potter and Wetherell, 1987: 93).  

3. Discourse analysis is concerned with action, construction and variability. 
Different ways of talking are used in different circumstances and for different 
rhetorical purposes. For Potter and Wetherell (1987: 67) looking for such 
variation is an important part of preliminary analysis, since instances of 
variation may be examined to see what is achieved by varying the way in 
which things are said.  

4. The rhetorical organisation of talk and thought is designed to counter 
potential alternative versions which may arise. As rhetoric serves a purpose, 
its use is seen as systematic. Analysis therefore proceeds from variability to 
looking at “the patterning or organization of different versions and the way 
they are constructed” (Potter and Wetherell, 1987: 67). 

5. It is the consideration of such ‘cognitive’ issues as knowledge, truth, reality 
or mind in terms of how they are dealt with in discourse that leads to this 
approach being characterised as ‘psychological’: “intentions, goals, mental 
contents and their intersubjective ‘sharing’ are analysed as kinds of business 
that talk attends to, rather than being the analyst’s stock assumption 
concerning what is actually going on” (Edwards, 1997:107). The focus has 
shifted to looking at how participants use psychological states in interaction. 
This is not to deny that people have intentions or meanings, but to argue that 
we can only examine how notions of intention or meaning are employed in 
interaction as a form of social action. 

In this paper I offer an analysis of two students jointly constructing 
mathematical word problems. The purpose of such analysis is neither to find out 
what the students think a word problem is like, nor to see how much 
mathematics they know. Instead the aim is to examine how the participants 
jointly negotiate and construct the problems, how they do ‘writing word 
problems’. Before commencing the analysis, however, some background is 
necessary. 

 

Research context 

As part of my doctoral research into the learning of mathematics by EAL 
students I have been visiting the Year 5 (aged 9-10) mathematics lessons in a 
multilcultural urban primary school in the UK. The school has approximately 
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150 students from a variety of cultural and linguistic backgrounds. Most EAL 
students in the upper classes have a reasonable level of functional English. In 
Year 5 there are six students recognised as EAL. Initially I had hoped to record 
students as they worked in order to obtain records of naturalistic interaction. As 
this proved impractical the approach was modified: small groups of students 
were withdrawn from the classroom and recorded while they worked on a task 
together. Although not identical to classroom situations, the teacher frequently 
asks students to work together in this way. Furthermore, the task selected was 
one which the teacher uses during her mathematics lessons. Thus although the 
interaction was not completely natural, neither is it particularly artificial. 

The research design involves selecting a topic from the teacher’s schedule 
for the term. In this case the topic concerned calculators, including some work 
on using calculators in the context of money. Six pairs or threes of students 
were recorded both before and after the calculator topic working on the task of 
writing word problems which could be used in the money part of the topic. A 
calculator was provided. The students were also asked to solve their problems. 
The primary data consists of audio recordings of the interaction which was fully 
transcribed. The analysis offered in this paper is of one pair of students working 
on the task after the lesson sequence. ‘Cynthia’ comes from a Cantonese 
speaking background and has recently come to the UK from Hong Kong where 
she previously went to school. She has been in the school for less than two 
years and in that time has learnt virtually all her English. She is a lively, 
enthusiastic student. ‘Helena’ is an African-Caribbean student, hard-working 
and reliable. 

 

Writing word problems: unfolding and orienting 

From preliminary readings of this and other transcripts, it is striking how the 
word problems emerge from the students’ deliberations. They do not appear to 
start out with a clear problem in mind, leaving only the work of finding a 
suitable form of words. The first move tends to be the selection of a name. The 
path from the name to the completed problem can be fairly direct or can 
meander slowly, taking sudden changes of direction. The outcome is always 
recognisably a word-problem - recognisable to me and their class teacher, at 
least. A related observation is that it is difficult to look at the transcripts of 
problems in-the-making and attribute aspects of the development to one or other 
of the participants. The problems emerge from the combined efforts of the 
students. Cynthia and Helena’s second problem provides a particularly 
interesting example: the problem which emerges concerns Cynthia buying 
presents for her mum. What is intriguing is how in the final question there is no 
mention of either presents or Cynthia’s mum, only of the items Cynthia 



European Research in Mathematics Education II 

 362

purchases. Through the course of producing the problem, a story develops 
which then does not appear in the final problem. 

These observations are in accord with Edwards (1997) when he argues: 
“The intelligible orderliness of social life stems not from a set of updateable 
knowledge structures in a sense-making cognitive being, but from how social 
actions flexibly unfold, as situated performances” (Edwards, 1997: 165). 
Cynthia and her peers are producing word-problems through social 
(inter)actions through which the problems unfold. Although there is no clear 
idea of what the completed problem will be, however, there is a sense that the 
students ‘know’ what kind of thing they are going to end up with. This idea is 
also expressed by Sacks (1987) who shows how in question-answer exchanges 
participants show a preference for agreement. This preference is also evident in 
the form of disagreement answers, which tend to be couched in agreement 
terms. Agreement is not just exhibited by the answerer, however: “If there 
is...an abstract or formal preference for agreement, then we have to see that the 
questioner is designing the question with an orientation to getting agreement” 
(p63).  

The notion of orientation has proved valuable in analysing the interaction 
of Cynthia and Helena. In an earlier paper (Barwell, 2000) I examined the 
second part of this transcript in which the two students jointly prepare their 
second word problem. As part my analysis, I identified a strong orientation 
towards a coherent story or situation which guided the students’ discussion. 
This orientation is evident, for example, in segment 1 (see [2] for transcription 
conventions). 

Segment 1 

347 H okay then/ Cynthia has fifty pounds/ to buy her mum a present 
348 C (laughs) 
349 H and she gets her/ a big dress/ 
350 
351 

C big dress/ no/ my mum doesn’t like dress/ I get her ahhh/ big music box 
/ if you open it/[ it’s music/ 

Cynthia’s name has been chosen as that of the protagonist in the problem. 
Helena has offered a first line for the problem (347) which sets up a scenario 
about buying a present. Although the emerging problem is couched in third-
person (she, her) terms (347, 349), Cynthia responds in a way which suggests 
she is oriented to a story which makes personal sense to her. She rejects 
Helena’s suggestion of a dress as a present on the grounds that “my mum 
doesn’t like dress” (350). The point here is not whether Cynthia’s mum really 
likes dresses or not. Rather it is Cynthia’s apparent orientation to a guiding 
narrative frame (Bruner, 1990), which is still emerging from her interaction 
with Helena. Furthermore, there is a tension through which the narrative 
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orientation emerges: a strong personal narrative on Cynthia’s part compares 
with Helena’s more generic, impersonal narrative. In segment 1 this is apparent 
in Helena’s use of ‘she’ or ‘her’ when talking about the Cynthia in the problem 
(lines 347, 349), which contrasts with Cynthia’s use of ‘I’ or ‘my’ (350). 
Cynthia’s more personal orientation to the problem led her subsequently to 
solve the problem with relatively little difficulty at the end of the recording.  

The purpose of the analysis in this paper is to determine whether there is 
evidence for Cynthia’s more personal narrative orientation in the first half of the 
transcript in which the two students construct their first word problem, and in 
which Helena is the protagonist. 

 

Helena’s pocket money 

Cynthia takes charge and elects to write. She chooses Helena as the name of the 
protagonist in the problem, which Helena is a little surprised to see (49: H: 
what?/ you’re writing my name). Cynthia develops the first part of the problem 
with tacit acceptance from Helena who does not challenge or disagree. There is 
no evidence of any kind of personal narrative during the first few minutes of 
work, with both students referring to the Helena in the problem as ‘she’, 
although there is a more generic narrative sense in Cynthia’s question. 
Gradually Helena becomes more involved in the production of the question, 
taking over the writing from Cynthia and suggesting and defending alternative 
forms of words. In this way they produce their first question (see [4]) which 
takes about ten minutes and is completed by line 266. The next sixty lines of the 
transcript record their discussion as they solve their problem. Helena contributes 
“one pound eighty” (i.e. 45p x 4) and there follows a discussion about how to 
proceed: 

Segment 2 

278 C how much you spend/ eight pound eighteen innit/ 
279 H times 
280 C it’s add 
281 H it’s times 
282 C one pound eighteen/[ add/ add/ add/ seven/ equal 
283 
284 

H                [ times 
no it’s times seven 

285 C add 
286 H no it’s times seven 
287 C is it?/ how? 
288 H cause you/ multiply it by seven 
289 C oh yeah 
290 H yes it is times 
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291 
292 
293 
294 

C yes times times times times times done it wrong/ one eight/ oh/ times/ 
seven/ wow/ twelve pounds sixty I haven’t got enough money to spend 
then/ I change/ you got/ you got/ oh wait/ twelve/ is that twelve pound/ 
yeah/ twelve pound sixteen/[ add 

Cynthia and Helena dispute whether they should add or multiply the daily 
spend and the number of days in a week. Suddenly (291) Cynthia becomes very 
animated, accepting Helena’s argument for multiplication. She performs the 
calculation and gets the result “twelve pounds sixty”. There is a problem here as 
the problem states that Helena has £10. Cynthia’s reaction to this is intriguing: 
“I haven’t got enough money to spend”. In this moment, Cynthia appears to 
personalise the problem. Her use of ‘I’ is evidence that there is a personal 
narrative orientation in her work, in her thinking, which guides her participation 
in the construction of problems with Helena. In the first part of this transcript, it 
is rarely visible, but at this instant it appears to break the surface for the first 
time. At this point Cynthia’s orientation to a personal narrative frame seems to 
become more prominent. She begins to identify explicitly the Helena of the 
problem with the Helena sitting next to her (segment 3, lines 293, 296). 

Segment 3 

293 
294 

C then/ I change/ you got/ you got/ oh wait/ twelve/ is that twelve pound/ 
yeah/ twelve pound sixteen/[ add 

295 H                            [ seven times eight 
296 C and you got twenty pound/ 
297 H (laughs) 
sixteen = sixty [3] 

Indeed when she says to Helena “and you got twenty pound” Helena’s 
response is to laugh. Laughing here seems to have the effect of accepting what 
Cynthia is doing but at the same time as marking it as out of the ordinary in 
some way, suggesting that for Helena the personal orientation is less prominent. 
A little later, Cynthia increases Helena’s pocket money again, identifying 
herself as the ‘donor’ (segment 4, 307: “gave you some more”) and this time 
Helena acknowledges the more personal narrative orientation, entering into 
negotiations with Cynthia about how much her pocket money should be.  

Segment 4 

307 C oh you have thirty pound gave you some more 
308 H no/ twenty five 
309 C no 
310 H no cause it’s going to be lots/ of money/[ alright then 
311 
312 

C                               [ Parveen got loads of money in  
a week 

313 H how much did she get 
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314 C sometimes she got fifty pound 
315 H fifty 
316 C five oh 
317 H fifty 
318 C yeah she said 
319 H yeah right 
320 
321 
322 
323 

C fifty that is not/ (...) work/ cause I don’t know/ how much is dat work/ 
maybe she’s joking then right just (right) fifteen/ um right/ fee (three) 
voh (oh) voh voh/ take away one two six oh/ one two six zoh (oh)/ 
equal/ I got/ seventeen/[ pound/ um/ [ fourteen pence/ left 

324 H                     [ (...)             [ forty pence 

As Helena moves into displaying a more personal orientation, Cynthia 
opens up the discussion, justifying her position of a £30 rate of pocket money 
by referring to another member of the class, ‘Parveen’ (311). Cynthia constructs 
a short characterisation of Parveen as getting £50 pocket money, with the result 
that £30 for Helena seems more reasonable. She reinforces her position in 
response to Helena’s questioning repetition by giving the amount in figures 
(316), clarification being also a way of underlining. When Helena continues to 
seem somewhat incredulous (319), Cynthia carefully softens her 
characterisation by suggesting that Parveen might have been joking. The 
outcome of this carefully occasioned discussion about Parveen which Cynthia 
has instigated, is that it is her figure of £30 which stands and appears in the final 
version of the problem, while Helena’s offer of £25 (308) is dropped. This 
discussion completed, Cynthia has no difficulty in completing the problem 
(lines 321-323). There is a sense, although this is speculation, that Cynthia 
could have substituted any amount for the pocket money and been able to 
complete the calculation with as much ease as she displays here. 

 

Discussion 

The moment at the end of segment 2 is pivotal in the students’ work on this 
problem. Prior to this point, their work seems oriented to producing a canonical, 
typical word problem. Afterwards the students’ orient to a more personal 
narrative. This appearance of the personal coincides with a change in Cynthia’s 
position regarding the solution to the problem. She is in dispute with Helena. 
She manages her change of position to one of agreement by also accomplishing 
a shift in the balance of orientations towards a more overtly personal narrative. 
The coincidence of these two shifts seems significant. The orientation to the 
personal is an important part of Cynthia’s process of making meaning in the 
word problems. This is an interesting finding: Lave (1992) argues that one of 
the difficulties of word problems for students is the separation of school and 
‘real life’ experience. In this analysis, Cynthia clearly evades this separation 
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through her orientation to a narrative which crucially is personal to her. She 
makes use of this guiding orientation in the social actions involved in jointly 
writing and solving a word problem. The problem is meaningful to her and she 
is able to solve the problem with ease. Cynthia’s highly competent participation 
in the task is all the more remarkable given that she has been learning English 
for less than two years. 

 

Notes 

1. English additional language (EAL) refers to any learner in an English 
medium learning environment for whom English is not the first language 
and for whom English is not developed to the level of a native speaker. 

2. Bold indicates emphasis. / is a pause < 2 secs. // is a pause > 2 secs. (...) 
indicates untranscribable. ? is for question intonation. ( ) for where 
transcription is uncertain. [ for concurrent speech. ^ ^ encloses whispered 
or very quiet speech. = for latching (no gap between words). 

3. Cynthia sometimes mixes up /ty/ and /teen/ at the ends of numbers like 
sixty and sixteen. 

4. The final version of the problem, unedited, is: Helena has £10 pocket 
money in 1 week, everyday she buys 4 packet of chrisps each costing 
45p. How much does she spend in 1 day, How much does she spend in 1 
week and How much does she have left? 
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Abstract: Values are a powerful force in mathematics education. They are 
involved in both the teaching and the learning of mathematics, and yet they are 
also largely hidden. They are rarely taught explicitly and many teachers of 
mathematics do not even believe that they are teaching values. This paper 
describes some of the work of the Values in Mathematics Project, its rationale, 
methods, and some of its findings. The authors hope that other researchers will 
also become interested in this topic so that collaborative work can be done in 
different countries on what is a crucial but neglected area of research.   

 

1. Teachers’ decisions and values 

Imagine that you are a Grade 4 mathematics teacher. It is the first day back at 
school after the Christmas holiday, and you are talking with your class before 
getting down to work. You ask if anyone had any 'mathematical' presents. One 
boy says that he had been given a mathematical game from his uncle's country. 
He says it is very interesting, it has many variations, and he asks if he can show 
the class how it is played. 

What would you do? Would you let him show the class and see what 
develops? Would you say something like: "Well that would be nice, but we 
don't have time now to do it, maybe later" or maybe: "Excellent, show me after 
the class, and I'll decide then if we can play it."  

Are mathematical games a part of your teaching ideas? Would this game 
fit within your curriculum? Does that matter? In any case, you would probably 
make your choice in the way that you normally do, and not think much more 
about it. But the fact remains that you must make a choice, and that choice 
depends on your values. 

All teachers must make decisions in situations like this, and the decisions 
they make relate in some way to their values. Sadly, little is known or has been 



Working Group 4 

 369

written about the values which mathematics teachers think they are imparting, 
or how successful they are in imparting them. In our research study, the Values 
in Mathematics Project, we are examining teachers' awareness of what values 
they intend to teach in their mathematics classrooms, how (and what) values 
teaching takes place, and most importantly, whether teachers can gain control 
over the values they are teaching. 

 

2. Mathematics, culture, and values 

Human beings everywhere and throughout time have used mathematics 
(Bishop, 1988). The mathematics typically can be observed as behaviours 
illustrating the following six 'universal' activities (i.e. every cultural group does 
them): counting, measuring, locating, designing, explaining, and playing. These 
behaviours are reflective of the culture of the people demonstrating them and 
are necessarily influenced by what that cultural group values. 

Moreover it is clear that all teachers cannot help but teach values, 
although most values teaching and learning in mathematics classes appears to 
happen implicitly. Many teachers, who believe that mathematics learning has 
value for their students, have never considered the particular values they are 
imparting.  

Although current developmental policies, through their statements of 
intent, often mention the encouragement of ‘desirable’ values, the curriculum 
prescriptions, which follow, have little to say about their development. For 
example, the Goals of the Australian school mathematics curriculum include 
these statements (Australian Education Council, 1991): 

As a result of learning mathematics in school all students should: 
• realize that mathematics is relevant to them personally and to their 

community; 
• gain pleasure from mathematics and appreciate its fascination and 

power; 
• appreciate: 

- that mathematics is a dynamic field with its roots in many 
cultures; and 

- its relationship to social and technological change. 

It is clear from these statements, which are typical of educational goal 
statements, that valuing mathematics has entered into their choice. Secondly 
they all contain implications for values teaching and for cultivating what we 
might term 'mathematically informed valuing'. 
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Also there is now a great variety of proposals from research, and ideas for 
improving mathematics teaching being generated internationally. In particular 
in the areas of information technology (see Noss and Hoyles, 1996), 
ethnomathematics (see Barton, 1996, Gerdes, 1995) and critical mathematics 
education (see Skovsmose, 1994), the role of mathematics teachers is being 
critically examined. What is of special interest about these kinds of 
developments however is that there is a strong concern both to question, and 
also to try to change, the values currently being taught. But there is still no 
researched knowledge on how to help this happen in mathematics education.  

Values exist throughout all levels of human relationships. At the 
individual level, learners have their own preferences and abilities that 
predispose them to value certain activities more than others. In the classroom 
there are values inherent in the negotiation of meanings between teacher and 
students, and between the students themselves. At the institutional level we 
enter the political world of any organization in which issues, both deep and 
superficial, engage everyone in value arguments about priorities in determining 
local curricula, schedules, teaching approaches, etc. The larger political scene is 
at the societal level, where the powerful institutions of any society with their 
own values determine national and state priorities in terms of the mathematics 
curriculum and teacher preparation requirements. Finally, at the cultural level, 
the very sources of knowledge, beliefs, and language, influence our values in 
mathematics education. Further, different cultures develop different values.  

After examining the research literature in preparation for the empirical 
part of the Values in Mathematics Project, our initial analyses reveal that there 
are two main kinds of values which teachers seek to convey: the general and the 
mathematical. For example, when a teacher admonishes a student for cheating 
in an examination, the values of 'honesty' and 'good behaviour' derive from the 
general socializing demands of society. In this case, the values are not 
especially concerned with, or particularly fostered by, the teaching of 
mathematics. However when we think about the incident at the start of this 
paper, we very soon involve mathematical values. Bishop (1988, 1991), argued 
that the values associated with what can be called Western mathematics could 
be described as follows: 

Rationalism - involving ideas such as logical, and hypothetical, reasoning. 

Objectivism - involving ideas such as symbolizing, and concretizing. 
Mathematicians throughout its history have created symbols and other forms of 
representation, and have then treated those symbols as the source for the next 
level of abstraction.  
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Control - involving aspects such as rules, predictions, and applications to 
situations in the environment.  

Progress - involving ideas of exploring and progression, through abstracting 
and generalizing. 

Openness - meaning the ‘public’ verification of their ideas by proofs and 
demonstrations.  

Mystery - involving the mystifying, and surprising side of mathematics, 
including the origins of mathematical ideas.  

It seems from the research literature that over the last centuries these six 
values have been fostered by mathematicians working in the Western culture, 
and it is these values that teachers in Western cultures are probably also 
promoting when they teach mathematics. 

However, we have also recognised that culture is a strong determinant of 
mathematical values, and research shows us that not all cultures share the same 
basic values. So it is likely that mathematics teachers working in different 
cultures will impart different sets of values to their students, even if they are 
teaching to the same basic mathematics curriculum. This is one reason why we 
are establishing collaborative research projects with other countries. There is 
already a similar project taking place in Taiwan (see Chin and Lin, 1999), and 
other colleagues have also expressed interest. 

 

3. The VAMP research project 

In 1999 we obtained funding for our three-year research project which had the 
following goals: 

1. To investigate and document mathematics teachers’ understanding of 
their own intended and implemented values. 

2. To investigate the extent to which mathematics teachers can gain control 
over their own values teaching. 

3. To increase the possibilities for more effective mathematics teaching 
through values education of teachers, and of teachers in training. 

For Goal 1 we are studying both teachers’ intentions, and their actual teaching 
behaviours. To begin the research we ran a series of inservice workshops with 
teachers, which enabled us to gain some initial insights into the kinds of values 
teachers were considering. As a result of these workshops, we developed a 
detailed questionnaire, which we gave to 30 volunteer mathematics teachers in 
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Victoria. The questionnaire was used to identify the teachers who were willing 
to participate in the research and whose views about values were sufficiently, 
and interestingly, different. We also wanted teachers in both primary and 
secondary schools. 

For Goal 2 we began our first school-based work with eight selected 
volunteer teachers, to clarify via initial interviews their ‘intended values’, and 
through classroom observation and post-observation interviews, the ways in 
which they implement these in the classroom. Through this process, the teachers 
were encouraged to identify the role that they want values teaching to play in 
their classrooms, and to identify in which areas they are achieving what they 
want, and in which areas they desire change. 

Following a number of group discussions with the eight teachers, a joint 
plan will be devised to attempt to implement certain specified values different 
from those normally emphasised by the teachers. The principal aim of the group 
discussion sessions is for the teachers to be able to support each other during 
what could be a challenging experimental period. The joint plan will be 
implemented over a similar observational period to that used in the first 
approach. The researchers’ tasks will be to observe and document the extent to 
which the implementation takes place. Following the observations and teacher 
interviews, further group discussions will be held. The teachers will be asked to 
keep journals with weekly entries and these journals will be particularly 
important documents for analysis and discussion during this phase. 

It is our contention that improving and making values teaching more 
explicit in mathematics classrooms will make mathematics learning more 
effective. Hence the need for Goal 3 above. We anticipate that we will be 
generating in-service activities for teachers, based around the topics arising 
from the research. The interest and concern is not with the particular choices the 
teachers might make but with the values underlying their decisions. 

Through activities based around questions such as these, it is our hope 
that we shall be able to make mathematics teachers not only more aware of the 
different values that they are teaching, but also that they will be more in control 
of their own values teaching. By this means we intend teachers to develop a 
greater range of teaching techniques, and to be able to offer a more rounded 
mathematical education to all their students, based on considered value 
judgements. 

 

 



Working Group 4 

 373

4. Ideas arising from the study 

The study is only in its second year but already some interesting ideas have 
emerged. In our preliminary discussions with the teachers we learnt about their 
general feelings concerning values, and also what they considered to be 
mathematics education values, as can be seen in Table 1.  

Table 1: Aspects of meaning either used in or arising from discussion with 
teachers 

General meanings of 'value' Mathematics  
educational values 

Το value: 
• to command 
• to praise 
• to heed 
• to regard 

A value is: 
• a thing regarded to have worth 
• a principle by which we live/act 
• a standard by which we judge 

what is important 
• something we aim for 
• qualities to which we conform 

Clarity 
Flexibility 
Consistency 
Open mindedness 
Persistence 
Accuracy  
Efficient working 
Systematic working 
Enjoyment  
Effective organization 
Creativity 
Conjecturing 

One of the foremost questions to be addressed in the questionnaire was 
whether teachers actually saw a place for values teaching in mathematics 
education. By expressing an interest in being involved in this project, 
respondents have tacitly indicated support for the concept. However, while 
there was agreement or strong agreement by many with the statement: “There is 
a place in mathematics teaching for the teaching of values,” a number of 
responses made us question whether this statement was interpreted in terms of 
actual or possible behaviours. 

The results from questions aimed at influences on the portrayal of values 
in mathematics teaching included the following. The teacher’s personal value 
framework rated consistently highly, sometimes in concert with 
religious/spiritual values but sometimes these were diametrically opposed, with 
the latter ranked last or near last. Although it was generally agreed that 
curricular resources (e.g. curriculum guides, textbooks, etc.) portrayed values, 
there was an equivocal response to the degree of influence exerted by the 
kind(s) of pupils in the particular class, the school ethos and culture, and the 
particular topic being taught. That is, some teachers claimed to portray values 
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consistently across classes, topics, or both, whereas others stressed the need to 
respond to different students’ needs. An example of the dilemmas in making 
generalizations here is given by the following comment:  

The kind of students I have in my classes does not change the values I 
portray. I consider it important to provide a realistic consistent modeling 
of my own values, especially to the low socio economic students I teach 
who express cynicism concerning, and often feel betrayed by, teacher 
“masks.”  

Research on mathematics teacher beliefs, particularly in relation to teachers’ 
actions in the classroom seems to demonstrate that teachers’ actions frequently 
bear no relation to their professed beliefs about mathematics and mathematics 
teaching (Thompson, 1992). Other research has shown striking inconsistencies 
between different belief statements given by the same teachers (Sosniak, 
Ethington and Varelas, 1991). A section of the questionnaire therefore consisted 
of items with contextualised classroom situations. It asked for teachers' open-
ended feedback regarding (a) their response to each situation, (b) the contextual 
factors guiding their respective responses and (c) the underlying values 
underpinning their actions.  

Some respondents did in fact demonstrate the same kinds of 
inconsistencies, but these were explained in terms of contexts. The teachers' 
indication has been that the kinds of values being represented were influenced 
predominantly by their own personal value framework. So it may be expected 
that with such personal involvement, preferred values were translated into 
portrayed ones in the classroom.  

Table 2: Comparison of descriptors associated with preferred and portrayed 
mathematical values 

Preferred Portrayed 
1. Logical thinking (1.3) 1. Logical thinking (1.6) 
2. Creativity (2.2) 2. Systematic working (2.3) 
3. Systematic working (2.5) 3. Puzzling (2.7) 
4. Puzzling (2.8) 4. Creativity (2.8) 
5. Beauty (3.9) 5. Beauty (4.6) 
6. Improving career prospects 
(5.8) 

6. Improving career prospects 
(5.8) 

Note. Average rankings are denoted in brackets. 

In the case of mathematical values (Table 2), this expectation held true 
for the highest-ranked value corresponding to logical thinking, that is, 
rationalism (Bishop, 1988), as well as to the two lowest-ranked values which 
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corresponded to mathematics improving one's career prospects, and to beauty. 
However the value of creativity, in particular, appeared to be under-emphasised 
despite strong teacher intentions. 

 

5. Further analyses 

The research is still progressing and we are now in the process of analyzing the 
data from the first part of the intervention study. We have classroom 
observation and interview data from the eight teachers concerning the values 
they are teaching both explicitly and implicitly in their classrooms. It is clear 
that the teachers are becoming more aware and articulate about their values 
teaching through this research.  

For example, one primary teacher at a Catholic primary school was 
certainly aware of teaching values explicitly in her lessons, through the school’s 
system of having a ‘value for the week’ to be interpreted and emphasised by all 
teachers (for example, ‘strength of character’). But she confessed that she didn’t 
think about teaching these kinds of values in her mathematics lessons. 
Nevertheless, it was clear from observing her mathematics teaching that she 
certainly did teach values both explicitly and implicitly, including for example, 
what she called “being independent, taking risks, and being creative”. She 
encouraged these behaviours, spoke about them and rewarded students who 
demonstrated them.  

It will be interesting to see whether the primary teachers, who teach a 
range of subjects, will find it easier than their secondary colleagues to address 
values explicitly in their mathematics activities with their students. This is only 
one of several intriguing ideas to have emerged from our study. Others will 
follow as we explore further this widely neglected aspect of mathematics 
education. 

 

6. Note 

The 'Values and Mathematics Project' (VAMP) is a three-year (1999-2001) 
Australia Research Council funded project jointly conducted by Monash 
University and the Australian Catholic University. Its web-site is 
http://www.education.monash.edu.au/projects/vamp  
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Abstract: At CERME 1 the first results of the research project "Reconstruction 
of formats of collective argumentation" were presented.1 The project is an 
empirical study of mathematics education in which elements of an interactional 
theory of learning are investigated (Krummheuer & Brandt 2001). It reinforced 
the concept of learning by participating in collective argumentation (Miller 
1986; Krummheuer 1995; Brandt & Krummheuer 1999). We analyze classroom 
interaction as multi-party-interaction (Sacks 1995; Sahlström 1996). The aim of 
this paper is to demonstrate some aspects of our methods of analysis, which 
were developed during the research process. 

 

The project is conducted in the tradition of the German interpretative classroom 
studies, which were initiated by a group of researchers led by Heinrich 
Bauersfeld (1978, 1980) in the seventies. Following Cobb & Bauersfeld (1995) 
and their idea of combining cognitive constructivism and social interactionism, 
the aim is to contribute to a sociologically orientated interactional theory of 
learning and teaching in mathematics classrooms. The theoretical background 
and views of learning and argumentation have been developed in subsequent 
research projects (Krummheuer 1992, 1995, 1997), in which the research 
methods interaction analysis and argumentation analysis have been introduced 
(see Krummheuer 1995). These methods were modified for the project and a 
third method was added – the participation analysis, which consists of two 
parts: the reception design and the production design (Brandt 1997, 1998). The 
following exposition concentrates on the combination of the argumentation 
analysis and the production design. The goal of this composed analysis is to 
describe learning processes in an appropriate way for our research questions – 
the "formats" (Bruner 1983) of collective argumentation (Miller 1986) in 
classroom interaction. Further the method of analysis is a result of our research 
process, developed during the research process (see Bohnsack 1993 for aspects 
of "reconstructive social research"). 

                                                 
1 It was based at the Freie Universität of Berlin and supported by the German Research 
Foundation (DFG) from October 1996 to June 2000. 
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First, I will outline the main concepts of learning and argumentation, the 
argumentation analysis, and the participation analysis (production design). In 
the second part, the combined analysis will be demonstrated by an interaction 
example. The paper concludes by a brief description of the interaction as a 
learning situation with respect to our research questions. 

 

1. Learning by argumentation in multi-party-interactions 

In the current discussion about learning mathematics, it is well accepted that 
learning and teaching cannot be described by the transmission of knowledge 
model. Going back to Piaget's theory of cognitive development, the learner as a 
creator of her or his cognitive schemes is a central idea in the comprehension of 
mathematical learning.  

Learning processes mainly occur in social interaction and cannot be 
separated from them. Hence, the constructivist point of view from (cognitive) 
psychology is only one side of the development of the individual. We focus on 
the relevance of social interaction processes for the individual learning process. 
The way in which a student participates in a classroom lesson initiates and 
constrains her or his individual learning process. Thus, for describing individual 
learning processes, it is appropriate to supplement the cognitive point of view 
by the interactionist perspective from sociology. The individual constitution of 
meaning (as an aspect of learning processes) is strongly related to the 
participants' collective constitution of meaning in the interaction.  

"[...] the individual's reasoning and sense-making processes cannot be 
separated from their participation in the interactive constitution of taken-
as-shared mathematical meanings" (Yackel & Cobb 1996, p. 460). 

Taken-as-shared meanings emerge in the interaction process through 
negotiation, as do the forms of interaction. We consider "collective 
argumentation" (Miller 1986) as of major importance to the process of 
negotiating meanings. 

1.1. Functional analysis of argumentation 

Negotiation by "collective argumentation" is not aligned to logical 
argumentation but to rhetorical forms of argumentation (Krummheuer 1995, 
1997). In an "analytical argumentation" (Toulmin 1969) − like a mathematical 
proof – the validity of a conclusion is deduced from the basic premises using 
deductive inferences. In contrast to that, the participants of a classroom 
interaction try to present their actions as valid and convincing, which can be 
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described as "substantial argumentation" (Toulmin 1969). Hence, his functional 
analysis of argumentation is adequate to analyze argumentation in classroom 
interaction (see Krummheuer 1995). With Toulmin the data, the conclusion, the 
warrant and the backing are the four functional categories of an argumentation. 
The general idea of an argumentation is to infer the actual demand (conclusion) 
from a shared assertion (data), in the sense of 
transferring the joint agreement. So, data and 
conclusion built the minimal form of an 
argumentation. The warrant can be produced to 
legitimate the step from the data to the conclusion 
– so the warrant defines the shared assertion as 
data. Backings are global statements and 
convictions and supports the warrant in the 
argumentation. Often, this functional element of 
an argumentation does not appear in collective argumentations. It is a feature of 
negotiating processes, that several participants contribute to the generation of an 
argumentation. 

Following the concept of symbolic interactionism (Blumer 1973), such 
process is more than the sum of the participants' individual contributions: 

• The individually uttered arguments are reflecting the dynamic of the 
interaction process. 

• No single participant could produce all foundations or reasoning in the 
emerging connection and combination of statements. 

Toulmin's functional analysis is to narrow to describe these dynamics in an 
appropriate way. Hence, we enlarged the approach so that the personal 
engagement of a single pupil in an argumentation can be described in detail. 

1.2. Speakers' roles in a multi-party-interaction 

When researching various forms of participating in social interaction, Bruner's 
(1983) concept of "formats" can be used. "Formats" are described as a 

"... standardized, initially microcosmic interaction pattern between an 
adult and an infant that contains demarcated roles that eventually become 
reversible" (p. 120). 

The participation in such formats includes the change of roles within the 
learning process. Consequently, the learning process could be described as the 
increasing autonomy of the child in such stable interactional structures. 

 So 

Since 

warrant 

backing 

data conclusion

On account 
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The mutual attention, which is typical in such dyads (adult – infant) 
cannot be assumed for classroom interaction with 20-30 children. So, the 
concept of learning by participating in formats must be modified with respect to 
the peculiarity of an interaction with three or more participants. Such interaction 
is commonly called a "multi-party-interaction" or "multi-party-conversation" (s. 
Sacks 1998; Levinson 1988). Goffman 1981 offers an useful approach to multi-
party-interactions.2 In his general criticism of the dyadic model for conversation 
he demands: 

• the dissolution of the speaker-hearer dyad, and furthermore 
• the decomposition of the everyday terms speaker and hearer. 

For the speaker aspects he invents the term production format and comments: 

"Plainly, reciting a fully memorized text or reading aloud from a prepared 
script allows us to animate words we had no hand in formulating, and 
express opinions, beliefs, and sentiments we do not hold" (p. 145). 

We take this concept up in our term production design for classroom interaction 
(see Brandt 1998 for the hearer aspects). Following Levinson's (1988) critical 
examination, each utterance or contribution to a collective argumentation can be 
split up into three analytical aspects: 

1. the gestical/acoustical appearance ("sounding box"), 
2. the syntactical construction with certain words and expressions 

("formulation") 
3. the thematic/semantic contribution to the negotiation of meaning 

("content/ thougth").  

Each utterance contains all aspects. We base our description of the speaking 
person on her or his responsibility for one, two or all of these aspects (Levinson 
1988; Brandt 1997; Krummheuer & Brandt 2001). In case of a speaker talking 
with restricted responsibility, there is a silent participant, who is responsible for 
the missing aspects: 

speaking person 
non speaking person with 

responsibility 

 sound. box formulation content  formulation content

creator + + + / 

traducer + - + formulator  + - 

                                                 
2 See Sahlström 1997 for a detailed examination of the relevant literature. 
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paraphraser + + - initiator - + 

imitator + - - inventor + + 

We want describe learning processes as participation on collective 
argumentation. Thus, the argumentative function of an utterance is taken as the 
content in the production format. This argumentative content of an utterance is 
called the explanative idea. Using this relation, the interactive genesis of a 
collective argumentation can be described. 

 

2. Empirical data and analyses of an collective argumentation 

The empirical basis of our research are videotaped lessons of two classes: a first 
grade class and a multi-age class (1st–3rd graders). Particularly chosen video 
recordings were transcripted and analyzed In this paper the example is a lesson 
from the first grade class. It is selected for the purpose of demonstrating the 
analysis method and will not be discussed as special type of collective 
argumentation (see for more detail Krummheuer & Brandt 2001). 

2.1. Transcript: Mister X 

The first graders are concerned with a kind of mathematical game, called 
"Mister X": One boy writes a number between 10 and 20 on the back of the 
blackboard (hidden) and the other children have to guess this secret number. On 
the front of the blackboard, the boy draws a big X and notices the guesses: the 
numbers smaller than the secret on the left and the bigger ones on the right side 
of "Mister X"). One child proposes the right solution 13 and the following 
collective argumentation emerges by promotion of the teacher:3 

T why could it only be thirteen in the end (...) David \ 
David because fourteen was too big 
T stop \ that's very important now \ start again \ 
< David because fourteen was too big because \ lies down on his table  
< T showing the fourteen yes \ .              and showing the twelve 
David the. speaking faster twelve was too small \ 
T repeat this Efrem \ Efrem - . repeat this \ David told us something 

very clever \ you can keep it in your minds \ who can repeat 
what David told \ Petra 

                                                 
3 "<" marks speakers, which speaks simultaneous; / and \ a pitchraising respectively a 
pitchdropping. 
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< Petra because because the fourteen was too big / an and the twelve 
was to too small \ 

< T                                  showing the fourteen               showing the twelve 
T and in between is only a / 
Petra thirteen \ 

The first analysis step would usually the interaction analysis; due to place 
restrictions, this first step is left out here (see Brandt 1997; Krummheuer & 
Brandt 2001).  

2.2. Argumentation analysis of the episode 

In the example, the teacher asks why could it only be thirteen in the end. Asking this, 
she accepts the solution (13). This assertion is the confirmed conclusion of the 
emerging argumentation. David's contributions – in cooperation with the 
teacher – can be seen as dates: 14 and 12 are too big respectively to small, which 
is visibly noted on the blackboard for all participants. A warrant is necessary to 
transfer an accepted assertion into a data.4 In the example, the linking of the two 
dates allows the step to the conclusion (by delimiting the interval). This linking 
is expressed with and by the teacher. So, the and of the teacher refers to the 
warrant: The solution is between the numbers, that are too small or too big. A 
backing can strengthen the authority of the warrant. The teacher forces the 
backing with and in between is only a. Petra finishes this sentence with thirteen. So 
the definiteness of the solution is backed up by the order of the natural numbers: 

In view of the 
participation, the teacher is 
involved in all functional 
categories of the argumentation. 
David contributes to the datas 
and Petra utters elements of the 
datas and of the backing. A 
closer examination of their 
participation will done by the 
next analyses step, the 
production design of a collective 
argumentation. 

 

2.3. Production design of the collective argumentation 

The next analyses step is the production design, which will be combined with 
the argumentation analysis (see table). The argumentation is open up by the 
                                                 
4 Nevertheless, the warrant must not be explicit in all argumentations. 

 

 conclusion data 

warrant 

backing 

14 is too big. 
12 is too small. 

13 is the 
unambiguous 
solution. 

The solution is between 
the numbers, that are too 
big or too small. 

Order of the natural 
numbers. 
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teacher with a claim, which is to be justified. So, she is the creator of the 
conclusion. David's contribution because the 14 is too big is the first accepted 
answer. He is oriented to the interaction process, of course. Nevertheless, he 
offers this first data as creator. The teacher forces him to repeat his answer and 
in this repetition he is an imitator of his own. The gesture of the teacher is 
subordinated and she takes David's thought. She supports the first data as a 
paraphraser. David stops his explanation and the teacher takes over the 
guidance with her gesture: Showing the 12, she determines the content and 
presents the second data gestically as a creator. David puts it in the final 
(acoustical) form as paraphraser, with the teacher as an initiator.5 

Finally, Petra repeats the words uttered by David, also supported by the 
gesture of the teacher. Repeating the datas, she is speaking as an imitator 
without responsibility for all aspects of her utterance. David is the initiator of 
the first part (because because the fourteen was too big /) For the second part 
(an and the twelve was to too small \), the content was initiated by the teacher. 
David is the formulator of this part. Now, the teacher starts with a sentence (and 
in between is only a /), which is finished by Petra (thirteen). In the functional 
analysis of argumentation, this assertion was seen as backing. So, the teacher 
offers the backing as creator and Petra completes this explanatory idea as an 
imitator. The dynamics of the collective argumentation is illustrated by the 
following representation. This layout combines the two demonstrated analyses 
steps: 

speaking person/ 
function 

utterance explanatory idea 
(argumentative category) 

(function of non-speaking person)  
T: creator why could it only be thirteen in the end 

(...)David \ 
Definiteness of the solution 
(conclusion). 

David: creator because fourteen was to big Blackboard: 14 is too big 
(data). 

David: imitator because fourteen was to big 
(inventor: David) 
T: paraphraser showing the fourteen yes \ . 

 

(initiator: David)  
T: creator and Another data is necessary 

(warrant). 
T: creator showing the twelve Blackboard: 12 is too small 

(data). 
David: paraphraser the. speaking faster twelve was to small \  
(initiator: T)  

                                                 
5 This is only one version of interpretation. It is also possible to describe David as an 
imitator. The decision between different versions must be done in the preceding interaction 
analysis – which is left out here. For the purpose of this paper the decision is not existential. 
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Petra: imitator because because the fourteen was too big / 
inventor: David 

Blackboard: 14 is too big 
(data). 

T: imitator showing the fourteen   
(initiator: David; formulator: T)  
Petra: imitator an and the twelve was to too small \ 
(initiator: T;  formulator: David)  
T: imitator showing the twelve. 
(inventor: T) 

Blackboard: 12 is too small 
(data). 

T: creator and in between is only a / 
Petra: imitator thirteen 
(inventor: T) 

Natural Order of the 
numbers (backing). 
(Definiteness of the solution 
as conclusion) 

 

3. Learning in collective argumentation 

In our research project, a main goal is to describe learning by participating in 
formats of argumentation (see Krummheuer 1995, 1997). With respect to this 
aim and focussing David as learner, the layout above can be interpreted in the 
following way: Offering the conclusion (in form of a question) the 
argumentation is introduced by the teacher as creator. David can act as creator 
for a first data. The teacher takes this data as the upper bound of delimiting the 
interval. So, from her point of view, the step from the data to the conclusion is 
not complete. The missing data – the lower bound – was forced by the gesture 
of the teacher, who is the initiator of David's utterance the. twelve was too small \. 
Here, David is a paraphraser. So, the teacher integrates David in a complex 
interaction pattern. In this process emerges a complex argumentation with two 
dates. Taking the delimiting of the interval as "formatted argumentation" 
(Krummheuer 1995), it is not sure, that David could complete his first data by 
the lower bound without the integration in the interaction process by the 
teacher. And it is not discernible, if David recognizes the logical necessity of 
linking the two datas. The teacher contributes this linking. Nevertheless, David 
acts in a relative elaborated form of autonomy (at least as paraphraser). So, he 
has the opportunity to catch the explanatory ideas of this (formatted) 
argumentation.  
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Abstract: In this paper, I discuss the interaction between pupils and between 
pupils and their teacher as contrasted with the pupils' own reflection and active 
construction of knowledge, when they were working in groups with so called 
rich problems. The problems were also taken up jointly in a class discussion. I 
observed a reciprocal combination of and co-operation between one 
individual's reflection and conveying of ideas to group and class mates and the 
interpersonal joint effort in the group. The teacher seemed to reside in a hazy 
background, but a closer analysis showed that her disposition of the discussion 
as well as her suggestions, hints, and enthusiasm were of paramount 
importance.  

 

Introduction 

How do the following factors interact and support each other when a pupil 
learns mathematics: her co-operation with her teacher and with her class mates 
on one side and her own effort to reflect on mathematical concepts and 
problems and create her own knowledge on the other? I do not anticipate getting 
a full answer to this question in a short study. However, it is my hope to be able 
to shed a little light on it in a project, where pupils were doing group work on 
rich problems which was afterwards discussed in a whole-class setting.  

 

Social Constructivism 

I used social constructivism as a background for my study. As was mentioned 
above, I especially wanted to study the duality and the connection between the 
pupil's own reflection on the one hand and the co-operation between pupil and 
teacher and between pupils on the other. For a long time there has been an 
ongoing discussion between advocates of sociocultural theory with Vygotsky as 
precursor and those of social constructivism with Piaget as forerunner on this 
issue. (See e. g. Steffe & Thompson, 2000; Lerman, 2000).  

 



Working Group 4 

 387

It is clear that sociocultural theorists stress the social connection more, 
while social constructivists prefer to emphasise the role of the individual. Cobb 
and Yackel (1998) maintain that individual students actively contribute to the 
development of the classroom microculture, a culture that both allows and 
constrains their individual mathematical activities. They continue 

This reflexive relation implies that neither an individual student's 
mathematical activity nor the classroom microculture can be adequately 
accounted for without considering the other.   
(Ibid p. 161.) 

This means that the individual pupil will to a great extent be helped to reflect on 
the mathematical content by the common discourse and will try to fit new 
experiences into her own knowledge structures. But the pupil herself has to con-
struct her own knowledge. Jaworski (1998) expresses the same thing in the 
following way: "Individually students were developing their own meanings, but 
their understanding was strongly dependent on the classroom discourse". (Ibid  
p. 19.) 

Cobb (1995) expresses the difference between Vygotsky's emphasis on 
the social connections and the stronger stress of (social) constructivism on the 
individual. 

Thus, in contrast to Vygotsky's focus on the social and cultural basis of 
personal experience, this constructivist analysis highlights the contribu-
tions that actively interpreting individuals make to the development of 
local social and cultural processes … 
(Ibid p. 380.) 

I believe it is clear that a useful theory for mathematical understanding, 
learning, and teaching "should recognize the dialectical duality between the 
personal and institutional facets of knowledge and its understanding" (Godino, 
1996, p. 421.) An individual can never construct her knowledge in a vacuum, 
but, in the final step, she, herself, shapes and builds up her own knowledge, her 
own mathematical understanding.  

 

Rich Problems 

Quite a lot of research has been carried on into problem solving and pupils' 
learning of mathematics in connections with mathematically rich problems or 
tasks. (See e. g. Gravemeijer, McClain & Stephan, 1998; Jaworski & Potari, 
1998; Lubienski, 2000; Stigler & Hiebert, 1998.) One example is the research 
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done in the Netherlands on Realistic Mathematics Education (see e. g. Treffers, 
1987). I quote Murray et al: 

Initiating and sustaining mathematical development through posing 
problems that students have to work on has been found to be a successful 
way of learning mathematics, but only if  the problems are well-designed 
and well-sequenced, and the classroom culture in its full complexity 
supports learning. 
(Murray, Olivier & Human, 1998, italics in the original.) 

In recent years the problems used in this field of research have often been called 
"rich problems", and I will use this term in the present paper. There exist 
several different definitions of a rich problem, but two colleagues in my school 
of education and I have agreed upon the following one: 

• The pupil should develop his mathematical knowledge through working 
with the problem. 

• The problem should be easy to understand, and every pupil should have 
the capability to work with it.  

• The problem should not possess a given solution strategy, known to the 
solver. 

• The problem should be experienced as a challenge, demand an effort, and 
take time. 

• The problem should be solvable using several different representations. 

It should be recognised that for many of these points, it will be difficult to 
decide beforehand if they will be fulfilled or not. This can only be settled by a 
thorough analysis carried out after the pupils have been working with that 
which was intended to be a rich problem. 

 

The Problems Used 

In my study, I used the following problems: 

Problem 1 
Lisa buys an ice-cream cone with two scoops with different tastes. She 
has a choice between three different tastes for the scoops; vanilla, 
strawberry, and bilberry. In how many ways is it possible for her to make 
her ice-cream cone? It does not matter in what order the scoops are put on 
top of the cone. 
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The problem was afterwards extended to deal with four, five, six, and ten 
different tastes. Lisa could still buy only two scoops. Eventually, the 
pupils were asked for a general method for deciding the number of 
possibilities, when the girl has a certain number of tastes to choose from, 
a number that is, however, not numerically given.  

Problem 2 
Three pupils meet and shake hands with each other. Everyone shakes 
hands with everyone else. How many handshakes will there be? 

This problem was extended in a way similar to the one above to deal with 
four, five, and ten handshaking pupils. In this case, too, the pupils were 
asked to find a general idea that could be used for computing the number 
of handshakes, if a certain, but not numerically given, number of pupils 
meet and shake hands. 

Beforehand, I tried to find different methods that could be used for solving the 
two problems. I have categorised them in the following way and also tried to 
order them in an ascending degree of abstraction. I got the following five 
categories: 

• Unsystematic search with the help of counting out, i. e. for example v s, 
v b, b s  or figure, where each letter might be shortening for a taste, e. g. 
v for vanilla.  

• Systematic search with the help of counting out or figure. 
• A recursion formula 
• Creation of a formula for the calculation of a result already written down. 
• A general formula, which could be used directly for all numbers. 

These categories formed a theoretical network in my research, and were not 
conveyed to the pupils. However, it will be shown later that the pupils spontane-
ously used most of these possibilities. 

 

Purpose and Questions 

According to social constructivism there are three important factors affecting 
the individual pupil's learning: 

• her own active creation of knowledge 
• the interplay in the group of peers, where she is working 
• her interplay with her teacher. 
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In this project I wanted to study a special problem-solving situation, where the 
pupils were working in groups with two related rich problems. I wanted to get 
to know what the pupils learnt by working with these problems but above all, as 
far as possible, find out how the above mentioned factors co-operate, when the 
individual pupil creates her new knowledge.  

To sum up, I hoped to get answers to the following question: 

• How do the pupils learn mathematics when working with rich problems? 

To be able to answer this question I first looked for the answers of two sub-
questions: 

• What do the pupils learn through working with rich problems? 
• How do they learn this according to the pupils' own understanding?  

 

Method 

I carried out the study in one class in year 5, which means that the pupils were 
about eleven years old. They had previously been working with their own 
methods for computation in the four arithmetic operations instead of using the 
standard algorithms. They had often formed spontaneous groups when working 
with exercises from their text book, but they were not used to organised group 
work or common class discussions about problems they had been working with. 

The whole project was organised in the following way. The steps are 
shown in chronological order. With the class teacher's help I selected a group of 
three girls, Ada, Janet, and Lisa, and a group of three boys, Bertil, Gustav, and 
Martin, whom I intended to follow more closely. During point 5, Martin had to 
be replaced by another boy, David. In my role as observer, I also more or less 
acted as a teacher.  

1. An individual written test for all pupils in the class. 
2. A short survey of the text of the first problem. The first three parts 

of the problem were given as homework. 
3. Group work with the first problem for about 40 minutes. The three 

last parts of the problem were not handed out until the first three 
had been treated. 

4. Pupils in the selected groups were interviewed at the end of the 
group work session. 
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5. Group work with the second problem for about 40 minutes. This 
problem was not given as homework, and all parts of the problem 
were handed out at the same time. 

6. Pupils in the selected groups were interviewed at the end of the 
group work session. 

7. A common class discussion about the two problems lasting about 
40 minutes. The discussion was led by the class teacher. 

8. An individual questionnaire was handed out to all pupils. 
9. An individual written test for all pupils. 
10. An individual clinical interview with all the pupils in the selected 

groups. These pupils were also interviewed about their attitudes to 
mathematics, problem solving etc. 

11. An interview with the class teacher. 

I used several different evaluation methods: 

• Clinical interviews 
• Interviews with pupils, individually and in groups 
• Interview with the class teacher 
• Observations when the selected groups were working with problem 

solving 
• Observation during the common class discussion 

All observations were audio-taped, and I collected copies of all written 
documentation during group work and wrote down what was written on the 
board during the class discussion. The records from the observations were 
transcribed and analysed together with the written documentation in the way 
described in the results section. 

During the clinical interviews, I discussed the pupils' solutions to the 
second test and gave them some new problems. The pupils were asked to 
explain their solutions and give reasons for them. All the interviews were tape-
recorded and transcribed. 

 

Results 

During the group work that I followed, there occurred, of course, many different 
kinds of episodes. It should be noted that an episode is supposed to be finished 
and another one to start when something new happens: a new problem is 
discussed, a new strategy is suggested etc.  I have tried to categorise the 
episodes in the following way. I will later use the words which are underlined to 
identify the different types. 
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1. Pupil(s) get stuck in a line of thought, think in a wrong way or 
return to a more primitive method. 

2. Pupil(s) get on with the help of their peer(s). 
3. Pupil(s) get on with the teacher's help.  
4. A pupil takes an initiative, has got a mathematical idea. 
5. Co-operation. 
6. Different opinions. 
7. A cognitive conflict. 

In an episode classified in category 2 (peer), we can see a direct effect on the 
line of thought of one or several group members. An episode assigned to 
category 4 (idea) might, of course, also lead to an effect on the other group 
members' way of thinking, but it is not shown as clearly as in an episode from 
category 2.  

A cognitive conflict (category 7) is to me a situation where one or more 
pupils get a result which differs from one that they have calculated in another 
way, and they cannot see the reason for the incongruity. In a way you might say 
that they get stuck (category 1), but I think it makes a great difference if they 
realise that there are several but mismatching solutions or if they see only one 
primitive or even wrong solution. Pupils having different opinions might also be 
regarded as a cognitive conflict, but again I want to separate this case from the 
one described as category 7. 

First of all I will show in a table how often the different types of episodes 
occurred during the group work in the selected groups. 

Table 1. The number of times the different types of episodes stated above 
occurred during the four periods, when the selected groups were working with 
problem solving. 

Episode  Get stuck Peer Teacher  Idea Coopera- 
tion 

Different 
opinions 

Cognitive 
conflict 

Number 
of times 

13 5 9 32 8 3 4 

I will give some examples of the episodes. The most common type was 
when a pupil took an initiative and/or got an idea. This occurred 32 times 
among the 74 episodes shown in table 1, i.e. in almost one half of the occasions. 
As an example, I will show when Janet explained the recursion formula which 
she used in the first problem to her peers. The girls had found the number of 
possibilities for six tastes, 15, and Janet stated that the number for seven tastes 
will be 21. R H means the observer or interviewer.  
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R H  Do you know why you have to add six there, then, when you go 
from six to seven tastes? 

Janet I think that then you can take seven, that taste, if you have 
[unclear irrelevant talk], you have that taste. 

R H Yes. 
Janet If you say that here is, you can say   (unclear), six first, and then 

you have another one, sure, then you can, then, then you have 
combined those, you know,  so you can take, this taste you can 
take with that, you can take it with that, you can take it with that 
\… 

Ada It will be six extra, like.   
(Observation 23.11.99, my translation.) 

Shortly after the girls had used this recursion formula, however, they returned to 
mark the tastes as circles and draw lines between these circles to mark the 
different combinations. I have classified this episode as an example of the 
pupils returning to a more primitive method (get stuck). 

I also wish to show an example of a cognitive conflict. It occurred when 
the girls had solved the hand shaking problem for 20 pupils by writing the sum 
19 + 18 + … + 1. I helped the girls by writing the sum in the inverted order 
underneath and making vertical sums like this 

19 + 18 + 17 + 16 + 15 + 14 + 13 + … +   3 +   2 +   1 
   1 +  2 +   3 +   4 +   5 +   6 +   7 + … +  17 + 18 + 19 
20 + 20 + 20 + 20 + 20 + 20 + 20 + … +  20 + 20 + 20 

When the girls computed the sum on the last line they got 20 × 19. However, 
they had already got the answer for the corresponding case in the first problem, 
and they knew that the two problems had corresponding solutions. The girls 
said: 

Janet Yes, but you can't take twenty  times nineteen or something. 
Ada Well, he had written twenty nineteen times, hadn't he. 
Janet OK. 
Ada And he said that he was going to do it, then it will be twenty times 

nineteen, and that isn't right. 
Janet OK 
R H No, it isn't right (pretending hesitating), how come? 
(Observation 30.11.99, my translation.) 
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Later, however, the two girls solved the conflict in co-operation, observing that 
I had written the solution to the problem twice. 

The class teacher led the class discussion, and I classified the episodes 
that occurred in the following categories. As before I underline the words that I 
will use to indicate a special category.  

1. Suggestion from pupil/group of pupils. 
2. The teacher intervenes with a suggestion, a correction or other 

important remark. 
3. A pupil agrees. 

The different types of episodes were distributed in the following way: 

Table 2. The number of times the episodes stated above occurred during the 
class discussion. 

Episode Suggestion 
pupil 

Teacher Agrees 

Number of times      21       3       1 

As we can see, the class discussion was fully dominated by suggestions 
from pupils and from groups of pupils. There were only three instances where 
the teacher intervened in a decisive way except for administering the flow of 
solution suggestions. Once she clearly showed that she had difficulties in 
understanding a solution that one of the pupils suggested and asked her to 
explain better. On another occasion she just wanted to make sure that the class 
had understood another pupil's solution. Finally, it also happened once that she 
uttered some doubts about a suggested method of drawing lines in an 
unsystematic way between circles. She asked very humbly: "Won't that be very 
difficult?" A little later she went on: "OK. Have any of you seen any pattern in 
this, when you draw lines, do you see any pattern in this, so you could compute 
it?" (Observation 02.12.99, my translation.) 

When I studied the results the pupils showed in tests and in clinical 
interviews and also the pupils' own opinions in questionnaires and interviews, I 
could estimate that they had learnt the following mathematics and problem-
solving strategies, at least temporarily. Some of these may, however, overlap. 

• A way to compute an arithmetical sum. 
• A recursion formula for the solution of the given problems. 
• To solve problems in combinatorics and to think systematically. 
• To co-operate. 
• Not to give up. 
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• To express their thoughts in words.  

The pupils were also asked how they thought they learnt what they learnt. They 
were given the following alternatives:  

By reflecting yourself 
From your peers 
From your teacher. 

In the questionnaire, they were allowed to tick more than one alternative. The 
result there was: 

Table 3. Number of ticks that girls and boys, respectively put for the different 
alternative answers to the question: What do you think you learnt most from? 
The number of girls was 16, the number of boys 14. The pupils were allowed to 
tick more than one alternative. 

Alternative Number 
of ticks, 
girls 

Number 
of ticks, 
boys 

By reflecting yourself    10     7 
From your peers    12     6 
From  your teacher      6     2 

In an interview, Gustav told me very clearly why he thought that he learnt 
more from his peers than from his teacher: 

Gustav Yes, but he, like, if I don't know an exercise, 
R H  Mm. 
Gustav and he knows it, 
R H Mm. 
Gustav Then, he writes the answer, 'cause we were both supposed to write 

it on the paper. 
R H Yes, but do you learn anything, then, then, 
Gustav Eer. 
R H if he only writes the answer? 
Gustav If he only writes the answer. Perhaps he has to work it out in a 

good way, and then, maybe, he writes it down, and then I see what 
he is doing, och then I learn how to do it. 

R H Yes, but if Mrs Andersson (the teacher) writes how to compute it 
then? 

Gustav Yes, then I will maybe learn a bit, then. 
R H It is better, when can, when your pals work it out, do you think? 
Gustav Yes. 
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R H  Tricky this, isn't it? 
Gustav Mm. Though, Mrs Andersson doesn't do the sums, Mrs Andersson 

only shows us a way to work it out. 
(Interview with Gustav 20.12.99, my translation.) 

 

Discussion 

In the group discussions, the pupils were inventive and lots of different 
strategies appeared in the different groups. As I see it, this variety of ideas were, 
to a great extent, due to the individual pupil's initiative, partly caused by the 
possibility she had had to immerse herself in the first problem during the 
homework.  

In the two groups which I followed the work developed in quite different 
directions. The girls worked with a recursion formula in the first problem, while 
the boys used combinations of letters, each letter being shortening for a taste. 
During the class discussion still other solution methods turned up. As 
mentioned, this was often caused by an initiative from one singe pupil, but, at 
the same time, I saw a lot of examples how the pupils managed to co-operate 
and support each other in the solution process. 

In very few instances, at least in the two groups mentioned, the teacher, i. 
e. me, transferred his ideas to the pupils. It happened, however, when I showed 
both the girls and the boys a way of computing an arithmetic sum, but none of 
the pupils spontaneously used this method. In spite of that, several of them used 
another way, which was discussed during group work and class discussion.  

In the class discussion, it was also very noticeable that the teacher used 
her power to influence only to ask a pupil to explain her idea a little more 
thoroughly or to make sure that the other pupils understood a given solution. On 
one occasion only, the teacher gave vent to a little doubt about the efficiency of 
a suggested solution method and asked the other pupils for a more systematic 
way of tackling the problem. I also noticed that the class teacher exhibited a 
willingness to let the pupils voice their ideas and suggestions. She created a 
classroom climate, where the pupils became used to putting forward their 
solution strategies and, above all, to listening to their peers' suggestions and 
ideas.  

On the other hand, it is very interesting to see how one pupil valued his 
peers' contributions compared to those of his teacher. Of course, his perspective 
is another one than the researcher's, but nevertheless the pupils' points of view 
have a bearing on their learning process. However, in my opinion, the study 
shows that the teacher's behaviour paid, because her pupils readily showed that 
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they could meet her expectations and give their own ideas and at the same time 
co-operate with each other in the groups. 

To sum up, I believe I have found that the individual pupil in this study 
brought her thoughts and ideas to her group, where they were worked up jointly 
and the group members, generally, agreed upon one solution which was then 
accounted for in front of the class as the group's joint solution. Finally, the 
individual pupil built up her own mathematical knowledge in connection with 
the items that had been brought to life by the problems, using her own previous 
knowledge and experience as a starting-point. 

It might be that the teacher seemed to reside in a hazy background, but I 
would argue that the closer analysis that I tried to make, reveals something else. 
Her attitude to the way her pupils learn, her disposition of the discussion as well 
as her slight suggestions and hints, and, not least, her enthusiasm were of 
paramount importance.  
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Abstract: A social interaction setting is used in this study in order to elicit the 
possible transition from an arithmetic procedure to an algebraic one. The 
collected corpus is mainly (but not solely) made up of the written transcription 
of verbal exchanges. It is analyzed according to criteria that essentially relates 
to the conceptual task analysis. But certain linguistic aspects are taken into 
considerations as well. The case study presented in this paper shows that an 
interactive process with positive effects upon the individuals is likely to take 
place. 

Résumé: Un dispositif d’interaction sociale est utilisé dans cette recherche afin 
de favoriser la mise en place chez les élèves d’une procédure algébrique en 
substitution à une procédure arithmétique. Le corpus recueilli est composé 
principalement (mais pas uniquement) de la transcription écrite des échanges 
verbaux. Il est analysé selon des critères qui renvoient essentiellement à 
l’analyse conceptuelle de la tâche, mais certains aspects langagiers sont 
également pris en compte. L’étude de cas présentée dans ce papier montre 
qu’une dynamique interactive ayant des effets positifs au niveau des individus 
est susceptible de s’établir. 

 

Whatever didactical approach is chosen to introduce algebra – problem solving, 
generalization, modelling, functional approach,… - we notice learning 
difficulties among students. Several studies suggest that many of these 
difficulties can be attributed to the conceptual change which occurs during the 
shift from an arithmetic mode of thinking to an algebraic one (Bednarz et 
Janvier, 1994 ; Schmidt et Bednarz, 1997 ; Booth, 1985 ; Filloy et Rojano,1989; 
Kieran, 1990 ). 

The purpose of the present study is not only to observe, but also to elicit 
the possible transition from an arithmetic procedure to an algebraic one, during 
a problem-solving situation. The task to be worked on, as well as the 
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experimental design has been chosen with care to serve the purpose of this 
project. Hence, 

- The given problem (Ref. Appendix 1) can be partially solved with 
arithmetical procedures, however the complete solution requires the use 
of algebra (the conceptual task analysis is not presented in this paper) 

- The experimental design is based on a social interaction situation, which 
we think will trigger positive cognitive evolution at least among some 
students. 

Our work fits, in fact, within the general framework of the socio-constructivist 
approach (an approach largely inspired by the works of Piaget and Vygotski). 
This approach has been described in many works, of which we mention only 
three recent ones directly concerning didactics: Dumas-Carré and Weil-Barais, 
1998; Joannaert et Vander Borght, 1999; Gilly et al., 1999). Considering that 
inter-individual cognitive functioning influences the individuals’ cognitive 
behaviour, and in order to understand in what ways students (or some students) 
participating in a group work can gain cognitive advantages, we will try to 
analyse the socio-cognitive interactions. 

 

Experimental procedure 

The experiment consists of three phases organised as follows: 

- During the first phase, three students must individually solve the 
problem. The problem is presented in a written format. (Ref. appendix 1 
for the problem). 

- The individual work is interrupted thirty minutes later. The triad is then 
formed and during this second phase, the students should work together 
and agree upon a common solution. 

- Then the experimenter presents to the triad a graphical representation 
modelling the situation. This third phase, during which they must 
interpret the graph, is not reported in this paper. It corresponds, in fact, to 
an aspect of our research problem which is not covered here. 

 

Population 

The experiment was designed as a case study and aimed at highlighting certain 
processes. We examined eight groups of three students each from two tenth 
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grade classes. However, in order to avoid over-complicating the presentation of 
the analysis, we will only refer here to one of these groups. 

 

Methodology for data collection 

During the first phase, instructions were given to the students to write down on 
their papers, step by step, all the stages of their work as well as all the 
calculations (papers were numbered and calculators were forbidden). The 
corresponding analyses for this phase of individual work were based upon the 
examination of these writings.  

Concerning the second phase, all the interviews were audio taped and 
later transcribed. In addition to these transcriptions we collected the written 
work of the group (papers were given one by one and when asked for). 

 

Situational context 

All interviews were conducted in the school. The experimenter and the students 
were alone in the classroom. The mathematics teachers introduced the 
experimenter to the students as a colleague doing research in mathematics 
education. The interview varied in length depending on the groups, and reached 
a maximum of two hours (only the time for the first phase was fixed by the 
experimental procedure). 

 

Data analysis methods 

To analyse the data collected during the second phase, we divided the corpus 
into a chronological sequence. Every sequential element was denoted an 
episode. It is the conceptual dimension that plays the most important role in the 
division of the episodes and in making sense of what is happening among the 
participants. In other words, they are the ones that essentially determine the 
description and the explanation of the episode. So, even though some linguistic 
aspects were taken into consideration during the interpretations, it is the 
conceptual dimension which guided mainly the interpretative reading of the 
interactions. In appendix 2, we present an extract from the protocol of the 
chosen group. It regroups together several consecutive episodes (episodes 11, 
12, 13). 
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Criteria for the analysis 

Five criteria have been used to analyse the corpus corresponding to the second 
phase. 

- The status of the letter. We adapted to our situation the categorization 
proposed by Janvier (1996) and Kücheman (1981) and kept three 
categories: Letter as a label or as an object (coded LE); Letter as an 
unknown (LI); Letter as a variable (LV). 

- The register that the students have been using is one of the criteria (Ref. 
Duval 1995). Four categories were chosen: Numerical register (coded 
RN); Algebraic register (RA); Graphical register (RG); Natural Language 
(RL) 

- The procedure, being a criterion which is not independent from the other 
preceding ones, is in fact characterised by a register, the status of the 
letter, and by the meaning given to the equality sign as well. This latter 
characteristic, classically cited in works about algebra (Ref. Vergnaud et 
al., 1987), comes in two categories: result announcement (SA) and 
equivalence (SE). In fact we consider four possibilities for the procedure: 
Arithmetic: (RN, SA, absence of the letter or LE); Algebraic: (RA and/or 
RG, SE, LI or LV) ;Arithmetic/Algebraic: (RN and RA, LE or LI, SA or 
SE) ; Arithmetic/Graphical: (RN then RG, LI or LV, SE). 

- The rationality, we adopted the categorization of Grugeon (1997) with a 
slight modification and we considered four possibilities: common, pre-
scientific, scientific, and school. 

- The relation, with two possibilities: the presence of a relation (which can 
manifest itself by the use of a function, a graph…) and the absence of a 
relation (which can manifest itself by the use of a common 
argumentation). 

Note: For the division of the protocols into episodes, we agreed that every 
change of episode corresponds to a change in the value of at least one of the 
criteria. 

 

Analysis and interpretation of the extract presented in appendix 2  

We can summarize the individual work of each student in the group (phase 1) as 
follows: each student used an arithmetical procedure, but while student G could 
not solve the end of the problem (Fanny’s case, Ref appendix1), student D did 
come up with a satisfactory answer. As for student F, he/she did not tackle this 
part of the problem. 
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The extract cited comes at the end of phase two. In the preceding ten 
episodes the observed procedures are in general arithmetic procedures (yet there 
are two episodes during which the students used an Arithmetic/ Algebraic 
procedure after D’s initiative). The four types of rationality are successively 
called upon. 

At the end of episode 10, students agreed on a solution and wished to 
conclude their work by writing a sentence. The group dynamics that took place 
were as follow: 

- Upon a formulation made by D (“…if Fanny wants to spend…”), which 
suggests an enumeration of possible cases, G reacts (“But she can …”) by 
shifting the speech towards a common (everyday) logic. G reiterates this 
argumentation but, despite the strength of G’s last speech (in which 
having recourse to the use of the pronoun I, G gets involved personally), 
F and D pursue their initial project, without taking into consideration in 
any way G’s intervention. Thus at the end of episode 11, F’s intervention 
(“Do you all agree with this?”) refers to the content of Fs debate with D. 

- It is the need for a proof, expressed by D (not satisfied with the fact that 
the solution had been found by successive trials), which signals the 
beginning of episode 12. It is around this new issue that G resumes the 
group work (G admits having strayed from the collective project during 
some time (“…now I speak logically”). We can notice that G will go 
back to a common rationality (“you cannot take 22.5 videos…”), to claim 
the pertinence of the solution using successive trials. F, then D, suggested 
this solution once again in this episode. 

- Upon a direct questioning by F (“What do you need to be able to 
prove?…”), D suggests a formula which he had used in a previous 
episode. This formula was also used previously by the three students. 
Then D launches into finding a relation between two formulae and 
writing an equation (the letter has the status of an unknown and we are in 
an algebraic procedure). The three students participate actively in the 
resolution of the equation and are convinced they reached their goal (To 
D, this goal is explicitly the proof: “that’s it, it’s proven”). 

 

Conclusion 

G gets always involved in his/her speech expressing himself/herself in a 
personal mode; whereas D uses only generic expressions, sometimes assorted 
with modal deontological expressions (“We should have tried with every 
number!”) or existential expressions (“there is for sure one equation which can 
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help us”). This opposition confirms the distance already noticed in the mastery 
of the task between the two students G and D. 

Student F rarely expresses himself/herself in a personal mode; instead, F 
uses generic expressions, using pronouns such as “nous (we)” and “on (one)”, 
showing that he/she often expresses himself/herself on behalf of the group. 
What is striking concerning F, is that he directly questions D and G “Do you 
want to sketch a graph?”, “what do you need to be able to prove?”, spurring 
them on or always urging to determine where the group stands. It seems that F 
plays the role of the social leader while D that of the cognitive leader. 

The interaction seems positive for all the students including D who found 
the satisfactory answer since the beginning of the first phase. In fact, in the 
second phase D tackles explicitly the question of the need for a proof and 
moves from an arithmetic procedure (successive trials) to an algebraic 
procedure. 
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APPENDIX 1 - The problem 

A video rental store offers three options for renting videos per year: 
Option A: Normal rate, 30FF for each rented video. 
Option B: a subscription rate of 160FF per year, and 20FF for each rented 
video. 
Option C: a super subscription rate of 400FF per year, and 10FF for each rented 
video. 
Annie wants to spend 420FF on video renting per year. 
Bernard wants to spend 480 FF on video renting per year. 
Claude wants to spend 520 FF on video renting per year. 
Didier wants to spend 560 FF on video renting per year. 
Emily wants to spend 600 FF on video renting per year. 
Fanny wants to spend between 620 FF and 680 FF on video renting per year. 
What advice would you give each one of these persons concerning the choice of  
the most advantageous option for them. Explain your answer. 

 

APPENDIX 2 - The Episodes 
Episode 11 

F1: So, do we add a final sentence? 
G:     OK 
F:       For option B no? How do you want me to … (Express it)2 

                                                 
1  These letters are made to recognize the students in the triad: 
   F is “Face”: the student facing the experimenter 
   D is “Droite”: for the student at the right hand side 
   G is “Gauche”: for the student at the left hand side 
2  The expressions in italics are the experimenter’s notes 
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G: For more than 24 videos, if Fanny … 
D: For more than 640, if Fanny wants to spend more than 640 
G: But she can spend, she wants to, it is in her budget 
D:  Yes she wants to 
F: But you say: for more than 640 
D: But she wants to spend between 620 and 680, more than 640 is option C 
G:  You know what, when somebody wants to spend between 620 and 680, 

at the end he/she will choose 680 
F: And for less than 640 it is option B 
D: B 
G: I think that, for example if I want to spend a certain amount of money, 

you see, I fix a sum and it is clear that I will take the last one, so I take 
option C very easily 

F: Do you all agree with this?  
D: But 
F: But what?  

Episode 12 
D: We did not prove how we get 640 
F: Yes we did 
D: It is not proven 
F: But yes it is 
G: Yes of course 
F: Yes, you have that for more than …, here you did try for 20  
G: Yes, why did we try for 24 
D: Why for 24! We just bumped into it by chance 
F: No on the contrary, oh yes, no but we wanted to see if…, but with 

option B it is 24 videos it is the same price 
G: Let me see, a little bit 
F: We should have tried with every number!  
G: Frankly speaking, very frankly, now I am speaking logically 
F: Do you want to sketch a graph? 
G: No, no not at all, look when you say I want to spend between 620 and 

680, who much do you spend? You cannot spend in between the two; it 
depends on the number of videos. 

F: We must try all the solutions! 
G: There are not one million solutions, you know; because it is between 22 

and 28 videos, you cannot take 22.5, see! So we must try with 21, 22, 
23, 24, 25, 26 

F: We tried with 23 and 24 

                                                                                                                                                        

 



Working Group 4 

 407

D: This is it! We bump by chance, there is for sure an equation that can 
help us, this is it 

G: This is why I want to sketch a graph 
F: What do you need to be able to prove? Try with all the videos from 22 

till 28 

Episode 13 
D: Wait! (x – 400)/10 
F: This is option C 
D: Yes, must be equal to (x – 160)/20, isn’t it? And we will find the price is 

it so? 
G: Didn’t you do this before? 
D: No, so 
F: 20 x 

They are trying to solve (x – 400)/10 = (x – 160)/20 
G: Bring it (the 20) to the other side, you cross multiply, and you put 20x 
D: Yes cross multiply, 20x- 800 
F: 8000 
D: Yes 8000, must be equal to 
G: We bring the denominator to the other side 
D: 10 x equals 
F: Minus 
D: 6400 
F: Yes 6400 
D: So x = 640 this is it, it is proven 
F: OK we are done 
G/D: yes 
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Abstract: Within the psychological tradition, analysis of students’ utterances 
has focused on the ‘transactional’ function of language in the expression of 
‘factual’ propositional content. The clinical interview is an effective means of 
eliciting data with this (though not only this) objective (Rowland, 1999a, b). The 
purpose of this paper is to emphasise that language also fulfils an essential 
‘interactional’ function in expressing social relations and propositional 
attitude, and to argue for the significance of such dimensions in the analysis of 
discourses of a mathematical nature. The paper explicates the nature of 
‘pragmatic’1meaning, reviews some approaches to discourse rooted in or 
related to speech act theory (Austin, 1962; Searle, 1969), and concludes with 
analysis of a fragment of text for illustrative purposes. 

 

Meaning 

There exist a number of accounts of ‘meaning’ within natural language. 
Accounts differ partly because of different perspectives deriving from 
linguistics, philosophy, psychology, sociology, literary criticism, theology, and 
so on. In discussing meaning in this paper, I have in mind a view of 
communication that focuses on human intention, and my starting point is what 
the philosopher Paul Grice (1957) called ‘speaker meaning’. Grice distinguishes 
between two kinds of meaning: natural and non-natural. The first of these might 
be called the semantic or truth-conditional meaning of sentences such as: 

if x>2 then x2>4 

This is meaning of a conventional, literal kind. Of course, such a notion is not 
unproblematic, pre-supposing as it does that words and symbols refer to things 
in an unambiguous way, and that the syntax of the sentence then takes care of 
the meaning.  

                                                 
1 It should soon become clear that ‘pragmatic’ is used here, and throughout in this paper, in a 
technical sense, so that it means something more specific than just ‘expedient’ or ‘dogma-free’. 
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Non-natural meaning is associated with (human) communication which is 
intended to be received in a particular way by a recipient. This is the 
‘pragmatic’ meaning, which may be conventional, but certainly need not be in 
the case, for example, of ironic, metaphorical and indirect communications. A 
critical feature of non-natural meaning is the particular way that it is intended to 
be recognised and interpreted by a recipient. The distinction between the truth-
conditional, semantic meaning and the pragmatic meaning of an utterance is 
demonstrated by B’s turn in the following interchange. 

A: Do you think you’ll get back home in time to cut the grass? 
B: Well, I’ll try, but there are road works on the A14 this week. 

The semantic content of the reply is to the effect that B will endeavour to get 
home on time, and that there are works on a particular road. In practice, we read 
much more into it. Even in the absence of ‘well’, we might infer inter alia that: 

• B will travel by road, 
• the road works on the A14 might cause B to be delayed, 
• B is not confident that s/he will be home in time to cut the grass. 

The inclusion of ‘well’ adds an additional dimension to the reply: that is, B’s 
anticipation that his or her reply is not the one that A would like to hear 
(Wierzbicka, 1976; Brockway, 1981).  

In an account of the ‘transactional’ and ‘interactional’ functions2 of 
language, Brown and Yule touch on a distinction which seems to parallel that 
between semantic and pragmatic meaning. 

That function which language serves in the expression of content we 
describe as transactional, and that function involved in expressing social 
relations we will describe as interactional. 

Whereas linguists, philosophers of language and psycholinguists have, in 
general, paid attention to the use of language for the transmission of 
‘factual propositional information’, sociologists and sociolinguists have 
been particularly concerned with the use of language to negotiate role-

                                                 
2 This binary subdivision of the functions of language is adequate for our present purposes. A 
finer taxonomy of speech functions due to Roman Jakobson (1960) identifies six functions: 
referential, emotive, conative, phatic, metalingual and poetic. 



European Research in Mathematics Education II 

 410

relationships, peer-solidarity, the exchange of turns in a conversation, the 
saving of face of both speaker and hearer. (Brown and Yule 1983, 1-4)3 

The importance of the transactional function of language in the teaching and 
learning of mathematics is self-evident. Michael Halliday, a linguist, leaves us 
in no doubt as to the educational significance of the interactional function. 

If we consider the language of a child, there is good evidence to suggest 
that control over language in its interpersonal function is as crucial to 
educational success as its control over the expression of content, for it is 
through this function that the child learns to participate, as an individual, 
and to express and develop his own personality and his own uniqueness. 
(Halliday, 1976, 197-8) 

Pragmatic meaning is the means frequently (though not necessarily consciously) 
used by speakers to convey affective messages to do with social relations, 
attitudes and beliefs, or to associate or distance themselves from the 
propositions they articulate. That is to say, pragmatic meaning is an important 
tool in fulfilling the interactional function of language. 

Shiffrin (1994) and Jaworski and Coupland (1999) give excellent surveys 
of a wide range of approaches to discourse which are particularly sensitive to 
pragmatic meaning and interactional function. The following sections of this 
paper give a necessarily brief overview of three contributions to pragmatic 
analysis. Each points to possible means whereby non-natural meaning might be 
conveyed by a speaker, and each will play a part in the scrutiny of a teaching 
episode towards the end of this paper. 

 

Speech Acts 

In the late 1950s, the Oxford philosopher John Austin gave some lectures on 
how speakers “do things with words”, and so invented a theory of ‘speech acts’ 
(Austin, 1962) which now occupies a central place in pragmatics. The essential 
property of speech acts is that they bring about (or have the potential to bring 
about) a change in some state of affairs. Paradigm examples include the naming 
of a ship, the joining of two persons in marriage, and the sentencing of a 
criminal. The name, the marriage and the sentence are what they are because an 
authorised person has declared them to be so. Austin distinguished between the 
locution of a speech act (the words uttered), its illocution (the intention of the 

                                                 
3 Grice and Austin demonstrate that philosophers of language are by no means exclusively 
preoccupied with transaction.  
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speaker in making the utterance) and its perlocution (its effects, intended or 
otherwise).  

Whereas declarative utterances typically have truth conditions, speech 
acts must satisfy certain ‘felicity conditions’ in order to ‘count’ as an action. For 
example, the felicity conditions for a question include the expectation that the 
enquirer doesn’t know the answer, that s/he would like to know it, and has 
reason to believe the hearer is able to supply it. Questions in classroom 
situations are curiously exempted from these rules (Labov and Fanshel, 1977).  

One aspect of speech act theory with significant pragmatic implications 
concerns indirectness. Three broad illocutionary categories are normally 
identified - statement, question and command/request - having typical 
realisations in declarative, interrogative and imperative verb forms. These 
agreements between intended function and realised form break down in 
‘indirect speech acts’, in which the outward (locutionary) form of an utterance 
does not correspond with the intended illocutionary force of the speech act 
which it performs (Levinson, 1983, pp. 263ff). Common forms of this are to 
declare a preference or to use an interrogative form in order to convey an order 
or request. For example: 

Teacher: I’d like to take in your exercise books. 
Diner: Can you bring me the wine list?  

These are both instances of how speakers frequently accomplish an indirect 
speech act by stating or questioning one of the felicity conditions (Gordon and 
Lakoff, 1971). The teacher explicitly states his wish to receive the books i.e. 
that s/he meets the felicity condition to do with speaker sincerity; the diner 
questions the ability of the waiter to provide the list i.e. s/he questions one of 
the preparatory pre-conditions. 

 

Politeness 

So why should speakers in general, and teachers in particular, be indirect in this 
way? 

One insight into such indirectness in classroom mathematics talk is 
provided by a sociolinguistic theory of ‘politeness’ developed in the late 1970s. 
This theory claims that speakers avoid threats to the ‘face’ of those they address 
by various forms of indirectness, vagueness, and so on, and thereby ‘implicate’ 
(hint at) their meanings rather than assert them directly. Politeness theory 
(Brown and Levinson, 1987) is based on the notion that participants are rational 
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beings, but with two kinds of ‘face wants’ connected with their public self-
image:  

• positive face - a desire to be appreciated and valued by others; desire for 
approval; 

• negative face - concern for certain personal rights and freedoms, such as 
autonomy to choose actions, claims on territory, and so on; desire to be 
unimpeded. 

Now some acts (‘face threatening acts’, or FTAs) intrinsically threaten face. 
Orders and requests, for example, threaten negative face, whereas criticism and 
disagreement threaten positive face. The perpetrator therefore must either avoid 
such acts altogether (which may be impossible for a host of reasons, including 
concern for her/his own face) or find ways of performing them whilst mitigating 
their FTA effect.  

Brown and Levinson identify and catalogue a number of related linguistic 
strategies, including quasi-interrogative commands (such as that of the Diner, 
above) which redress the threat to the addressee’s negative face, their 
autonomy, respecting their right to refuse. These include conventionally polite, 
indirect speech acts such as “Can you pass the salt, please?”. 

 

Hedges 

The linguist George Lakoff coined the term ‘a hedge’ for a word or phrase that 
makes a proposition “fuzzy” or vague in some way (Lakoff, 1972). A hedge can 
be categorised either as a ‘shield’ or as an ‘approximator’. 

Maybe, probably and possibly are examples of so-called ‘plausibility 
shields’, which stand outside a substantive proposition (e.g. ‘[Maybe] we should 
call a taxi’) and point to something less than complete commitment to it. One of 
the functions of shield-hedges is to protect the speaker from accusation of being 
committed to a false proposition (Channell, 1994). Incidentally, teachers more 
often use ‘attribution shields’ such as “so-and-so says that …”, distancing 
themselves from a proposition by attributing it to someone else. This is a 
pedagogical strategy which avoids ‘closing’ on a problem, in order to sustain 
discussion and invite a variety of proposals. For example: 

Teacher: John says you can’t divide 739 by 9. What do other people 
think? 

Approximators such as about, around and approximately, as well as sort 
of, kind of and basically, can, like shields, also have the effect of withholding 
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commitment to a proposition. They achieve this by inserting vagueness into the 
substantive proposition itself (e.g. ‘The taxi will be here in [about] ten 
minutes’).  

Here, a 14-year-old boy makes a prediction, but the vagueness of his 
answer suggests that it was far from secure: 

Allan: The maximum will probably be, er, the least’ll probably be 
‘bout fifteen. 

Allan hedges his prediction in two ways: the shield ‘probably’ is 
reinforced with the approximator ‘(a)bout’. The very act of complying with the 
teacher’s request for a prediction is a threat to Allan’s positive face, since he 
could be thought foolish if his prediction were subsequently found to be in 
error. The shield makes his lack of commitment explicit; use of the 
approximator ‘about’ is a more subtle protective strategy, for it renders Allan’s 
answer “almost unfalsifiable” (Sadock, 1977, p. 437). 

There follows a fragment from one mathematics lesson. The discussion of 
the interaction here focuses on the pragmatic meanings of some of the 
utterances within the text, with concern for the beliefs and attitudes of the three 
participants towards the subject-matter and each other. The choice of this 
fragment is to some extent determined by the ‘conjecturing atmosphere’ 
(Mason, 1988, p. 9) that permeates the episode. It is this factor, I believe, that 
makes the ‘conversation’ below a special kind of discourse. As I have argued in 
Rowland (1999b), such an atmosphere involves the student (and possibly the 
teacher) in taking risks, in articulating generalisations on the basis of partial 
evidence. Evidence of the management of such risks, by teacher and student, is 
to be found in pragmatic discourse analysis. The discussion which follows also 
involves reference to aspects of justification and proof which have not been 
previewed in this introduction, but will be familiar to researchers in 
mathematics education. 

 

Discourse analysis: Hazel 

Hazel, an elementary school teacher, describes 10-year-old Faye and Donna as 
able mathematicians who often work together. Her discussion with them is 
essentially an exploration of the following problem.  

Take three equally spaced numbers, such as 10, 13, 16. Find the product 
of the outer pair [10x16=160] and the square of the middle term 
[13x13=169]. The difference is 9. What will happen if you take other 
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similar number-triples? What if you take a common difference other 
than 3? 

Hazel’s conversation with the two girls falls into four episodes, the first of 
which is the main focus for this analysis: 

Episode 1: Investigation of the case when the common difference is 1 
[turns 1-61] 

Episode 2: Investigation of the case when the common difference is 2 
[62-105] 

Episode 3: Investigation of the case when the common difference is 3 
[106-120] 

Episode 4: Search for a higher-level generalisation which includes the 
three generalisations arrived at inductively in the previous 
episodes as special cases [121-160]. 

In every case Hazel’s instructions and requests to the two girls are presented as 
indirect speech acts, for example (there are many): 

17 Hazel: Shall we try it out and see what happens? Do you want to 
each choose your own set of consecutive numbers? 

66 Hazel: Right would you like to try out with ten, twelve and fourteen 
one of you and the other one can try another jump.  

130 Hazel: Can you tell me what the difference in the answers of the two 
sums that, the two multiplications you’re doing would be when you 
have a difference of four between each number?  

17 and 66 are on-record FTAs, ‘orders’ presented as questions out of 
respect for the children’s negative face, as Hazel imposes on their personal 
autonomy of action. These are conventionally indirect. She believes that the 
investigation will be a worthwhile, educative experience for them with a 
potentially stimulating outcome. Nonetheless she recognises the risk-taking 
which is inherent in her quasi-empirical approach, and that she requires their 
cooperation as active participants in the project as they generate confirming 
instances of generalisations-to-come. In [17] she says “Shall we try it out?”, the 
plural form including and identifying herself as a partner in the enterprise. In 
[130] she probes for a prediction, and realises the threat to the girls’ positive 
face - what if they fail to make a correct prediction, will their reputation as 
“good mathematicians” be dented? [130] respects their positive face, and the 
indirect modal form redresses the on-record FTA. These features of Hazel’s 
language are manifestations of her ‘sensitivity to students’ (Jaworski, 1994). 
Fallibilistic teaching, inviting conjectures and the associated intellectual risks is 
unimaginable if the teacher is not aware of the FTAs that are likely to be woven 
into her/his questions and ‘invitations’ to active participation. Redressive action 
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dulls the sharp edge of the interactive demands that this style places on the 
learner. For Hazel, notwithstanding her authority in her own classroom, the 
indirect speech act has become a pedagogic habit. 

Early in the conversation, Faye [9] observes a difference of 1 between 
10x12 and 112. Somewhat precipitately, perhaps, Hazel asks:  

10 Hazel: One number difference ... do you think that will always 
happen when we do this ...?  

Faye readily agrees, but Hazel, perhaps realising that she has not probed 
but has ‘led the witness’ seems to want to give them more of an option to 
disagree. 

12 Hazel: What makes you think that? Just ‘cos I asked it ... or ...?  

Donna gives hedged agreement [14]: Hazel invites her [15] to account for 
her provisional belief.  

14 Donna: I think so. 
15 Hazel: Why?  

Arguably this is a tough question - to account for a belief that one is not 
really committed to anyway. Donna’s justification [16] is phenomenological 
rather than structural. 

16 Donna: Well if um ... if it’s after each other like ten, eleven, twelve 
... um ... it will be one more because it’s one more going up.  

It is the basis of a subsequent higher-level generalisation at the beginning 
of Episode 2. 

62 Hazel: Okay. Right, what would happen if you had numbers that 
jumped up in two instead of one, so you had ten, twelve and 
fourteen?  

63 Faye: I think the answer is a two number difference. So two.  
64 Donna: Yeah, yeah. So do I. 

The substantive proposition in [63] - that there is a two number difference 
- is, in fact, false. By prefacing it with a Shield, Faye marks her utterance as a 
conjecture, withholding commitment to it. 

Returning to Episode 1: Hazel encourages the children to try out two 
more examples with three consecutive integers. They obtain a difference of 1 in 
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each case and Faye [27] affirms her belief (unhedged) that, as Hazel puts it [26], 
“that will always happen”.  

26 Hazel: Do you think that will always happen then?  
27 Faye: Yes.  
28 Hazel: How can you say for certain ‘cos you’ve only tried out three 

examples?  

Donna offers a brief diversion: 

35 Donna: I don’t think it will happen if you do like eleven, fourteen, 
twenty-two.  

36 Hazel: But you’re talking about the one that ... if you always have a 
set of three consecutive numbers will it work?  

Her “like eleven, fourteen, twenty-two” is a delightful example of a 
vague generality; what like-ness does she intend to point to with this single 
example? It is difficult to judge how Hazel interprets it, except that she takes it 
to exclude “three consecutive numbers” - and perhaps this is precisely what 
Donna intended to convey through her example. Evidently ‘consecutive’ is a 
useful but neglected item in the mathematical lexicon.  

Faye brings the discussion back on course with a request for a what 
philosophers of science might call a ‘crucial experiment’ (Balacheff, 1988) - 
testing the conjecture with an example well outside the range so far considered, 
to explore the extent of its validity. 

38 Faye: I’d like to try it out in the hundreds. 

Donna’s choice for the experiment seems to be guided by Hazel:   

39 Hazel: [to Donna] You want one difference between each of those. 
If you’re going to start with a hundred you could have a hundred and 
one, a hundred and one and a hundred and two. Would you like a 
calculator ...? 

Faye makes an independent choice [60] of 110, 111, 112: 

51 Faye: I still get one number different.  
52 Hazel: So that ... so do you ... will it always work d’you think?  
53 Faye: Yeah ... I think.  
54 Hazel: How can you be sure?  
55 Donna: Umm  
56 Faye: [laughing] Well ...  
57 Hazel: Are you sure?  
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58 Faye: Well not really, but ... 
59 Donna: Quite yeah.  
60 Faye: I think so. Yeah quite sure. Because it has worked because 

we’ve done ten, eleven ... Well I’ve done ten, eleven, twelve, nine, 
ten, eleven which are quite similar and then I’ve jumped to, um, um 
... a hundred and ten, a hundred and eleven, and a hundred and 
twelve. It’s quite a big difference. So yeah?  

61 Donna: Yeah so do I.  

By this stage Hazel seems reluctant [52] to influence their commitment to 
the generalisation (the ‘it’ that ‘always works’). Faye’s intellectual honesty is 
very evident here. Her crucial experiment [60] provides another (presumably 
weighty) confirming instance of the generalisation [51] yet her assent to it is 
still hedged, partial [53]. One senses that Hazel has created, or nurtured, a ‘Zone 
of Conjectural Neutrality’ (Rowland, 1999b) in which Faye understands that it 
is the conjecture (‘it always works’) which is on trial, not herself. She is free to 
believe or to doubt. Nevertheless, her ‘well’s [56, 58] indicate that she senses, 
perhaps, that it would be easier if she agreed - that agreement would better 
respect Hazel’s positive face wants - for Hazel would gain satisfaction from 
Faye’s coming-to-know. 

 

Conclusion 

Classroom talk is a rich resource for the analysis of students’ cognitive 
structuring of mathematics, in which student errors are a particularly rich basis 
for conjectures about fundamental mathematical misconceptions. Such analyses 
provide essential diagnostic insights into individual knowledge construction. 
Reports of such analyses are typically set within a framework of knowledge 
about mathematical cognition. This may be of a general kind, to do with 
concept formation, abstraction and so on, or related to knowledge about the 
construction of knowledge in particular topic areas such as fractions or 
functions. 

Concern for more interactional features of the classroom, such as 
students’ propositional attitudes and teachers’ sensitivity to their students’ self-
esteem, necessitates rather a different set of lenses and analytical tools from 
which to view texts. Linguistic tools which focus on pragmatic meaning have 
significant potential for text analysis in mathematics education, especially in 
research into social and affective factors in the teaching and learning of 
mathematics. Further evidence of this potential is given in Rowland (1999b). A 
recent paper by Bills (2000) explores the prevalence, purpose and effect of a 
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range of politeness strategies in mathematical dialogue involving a teacher and 
two 17-year-old students.  

Any analysis of classroom interaction involves the selection and 
application of analytic perspectives, and pragmatic tools are as yet novel in the 
field of mathematics education. It will be interesting to see what further insights 
they yield for researchers as they come into more general use, what the 
pedagogical application of such insights might be, and whether teachers 
perceive them as valuable. 
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Abstract: This paper is based on an exploratory study aimed at providing a 
better understanding of the teaching process. By analyzing interactions between 
teachers and students in a particular situation (Race to 20), we developed a 
model for examining teachers’ didactic action. This model is rooted in a 
number of theoretical concepts in French didactics, i.e. topogenesis and 
chronogenesis management, monitoring the didactic contract, the devoluting 
and instituting processes. The teaching process is considered from a theoretical 
standpoint involving three levels of description: the fundamental structures of 
the didactical relationship, the types of tasks teachers have to meet the demands 
of that relationship, and the classes of techniques they have to produce in order 
to carry out those tasks. Through the use of this model, we emphasize the 
necessity of considering these different types of techniques as mixed techniques 
that are shaped by the different constraints of the teacher’s action inside the 
didactic relationship. 

 

Introduction 

1. Teachers’ action 

1a. General purpose 

This paper is based on an exploratory study, aimed at providing a better 
understanding of the teaching process. The research published on this topic in 
the past few years is plentyful, and has been conduced from different points of 
view. In this paper, attention must be paid to two distinctive features of our 
work. First, this exploratory study is based on an empirical observation of 
student-teacher interactions. These interactions are scrutinized using a fined-
grained analysis method, and they are characterized both in "natural" language, 

                                                 
1 For a description of a didactical use of this game, see Brousseau (1998), chap. 1. 
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and in the theoretical language of mathematics didactics. Second - and this is a 
crucial point - we do not consider the teachers’ action from a prescriptive 
viewpoint. We try to account for teachers' specific rationality. This means we 
do not evaluate and deplore the gap between their actual practices and some 
"right way of teaching" pronounced by the “authorities”. Our point of view is a 
descriptive, comprehensive, explanatory one.  

1b. Human action, the teachers’ action  

We cannot mention all of the general features of our theoretical framework for 
analyzing the human action. Only, an outline of such a frame can be given. We 
consider human action, and more specifically a teacher’s action, to be as 
follows. Action is expressed in terms of dispositions, which are elaborated by 
adaptation to particular situations. Didactic institutions are settings for these 
situations. 

In order to understand the teacher’s action, let us first state some features 
of its general structure as it is modelled in this paper. In paragraph 4b, this 
structure will be described in greater detail. In a general way, we shall say that 
the teacher’s work consists of initiating, establishing, and monitoring the 
didactic relationship, which is a ternary relationship between the teacher, the 
students, and knowledge. In doing so, the teacher has to produce and apply 
numerous techniques, which are usually communicative techniques. We call 
these techniques didactic techniques. So, if we want account for the teacher’s 
action, we have to describe, understand, and explain the techniques used to 
teach, i.e., to enable students to appropriate knowledge. 

 

2. The theoretical concepts of the model 

In order to describe the teacher's work, we will use the theoretical framework in 
French didactics, developed by Brousseau (1998) and Chevallard (1999). As 
Brousseau (1998, p. 19) says: “[...] what is at issue... is to describe certain kind 
of human relationships in such a way the concepts of didactique are made to 
appear in order to serve as useful means to description [...]”. These concepts 
will be presented as Brousseau or Chevallard defined them. 

 

2a. The didactic contract  

In the didactic system (built from three subsystems: the teacher sub-system, the 
knowledge content subsystem, and the student subsystem), “[...] a relation is 
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formed which determines - explicitly to some extent, by mainly implicitly - 
what each partner, the teacher and the student, will have the responsibility for 
managing, and, in some way or other, be responsible to the other person for. 
This system of reciprocal obligation resembles a contract. What interest us here 
is the didactical contract, that is to say, the part of the contract which is specific 
to the ‘content’, the target mathematical knowledge.” (Brousseau, 1998, p. 31). 
Brousseau suggests that “[...] this interplay of obligations is not exactly a 
contract, [because] it cannot be made completely explicit. There are no known, 
recognized, sufficient ways of allowing the construction of new knowledge of 
or ensuring, against all resistance, the student's appropriation of the target 
knowledge.” (Brousseau, 1998, p. 32). So Brousseau emphasizes the following 
point: “The theoretical concept in didactique is therefore not the contract (the 
good, the bad, the true, or the false contract), but the hypothetical process of 
finding a contract. It is this process which represents the observations and must 
model and explain them" (Ibid.). In our modelling of the teacher action, we 
have to use the dual concept of adidactic situation and setting (named “milieu”, 
in Brousseau, 1998) which is related to the didactic contract. 

 

2b. The adidactic situation and the setting 

An adidactic situation is a learning environment designed by a teacher. Three 
criteria for this. First, the student must not be conscious of the teacher's 
intentions about the knowledge. Second, the student is engaged in a game 
“bringing together a ‘milieu’ and a 'player', with this game being such that a 
given piece of knowledge will appear as the means of producing winning 
strategies" (Brousseau, 1998, p.57). Brousseau thus presents the milieu (the 
setting) as “the system opposing the taught system” (Ibid). We emphasize these 
point: the setting in a non didactical situation is incapable of provoking learning 
at all, most of didactical virtue being contained in the didactic contract; the 
student interaction with a setting can be expected to provoke the expected 
adaptations and learning when imbedded in a didactical contract i.e. in an 
adidactic situation. Thus, and this is the third criterion, the students must be 
aware of this: the setting is designed by a teacher, and knowledge acquisition is 
the expected effect of playing the game. Such an adidactical situation (the Race 
to 20), and its setting are presented later in this paper, so that these definitions 
will no longer be abstract.  

We’ll use these concepts in a description of the teacher’s action. In fact, 
the teacher can be considered as someone who, at all times in the didactical 
relationship, is trying to build a setting for the student's action and to ensure that 
the student has elaborated the right relationship to that setting. We will see that 
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a very large set of didactic techniques are ones we can call the setting 
establisment techniques. 

 

3. The teaching tasks 

3a. Monitoring adidactic situations: the devoluting and the instituting 
processes 

In order to learn, the student must become engaged in the learning situation and 
build a relationship with the setting that defines this adidactic situation. 
“Devolution is the act by the teacher makes the student accept the responsibility 
for an (adidactical) learning situation or for a problem, and accepts the 
consequences of this transfer of this responsibility.” (Brousseau, 1998, p. 230). 
In our model, the devolution process is one of the fundamental structures of the 
teacher’s action. Another fundamental structure of this action, symmetrical to 
devolution, is the instituting process, when “[the teacher] defines the 
relationships that can be allowed between the student's 'free' behaviour or 
production and the cultural or scientific knowledge and the didactical project; 
she provides a way of reading these activities and gives them a status.” 
(Brousseau, 1998, p.56).  

Devoluting and instituting processes are two sorts of teachers' tasks in 
monitoring adidactic situations. They are subtle processes in the didactical 
relationship, running through the whole learning-teaching process.  

 

3b. Managing the didactical contract: topogenesis and chronogenesis 

The core of a learning-teaching process can be viewed as follows: 

a) At any time in this process, the teacher and the student have a specific set 
of tasks to carry out their mathematical works. This division of didactical 
labour has been called topogenesis (Chevallard, 1991). Each participant 
in the didactical relationship has a topos, i.e. a specific set of tasks to 
accomplish, which define his position in the didactic system. These 
reciprocal positions develop throughout every learning-teaching 
processes. Topogenesis monitoring is synonymous with producing and 
managing teacher's and student's topos.  

b) In order to describe the development of the teacher and the student 
mathematical works, Chevallard (1991) proposed the concept of didactic 
time. That is the time of the teaching progression through the study of 



European Research in Mathematics Education II 

 424

knowledge. In fact, the teacher’s action is constrained by the necessity of 
presenting to his students a body of knowledge, part by part, shaped for 
teaching. So, in their action, teachers have to give a certain amount of 
time to pieces of knowledge, in order to cover its content. When teachers 
give up some item of knowledge, replacing it by a new one, they produce 
an unit of didactic time. This type of monitoring implies an efficient 
pacing (Mercier, 1992, 1995; Sensevy, 1996). Chronogenesis monitoring 
is synonymous with producing and managing didactic time.  

We can now consider the didactic contract as rooted in two dimensions of 
teachers’ action. First teachers have to ensure the running of didactic time, i.e. 
monitor the chronogenesis; second, at every moment in this chronogenesis, they 
have to make the reciprocal positions of the student and the teacher clear, i.e. 
monitor the topogenesis.    

 

4. Empirical study 

4a. Race to 20 

Brousseau designed and used it as a paradigm to introduce most of the main 
features of the Theory of Didactical Situations. The game is played by two 
players. The first player says “1” or “2” (for example, "1");. ); the other 
continues by adding 1 or 2 to this number ("2" for example) and saying the 
result (which would be "3" in this example); the first person then continues by 
adding 1 or 2 to this number ("1" for example) and saying the result (which 
would be "4" in this example); and so on. Each player tries to reach "20". The 
winning series for one player (2, 5, 8, 11, 14, 17, 20) is 20 modulo 3 i.e. the 
numbers p=20-3*n. The quotient of the division 20÷3 gives the number of 
stages which is necessary to win (20 ÷ 3 = 6 means there are 6 steps to reach 
20); the rest of this division gives the "starting" number (for the race to 20, 2). 
The race to 20 (by adding 1 or 2) is a peculiar case of the general race to n (by 
adding (p, or p -1, or p - 2, …, or 1). Brousseau organized several phases in the 
teaching process based on this game, referring to different types of adidactical 
situations (action, formulation, and validation). 

 

4b. Methodology  

This paper is based on a study of 5 lessons in the Race to 20, given in the 5th 
grade by 5 teachers (4 regular teachers, 1 student teacher). The methodological 
device and procedure was as follows. The researchers gave the teachers a text 
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that described the Race to 20. It was a simple description of a few lines, without 
the "solution" and without any theoretical or mathematical terms, similar to the 
description we presented above at the beginning of paragraph 3a. In order to 
make sure the teacher understood the meaning of this text, the researcher played 
the game with the teacher, without giving any information. It was the first time 
the teachers came in contact with this situation. 

Then the researcher asked teachers to organize a mathematics lesson 
based on this game in their classroom. Teachers werefree to design the lesson as 
desired. The methodology of this study, mainly designed by Schubauer-Leoni 
and Leutenegger (1997), and Leutenegger (1999), can be summarized as 
follows: a) Each teacher engaged in a “preactive” interview called the 
"anteinterview" (before the lesson), in which he/she was asked about his 
intentions regarding the lesson. b) The lesson was videotaped, and 
transcriptions were made of the audio part of the videotapes. c) Each teacher 
engaged in a “postactive” interview (immediately after the lesson). This 
interview was conduced "blindfold" i.e., by a researcher who had not seen the 
lesson. d) A final interview was conduced several weeks after the lesson. It was 
used a self-confrontation interview based on videotape (or the transcription) of 
the lesson, for the teacher confrontation with his/her own teaching. 

In the present paper, we describe this methodology to situate the general 
context of this study, but we do not utilize all its possibilities. Rather, we focus 
our analysis on a single lesson, produced by a particular teacher. 

 

4c. Three classes of techniques 

In this paragraph, we present three fundamental classes of techniques. They are 
grounded on what we considered the three fundamental functions of the 
teacher's didactical action: elaborating the topogenesis; managing the 
chronogenesis; establishing the setting. 

The description of the teaching techniques is organized as follows: the 
left part of the table is devoted to the transcription of classroom interactions and 
the right part is devoted to the simple description of this action in "natural 
semantics" (i.e. in the words of someone "familiar enough" with the action). 
After this, the same action is analyzed from our theoretical viewpoint. The 
teacher is a experienced teacher who has elaborated the lesson in alternating 
phases of pair work, group work, and whole-class debate. 
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A topogenetic technique: a move of devolution  

In a general way, the devolution produced in this lesson (and in the other 
"Race to 20" lessons studied) is a devolution of the correct action to play the 
game. 

 So you have to play two rounds 
and then, w'll try to figure out, uh, 
can we try to figure out who will 
be the winner... and when we 
know that? 

Indication of the number of rounds to play 
(re-using of a relevant feature in a student's 
sentence). 

Incentive to predict (anticipate the winner) 
and identify (when we know that). 

68 Well I don't know  Affirmation of ignorance.  
W'll try to find the rule... Ok, it 
works, we try to go... 

Indication: use of the term "rule". 

 
150 Ah! You think it comes from the 

starting number. 
Monitoring a dialogue (you think) and 

indication: introduction of a meaning specific to 
the game, "starting number". 

152 Therefore, you think it's this way? Incentive to develop a logic argumentation  
(therefore). Asking for a confirmation. 

154 Well, I don't know, we have to 
see. 

Affirmation of ignorance. 
 

Devolution is a process. This process runs through the whole learning-
teaching process. Here, the technique of devolution was characterized by a 
"topogenetic boundary" change: the teacher said, "well I don't know", or "well I 
don't know, we have to see". Thus, by affirming his "ignorance" (true or false, it 
does not matter), he emphasized a certain symmetry with the students in this 
didactical work. We can consider this as an up-down topogenetic move: the 
distance between the students' topos and the teacher's topos is reduced.  

On the other hand, the topogenetic move could be a bottom-up one, and 
increase the topogenetic distance. For example, when the teacher said "for me, I 
would like to listen to the Reds" (the "Reds" are one of the groups into which 
the teacher has split the class), he increased the distance between himself and 
the student: he acted as an expert who focused the student's attention on a 
particular point. In contrast when he said, "well I don't know", or "well I don't 
know, we must see", the teacher stood in a (ficticious) researcher's position. He 
acknowledged a certain kind of ignorance for himself, which legitimatized the 
students' ignorance and urged them to take on a searcher's position. In saying 
that, the teacher meant "I, who most of the time knows very well what I am 
teaching, I move to a searcher's position, and I seek an answer which I don't 
possess a priori. Therefore we have to search." We, i.e. you. Of course, teacher's 
ignorance was fictitious, for he announced, at the beginning of the lesson, that 
he was able to win "all the time". This up-down topogenetic move is a 
technique for managing the didactic contract in a devolution process: the 
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students have to search because the (winning) "rule" or the "starting number" 
are new pieces of knowledge; when the teacher indicated them his declaration 
of ignorance "gave some space" to the students. 

We can analyze this technique in the following way: the teacher made a 
sign to the students, and this sign had to be interpreted inside the didactical 
contract specific to the adidactical situations. It is a weak form of the Topaze 
Effect, which we can call Topaze Indication. The teacher did not suggest the 
right answer directly, but at least for the students able to understand the specific 
codes of this didactical contract, suggested the proper way to work: search for 
the "rule" and the "starting number". This point raises an interesting issue, the 
question of the epistemological habitus2 the students need to communicate 
successfully with the teacher. 

We would like to emphasize a last point concerning this technique, a 
crucial point: it occurs when the students are confronted with a question (the 
"starting number") which is fundamental for mathematical understanding of the 
game. Thus, didactical techniques are not only linguistic and communicative, 
but are rooted in mathematical setting. We can conjecture that such topogenetic 
techniques are produced at mathematically critical times. 

 

A chronogenetic technique 

In the ante-interview, when we asked the teacher about the difficulties the 
students might encounter, he (and the other teachers interviewed in this study) 
stressed on the problem of a students’ hypothesis about evenness of the winning 
series. Actually, the students did not have many means of acting on numbers.  

When they were asked to characterize a number, they could think of 
evenness, because for these students, this is the only relevant property for speak 
about numbers (for example, they do not master the notions of multiple and 
factor). Therefore, before the lesson, the teacher was waiting for students to 
focus on this topic. His strategy for dealing with this point was elaborated in 
three steps. 

First, at the beginning of the lesson, when certain students were searching 
in the direction of even numbers, and when some among them proposed this 
winning series (2, 4, 6...) they were ignoredby the teacher, who seemed to listen 
to them with only one ear and did not take up their argument. 
                                                 
2 On the notion of habitus, see Bourdieu (1990); on the notion of didactical habitus see 
Mercier (1986, 1992), Schubauer-Leoni (1988), Schubauer-Leoni and Perret-Clermont 
(1997), Sensevy (1998, 2000), Mercier, Sensevy, Schubauer-Leoni (1999). 
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Second, after several minutes of the lesson, the teacher was working 
among the groups (the class was broken down in 4 student groups) and he 
reacted specifically to the problem: inside a group, a student thought that 11 
was a winning number but an other student in the same group was an advocate 
of the rule “every even number is winning”. Then the teacher brought out the 
contradiction, as follows:  

 

185 
 
 
189 
191 
 
193 

You, you are thinking of even numbers, 
he, 11; it's not an even. I don't know  
You, you use even numbers. 
 To go to 14, you are playing only pair 
numbers?  

And he is playing 11, thus…  
 

 
 
focus on the contradiction 

Third, later in the lesson, the problem was brought up again. Conducting 
the debate, the teacher gave more room to the even series proposal, as follows: 

203 They have, wait, they have another 
theory. It's the even number theory, 
that's right. 

A competing theory is named. A virtual 
confrontation is organized, the term "theory" 
is enacted 

 

The first time, the teacher did not react. The second time, the teacher 
drew the student's attention to the contradiction that involved evenness. The 
third time, the "conjecture" was named a theory. In order to understand this, we 
can propose the following interpretation. 

The third time, in the teacher's mind, the discovery of the winning series 
was almost made: so he could bring up the even numbers idea. Contrary to the 
situation at the beginning of the lesson, there was no risk of weakening the "true 
theory". Instead of that, the teacher could conjecture that the discovery of the 
winning series would be strengthened by the discussion.   

Obviously, the "resonance" of the teacher i.e., the way the teacher seizes 
or does not seize the students' answers (Comiti, Grenier, Margolinas, 1995; 
Comiti & Grenier, 1995) depends on the chronogenesis. In other words, a given 
student's statement is not taken into account at time t1, is considered in a certain 
way at time t2, and in an other way at time t3: these different reactions are 
grounded on the progress of the didactic time.  
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A setting establisment (mesogenetic) technique 

In the learning-teaching process, the teacher has to establish the setting in which 
the student works. The following episode can be analyzed as a particular way of 
doing so. 

155 
 
 
 
 
156 

Student: Yes yes, look at this! This is the 
infallible numbers! When we were beginning …
The teacher: So, wait, wait, stop stop stop, you 
are engaged already… So, shh! Please…Thus 
you already have some series and for, of, you… 
You try to use the infallible strategy by 
comparing your, your series. 

 
 
 
A new task is designated 
 
Seizing of the term " series" 
Proposing the term "infallible 
strategy" 

 

We prevously used the notion of "Topaze Indication", in this case we can 
use the notion of "Jourdain Indication". This notion was illustrated when the 
teacher seized and used a word produced by the students ("infallible" numbers), 
and used it - this is the actual Jourdain indication - together with a meaningful 
teacher's word ("strategy"), in order to create the new relevant meaning of 
"infallible strategy". 

This episode is illustrating the concept of "mimetic postulation" 
(Sensevy, 2000). Communication between two persons is grounded in the 
necessity, for a person, of considering the interlocutor as the same person 
oneself. If the teacher allows himself to cover the student’s meaning (infallible) 
by his own meaning (the infallible strategy), it is because he postulates that the 
conceptual distance between the two expressions is small enough to be travelled 
by the student.3 Thus, the didactical relationship seems to increase the 
fundamental constraint of all types of communication: if I want him to learn, I 
must consider the student I teach as a rational person, who shares already with 
me the rationality that I want him to build.4 

From a didactical viewpoint, this technique allows the teacher to organize 
the confrontation of the students' statements and monitor it (Schubauer-Leoni, 
1997). If this technique is powerful enough, the setting changes: the teacher 
brings in the milieu some meanings that the students need to consider, and that 
they have to evaluate. Therefore, the establishing the setting consists, among 
                                                 
3 In psychological terms, this communicative form can be explained by using the concept of 
the zone of proximal development. (Cf. Vygotsky, 1962). 
4 This is an anthropological and didactical use of the "principle of charity" described in the 
analytical philosophy (see for example Davidson, 1984). In this way, the Platonian paradox 
of the Meno can be overstepped in the temporal action of teaching (Mercier, 1996). 
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other features we cannot mention in this short paper, of diffusing the relevant 
statements of the students, if need by changing them! 

 

4. The model 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This model is produced from three levels of description of the teacher 
action. The first level of description (LD1) concern what we call the structures 
of the didactical relationship. The second level (LD2), according to Chevallard 
(1999), is the level of what we call the teaching tasks. The third level (LD3), 
which is the main topic of this paper, referred to the different classes of 

LD2. Types of Teaching Tasks 
 
dénomination (the language of 
the game) 
organization of the action in the 
milieu 
analyze of the action (dialogic, 
strategic) 
organization ot the interaction 
integration of the objects 

LD3. Classes of Chronogenetic  
Technics 
 
- control/demarcation : 
postponing/slackening 
incitation/acceleration 
… 
- chronogenetic moves 
- management of the didactical 
memory 
- … 

LD3. Classes of Topogenetic  
Technics 
cooperation 
- building of the unity of the 
class 
- topogenetic 
partition/differentiation 
- topogenetic moves 

LD3. Classes of Setting up the milieu 
Technics 
 
Jourdain indication 
Topaze indication  
setting up communication formates  
… 
management of objects and symbols 
(ostensives)  
… 
 

LD1. Define/ Manage 
the topogenesis – the chronogenesis 
the work in the situation (the relation to the milieu 
of the situation) 
Monitor  
the devoluting/ instituting processes 

Structures 
of the action  
in the didactical 
relationship 
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techniques. This model is grounded on the study of "race to 20" lessons, but it 
could be, and it aims to be, a more general model of the teacher's didactical 
action in mathematics. 

It is not possible to describe neither the prominent feature, nor the 
wholeness of teaching techniques or monitoring tasks. However, we want to 
emphasize two points: 

a) There is no bijection techniques/tasks. Several techniques of different 
natures (chronogenetic, topogenetic, setting-up the milieu) may converge 
towards a specific task. We have to remind that the tasks themselves are 
not isolated, but are included in a functional system of tasks, a way of 
teaching. 

b) Perhaps the more crucial point of this model: the techniques specify 
themselves reciprocally. This feature is a consequence of the very nature 
of the didactical action: teaching involves the pacing of didactic time 
(chronogenesis), the monitoring of topogenesis, and managing the 
effective pupils' relation to the setting. Most of times, it is not possible to 
isolate one of these types of action: the relevance and the efficiency of 
didactical proceses are grounded on "mixed techniques", oriented by the 
functional structures of the didactical relationship.  

 

Conclusion   

In conclusion, we would like to recall the prominent features of our way of 
modelling the teacher’s didactical action. 

In order to understand and to explain the teacher action, we think that we 
have to: 

• clearly identify the teacher action as functionally structured by the 
necessities of the didactical relationship 

• describe his activity in terms of types of tasks responding to the fact that 
the didactical relationship is grounded on communicative acting 

• understand that these tasks are most of time accomplished by mixed 
techniques, in which a particular status of the chronogenesis and the 
topogenesis (status that the teacher produces in cooperation with the 
class) specify (and is specified by) the work in progress about the 
knowledge. 
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FORMS OF INTERACTIVE CONSTRUCTION 
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Abstract: The acquisition of new knowledge represents a theoretical and 
practical problem for the learning and understanding of mathematics. The 
central meaning of the interactive construction of actual new knowledge will be 
discussed referring to the theory of “collective learning processes” (Max 
Miller). This concept will be used for a qualitative analysis of episodes [of 
elementary teaching] under an epistemological perspective. The analysis will 
lead to three forms of interactive construction of new mathematical knowledge. 

 

1. Introduction: Concrete visualizability or structural universality as the 
basis of mathematical understanding? 

The common conception is that elementary school mathematics should be 
taught in a visual manner, with concrete material and direct references to the 
students‘ experiences. It is naturally proceeded on the assumption that the 
concrete visualizability of the learning material is the very thing to stimulate a 
sensible understanding of mathematics. But which particularities can be 
observed when carefully analyzing the actual course of interactive learning and 
teaching processes and when comparing them with regard to “concrete 
visualizability” and “arithmetic-structural universality”? 

An important question of a research project*) tries to understand 
elementary school students‘ possibilities of constructing new mathematical 
knowledge in common interactions, of accomplishing exemplary 
generalizations as well as of explaining new mathematical relations with their 
own words. 

Elementary school students are not able to construct new mathematical 
knowledge including the necessary generalizing reasons with the common 
concepts of elementary algebra and to operate with the yet unknown 
knowledge. For them, the new mathematical knowledge is tied to situative 
learning and experience contexts. When trying to generalize arithmetical 
relations, the children have to develop their own situative descriptions. Still, 
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they are able to see the general in the particular and to name it with their own 
words. 

Geometrical-intuitive and arithmetical-structural learning environments 
(with questions to ”figurate numbers” (triangular, rectangular, and square 
numbers) as well as, among others, to ”crossing out – squares” and ”number 
walls”) have been conceived in order to stimulate these interactive construction 
processes. Both types are substantial, i. e. profound problems that are rich in 
relations (cf. Wittmann 1995), which make many activities and forms of 
reasoning possible for the children. The (eleven) teachers participating in the 
research have constructed teaching material of their choice, out of the conceived 
learning environments, and have carried out short teaching units (of maximally 
5 lessons; 47 lessons have been documented in 3rd  and 4th grades in the area of 
Dortmund). 

 

2. New mathematical knowledge in interactive learning processes 

For every theory of learning and acquiring knowledge, the question what the 
core of the new knowledge consists of respectively how the newness of the 
knowledge yet to learn can be characterized is of central importance. The 
sociologist Max Miller (1986) makes this problem of the emergence of the new 
the central starting point of his learning theory of “collective argumentation”. 
He says: “Any learning or developmental theory can ... legitimately be expected 
to give an answer to the question how the new in the development can emerge. 
... Every answer to the question ... is... bound to the following validity criterion: 
it has to show that the new in the development presupposes the old in the 
development and still systematically exceeds it, otherwise there can be no new 
respectively the new is already an old, and the term »learning« or 
»development« loses any sense” (Miller 1986, p. 18). 

Miller adds three important questions: “How can ... the validity of his 
already acquired (old) knowledge ... be shaken or relativized for the single 
individual? How can the single individual make new experiences that 
systematically exceed his present knowledge? And how ... can there be an 
obligation for the single individual to further develop his knowledge ...?” 
(Miller 1986, p. 18/19). On the one hand, these questions aim at the problem of 
actual new knowledge which is not yet present in the old knowledge – for 
example as a mere schematic or logic deduction -, and on the other hand, they 
trace the social conditions under which it is possible for young people to 
construct this pretentious knowledge. 
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In entirely individualized ”learning processes” that are limited to the 
single student and his cognition, the individual can but add knowledge derived 
from his present knowledge basis, which  – according to Miller – therefore is no 
new knowledge, but identical with the old. Only interactive processes make it 
possible to potentially develop new knowledge by contrastings, contradictions 
and new interpretations. ”Only in the social group and because of the social 
interaction processes between the members of a group, the single individual can 
make those experiences that make fundamental learning steps possible” (Miller 
1986, p. 20/21). 

In the following it will be represented, with reference to teaching 
episodes, how, in interactive knowledge constructions, socially constituted 
epistemological qualities of mathematical knowledge have consequences to the 
effect if real new knowledge is constructed or if, after all, it is a matter of 
knowledge identical to the old one. The central problem lies in Miller’s 
statement: ” ... it must show that the new in the development presupposes the 
old in the development and still systematically exceeds it ...” (Miller 1986, p. 
18). 

 

3. Differences of interactive knowledge constructions in the frame of 
geometric and arithmetical learning environments – exemplary 
episodes 

Visual material plays a central role for the acquisition of mathematical 
knowledge in elementary school. Attention must be paid to the fact that they do 
not work automatically, but have to be actively interpreted and structured by the 
children. ”There is no direct way from the visual material to the student’s 
thinking, at best different difficult detours. The property of the number 3 is not 
visible at three smarties or three Lego bars, as if the child through simple 
contemplative observation could derive it. It is an abstraction, which ... does not 
work by merely leaving out the supposedly unimportant” (Lorenz 1995, p. 10). 
This abstraction has to be managed by the child itself after all, by reading new – 
yet invisible – relations and structures into the visual material. 

In traditional mathematics teaching, arithmetical exercises are mainly 
assessed under the perspective of a mathematically correct procedure (Winter 
1982). In the frame of substantial learning environments, not the algorithmic 
procedure, but the underlying algebraic structure is stressed as the essential 
basis of the development of arithmetical relations. Separated packets of 
calculation tasks or “multi-coloured dogs” (Wittmann 1990) do not contribute 
to that; productive exercises in which an operative structure or a substantial 
problem organizes the arithmetical structure are needed. Then arithmetical 
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exercises can be filled with meaning and illustrated in exemplary relations by a 
wired arithmetical structure. 

The sketched orientation to the essential aspects of geometric–intuitive 
and arithmetic –structural learning environments constitutes an important 
starting point for the analysis of the interactive construction of new knowledge 
in exemplary episodes. 

 

3.1.  Pierre and Caroline determine the ninth square number with dot 
patterns 

Patterns of dots are to be used structurally as geometrical-intuitive reference 
domains for the interpretation and development of arithmetical relations. In 
contrast to this, the following empirical procedure of the children could be 
observed in many episodes to the topic ”figurate numbers”: the dots usually 
served the children as concrete marks to directly count numbers. The collection 
of many single dots dominated, and it was counted step by step with partly more 
effective strategies; the intended structure was not actively constructed. 

Pierre and Caroline, for instance, determine the demanded numbers by 
direct counting strategies with the help of consecutive concrete, square dot 
fields – which they draw themselves – in one episode. Together, they have 
constructed the 5., 6., 7. and 8. (square) dot field completely and always found 
the demanded number by counting dot by dot. The determination of the number 
of dots in subsequent patterns shows a refinement of the strategy from a ”direct 
counting of all dots in the completely drawn pattern” to an ”additive 
determination of all dots from the number of the inner (old) dots and the outer 
(new) border dots.” 

An optimization of the strategy of further square numbers can be 
recognized which can be classified as “empirically – counting procedure”. The 
use of the dot field remains bound to the old knowledge; the single points are 
directly counted exclusively. A real new relation in the numbers or a 
geometrical structure in the dot field is neither constructed nor used. 

 

3.2.  Christopher and Nico determine the sixth rectangular and triangular 
numbers 

In this lesson, the children examine the relation between triangular and 
rectangular (oblong) numbers. The dot fields for the first five rectangular 
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numbers (divided by color into two triangular configurations) have been noted 
on a big poster on the blackboard together with the numbers of each triangular 
or rectangular number. Now it is about determining the numbers and the 
configuration for the sixth position. 

91  Ch I noticed something. 
92   Ch Up there it goes four. Then it goes six. Then 

it goes eight. And then it goes ten. [At this 
point, T indicates on the left side of the 
board first the number 20 and then the 
number 30.] Then it goes twelve. [T now 
points at the empty field below the number 
30.] Therefore there should be thirty-two on 
the other seventeen [2 seconds break] ohm, 
forty-two should be on that an on the one 
twenty-seven. 

Christopher names the number series 4, 6, 8, 10, 12. He apparently refers 
to the second column [that the teacher points at]. He seems to have in mind the 
respective growth between the numbers, out of which he deduces the new 
numbers 32 and 17 (93). In the left number column, he has constructed a 
number bigger by 2, in the same way as he does in the right column: from 15 to 
17. He corrects the numbers to 42 and 27; both numbers are raised by 12. 

94   T I see. You mean ..., that’s quite an interesting idea, Christopher. You 
mean, here should be a forty-two? [points at the empty field below the 
number 30] 

The teacher confirms and enters this number. 

96   T Yes. And there? [points at the empty field below the number 15 at the 
right side of the table] 

97   Ch Twenty-seven. 

Christopher repeats once again that the “27” should go in the other spot. 
Then teacher asks for a justification, but Christopher cannot give one. Then the 
teacher calls Nico. 

100  T No? ... Nico. 
101  N Twenty-one. 
102  T Why do you think twenty-one? 
103  N Because twenty and twenty are forty [points at the ten‘s place of  

”42”] and one and one are two [points at the unit’s place of ”42”] 

Picture
1

3

6

10

15

1.
2.

3.

4.

5.

2

6

12

20

30



Working Group 4 

 439

Nico claims ”21” and reasons with a ”calculation”: 20 plus 20 equal 40, 
and 1 plus 1 equal 2. 

The analysis of Christopher’s knowledge construction shows that he 
develops a continuation principle for the 6th rectangular and triangular number 
out of the present arithmetic pattern. By enumerating the series 4, 6, 8, 10, 12 is 
meant exemplarily that the difference between the rectangular numbers always 
grows by ”2”, and therefore ”12” has to be added to the 5th number now. This 
addition of ”12” is transferred to the triangular number, and ”27” is determined 
for the 6th triangular number. Christopher constructs a general arithmetic 
relation between the rectangular numbers and transfers it directly to the 
triangular numbers. This connection is inferred solely from the arithmetic 
structure; it is not proved, for instance by referring to the geometric pattern of 
the rectangular numbers. 

In Nico’s knowledge construction, the rectangular number “42” is halved 
exemplarily, first the ten and then the one. The connected intention – the 
triangular number is half of the matching rectangular number – is pronounced 
explicitly; the argument is limited in a tight form only to the procedure of the 
arithmetic halving. 

Both students actually construct new knowledge, which cannot be derived 
from present one; they produce new arithmetic, structural relations, which were 
not used or known in this form before. It is striking that these knowledge 
relations are limited to the arithmetic number symbols, without using a 
connection to the geometric configurations. 

Using the geometric relation between triangular and rectangular numbers, 
the question why the locally observed structure is really general and why it 
could be ”always” continued could be answered. The produced new knowledge 
constructions are largely detached from the geometric problem; it is apparently 
only about arithmetic particularities and structures. 

 

3.3.  Kim justifies why the magic number is always ”66” 

In this teaching episode, the children work at in an arithmetic – 
structural learning environment on ”crossing out number squares” 
that are constructed by adding given border numbers of a table; 
they have the following quality: one can circle three arbitrary 
numbers so that there is one and only one circled number in each 
row and each column. The sum of such three numbers, no matter 
which choice, is constant. In this example, the constant “magic 

12

+ 13 9 4
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18

23 19 14

25 21 16

31 27 22  
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number” is “66”. The children are to do a worksheet and try to give a reason 
why the “magic number” is always ”66”.  

10   Ki [shows the teacher the 
first page of her copy-
book with the “magic 
formulas” and explains 
the solution] Mhm, we 
know it now -, now. One 
can divide the six-, one 
can divide the sixty-six 
into three different 
things # 

12   Ki # Always. And one can 
do that very many times. 

14   Ki So that there are nine solutions. And if one, like, takes the twenty-
two, the twenty-one and the, whatever, then the result is always sixty-
six. Or if one takes the thirty-one, sixteen and the nine -, ... nineteen, 
then the result is sixty-six again. [Kim, her partner, and the teacher 
appear on the screen] 

Kim comes to the teacher and tells her reasons. She imagines that the 
”66” is divided into three different ”things”; this could be done several times, 
until one had nine ”things”. The teacher agrees and then asks why the result is 
not 77 or 100. Kim answers that in this particular square, there were the very 
numbers to obtain the 66; and if one wanted the magic number to be 77, one 
would have to choose other numbers for the square. Later, she exemplarily 
gives numbers to prove this. 

Kim’s construction of the particular number square contains the idea of 
an “inversion”: The magic number is not the “subsequent” result of an 
arithmetic rule; it is put at the beginning of the construction of a number square. 
Therefore the sum of three circled numbers is always “66”. The “equation” 

+ + = 66  was only understood as a rule to calculate the magic number so 
far. But Kim now interprets this connection so that the circled numbers can be 
found out by dividing the number “66” into three numbers. 

This construction represents actual new knowledge. Even if the 
construction done by Kim is not directly realizable, and requires the division of 
the magic number into 6 border numbers, it can be interpreted as a construction 
of real new knowledge which is not merely detached from the given problem 
but which extends the arithmetic structure of the given magic square and makes 
it more understandable. 

12

+ 13 9 4

10

18

Magic Formula 1:

Calculate and fill
the table!

Compare with your magic square!

23 19 14

25 21 16

31 27 22
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4. Different forms of constructing mathematical knowledge: rule or fact 
knowledge, problem-oriented relational knowledge and problem-
separated relational knowledge 

In the research project, 39 comparable teaching episodes with interactive 
constructions intended meanings as well as generalizations of mathematical 
knowledge in elementary school were analyzed thoroughly. In doing so, three 
different types of interactive knowledge constructions were determined: (1) 
knowledge constructions which occur almost exclusively in the frame of 
already present fact knowledge in situative, empirical contexts; (2) 
constructions of actual new knowledge, maintaining an interrelation with the 
mathematical problem context; (3) constructions of new general knowledge 
relations which are detached from the present problem connection. 

In the first example, Pierre and Caroline do not produce real new 
knowledge; they draw bigger and bigger concrete dot fields and count the 
amounts of dots; in doing so they produce further fact knowledge on the basis 
of present fact knowledge [type (1)]. 

In the second example, Christopher and Nico develop new arithmetic 
relations in the frame of existing number series; they leave the geometric-
structural context in which a justification would have been possible. They 
produce problem-separated relational knowledge [type (3)]. 

The third episode exemplarily shows the construction of new, problem-
related knowledge [type (2)]. Kim constructs a new relation between the 
numbers in the magic square and the magic number, which is based on the 
present problem context, produces a new structure and therefore conveys new 
insights. 

From an epistemological perspective, the construction of real new 
mathematical knowledge presupposes the production of a new relation or 
structure between elements of already familiar knowledge (cf. Steinbring 1999, 
2000). This fact represents an important link between the social-interactive 
constructions and the epistemological conditions of mathematical knowledge. 
The kind of knowledge construction is determined only by interactively 
interpreting the epistemological nature of the mathematical knowledge 
elements. Dot patterns have been dealt with ambiguously in the interaction: On 
the one hand, they were often interpreted as concrete, empirical objects, to 
directly and schematically count demanded numbers where it was not rec-
ognizable that the “... new in the development systematically exceeds the old 
...” (Miller); on the other hand, geometric configurations often were not paid 
attention to, so that the construction of a relation in arithmetic patterns could 
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lead to new knowledge which did not show how the “... new in the development 
presupposes the old in the development ...” (Miller). 

The arithmetic symbols are often seen as mere parts of calculation 
problems which are to lead to certain results; but when those problems are 
calculated, arithmetical symbols can get new interpretations in the interaction: 
They can embody structures and relations in an exemplary way. Such changed 
interpretations have happened several times in the interaction. In doing so, it is 
shown in an exemplary way how real new knowledge can emerge interactively 
in elementary teaching, and how  “... the new in the development presupposes 
the old in the development and still systematically exceeds it ...” (Miller). For 
the mathematical knowledge – epistemologically consisting of structures and 
relations – this dualism of a “presupposition with simultaneous exceeding” can 
be realized by socially constituting a new knowledge relation in the old 
knowledge context. 

 

Remark 

*) The project: “Epistemological and social-interactive constraints of 
constructing mathematical knowledge structures (in elementary teaching)” 
and the work reported on in this paper were supported by the German 
Research Community (DFG): Grant No. STE 491/5-1 & STE 491/5-2. 
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Abstract: This paper deals with some issues concerning the activation of senses 
in algebraic expressions. Given the theoretical distinction between sense and 
denotation of an algebraic expression, the activation of senses can bring one to 
correct or incorrect solutions, depending on several factors. In particular we 
stress the relevance of the “sign component”, as observed in most common 
errors in solving inequalities. 

 
 

1. Introduction 

There is evidence that the use of symbolic expressions can be a relevant cause of 
difficulties to students at different school levels. If we look at the historical 
evolution of algebra, we see that rhetoric and syncopated algebra (i.e. algebra 
totally expressed by words and algebra expressed by a mixture of words and 
symbols) have been quite easy to use and understand. On the contrary, in a 
symbolic system the meaning of words and operations can stay behind the 
scene, since the symbolic language has the power of taking away most 
distinctions that are preserved by the natural language. Because of this 
specificity, the symbolic language expands its applicability but induces a sort of 
semantic weakness. It seems that such language is suitable for many contexts, 
without belonging to any one in particular. Hence the origin of the gap between 
symbols and meanings, which is confirmed by the rigid (stenographic) use of the 
algebraic code by many students. It often happens that some students are able to 
control the underlying meaning only when they make use of rhetoric or 
syncopated algebra. 

The “rhetoric” method seems to be used spontaneously (Harper, 1987) 
and does not depend on the level of instruction. 
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2. The theoretical framework: an outline 

The introduction and use of symbols and symbolic expressions have been 
widely discussed by semiologists. In previous papers Arzarello et al. (1994, 
1995) have referred to Frege’s semiotic triangle (Sinn; Bedeutung; Zeichen) to 
distinguish between sense and denotation of an algebraic expression. 

By algebraic expression we mean: 

a) terms i.e. constants and/or variables and their combination by means of 
the  symbols for operations; 

b) propositions and/or propositional functions constructed by the use of 
terms and predicates (for instance 5+3=8 is a proposition, x-2>0 is a 
propositional function). 

The denotation of an expression is the object to which the expression refers, 
while the sense is the way in which the object is given to us (see the example by 
Frege concerning the two different senses of Venus, namely as Esperus, the 
night star, and as Phosphorus, the morning star: the two expressions have the 
same denotation, but different senses). 

An algebraic expression incorporates in its writing the mathematical 
object involved (the denotation) and the way in which such an object is 
expressed (see Fig. 1) 

                                                         E 
 
 
 
                                       D                                    S 

E = Expression 
D = Denotation (the number set represented by the expression) 
S = Sense (the way in which the denoted set is given) 

Fig.1 

For example the expression x²-1, when considered in N, denotes the 
numbers which immediately precede a squared number: the expression x²-1 can 
activate the sense of computing x² and subtracting 1, but also, for example, that 
of considering the area of a square, decreased by one. Hence, the same 
expression, denoting the same object, can have different senses ( see Fig. 2) 
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                                                         E 
 
 
 
                                   D                                              S’ 
  
                                                                              S’’ 

Fig.2 

Two expressions (for instance x2-1 and (x+1)(x-1)) can denote the same 
object but emphasize two different ways to calculate the denoted object, i.e. two 
different senses. So, there is one denotation and two different senses expressed 
by two different symbolic expressions (see Fig.3). 

                                                       E1 
                                                                     E2 
 
 
                                   D                                           S1 
                                                                           S2 

Fig.3 

So mathematics, as well as natural language, has plenty of expressions 
which have the same denotation. Moreover, many times in mathematics and 
particularly in algebra, expressions incorporate their sense in a concise way. 

Algebraic transformations can produce expressions with different senses 
and the same denotation (i.e.  x(x+1), which becomes x2+x, or x2-1 which 
becomes (x+1)(x-1)). They are invariant with respect to the denotation of the 
symbolic expression they act upon, because they can change the sense but not 
the denotation of the symbolic expression itself.  

The converse is not true. If two different expressions have the same 
denotation, they are not always reducible to each other by algebraic 
transformations (for example the two equations x²+2=0 and x²+5=0, when 
considered in R, denote the same object, i.e. the empty set, but they are not 
reducible to each other by algebraic transformations). Sometimes, it may be very 
difficult for students to conceive this invariance and difficulties in grasping the 
equivalence of two given equations (inequalities) can be interpreted as 
difficulties in recognizing the invariance of denotation (the truth set of an 
equation) with respect to the variance of sense (Bazzini, 1997).  
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The capacity to master sense and denotation seems to be at the very core 
of algebraic thinking. Furthermore, the passage from one sense to another is 
fundamental in doing algebraic manipulations. 

Interesting insight into the dynamics of algebraic thinking are provided by 
the analysis of students’ behaviour when facing the activation of senses. 

Examples of good activation of senses are described in Arzarello, Bazzini 
and Chiappini (1994). On the other hand, several errors observed in students at 
work show very clearly the activation of incorrect senses, as witnessed by the 
example below.  

 

3. Example of activation of incorrect senses 

Stefania is a student attending the second year of the Liceo Scientifico, a 
scientifically oriented high school, in Italy. She has received traditional 
teaching. She gets good scores (7 or 8 out of 10), but, notwithstanding her 
success, she does not feel very confident with mathematics and regularly goes to 
do mathematics with Rossella, a middle school teacher, who is deeply involved 
in maths education research.  We do not know if her insecurity is the only reason 
why she likes being in contact with Rossella, or if she understands that there is 
something else behind the mathematics she learns at school. 

Here a dialogue between Stefania and Rossella, in a non-classroom situation: 

R. writes 
y = x³ + 6x 
y = x³+ 3x² 

and says: ”Compare these two functions, that is, try to say when the value of 
one function is greater than the value of the other one.” 

S.: I would make a system (and she puts { ) 
{  y=x(x²+6) 
   y=x(x+3) 

R.:  Solving a system means finding the common solution of the two equations, I 
have asked you  just to compare,  that is saying when, for example, x³ + 6x > 
x³+ 3x² 
S.: And y, where does it go?, Ah, it is the solution. 
R.: It doesn’t matter 
S.: So, why is there a y and then it disappears? 
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R.: If you consider the system, you have y=y, thus also x³+6x = x³+ 3x², do you 
agree? 
S.: Yes 
R.: So, go on. 
S.: I should solve the inequality 

x³+6x> x³+ 3x²-3x²+6>0    
-3x(x-2)>0   -3x>0 ! x<0      x-2 >0!x>2 

0        2 
------------------------- 
   +          -            - 
    -         -             + 
    -         +            - 

0<x<2 

R.: What does that mean? 
S.: Perhaps, if I substitute a value which is between 0 and2, the equality is true. 
But I don’t know if is true,  or whatever. That is, maybe the inequality is true. 

We observe that, at the beginning of the interview, the writing 

y= x³ + 6x 
y= x³+ 3x² 

activates the incorrect sense of solving a system, according to previously 
acquired experience.  

Later, during the whole interview, Stefania tries, without success, to make 
sense of the symbols in front of her.  

Incorrect behaviours like those of Stefania have induced us to guess that, 
given the theoretical framework outlined above, the sign component can be the 
origin of mistakes. 

Following this hypothesis, we have tried to investigate the most common 
errors, with special attention to inequalities. The study has included interviews 
with a sample of thirty secondary teachers and the analysis of students’ 
behaviour. 

The interviews aimed at pointing out different approaches in introducing 
inequalities and noticing the common errors students make when meeting 
inequalities. 
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4. The case of inequalities: approaches and behaviours 

A wide range of approaches in introducing inequalities emerges from the 
interviews, but it is worth noticing that equations and inequalities are always 
introduced in sequence, i.e. firstly equations and secondly inequalities. 

It is important to recall that in the Italian school system, inequalities are 
taught to students of 16 or 17 years of age. 

Furthermore, the Italian secondary schools are divided among many 
different specialisation fields. Therefore, we interviewed a group of teachers, 
belonging to different types of high school (for details see Bazzini and Ascari, 
2000). 

The different methodologies adopted by these teachers seem to offer a 
quite complete scenario of the different possible approaches. 

The teachers were also asked to illustrate the most common difficulties of 
students. They reported that the typical errors are the following: 

1. Eliminate the common denominator. 
x
x
−
+
3

2 1
<0→ x − <3 0 → <x 3 

2. x 2<4→ < ±x 2  
3. − > → > −x x3 3 
4. Question: “How many solutions does the inequality x-3>0 have? 

Answer: “One, x>3” 

All these answers can be interpreted in terms of incorrect relation between 
sense and denotation of the given expressions. Such an incorrect behaviour 
probably derives from the role of the "sign" component, which, if taken just on 
the surface, can induce the activation of the sense of "equation". All the teachers 
agree that most of the difficulties arise from treating inequalities as equations 
(we call it “the ghost of equation”). Research findings indicate that students tend 
to multiply both sides of an inequality by a negative number without changing 
the direction of the inequality. In a wider sense, several researches suggested 
that students apply  procedures that are valid in the context of equations for 
solving inequalities even though they are not necessarily applicable (e.g., 
Tsamir, Almog & Tirosh, 1998). 

There is also reported evidence that students are inclined to reduce 
algebraic rational expressions without checking the limiting zero cases. They 
also tend to multiply by the denominator in both equations and inequalities 
without taking into consideration the zero cases or the negative cases. 
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55ax x
a

< ⇒ <

Following these suggestions, additional investigation was planned. About 
one hundred thirty students attending high school in Italy were requested to fill 
in a questionnaire, in the framework of a research study involving Italian and 
Israeli students (Bazzini-Tsamir, 2001). 

The analysis of the tasks reported below (n. 6, 7, 12 in the questionnaire) 
provide further data about students' performances. 

Task 6  
Check the following implication:  

 

Task 7 
Check the following implication: 
 

 

Task 12 
Solve the inequality , x being the variable and a the 
parameter. 

In both tasks 6 and 7, students were asked to determine the equivalency 
and to justify their claims. Task 12 dealt with the same issue in a different 
manner, asking the students to solve a similar given parametric inequality. 

As far as Task 6 is concerned, about a quarter of the Italian ones gave the 
correct answer; ”false”.  In their justifications, about 15% provided a 
justification, with reference to the sign of 'a'. Most students, while correctly 
limiting the range for ‘a’, said nothing about zero or negative ‘a’s.  The other 
participants who justified these “false’ responses explained, for instance, that 
“for negative ‘a’s the direction of the inequality should change, for a=0 it is 
impossible to divide by ‘a’, but for positive values the given implication is 
correct.” . 

The answers relating to equations are mainly concerned with a ≠ 0, like in 
the case of equations. 

Most Italian participants (around 90%) correctly responded to Task 7. 
However, on a closer look, there is evidence that most students gave the correct 
answer with wrong justification. In particular, justifications such as, “the answer 
is ‘false’, because ‘a’ might be zero and it is impossible to divide by zero”, or 
“there is no restriction about the need to have non-zero ‘a’” were most prevalent.  
The high percentage of those who related only to a ≠ 0 confirms the persistence 
of  the "ghost of equation".  

( )5 2 1a x a− > −

55ax x
a

< ⇒ < ; 0a R a∀ ∈ ≠

a R∀ ∈
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Task 12 was solved correctly by a low percentage of Italian students 
(around 15%) The analysis of incorrect solutions gives evidence that in most 
cases students did not consider the range of value of the parameter 'a' at all. A 
non-negligible number excluded only non-zero values, claiming, for instance, 
that “for a ≠ 5 x>(2a-1)/(a-5)”.  They solved the inequality with routine 
procedures, the same as the ones they adopted for equations. 

 

5. Discussion and implications 

Our data confirm the results by Tsamir et al. (1998) and Maurel and Sackur 
(1998). 

Tsamir et al. point out wrong analogies between the solution processes 
valid for equations and those for inequalities, on the basis of a questionnaire 
submitted to 160 high school students, after three months of training on 
inequalities. 

They observe that the structural similarity between the two entities 
(equations and inequalities) creates a strong intuitive feeling that the strategies 
held for solving equations should hold for inequalities as well. They claim that 
intuitive beliefs successfully compete with the formerly acquired knowledge. 

From our perspective, such kinds of errors are deeply rooted in the 
complex relationship between the sign, sense and denotation of a given 
expression. Furthermore, such errors may be influenced by the sign, which 
induces the students to activate a sense stored in memory on the basis of 
previously acquired knowledge, but not in accordance with the intended 
meaning of the sign in that given situation. For example, when a student asserts 
that  

x2 > 4 ! x2 > + 2  

there is evidence that the graphical sign recalls the procedure adopted for 
solving equations, which is stored in memory, but is not appropriate in this case. 
Here the sign activates a familiar procedure, which is valid in situations like  
x2 = 4, which resembles x2>4 as far as sign is concerned. In this case (x2 >4 ! x 
> +2) there is a distorted relationship between sign and denotation. 

In this perspective, we can also include the errors which identify the 
equivalence of equations (inequalities) with their algebraic transformability. The 
student activates a known procedure without checking its applicability. We 
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could speak of routine procedures, which in this case are not the first step 
towards solution, but rather a repetition of routine mechanisms. 

At this point two main questions arise: 

1. Which introduction of equations and inequalities should be adopted to 
avoid (or at least to limit) such kinds of errors 

2. Which control should be applied in the procedure. 

As far as point 1 is concerned, we believe that the first approach to 
equations and inequalities is fundamental. In our view, equations and 
inequalities should be treated simultaneously and not in sequence. In fact, 
introducing firstly equations and secondly inequalities usually implies that 
solving procedures valid for equations, remain predominant also for inequalities. 
As a consequence inequalities are considered as a sort of “pathologic equations” 
and treated as such. The link between sign and denotation is totally distorted. 

Moreover, we suggest that equations and inequalities should initially arise 
from problems of modeling. 

Coming to point 2 (the problem of control), Maurel and Sackur (1998) 
suggest that procedures for solving inequalities can be controlled in two ways: 
by using a different representation register and by assigning specific numerical 
values to check the validity of the given inequality. In addition, Chiappini 
(1998) points out the emergence of difficulties in keeping a close control of the 
symbols >. <, =. In his view, the main difficulty is in the passage from working 
with propositions (typical of arithmetic) to working with propositional functions 
(typical of algebra). In fact, in the former case the “truth-judgement” can be 
easily obtained by looking at the proposition itself; in the latter, such judgement 
has to be outstanding until the number set which allows such judgement has 
been identified. The didactical problem consists in developing the awareness of 
the outstanding judgement. 

In conclusion, we recognize that in situations where the teacher develops 
a suitable discourse, the pupils verbal and mathematical abilities are thereby 
developed. 

This helps students to switch from one conceptual frame to another and to 
activate suitable senses. 

The ability to do this is a very important part of the development of 
mathematical thinking. 
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As a consequence, it is vitally important for the teacher to appreciate the 
underlying theoretical concepts and to be able to arrange the didactical situations 
to take advantage of students present knowledge in order to develop it further. 
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Abstract: The project forms part of our long-standing efforts to investigate 
cognitive processes with respect to the formation of mathematical concepts and 
problem solving. The project being presented here is to involve the examination 
of the mental processes undergoing in term rewriting (algebraic manipulations). 
Term rewriting forms the central mathematical technique which represents a 
significant source of difficulty in understanding and errors of schoolchildren in 
(school) algebra. Looking at it from the aspect of basic research, the way in 
which a mental model of the problem to be solved is formed and subsequently 
applied by the person being under examination is to be investigated. It will be 
differentiated whether a static model formation is being aspired to or whether 
the mental model and the processing tools relating to it should model the 
process of the formula manipulation. Here, we refer to the theories of Schwank 
(1993a) in which predicative and functional cognitive structures are 
differentiated. The examinations are to be carried out in the form of clinical 
interviews. The problems are constructed in such a way that the conclusions on 
the cognitive structure of the person being under examination can be drawn 
from the interpretation of the interviews, as well as from the performance in the 
specific problems. 

 

1. Theoretical Background 

Even though computer algebra systems (as for example Derive, Mathematica) 
advance into mathematics lessons, the capability of recognising structures in 
complex formulas, developing strategies for formula manipulation and 
successfully converting them into solutions is still a basis for the handling of 
demanding components in algebraic school mathematics. In spite of decades of 
efforts in mathematical education, a considerable number of pupils in 
mathematics lessons in grades 7-10 (at school) does not achieve the necessary 
skills in formula manipulation as needed in the field of term rewriting, equations 
and fractions. Our examinations belong to the field of analysis of processes of 
the formation of mathematical concepts. This demands an interdisciplinary 
starting-point for our research, where methods and results of mathematical logic 
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and foundations of mathematics, as well as of mathematics education and 
cognitive psychology have to be combined.  

The analysis of pupils’ behaviour when carrying out term rewritings 
reveals two directions in which this can be theoretically backed up. One 
direction refers to a mathematical subject analysis. Two different viewpoints can 
be taken here, either a semantic one, emphasising the algebraic structure, or a 
more syntactic one, focussing on the form of the terms. Another line of 
reflection refers to mental processes. 

According to the above-mentioned differentiation of the two viewpoints 
either the process of understanding as regards content can be looked into, or the 
way in which a mental model of the formula manipulation task to be solved 
develops in a person’s mind and which intellectual mechanisms have to 
interlock with one another in this complex thinking performance. 

Research in mathematics education has up to now been more concerned 
about the aspect of (semantic) understanding and less about the cognitive 
processes, how formula representation and formula manipulation work in 
people’s minds. As our project is meant to contribute to this neglected aspect, 
we will put the main emphasis on it when explaining the theoretical background. 

 

1.1. Semantic Aspect 

Subject analysis in mathematics education in the field of term rewriting is 
mainly executed under the semantic aspect and this matter is dealt with in the 
field of didactics of algebra. Vollrath (1995) provides a good overview of these 
didactic approaches. He also gives a list of psychologically oriented work in 
mathematics education based on the concept of understanding. For a few years, 
there has been an increasing number of work which analyses the link between 
formula manipulation and reference of meaning (Vergnaud et al., 1988, Kieran, 
1991). Considerations of mathematical logic are also included in the didactic 
analysis. The differentiation of “sense” and “meaning” according to Frege 
(1892) is, for example, used in order to describe difficulties of pupils (Arzarello 
et al., 1994; Drouhard, 1992). 

 

1.2. Syntactic Aspect 

Contrary to the widespread opinion in mathematics education that pupils’ 
activities as regards formula manipulation were to be attached to the frame 
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“abstract”, we are convinced that the primary problem for the pupils is to work 
with formal objects in a concrete and combinatory manner (Cohors-Fresenborg, 
1979). 

If you analyse the difficulties which pupils have in rewriting complex 
terms according to the rules, several partial problems can be isolated: First of all, 
it involves to locally choose a partial term from the complex term, for which a 
rewriting rule exists. Secondly, the rule has to be applied correctly and finally, 
taking strategic points of view into consideration, it has to be decided which rule 
has to be applied for which part of the term. So-called formulas for term 
rewritings in solving equations, as pupils in grades 7 to 10 have to use and 
understand at school, can be analysed from the basic point of view by those 
means which are subsumed to the concept “calculus” (in various special forms). 
The dealing with term rewritings when solving equations can be reconstructed 
by means of canonical Post calculi (Cohors-Fresenborg, 1977, pp. 78). The 
central technique when using calculi consists of replacing one particular partial 
word in a complex expression - regarded as a word within a specific alphabet - 
by another according to a calculus rule. 

Lowenthal (1985) carried out investigations with children in mathematics 
education under the aspect of “nonverbal communication devices” as regards the 
use of formal rule systems. The calculus was represented as definite playing 
material. He was able to prove that even primary school-children were highly 
productive in using this type of mathematics. 

 

1.3. Cognitive Aspect 

The significance of the cognitive point of view in mathematics education was 
mainly founded by Davis (see Davis & McKnight, 1979). His work 
“Understanding ‘Understanding’” (Davis, 1992) gives a summary of cognitive 
oriented mathematics education. Basic research in mathematics education in the 
field of the formation of mathematical concepts is still in its initial stage. We 
think that the theory of Schwank (1986, drawn up 1993a; as regards EEG-
examinations see Moelle, Schwank et al., 2000) considerably contributes to this. 
As our investigations are mainly based on this theory it is briefly described in 
the following: 

1.3.1. Predicative versus Functional Cognitive Structures 

The theory proposed by Schwank states that when constructing a cognitive 
structure the (syntactic) type of the means of expression has a special cognitive 
significance. Dualism is taken into consideration in the type of mental model in 
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the theory construction. She differentiates a predicative and a functional 
cognitive structure: 

A preference for a predicative cognitive structure in a given situation 
means the expression of a static relation or the focussing on the structure and its 
description. A preference for a functional cognitive structure only has few 
relations and analysis of structures at its disposal, but a distinctive consciousness 
for processes and thinking in ways of effects. As relations and descriptions are 
not fundamental for such a cognitive structure, the interest in exact and precise 
descriptions is not very well developed. 

When first looking into Schwank’s theory, it is often presumed that this 
theory only uses different expressions than that of Anderson (1983), who 
differentiated between declarative and procedural knowledge. Schwank’s 
theory, however, describes the logical nature of the objects of knowledge 
representation, according to which Anderson’s theory can be used on a meta-
level. She therefore demands to expand Anderson’s theory by a dual part. There 
is also declarative knowledge about actions (not only about relations) and, vice 
versa, procedural knowledge about logical relations (and not only about 
operations) (Schwank 1993b, p. 252). 

Examples from Mathematics Lessons 

Teachers who are familiar with this theory told us that they often find examples 
where the distinction “predicative versus functional” helps to understand the 
differences in mathematical argumentation of their pupils. 

Example 1: 
Pupils of grade 10 were asked to write down their imaginations of the function 
which is given by n(x) 0 x x 0 x= = − = ⋅  . 

A girl wrote: 
n(x) x x= −  

This is my imagination as x x 0− = , and according to my opinion, there should 
be an x  in a function. 

A boy wrote: 
I think n(x) 0=  is the most sensible as the number x disappears in the 
function and 0 is the result. The function does not need x. Even without 
any number x, the machine could produce the correct result.  

The girl’s reply concerns the level of formal presentation, not the process of 
computing. The boy claims that x has not got any effect on the result and 
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therefore should not occur in the definition of the function n. The teacher 
assumes that the girl is predicative and the boy functional (Sjuts, 2001). 

Example 2: 
The following was part final examination before leaving school for university: 

Given three points ABC which form an equilateral triangle. Let M be the 
centre of the circumcircle. The triangle ABC is completed to a regular 
tetrahedron by the point D. Give reasons why the point P, which has got the 
same distance from all four corners of the tetrahedron, lies on the line through M 
and D. 

A girl wrote: 
The point P, which has got the same distance from all the four corners of 
the tetrahedron, must lie on the line through M and D, as this is a regular 
tetrahedron. If this tetrahedron was to be drawn into a sphere, the points 
D, C, A, B would be points that would lie on the surface of the sphere. The 
centre of the sphere would also be the centre of the tetrahedron. This 
centre of the sphere lies on the line through M and D, as this line goes 
exactly through the centre of the sphere.  

Another girl wrote: 
As M has got the same distance from A, B and C – as already mentioned 
above – the process for the construction of P can be imagined in such a 
way that M is pulled on a string, which describes the line through M and 
D, in the direction of D. The distance from M to A, B and C therefore 
increases regularly and the distance from M to D decreases. The “pulling 
of the string” ends when the distance from D to M is exactly as big as that 
from M to A, B and C. This point, however, is not longer M, as it describes 
the centre of the circumcircle of the triangle ABC, but P. Therefore, P lies 
on the line that goes through M and D. 

1.3.2. Predicative versus Functional Use of Calculi 

Let us now analyse how the process of the use of rules as regards calculi looks 
like when different cognitive structures (predicative versus functional) are taken 
as a basis. The decisive question when looking for a suitable conversion is what 
is used for orientation. We supposed that, in general, people with a preference 
for a predicative cognitive structure had an advantage when using calculus rules: 
This obviously concerns the case that, when using a rule, a given sample of 
symbols has to be recognised. This means finding a rule which changes the 
structure and using it syntactically correct. In case of a predicative mental model 
formation, attention is to be directed to the differences in the characteristics 
which apply to the single symbols before and after the use of the rule. 
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Comments during working will contain a lot of exact descriptions of the features 
which denominate the object of interest. The use of a rule causes the 
replacement of the characteristics of single symbols. The subjects’ attention has 
to be directed to the exact understanding of the predicates and their replacement 
relations. We imagine a mental model following Klix’ considerations (1984) on 
the hypothetical structure of a natural concept (see Schwank’s analysis, 1993a). 

For the situation described here, i.e. rules have been completely 
formulated by elements of object language, there is also a possibility for 
intellectual processing which manages without the described way of concept 
formation about characteristics as a necessary prerequisite. The aim is not 
primarily the changing of symbols in their predicates, but the organisation of the 
shifting, acquisition and modification of symbols. For the intended transport of 
symbols, you do not have to look for a suitable rule by understanding all 
predicates of a chosen part term and then by looking for a suitable term, but by 
taking the existing rules as patterns which are pulled over the word that is being 
worked on, e.g. from left to right, until a part sample fits to a premise of a 
calculus rule in question. The conclusion of fitting is from the logical point of 
view also the conclusion of applicability of a two-digit predicate, but in this case 
a very elementary predicate is concerned, i.e. the syntactic equality. Perhaps it is 
only regarded as a one-digit predicate, i.e. if the attention is only directed to a 
specifically chosen symbol pattern. When an applicable rule has been found in 
this way, term replacement is possible by only using manipulations on the level 
of object language. Comments during working will contain less exact 
descriptions of the features which denominates the object of interest, but will 
often be satisfied with pointing formulations, such as “this there”, “that there”, 
“over there” while the mouse is being moved. 

This description is to show how a functional cognitive representation of 
problem formulation and its processing can be imagined. 

Statement:  
Rules: Predicative Proof: Functional Proof: 
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The problem shown above has been designed by us in such a way that it 
gives rise to a resonance from a predicative or functional cognitive structure and 
then produces a predicative or functional mental model. The rules suitable for 
the processing in the model are also available: 

In a predicative mental model of this problem, the subject thinks that the 
demand of this problem is to work on the characteristic of the object in the first 
or last position respectively. The subject furthermore mainly looks for such rules 
by the use of which characteristics of an object can be replaced: 

The first symbol of the starting term is triangular and red, the first symbol 
of the last term is square and yellow. Rules have to be found which replace 
triangles by squares and red symbols by yellow ones. R5 is one of those. Before 
it can be applied the colour of the second symbol has to be changed using R10. 
Before the colour of the first symbol can then be replaced by using R6, the 
prerequisite for the application of this rule has to be created by means of R9. 
The application of this rule also changes the shape of the last symbol at the same 
time. R1 is used to change the colour of the last symbol, R10 that of the middle 
one. 

A subject with a functional mental model regards the problem as a 
problem of movements. Attention is drawn to rules by which movements can be 
organised: 

If you look from the starting term to the last term, you realise that the first 
symbol has moved to the back and the last one to the front. Rules have to be 
found which enable such movement. R11 is one of those, but it needs a green 
circle as a tool. The introduction (and later on the deletion) of this tool allows 
the application of R8. After use of R11, the red triangle has to move on. This is 
possible with the help of R3. Now the yellow square is on its way which is 
continued by means of R2. 

 

1.4. Mathematical Modeling 

The interaction of a preference for a 
predicative versus functional cognitive 
structure, an external form of 
representation and a mental model is 
described by the concept of αβγ-automata 
guided by preferences. These have been 

introduced in the discussion about an adequate mathematization of the concept 
of action by Walburga Rödding (1977). This theory was then expanded in order 

Outside world
α β

γ
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to describe learning processes (Cohors-Fresenborg & Schwank, 1983; Schwank, 
1987). In case of an αβγ-automaton guided by preferences, a preference for 
predicative versus functional structures is concerned, if out of possible α, β, γ-
transitions predicative versus functional transitions are preferred. 

 

2. Execution of Pilot Studies 
2.1. Development of Test Design 

A computer supported test design has been developed, which offers term 
rewriting problems for processing by subjects. In the problems, the terms have 
not been made up by letters and arithmetic symbols (in order to factually and 
emotionally move away from school mathematics), but consist of graphic 
symbols which differ in several characteristics (e.g. colour, size, shape). 

The subject has to solve every problem by term rewriting using the given 
rules. During this process, the part term which has to be substituted first has to 
be marked in the term. After that, the intended rule has to be clicked. The rule is 
automatically implemented. If the chosen rule cannot be applied, the subject is 
informed correspondingly on the screen. Rule applications can also be cancelled. 
The computer programme records the individual steps having been made by the 
subject (movement of the mouse, selection of the part term which has to be 
worked on by clicking, clicking and implementation of rules, time point of these 
activities). 

 

2.2. Examination Design 

The examination is to be carried out as a video documented, clinical interview 
with single subjects of grades 7/8. 45 minutes are planned for the processing of 
the problems on the computer. For the evaluation, transcripts are being produced 
from suitable parts in order to analyse the verbal comments. 

In order to assign a cognitive structure to each subject independent from 
these analyses, the test QuaDiPF (Schwank, 1998) is additionally applied in a 
second examination lesson, also as a video documented, clinical interview. 
Assignment is made by the analysis of verbal comments. QuaDiPF (version A) 
was also used for EEG-examinations (Moelle, Schwank et al., 2000). 
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2.3. Consequences from Pilot Studies 

The implementation of several pilot studies, both with pupils of grades 7/8 and 
with university students, has shown that as per the problems employed the 
original idea cannot be maintained, i.e. the subject does not consequently use the 
rules of a certain type according to his/her preference. The analyses proved that 
subjects in spite of the mentioned strategy – allowing conclusions regarding a 
preference for one cognitive structure – use rules in certain situations which are 
also possible but which we have assigned to another cognitive structure. As a 
result the problems have been revised. Furthermore, the problems and the rules 
included therein have been changed in such a way that no situation can arise in 
which the order of the use of rules is virtually determined (as with Markov-
Algorithms) and therefore the “choice” of the use of rules would not have any 
diagnostic value. 

The question how, according to the analyses of a use of a rule, an 
assignment “predicative versus functional” can be made, has considerably 
changed: originally we had a one-digit predicate in mind which applied to the 
rule, now it is a two-digit one, which is applicable to the use of a rule in a 
situation. The consequence for evaluation is that regarding the planned 
modelling of the subject’s behaviour as an αβγ-automaton guided by 
preferences, the preference does not assess the rules, but the transitions (rules in 
situations). 

This change has consequences for the evaluation software: There is a 
modulus which enables a determination of preference in four levels in an expert 
rating for each problem and each use of rule: predicative and functional, 
indifferent and nonsensical. This is based on the presumption that there are 
obvious consequences resulting from some real decisions when working on a 
problem, which – looked at in isolation – does not allow any assignment to 
“predicative versus functional”. In a situation, a rule can be particularly useful 
for both cognitive structures, but with different objectives. The assignment 
“indifferent” is used for that.  

When rating on the screen, the new software allows to show the use of 
rules in every situation in a tree-structured diagram and then to evaluate the 
potential decision. In this diagram, the levels of preference are automatically 
assigned to the colours of the following branch. After each evaluation, the 
branches can be put into another position so that this results in a top to bottom 
grading from “predicative” via “indifferent” to “functional”. Both measures 
result in a visual support of the taking effect of the preferences. During the 
evaluation, the way of solution of a subject can be represented in the coloured 
tree (see Striethorst, 2001). It is planned to state the assessment criteria more 
precisely in so far that they can be formally represented in an algorithm. The 
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algorithm assesses the possible alternatives in every step of decision according 
to the four categories mentioned above. The implementation of the algorithm in 
a Java-programme then supplies a formal representation of preference for 
predicative versus functional decisions. This algorithm can be taken as a 
decision-support-system for the αβγ-automaton described in chapter 1.4. 

A study is being executed at the moment with 21 pupils of grade 7 
(grammar school) with the help of the above-mentioned improvements. 6 
problems have to be solved on the computer by each of the subjects within a 
time limit of 45 minutes. First evaluations of the data have shown that the 
above-mentioned improvements have considerably increased the power of 
prediction: The analysis of the verbal comments from the video records mostly 
match the classifications which result from the assessment of the single 
decisions when the subjects choose the rules. The second part of the study – use 
of the test QuaDiPF (Schwank, 1998) – is still to come. Data as regards eye 
movement are to be ascertained by means of an eye-tracker (see Schwank, 
2001). 

 

3. Objectives 

The subject of this project is an analysis of mental processes, which take place 
in term rewritings, which have to be handled syntactically. Attention is directed 
to the way in which a mental model of the problem to be solved is developed in 
the subject’s mind. It is to be differentiated whether a more static modelling by 
means of a local change of features is made or if a dynamic point of view is used 
which concentrates on the moving of symbols. The theory of differentiation 
between predicative and functional cognitive structures offers us an instrument 
which allows the analysis of this difference.  

The objective of this project is the construction of problems for term 
rewriting so that the evaluation of the processing by the subjects reveals the 
following: 

• Proof of a subject’s preference for one of the two cognitive structures 
predicative versus functional (due to the classification of verbal 
comments). 

• Proof of the use of a predicative versus functional model for the problem 
processing (from the assessment of the decisions made at the individual 
processing steps). 

• Modelling of subject’s behaviour by preference-controlled αβγ-automata. 
• Comparison of the preference shown through the term rewriting tasks 

with the preference shown through the solving of the QuaDiPF tasks. 
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4. Perspective 

The proof of postulated differences in mental modelling when dealing with term 
rewritings will give cause to further research and development in mathematics 
education in order to attach a higher importance to the up to now neglected 
syntactic aspect of school algebra and possible individual differences of the 
learners than has been regarded necessary and useful so far.  

An interesting question of further research may be to investigate whether 
the assumptions of the teachers concerning the preference for predicative versus 
functional cognitive structures, which they appointed to their pupils (in the 
example in chapter 1.3.1), can also be found when the pupils deal with our term 
rewriting problems or those in QuaDiPF. 
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Abstract: We are interested in the cognitive factors affecting problem solving. In 
this work we tried to find empirically relation between variables depending both 
on the surface structure and the underlying structure of the word problem. 
Hence, the relation between the text given in natural language and the 
mathematical expression employed by the solvers. 

 

Introduction 

The research reported here is a continuation of the study (Kubínová, Novotná et 
al., 1994) on three formulations of the same comparison problems. Their pioneer 
work dealt with various strategies employed by students. A further analysis 
revealed that such strategies are affected by certain cognitive factors. Moving 
from the given text to the mathematical expression (the equation) is a process 
that can take several direct and indirect transformations. This route depends both 
on the surface structure of the text and the underlying schemes. We assigned a 
measure of complexity to this route. 

 

Theoretical Background 

Relevant to our work are the works by Kintsch who introduced notions such as: 
“text base” and “situation model” or Nesher’s  “semantic analysis” of arithmetic 
word problems (Nesher and Teubal 1975; Kintsch, Kozminsky et al. 1975  
April; Nesher and Katriel 1977; Kintsch and van Dijk 1978; Kintsch 1986; 
Nesher 1998). Yet these works raise more questions than they answer. Using 
“text base” in its propositional form and not addressing the surface structure 
phrasing, leaves out most of the difficulties of problem solving - the 
interpretation of the text. It may well be that the crux of solving a problem lies 
in that stage of interpretation and avoiding this stage means avoiding the real 
difficulty. 
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Next in line of vagueness is the concept of a “situation model”. As we 
demonstrate in the next section, this term is also not fully defined. Do we mean 
a world without mentioning any relations needed to be focused on, or is this an 
imaginary world constructed by the reader by comprehending a given text? 

A second cognitive approach, not always separated from the first one, 
emphasized as its point of departure the schematic analysis of arithmetic 
problems, (Greeno 1978), (Fischbein 1997), (Hall, Kibler et al. 1989). Those 
who adopted the schematic approach were influenced by notions such as 
“frames”, ”structures”, “analogies” (Mayer 1991), (Reusser 1992), (Rumelhart 
1980), (Thompson 1985), (Vergnaud 1983). 

The study described an attempt to analyze, just one problem in terms of its 
linguistic surface structure, its underlying schemes, and the mathematical model 
selected by the solvers in their attempt to solve it. We hope that the empirical 
evidence will shed light on some more cognitive aspects concerning problem 
solving. 

 

The experiment problems and their formulations 

Imagine a world consisting of: David with his 22 marbles, Jirka with his 44 
marbles and Peter with his 132 marbles. 

Which questions can be asked about this situation? 

For reasons known only to mathematicians the problem they present will 
always miss some information (probably in order to teach how to deduce further 
information by mathematical tools). One of the goals could be demonstrating 
that if one knows only one absolute quantity and two relations he can find out 
and reconstruct the above entire situation. 

If the formulation will be as follows: 

A1: Peter, David and Jirka play marbles. They have 198 marbles 
altogether. Peter has 6 times more marbles than David, and Jirka has 2 
times more Than David. How many marbles have each boy got? 

It means that the relation between Peter and David, and the relation between 
Jirka and David are given and the total sum is given. However, the relation 
between Peter and Jirka is not mentioned at all, neither are the quantities of 
either of them. Moreover, the verbal description already took a further step as to 
who will be the referent in a given relation (in this case – David), and who will 
be compared to him (Peter and Jirka), which will determine the lexical choice of 
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the word “more” instead of “less”. We could of course describe David as having 
less than Jirka or Peter and then get another formulation for the same relation: 

B1. Peter, David and Jirka play marbles. They have 198 marbles 
altogether. David has 6 times less marbles than  Peter, and he has 2 times 
less marbles than Jirka. How many marbles have each boy got? 

Actually we have found 12 possible formulations for the same situation. These 
texts vary by the lexical use of “more” and “less”, and by what will appear as 
the subject or the predicate of the sentences in the text. 

At the other end the mathematical expression defines the reference and the 
compared by means of independent and dependent variables. This is actually 
determined by the choice of the X of the equation. 

We analyzed only algebraic solutions and took notice of the selected X by 
each of the solvers. 

 

The Measure of Complexity  

In order to understand better that there are real options of selecting a strategy let 
us examine Problem A2 as a detailed example: 

A2. Peter, David and Jirka play marbles. They have 198 marbles 
altogether.  Peter has 3 times more than Jirka, and Jirka has 2 times more 
than David. How many marbles have each boy got? 

The surface structure of the given text presents two ordered comparison 
relations f and g. The first relation mentioned in the text says: “Peter has 3 times 
more than Jirka”. In short P=f(J). The second relation in the text is: “Jirka has 2 
times more than David”. In short:  J=g(D). 

In selecting the equations for solving this problem one could choose 
David1 for the independent variable and write: 

David is X; Jirka is 2X, and, Peter is 3(2X)=6X (which involve an 
intermediate calculation). 

The equation would finally be: X + 2X + 6X = 198 

                                                 
1 The use of the name (e.g. David) in a formula or in an explaining sentence is an abbreviation 
for "the numbers of marbles which the person owns”. 
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In general terms: if D is the independent variable, the equation will be: 

D + g(D) + f(g(D)) = N 

For the same problem, however, one could select Jirka to be the 
independent variable, thus: Jirka is X; Peter is 3X; David is ½ X. (D = g −1 (j)). 
Note, we have marked the second function g with a −1 , because it is not the 
direct function given in the text. In the text Jirka was compared to David, thus 
David was the reference, but in writing an equation with Jirka as the 
independent variable, the actual formal writing is transformed and is the inverse 
of the original text (g −1  marks the inverse function of g). Although the text states 
that “Jirka has twice as many as David”, what was written formally was the 
translation of “David has two times less than Jirka”. 

The equation in this case will be:  

X + 3X + ½ X = 198 

The general form of the choice of Jirka as an independent variable in the 
equation will be: J + g −1 (J) + f (J)  = N 

In this case the equation will include rational numbers making it more 
complicated for some solvers. 

If Peter is selected to be the independent variable, the equation will be: 

X + 1/3 X + 1/6 X = 198    

In general terms:  P + f −1 (P) + g −1 (f −1 (P)) = N 

The choice of different independent variables leads to different 
transformations executed in the transition from the given verbal text to the 
selected equation which is the measured complexity level.  

We will score these transformations as follows: If we decide that each 
direct function is considered as a single complexity score, an inverse or 
compound function will be considered to be two scores. The level of complexity 
of a solution is defined as the sum of all the scores.  For example, in the problem 
above (A2) selecting David as the X of the equation results in a complexity level 
of 4 (see Table 1), selecting Jirka, the equation is of a complexity level of 3; and 
selecting Peter, we arrive at a complexity level of 8. Table 1 presents the level of 
complexity in our study and their scores: 
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Table 1: Possible Complexity Levels 
Possible Transformations Level of Complexity 

f(x) + g(x) 2 

f −1 (x)  +  g(x) 3 

f(x) + g (f (x)); f −1 (x) + g −1 (x) 4 

f(x) + g −1 (f (x)); f −1 (x)  +  g(f −1 (x)) 6 

f −1 (x) + g −1 ( f −1 (x)) 8 

The Research Hypotheses: The solvers of each problem choose a strategy that 
leads to the minimal level of complexity. 

 
The Experiment 
The set of problems: 

A1: Peter, David and Jirka play marbles. They have 198 marbles altogether. 
Peter has 6 times more marbles than David, and Jirka has 2 times more 
Than David. How many marbles have each boy got? 

A2. Peter, David and Jirka play marbles. They have 198 marbles altogether.  
Peter has 3 times more than Jirka, and Jirka has 2 times more than David. 
How many marbles have each boy got? 

A3. Peter, David and Jirka play marbles. They have 198 marbles altogether. 
Peter has 6 times more than David, and 3 times more than Jirka. How many 
marbles have each boy got? 

B1. Peter, David and Jirka play marbles. They have 198 marbles altogether. 
David has 6 times less marbles than Peter, and he has 2 times less marbles 
than Jirka. How many marbles have each boy got? 

B2. Peter, David and Jirka play marbles. They have 198 marbles altogether.  
David has 2 times less than Jirka and Jirka has 3 times less than Peter. 
How many marbles have each boy got? 

B3. Peter, David and Jirka play marbles. They have 198 marbles altogether.  
David has 6 times less than Peter, and Jirka has 3 times less than Peter. 
How many marbles have each boy got? 

C1. Peter, David and Jirka play marbles. They have 198 marbles altogether.  
Peter has 6 times more marbles than David, and David has 2 times less 
marbles than Jirka. How many marbles have each boy got? 
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C2. Peter, David and Jirka play marbles. They have 198 marbles altogether. 
Peter has 3 times more marbles than Jirka, and David has 2 times less than 
Jirka.  How many marbles have each boy got? 

C3. Peter, David and Jirka play marbles. They have 198 marbles altogether. 
David has 6 times less marbles than Peter, and Peter has 3 times more 
marbles than Jirka. How many marbles have each boy got? 

E1. Peter, David and Jirka play marbles. They have 198 marbles altogether.  
Jirka has 2 times more marbles than David and David has 6 times less 
marbles than Peter. How many marbles have each boy got? 

E2. Peter, David and Jirka play marbles. They have 198 marbles altogether.  
Jirka has 3 times less marbles than Peter, and 2 times more marbles than 
David. How many marbles have each boy got? 

E3. Peter, David and Jirka play marbles. They have 198 marbles altogether.  
Jirka has 3 times less marbles than Peter, and Peter has 6 times more 
marbles than David. How many marbles have each boy  got? 

The set of 12 problems was given to 167 teachers in an in-service 
workshop in Israel and 42 teachers in the Czech Republic. The problems were 
also given to 132 15-year old students who already studied equations with one 
variable. Each problem was solved by about 30 teachers and 20 students. It took 
less than 40 minutes for each to complete the task. 

Findings 

Table 2 presents the distribution of selected strategies in all problems by 
complexity level for teachers and students (In each cell the teachers are first 
followed by the students).  

Table 2: Distribution of Selected Strategies in All Problems by Complexity 
Level – (Teachers, Students) 

Complexity 
Problem # 

2 3 4 
 

6 8 

A1 D=(83,91)   J=(0,0) 
P=(0,0)  

A2  J=(11,8) D=(70,87)  P=(0,4) 
A3   P=(7,31) D=(62,38) 

J=(7,6)  

B1   D=(59,63) J=(0,0) 
P=(24,13)  

B2  J=(21,18) P=(7,18)  D=(55,36) 
B3 P=(46,44)   D=(46,26) 

J=(0,0)  

C1  D=(46,43) J=(36,43)  P=(0,0) 
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C2 J=(74,65)   D=(19,22) 
P=(0,0)  

C3  P=(0,4) J=(48,65)  D=(32,17) 
E1  D=(38,39) P=(42,44)  J=(0,0) 
E2   J=(46,18) D=(29,48) 

P=(11,24)  

E3  P=(30,13) D=(52,52)  J=(11,4) 

The fact that the distributions of strategies within each problem are similar 
for teachers and students means that we are dealing with a distinct cognitive task 
in each problem. Each problem elicited different distribution of strategies (very 
similar for teachers and students). Thus, despite the difference between teachers 
and students, we can consider the two samples to be a replication of the same 
tasks. 

 
Conclusions and Discussion 

The presented findings are only a part of a wider study. We realized that two 
main factors affect the choice of strategy (the choice of X): the complexity level 
– namely choosing the lowest possible level of complexity; and the surface 
structure variable with preference for expressions containing “more”. One 
should remember that choosing an expression with the term “more” means that 
the referent is a smaller quantity leading to an equation with whole numbers. 
There are, however, cases in violation of this finding.  We noticed that in such 
cases, surface structure variables such as “the order of the information” and an 
easy transformation from “less” to “more”, dictate the selection of the strategy.  

After solving the problems we asked the teachers to reflect on the reasons 
for their choice of strategy. The replies were: “Working according to the order”;  
“Choosing the smallest quantity as the X”, “I chose the X according to the order 
of the information”. 

In reply to the question why did you choose this strategy?, some said it 
was according to the actual text: “The text leads to a certain strategy”; “It was 
more convenient”; “My prior knowledge about the world”. The last question 
was what makes a question easy or difficult? “Finding out which is the 
smallest quantity to compare the others to”; “the identification of the given 
sets”. In some Czech solutions another reason for the choice of strategy 
occurred. Those who use the graphical representation of the problem structure 
(the use of line-segments, see e.g. (Novotná, 1997)), this representation supports 
the choice of David – the smallest part – for X.  

As mentioned before, teachers and students mostly behaved similarly. 
However, in cases of discrepancy, students demonstrate clearly that they prefer a 
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direct translation of the text with low complexity level, even if they have to 
write an equation with fractions. Teachers prefer to arrive at an equation with 
whole numbers and probably are more at ease in making the linguistic 
transformations from “less” to “more”, arriving at a complexity level of 6.  

We based our work on theories of solving word problems such as that of 
Kintsch, which distinguishes between the text base and the situation model 
(Nesher and Teubal 1975), (Riley and Greeno 1988), (Kintsch and van Dijk 
1978), (Kintsch 1986).  

Now, we would like to return to clarify what was actually the “situation 
model”. In Kintsch’s terms a “situation model”: ”is a mental representation of 
the situation described by the text”, while our claim is that the same worldly 
situation can be described by different texts as exemplified by our 12 texts 
describing the same worldly situation. By saying “a different text” we mean 
different not merely on the surface structure level, but also in its propositional 
structure with its coherent macrostructure (Kintsch, p.89).  

Observing the strategies employed empirically by teachers and students 
we saw that although the text implies certain relationships, the solver adds other 
relations that are not mentioned in the text. The ability to add such relations 
comes from the comprehension of the entire world situation. For example, in 
Problem A3 there is a description of the relation between Peter and David, and 
Peter and Jirka (A3). The solvers who chose “D” as their reference (X) did not 
hesitate to solve the problem by bringing in the relation between David and Jirka 
(not mentioned at all in the text). Moreover, this was even the preferable 
strategy used by 62% of the teachers. 

Our study introduced a manifold variable namely the “complexity level”, 
to which we can attribute most of the variance in choosing the independent 
variable (The X of the equation). 
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Abstract: This paper analyses and develops some aspects emerged from the first 
stage of a research project aimed at investigating the solving strategies of  
open-ended problems. In particular, the analysis we propose focuses on the 
formulation process of a conjecture from the point of view of figural-conceptual 
dialectics. A particular behaviour concerning the activity of formulation of a 
conjecture is highlighted, for which a reading key interpretation is proposed. 

 

1 Introduction 

Drawing, intended as a system of graphic signs, has always accompanied 
thought, establishing a close relationship with the objects of geometry (Mariotti, 
1995). 

The role that drawings play in the geometrical activity and in particular in 
problem solving is the subject of many researches (Duval 1995, Fischbein 1993, 
Laborde - Capponi 1994, Mariotti 1995). Despite the different points of view 
from which these researches have been carried out, all of them acknowledge the 
importance of such role. However there is not a universal agreement on what is 
meant by "drawings" or "figures" and on their relations with the geometry. For 
instance, Duval (1995) does not make any distinction between "drawings" and 
"figures". Whereas Laborde and Capponi (1994) describe the relations among 
drawing, figure and geometrical object in terms of the classic triad significant, 
meaning and referent.  

More precisely, according to Laborde and Capponi a drawing may be 
considered as a significant of a theoretic referent (the object of a geometrical 
theory), whilst the geometrical figure may be defined as the set of all the couples 
constituted by the referent and one of the drawing representing it (ibidem, 
p.168). 

In the following we adopt this point of view. 
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2 Our research 

The study presented in this paper has developed on the basis of a research 
project, still in progress, carried out with the aim of investigating on the solution 
processes of opend-ended problems (Maracci 1998, Maracci - Mariotti 1999). 
The research involved 17 students (11th and 12th grades) selected from different 
scientific high schools and evaluated by their teachers as medium - high 
achievers. These students were presented with 4 selected open-ended problems 
to be solved in individual interviews during which they were asked to think 
aloud. The problem solving sessions were videotaped and the transcripts of the 
interviews analysed (Maracci, 1998).  

In this report we will focus on the specific moment of formulation of a 
conjecture. The analysis of the transcripts reveals some different behaviours on 
students' part. Here we will describe and discuss the following one: 

• after a period of investigation conducted with the aid of drawings, 
students are quite confident in getting the correct conjecture (or, in any 
case, the relations to be used); and they face the task to formulate it 
precisely (e.g. in the form "if ... then ..."); 

• the conjecture is achieved with clear and explicit reference to one or more 
specific drawings; 

• students formulate their conjecture explicitly, producing at the same time 
a new drawing very similar to those, to which they previously referred.  

With respect to such behaviour the following question may be posed:  

When students seem to possess all the necessary informations why do 
they feel the need of producing a new drawing so similar, if not identical, to the 
previous? 

In this report we will carry out our study referring only to the following of 
the 4 proposed problems: 

Problem: A convex angle rOs, where the two rays r and s are not on the same 
straight line, and a point P internal to the angle are given. Determine a line 
segment which has its ends on the arms of the angle and P as its midpoint.  

That is a construction problem. It presents some difficulties in the 
identification of the solution, but it may be successfully approached by assuming 
the segment given and looking for some characterizing properties. 

The theory of figural concepts (Fischbein 1993), which we briefly present 
below, provide us with the suitable theoretical framework according to which 
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we will develop and propose some hypotheses to discuss and explain the 
highlighted behaviour. 

 

3 Figural concepts and satisfactory drawings 

As Fischbein (1993) clearly pointed out, when dealing with geometrical 
reasoning neither pure concepts nor pure images are involved but rather there is 
a fusion between figural and conceptual aspects. What we deal with are not pure 
concepts since they possess figural properties and reflect spatial relations, but 
they are not even pure images, since their properties are "completely fixed - 
directly or indirectly - by definitions in the frame of a certain axiomatic system" 
(Fischbein, 1993 p.160). 

We are concerned with a mental construct which simultaneously and 
intrinsically possesses figural and conceptual properties. Fischbein calls figural 
concept this particular kind of mental construct. 

The harmony between the figural  and conceptual components of a figural 
concept appears rather frail; although it is a single mental construct, "it (the 
figural concept) potentially remains under the double and sometimes 
contradictory influence of the two systems to which it may be related - the 
conceptual and the figural one" (ibidem p.160). Consequently the perfect fusion 
between the two components remains only an ideal situation. 

Within this theory a drawing is the material, concrete representation of a 
figural concept, reflecting the tension between the figural and the conceptual 
component. Such view of drawings is coherent with that of Laborde and 
Capponi mentioned in § 1. The connections between Fischbein's theory and the 
perspective of Laborde and Capponi might be not immediately clear, but 
unfortunately we cannot deepen this point here. For a more detailed discussion 
on the subject see Laborde-Capponi 1994 (especially pp. 168/9) 

 

3.1 The process of drawings production 

Coherently with Fischbein's theory, the following hypothesis can be stated: 
when producing a geometrical drawing a student tries to reach a harmony 
between figural and conceptual aspects. The search for such harmony might be 
not conscious, or at least not in these terms. One could, perhaps, speak of a 
generic feeling of satisfaction, from the students' point of view, and of the 
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observance of specific requirements learnt from school practice (e.g. the need 
for generality). 

Which are the elements able to reveal whether a drawing adequately 
reflects the figural - conceptual balance of the figural concept it represents? In 
other words: what does it make a drawing satisfactory for students? 

According to our hypothesis, at least three factors may be identified: 

• a drawing should represent "correctly" the geometrical situation described 
in the problem, that means that the student's understanding of a given 
situation and her interpretation of the produced drawing should be 
consistent; 

• a drawing ought to be recognized as sufficiently generic, for instance: a 
student will hardly accept the drawing of a rectangular triangle as 
representing a generic triangle; 

• a drawing should possess a good gestalt, it should satisfy the fundamental 
laws which control the basic processes of perception: it is unlikely that a 
student will draw a square whose sides are not along the horizontal - 
vertical directions. 

These conditions can appear and combine in many different ways and, as 
mentioned before, they correspond to needs which are not always identified 
clearly and consciously by the students. 

 

3.2 Satisfactory drawings in solving open ended problems 

Solving an open-ended problem is an activity which often requires students to  
explore a particular geometrical situation. Drawings play a fundamental role in 
activities of this type and for this reason the management of drawings assumes 
great importance. In particular, we are faced with the following question: 

Once a student has produced a satisfactory drawing, which conditions can 
induce her to produce a new one significantly different from the previous 
and which conditions, on the other hand, can induce her to produce 
drawings - copies of the former? 

The considerations we developed and the experimental results of our research 
led us to identify some elements which can influence the students' decisions on 
the management of drawings. 
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Producing similar drawings may be useful because:  

• once a satisfactory drawing has been made, reproducing it without 
modifying its basic structure avoids that students need to control 
correctness, generality and good gestalt of the new drawing and allows 
them to focus all the necessary attention on other aspects of exploration; 

• it allows to relate drawings one to each other so that the entire activity of 
exploration of the problem may be more easily controlled;  

• it prevents loss of information when passing from one drawing to another. 

On the contrary it can be necessary to make a drawing different from the 
previous ones if: 

• one of the factors which made the drawing satisfactory fails; 
• ambiguity or conflict emerge for some reason among the drawings, or 

within a particular one: this may occur when new elements are added; 
• students realize that an exploration conducted on similar drawings may 

turn out to be limited and incomplete. We can find this type of behaviour 
at the beginning of exploration when students are looking for as much 
information as possible with no precise strategy in mind, or after an 
unsuccessful search when they try to grasp new information from new 
drawings. 

Let us remark that a drawing may be perceived satisfactory even only in relation 
to specific moments and not throughout the problem solving session. We will 
better explain this point in the following paragraph. 

 

4 Drawings and their history 

As mentioned above, the activity of solving open-ended problems often requires  
that students explore a certain geometrical situation. In particular, this 
exploration is coupled with a more or less intense activity aimed at producing 
drawings which can provide material support for the manipulation of the 
concepts involved. According to the development of the activity the resultant 
drawings can be modified, by the students, e.g. by adding new graphic elements 
or even reinterpreting those which have been already drawn. 

We think that independent of the way in which they appear on paper, in 
students' eyes the drawings produced during this type of activity could embody 
their history, i.e. their successive transformations and reinterpretations. 
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So a drawing may be interpreted as follows: 

• it may be inserted in a history, i.e. considered with reference to the 
activities of its production and of its further manipulation. A typical 
example is that of a drawing produced autonomously by the student, who 
has drawn its constitutive elements in a certain order, in response to 
particular stimuli or needs; 

• it may be considered achronically, without history. This is the case of a 
drawing produced by others, when the student was not present, and whose 
elements are considered all together. 

These two interpretations are not mutually exclusive, on the contrary the same 
student may use both of them in the solution process. In our opinion there must 
be a connection between them, however a thorough study of these relationships 
goes beyond the goals of this paper. 

Our main hypothesis is that in the process of solving-open ended 
problems students seem to be more generally inclined to consider the drawings 
they produce together with their history.  

That means that one may interpret a drawing which accompanied a certain 
activity as incorporating the activity itself. As a consequence a drawing 
interpreted with its history might turn out unusable to support other activities. 

This hypothesis and the analysis, previously carried out, of the elements 
reflecting the figural - conceptual balance in a drawing, represent the key point 
of our study. As a matter of fact they provide the key to interpret the particular 
behaviour highlighted in § 2 and concerning the specific moment of conjecture 
formulation.  

Our hypothesis suggests that the answer to the question posed in § 2 may 
be found taking into account the history of the produced drawings. 

 

5 Giacomo's protocol (11th grade, scientific high school) 

In the following we shall report an excerpt from Giacomo's protocol relative to 
the activities of identification and formulation of the conjecture. We shall 
analyse this excerpt in the light of the previously carried out considerations. 

In reporting Giacomo's protocol we will mark in "times" what has been 
said during the interview and in "italics" what Giacomo did. 
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The original drawings were scanned and processed by means of computer 
in order to reproduce exactly, on the basis of the analysis of the videotapes, the 
ways in which they appeared at each moment of the problem solving session. 
Each drawing is labeled by a couple of numbers. The former characterizes the 
drawing with respect to all the others produced during the interview, the latter 
indicates the "steps" of the drawing production and of its successive 
modifications. 

Phase 1: identifying a conjecture 
10. Int: what does "determine a line segment ..." mean? 
11. Gia: finding a point ... a line segment which passes through P and has just 

its ends on r and s and such that P is its midpoint ... identifying it, finding 
it 

12. He draws the angle rOs and the point P (drawing 4/1); he only just 
sketches some segments passing through P and traces one of them 
(drawing 4/2) 

 

This is the fourth drawing Giacomo has made searching for the correct 
conjecture. The previous drawings, which we cannot show here, share 
characteristics with this one, for example amplitude of the angle, orientation of 
its sides and position of point P on the inside. Giacomo evidently produced from 
the very beginning drawings which seemed to be sufficiently satisfactory (§ 
3.1). 

His first intervention on this drawing 
consists in tracing some segments passing 
through P (item 12.). Taking into account 
that he attended a computer-based course 
in geometry in which microworld Cabri 
was used, we can suppose that he is trying 
to reproduce on paper the dynamism 
typical of the exploration Cabri allows to 
perform on the screen of the computer.  

Drawing 4/1 Drawing 4/2 

Drawing 4/3 
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13. Gia: one ... one can make the line parallel to r pass through P - he draws 
the parallel line for P (drawing 4/3) - at this point .. - he marks the 
corresponding angles 

After having drawn the segment to be determined Giacomo traces the straight 
line parallel to r passing through P; this is not the first time he has drawn it, he 
had previously considered two straight lines parallel to r and s without drawing 
the unknown segment. Here he seems to be trying to combine the strategy of the 
parallels with that of drawing the 
unknown segment. 

14. Gia: here, practically ... if I draw 
the segment through P - he 
stresses the traced segment - 
which should be practically 
divided in half, I should find that, 
owing to the similitude ... this one 
is half of this one (he marks the 
two halves of the segment) and therefore even the ratio of the other two 
sides, that is ... - he writes the letters Q and H (drawing 4/4) - OQ and OH 
must be 2 

In the two previous items (13. and 14.) Giacomo identified the conjecture 
clearly; the introduction of labels reflects the awareness on Giacomo's part that 
the drawn elements are the ingredients able to solve the problem. The use of the 
conditional mood does not express uncertainty about the correctness of the 
conjecture, Giacomo seems  immediately positive about,  or of the inferences; 
rather it could indicate the awareness that reasoning is carried out starting from 
the unknown segment instead of starting from the data of the problem. 

In order to successfully conclude his problem solving session Giacomo 
has to explicitly formulate its conjecture and prove it. The drawing he has just 
produced (drawing 4/4) seems satisfactory (§ 2), moreover it appears rather 
precise and orderly, it is almost completely devoid of elements unnecessary to 
formulate the conjecture. One could expect that Giacomo formulated its 
conjecture referring to such drawing but as we will see this did not happen. 

Phase 2: formulating a conjecture 

 

 

 

Drawing 4/4 

Drawing 5/2 Drawing 5/1 
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14. Gia: then, in order to find the segment one can proceed as follows: - he 
draws the angle and point P writing the letters (drawing 5/1) - given point 
P, one draws the line parallel to r (he draws it (drawing5/2)) - after which 
(he marks with H the intersection point between s and the parallel to r) he 
doubles it ... I would obtain OH, let us consider a segment of equal length - 
he marks Q on s (drawing 5/3) - and one draws the line ... it has its ends - 
he traces the straight line QP and marks with R the intersection between 
the line and r (drawing 5/4) - on the arms of the angle and P as its 
midpoint 

Notwithstanding drawing 4/4 could appear a suitable support for concluding the 
problem solving session, while formulating his conjecture Giacomo produces a 
new drawing. 

Why does Giacomo decide to produce a new drawing? 

 

Drawing 4 has been produced during the search of a solution and its 
history reflects this activity: the unknown segment was the first to be drawn 
because it was assumed as known (drawing 4/2), whilst the parallel line was 
traced afterwards (drawing 4/3).  

In order to formulate the conjecture, Giacomo needs to restore the 
identified relations (item 14.), this time starting from the data of the problem 
(i.e. the angle rOs and point P). Thus, the need to produce a new drawing seems 
to be linked to the need of restoring the correct logical order of the conjecture. 
But  according to our hypothesis, Giacomo interprets drawing 4/4 together with 
its history as representing the search for a conjecture and therefore it cannot 
adequately support the process of fomulation of the conjecture itself. 

Let us note that Giacomo does not only produce an ordinary new drawing, 
but the drawing he produces is practically identical to the previous one. 
Observing the steps relative to the two drawings (drawing 4 and drawing 5) we 
notice that the first two (drawings 4/1 and 5/1) as well as the last two (drawings 

Drawing 5/3 Drawing 5/4 
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4/4 and 5/4) are practically equal. What is completely different is their history, 
as we expected in the light of our previous analysis. 

In order to explain the highlighted similarities we have to consider that 
formulating a conjecture is a rather demanding activity. It requires the greatest 
attention on the part of the student. However, even producing a new drawing 
may be a demanding activity: as previously discussed (§ 3.1) any drawing has to 
be satisfactory. Drawing 4/1 was already satisfactory, producing a similar 
drawing allows Giacomo to be engaged only in the formulation of the 
conjecture, avoiding the need to control the correctness, generality and good 
gestalt of the new drawing (§ 3.2). The fact that even the two conclusive frames 
(drawing 4/4 and 5/4) are equal may represent a sort of check of the correctness 
of the formulation of the conjecture; their perfect correspondence assures that no 
mistakes have been made. 

In conclusion Giacomo's behaviour seems to synthetise and harmonise 
two distinct needs: on the one hand, having a drawing adequately supporting the 
activity of conjecture formulation; on the other hand, being able to draw the 
greatest attention on this activity.  

 

6 Conclusions 

Giacomo's protocol may be considered paradigmatic, similar examples could be 
provided, but the brevity of this paper does not allow to do that.  

Two elements of fundamental importance emerge from the analysis of the 
protocol: 

• when producing a drawing the student tries to reconcile and harmonize 
needs of both conceptual and figural nature, respecting the criteria of 
correctness, generality and good form; 

• a drawing produced by the student is interpreted together with its history. 
The lines by which it is composed have been drawn in particular moments 
and in a certain order with respect to a specific activity of the problem 
solving process. The drawing with its history represents this activity. 

Our previous research (Maracci 1998) already highlighted students’ difficulties 
in managing drawings in problem solving. The considerations presented in the 
previous discussion of the experimental data allow us to propose a hypothesis 
which contributes to a better specification of these difficulties. Managing 
drawings in the solution of open-ended problems is an activity to be performed 
at two distinct levels: 
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• achronic level: a drawing has to be a satisfactory representation; 
• diachronic level: a drawing has to be considered according to its 

becoming over time, i.e. together with its development.  

The abilities of controlling and managing drawings at both levels seem to be 
fundamental in the problem solving activity; as a consequence we think that the 
development of such competencies has to become an explicit educational goal. 
In order to reach such goal specific activities remain to be identified and 
included in school practice; in particular, students must be stimulated to operate 
on the two levels both separately and simultaneously. 
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Abstract: The theory of functional/predicative thinking, once developed to 
describe differences in students’ behaviour while solving programming tasks, is 
applied to analyse eye-movements while solving tasks of visual pattern 
completion (QuaDiPF-tasks, Schwank 1998/2000). Predicative thinking 
requires that in order to meaningfully complete the pattern the subject has to get 
involved with the logic of the static structure of the pattern, functional thinking 
requires to get involved in a dynamic reading of the logic of the pattern. The 
QuaDiPF-tasks proved to be useful in other experiments to predict typical 
functional or predicative behaviour of the subjects. The eye-movement-study is a 
second approach after an EEG-study to use not only qualitative methods for the 
classification of problem solving behaviour, but also quantitative ones. 
 
1. Qualitative investigations of functional/predicative thinking 

In the very first days of the theory of predicative versus functional thinking 
(Schwank 1986, 1993-1995) we used the nonverbal intelligence test APM 
(Advanced Progressive Matrices) from Raven (1965) to balance our different 
groups of subjects spread over such different countries as Germany, Indonesia 
and China (Marpaung 1986, Xu 1994). The focus of interest was on differences 
in students’ behaviour while solving some programming problems using 
different types of microworlds. The label “predicative” was used to characterize 
a problem solving behaviour highly orientated towards and sensible for features, 
relations and judgements, whereas the label “functional” was used to 
characterize a problem solving behaviour highly orientated towards and sensible 
for courses, modes of actions and effects. The experiments were run in the form 
of constructive teaching experiments (Cobb et al. 1983), hence, qualitative 
analysis methods were to apply. Although one could have expected strong 
cultural influences on the cognitive processes involved when solving our 
programming tasks, the results show that knowledge about the national 
relationship cannot help to describe or to predict the individual types of problem 
solving behaviour of our subjects. Instead, the distinction of functional and 
predicative thinking was very helpful. The results show that students tend to 
have a strong preference for either of the two thinking styles, which shows up 
most clearly in cases when students are quite intelligent and do reach the limits 
of their intellectual power when challenged by specific tasks. 
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Only later, we began wondering 
why students, who were remarkable 
for their good functional behaviour 
in our programming tasks, had the 
same good results in the APM-test 
as students, who were remarkable 
for their good predicative 
behaviour. At first glance, it seems 
that solving APM-tasks requires 
getting involved with the logic of 
the static structure of the pattern and 
therefore, one has to recognize the 
regular recurrence of certain 
features of the elements (e.g. shape: 
square, circle …; size: small, big, 
…, position: left, right, …). One of 
the possible predicative analyses of 
the APM II task No. 14 (Fig. 1) 

goes as follows: Each figure consists of three objects: an upsilon, a point and a 
circle. The upsilon is the same in each figure. In each row, the circle is at the 
same place. In each column, the point is at the same place. 

The interesting point is that there does also exist a functional strategy to 
solve this task: Perceiving the pattern a process is invented which produces the 
last element in a row or column. In each row, the point moves around, and in 
each column, the circle moves around. The object around which the movement 
takes place remains stable. 

The moment we realized these two different approaches of inductive 
thinking (Schwank 1996) while solving matrices tasks, we had the idea for a 
new tool to test subjects in how far they are able to think in a predicative way 
and how far they are able to think in a functional way. 

We invented new tasks, which differ considerably in their level of pure 
functional and pure predicative difficulty (QuaDiPF-Test; Schwank 1998/2000). 
As we are interested in the decomposition of thinking processes, we eliminated 
the possibility to start visually matching procedures by not offering a sample 
choice of 8 solutions as in the original APM-test. Instead of such a kind of 
choice the subjects are asked to draw their solution figure and to argue why their 
figure fits the pattern. The sessions are videotaped and the reasons given by the 
subjects are qualitatively analysed.  

In several experiments, we use QuaDiPF-tasks as well as other tasks like 
term rewriting tasks (Cohors-Fresenborg 2001; Striethorst, in press) or 

Fig. 1: Typical Raven-task (APM II-14) 
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programming tasks (Xu 1994; Armbrust, in press). The results of the QuaDiPF-
test allow a good prediction whether a strong functional or a strong predicative 
behaviour of the subjects is to be expected in cases of the other problem solving 
tasks.  

 

2. Quantitative investigations of functional/predicative thinking 

EEG-Studies 
Compared with the complex tasks used in our experiments about programming 
behaviour or term rewriting, the QuaDiPF-tasks are very simple - actually in a 
very specific sense. The only visible activity the subject has to carry out while 
thinking about a QuaDiPF-task is to move his/her eyes. Due to this fact and 
because of the simplicity of presenting these tasks for mental exercises suddenly 
EEG-experiments on functional and predicative thinking became possible. So 
far, we have been running two of such experiments together with Jan Born and 
members of his research group at the Medical University of Lübeck, the first of 
them has been completely evaluated (Mölle et al. 2000, Schwank 1999). In this 
study, the EEG was recorded in 22 young men while solving QuaDiPF-tasks. 
The results are that the EEG complexity during predicative thinking decreased 
in comparison to functional thinking and mental relaxation, with this reduction 
being most pronounced over the right and paretial cortex; a reduction in 
dimensional complexity during functional thinking as compared to mental 
relaxation which was concentrated over the left central cortex, although 
significant, was less clear. 

Eye-Movements-Studies 
Having known for long about the possibilities 
of eye-movement-studies (Galley 2001), we 
were looking for some partners who would 
like to co-operate with us. Carpenter et al. 
(1990) made an attempt to analyse the manner 
how subjects solve the Raven Matrices using 
eye-tracking methods. In summary they 
stated: “The processes that distinguish among 
individuals are primarily the ability to induce 
abstract relations …” (p. 404) and the only 
pure functional Raven task they excluded from 
analysis: “Problem was not classifiable by our 
taxonomy” (p. 431). The question is of course, 

what distinguishes functional problem solving strategies from predicative ones. 
Finally, we met Franz Mechsner, Max Planck Institute for Psychological 
Research (MPIPR), Munich, who agreed to run a joint experiment in one of their 

Fig. 2: Student wearing an 
EyeLink headband solving 

QuaDiPF-tasks 
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laboratories and we started with about 20 subjects in summer 1999. The screen 
resolution in this first pilot study was not the best (640x480). As partners in the 
new course of study “Cognitive Science” at the University of Osnabrück, we got 
the possibility to use the new equipment for eye-movement studies, e.g. now we 
can work with a screen resolution of 1024x768. In a second pilot study, we 
tested 12 subjects in Osnabrück using an EyeLink system from SensoMotoric 
Instruments (for technical details see http://www.smi.de). In the sessions, which 
are videotaped, the subjects are confronted with the tasks on a screen, they wear 
a headband (Fig. 2) with two ultra-miniature high-speed cameras in order to 
record their eye-movements (saccades, fixations). After having solved a task, the 
subjects are asked to draw their solution figure and to argue why it fits the 
pattern well. 

 

 
Figure 3a shows the eye-movements of a predicative solution. The data is 

scanned regarding interesting sequences of eye-movements: which parts of the 
pattern are looked at in which sequences. Fig. 3b-3e show such sequences. Time 
and duration are given in [min]:[sec], [msec]. The self-explaining predicative 
argumentation of the subject is given below. [E1-E8 refer to the single elements 
of the figures reading from left to right, starting in the first row.] 

 
 
 
 

Fig. 3a: Entire eye-movements solving the task
Duration: 01:11,344 

Fig. 3b: Start orientation 
Time: 00:02,310 / Duration: 00:01,155

Fig. 3c: Realising the set of “squares” 
Time: 00:22,642 / Duration: 00:05,166 

Fig. 3d: Realising the set of “houses” 
Time: 00:28,541 / Duration: 00:07,445 
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Predicative Problem Solving - Example 

S[ubject]: (Finished the drawing) So. Well, it’s not very nice in shape. It 
is supposed to look like (S points to E[lement]1) this one closed. Hm, well, I’ll 
give the following reasons for that, hm, there are three different shapes each 
time. (S points to the elements in the first row). Once it has (S points to E1) - 
they have no bottom line each time. Once with (S points to E2) a half full, hm, 
empty, yes, half a bottom line and once with none at all. This can be seen in 
there. Once full (S points to E2), nothing at all (S points to E6) and once half (S 
points to E7). Once here (S points to E3) hm half, once full (S point to E4) and 
once none at all (S points to E8). And here this is missing (S points to E1), then, 
once none at all (S points to E5), once half and then it has got (S points to E9) to 
be in full. I would say so. 

V[ersuchs]P[erson]: So. Ja, also formschön ist es nicht. Das soll so aussehen, wie (VP 
zeigt auf E1) das hier zugeschlossen. Ähm, das begründe ich jetzt so, ähm, hier sind jeweils 
drei verschiedene Formen. (VP zeigt die Elemente der ersten Zeile) Einmal hat das (VP zeigt 
auf E1) haben die jeweils einen leeren Boden. Einmal einen (VP zeigt auf E2) halb voll äh 
leeren ja einen halben Boden und einmal überhaupt keinen. Das kann man hier dran sehen. 
Einmal voll (VP zeigt auf E2), gar nichts (VP zeigt auf E6) und einmal halb (VP zeigt auf E7). 
Einmal hier (VP zeigt auf E3) äh halb, einmal voll (VP zeigt auf E4) und einmal gar nicht (VP 
zeigt auf E8). Und hier fehlt das (VP zeigt auf E1) dann einmal gar nicht (VP zeigt auf E5), 
einmal halb und dann muss (VP zeigt auf E9) einmal voll sein. Würd’ ich mal sagen. 

Functional Problem Solving - Example 
S[ubject]: Hm. Left and right, so they move inside as a circle and then outside. 
E[xperimenter]: Hm. 
S: This repeats every time. (S points to the left and right side of the “square” in 
E1 and then moves along the curves in E2 and E3). 

Fig. 3e: Realising the set of “trapezia” 
Time: 01:02,880 / Duration: 00:02,336 
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E: Is there also an explanation for the columns? 
This was an explanation for the rows. 
S: Here? Or what? (S moves along the columns, 
one after the other) 
E: Yes. 
S: I did not consider them. Yes, this might be ... 
one moment. - Yes, it’s the same, basically. First 
to the inside, then to the outside. 

V[ersuchs]P[erson]: Äh. Links und rechts, die gehen also 
als Kreis nach innen und dann nach außen. 
(V[ersuchs]L[eiter]: Ähm.) VP: Jedesmal wiederholt sich 
das. (VP zeigt auf die linke und rechte Seite des 
“Quadrates” in E1 und fährt dann die Bögen in E2 und E3 
entlang) VL: Gibt’s noch ne Erklärung in den Spalten? Das 
war ja in den Zeilen erklärt. VP: Hier? Oder was? (VP 
durchfährt nacheinander die Spalten) VL: Ja. VP: Da habe 

ich nicht drauf geachtet. Ja ist vielleicht das ... ein Moment. - Ja ist das selbe praktisch, ne. 
Erst nach innen, dann nach außen. 

This functional solution - the figures result from their predecessors by 
moving - is interesting for several reasons. After short reflection, a fairly well-
founded solution is given. Thereby, the subject used only information he 
checked with his eyes in the rows as it is obvious from his eye-movements-data 
(Fig. 4). The experimenter’s demand for further explanation shows the subject 
being aware of that. 

In case of our EEG-studies, we had to decide that the subjects give the 
reasons for their solutions only after they created them mentally because any 
physical movement would have made the EEG-data unsuitable for further 
analyses. It was never clear of which status the explanations, given in retrospect, 
were. What is their relationship to the thoughts of the subjects at the moment 
they were developing their solutions? It might be that the verbal explanations are 
more or less nothing but nice sentences which the experimenter would like to 
hear, and thus produced for this purpose. E.g. in a particularly unfavourable 
case, the subject could have thought functionally, but argued predicatively. Even 
though it is fascinating to investigate brain mechanisms more directly via EEG-
methods, insight is increased by investigating eye-movements as seen here. 

The eyes’ scanning of the QuaDiPF-tasks, controlled by the brain, at least 
shows the process of attempts to orient oneself in the task, where the gaze gets 
caught, which parts of the task - in which sequences - are preferred compared to 
those which are disregarded. 

 

Fig. 4: Entire eye-movements 
Duration: 00:23,236 

The calibration at the bottom  
of the screen wasn’t very 

successful. 
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3. Outlook 

So far, we know that we find traces of eye-movements, which fit perfectly to the 
argumentations of the subjects. It seems difficult (or even impossible) to cheat 
with the eyes, when using the eyes as an essential tool during thinking 
processes. When we were learning to use the technical equipment for the 
investigation of eye-movements, several members of our research group 
checked the usage of the EyeLink headband and tried to simulate the solving of 
known QuaDiPF-tasks. The reproduction of a solution or the attempt to simulate 
predicative/functional thinking (which requires guarding the thoughts) is 
accompanied by quite different eye-movements than those during actual 
thinking processes creating a new solution without specific constraints. 

Dependent on the type of a QuaDiPF-task, the analyses of the eye-
movements show whether a solution was produced in a predicative or (probably) 
in a functional way. In one type of predicative QuaDiPF-tasks, it is even 
possible to distinguish between two possibilities of predicative problem solving. 
In Fig. 3 the triangles along which the eyes move, are typical for the predicative 
approach “creating sets taking into account typical features”. Another 

predicative approach is to break down the 
elements in their components (bottom, walls, 
top) and to check the regularities of their 
occurrences in the rows and columns: in 
each row an open bottom occurs once, so 
does a half-open bottom and closed bottom; 
furthermore straight walls occur twice, 
bevelled walls once; finally they are closed 
tops twice and a sloping tops once, the same 
pattern fits in the columns. The eye-
movements from this kind of predicative 
solution don’t proceed along such triangles 
as presented in Fig. 3, instead they proceed 
along the rows and the columns. 

Eye-movements like the one given in Fig. 4 
confront us with problems. We find similar eye-movements in cases of the 
following suitable predicative procedure: Analogous to the way described 
above, the elements are broken down in their components (bottom, walls, top), 
then it is very easy to see that in each row, the bottoms and the tops remain the 
same, the same holds for the walls in the columns. Unfortunately, we are only 
sure that it is predicative behaviour we are dealing with, if a subject builds sets, 
which can nicely be seen in the eye-movements (Fig. 5): solving the given task, 
a subject could argue that there are always pairs of elements, the “square” is 
missing his partner, the figure in the middle is just the centre point. In fact, so 

Fig. 5: Searching for pairs 
Time: 00:08,953 / Duration: 00:06,355
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far, the first analyses of about 30 subjects show that the set-building is one of the 
most striking characteristics in the eye-movements of predicative behaving 
subjects. In case of the QuaDiPF-task given in Fig. 5, the situation is not 
satisfying; because the predicative set-building approach is of lower quality than 
the predicative decomposition approach. Hence, such tasks are not suitable for 
distinguishing quite good predicative problem solvers from quite good 
functional problem solvers exclusively by means of the analyses of eye-
movements. 

In further experiments, we will use an another type of functional 
QuaDiPF-tasks (Fig. 6), for which in the predicative approach only a set-
building strategy helps, but not a decomposition one. In addition, we will pay 
more attention to such QuaDiPF-tasks for which the degree of difficulty differs 
depending on whether one tries to find a predicative or a functional solution. 
E.g. the QuaDiPF-task given in Fig. 7 is rather difficult, but it is easier to find a 
solution based on functional arguments than to find a similarly good solution 
based on predicative arguments.  Again, here, the set-building approach is only 
second class.  

 

 

 

 

 

 
 
 

We expect that - as in the past - only in rare cases we will find predicative 
problem solvers, who read the rows and columns and thereby elaborate a good 
predicative solution. These subjects will stand out from the others because of the 
short times they need to solve pure, difficult predicative QuaDiPF-tasks like the 
one given in Fig. 3. And, of course, we will develop more QuaDiPF-tasks, 
which fulfil the conditions of the meaningful measurement of eye-movements.  
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The study of assessment and curriculum as a theme of research in mathematics 
education directs the attention to some immediate connections between research 
and practice. With an emphasis on large scale assessment and national curricula, 
group 6 primarily assumed a researcher´s perspective of institutional 
phenomena - what is “officially” going on in the different European nations, 
and how are assessment methods and curricula evolving at the present time?  It 
included a focus on comparisons between nations, but it also brought out the 
national traditions, which may be very stable and partly resistant to international 
influences. 

The presentations in the group provided a basis for discussions that went 
beyond the particular national instances. What kinds of ambitions can be 
identified?  How does one tackle the difficulties involved in aligning curriculum 
and assessment?  In which ways does the “official” picture misrepresent what 
really goes on in the classrooms? 

Some reflection will show that “school mathematics”, as evidenced in 
assessment methods and curricula, is dynamic and that the new aspects are 
highly dependent on other changes in culture and on the available technology. 
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ELEMENTS ON EVOLUTION 
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THE CASE OF INEQUALITIES IN THE "COLLÈGE" LEVEL 

Teresa Assude1 
Équipe DIDIREM, (Université de Paris 7), France 

assude@gauss.math.jussieu.fr 

 

 

Abstract: Our communication is a part of a more general study of the evolution 
of the curriculum in France in Twentieth century, seen from the thematic of 
inequalities. We will present here just some elements of the evolution of the 
official curriculum as it appears in the Official Syllabus in the "Collège" level 
(11 to 14). We focus on the following questions: are there inequalities in the 
curriculum? If any, what kind of inequalities? And in what curricular context do 
they "live"? 

Résumé: Notre communication fait partie d’un travail plus général sur l’étude 
de l’évolution du curriculum en France au XXème siècle en prenant comme 
point d’attaque les inéquations. Ici nous allons nous restreindre à la 
présentation de quelques éléments de l’évolution du curriculum officiel tel qu’il 
se présente dans les programmes et les Instructions Officiels au niveau du 
Collège en nous intéressant aux questions suivantes : les inéquations sont-elles 
présentes dans le curriculum ? Si oui, quels sont les types d’inéquations ? Quels 
sont les contextes curriculaires dans lesquels ces types d’inéquations vivent ? 

 

Our communication is a part of a more general study of the evolution of the 
curriculum in France in the Twentieth century, seen from the thematic of 
inequalities. We will only present here some elements of the evolution of the 
official curriculum as it appears in the Official Syllabus in the "Collège" level 
(11 to 14). Our theoretical frame is the ecological approach initiated in France 
by Yves Chevallard. Two levels of analysis are thus considered. The first level 
is composed with �habitats� and �niches�, that is to say the places and functions 
of the studied objects. The second level is focused on �praxéologies� 
(Chevallard 1999) that is to say tasks, techniques used to achieve these tasks, 
technologies understood as the discourse explaining and justifying techniques, 

                                                 

1  Translated by Jean-Philippe Drouhard, équipe CESAME 
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and theories defined as technologies applied to technologies. We will study the 
curriculum looking for an articulation between these two levels of analysis. Here 
we focus on the following questions: are there inequalities in the curriculum? If 
any, what kind of inequalities? And in what curricular context do they "live"? 

 

1. Presence of inequalities in the official syllabus 

The object "Inequality" is present in the secondary level teaching during the 
whole twentieth century. Generally speaking, it appears at least in the "collège" 
syllabus. We can find it: 

• In the 1902-1905 reform, in the year "3rd Classical A and B" and "3rd 
Modern" (14 ys.)  as: "first degree numerical in equations and 
inequalities with one unknown", where the word "inequality" refer also to 
numerical inequalities; 

• In the1947 reform, in the year "3rd B" (form without Latin) as: "first 
degree numerical equations and inequalities with one unknown. 
Graphical Interpretation"; 

• In the1960 reform, in the year "3rd" as: "equations and inequalities; 
position of the problem; signification, in these problems, of the signs =, 
>, <. First degree numerical equations and inequalities with one 
unknown, with numerical coefficients. Graphical interpretation"; 

• In the1971 syllabus, this object appears in the year "4th"(13 ys.) under the 
following forms: "upon numerical examples, first degree numerical 
equations and inequalities with one unknown" (4th), and "examples 
leading to one or two first degree equations and inequalities with one or 
two unknowns, with numerical coefficients. Graphical representation of 
the solutions of first degree equations or inequalities with two 
unknowns."(3rd) 

• In the1977 syllabus too, inequalities appear both in the year "4th" under 
the following forms: "numerical examples of first degree equations and 
inequalities with one unknown"(4th), and "First degree equations and 
inequalities with two unknowns, with numerical coefficients. Solving of an 
equation, an inequality, a system of two equations; graphical solving of a 
system of equations or inequalities. Examples of various first degree 
problems " (3rd) 

• In the 1985 syllabus, this object appears in the year 4th: "Solving of 
problems leading to first degree equations, inequalities with one 
unknown" (4th), and in 3rd: "First degree equations and inequalities. 
Graphical solving methods of first degree equations and inequalities, with 
numerical coefficients. Solving methods of a system of first degree 
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equations or inequalities with two unknowns, with numerical coefficients. 
Examples of various problems coming down to first degree "(3rd). 

• In the present syllabus (1996-99), the object "inequality" appears in the 
year3rd as: "First degree inequality with one unknown.", and "Solving of 
first degree problems, or problems coming down to first degree". The 
students' abilities being "to solve a first degree inequality with one 
unknown with numerical coefficients. To represent the solutions on a 
graduated straight line" and "to put into equations and to solve a problem 
leading to a first degree equation, inequality or system of two equations". 

Inequalities are therefore constantly present in the secondary school, 
except in the 1925 reform where they are introduced only from the year 2nd (15 
ys.). The kind of inequality is constant, too: mostly first degree inequalities with 
one unknown, except in 1971, 1977and 1985 where appear also first degree 
inequalities with two unknowns, related to graphical representations and systems 
(1977 and 1985), related also to the "graphical solving methods" (1985). 

Some syllabuses are about graphical representation of the solutions of an 
inequality (1947, 1960, 1971), others about explicit graphic solving method 
(1977, 1985). The latter is also about "Solving methods of a system of first 
degree equations or inequalities" without further details about these methods. 
Moreover the 1996-99syllabus distinguishes to solve (an equation, an inequality 
or a system of two equations) from to solve graphically systems of equation and 
inequalities, which supposes that solving a systems of inequalities will be 
graphical only. Other precision is also given, for instance the "numerical 
coefficients" (1960, 1971, 1977 and 1985) and the problem solving (1977, 1985 
and 1996). 

Equations are constantly close to inequalities and, except in the 1902 and 
1996 syllabuses, the two words appear together in the same sentences. We will 
develop this point below. 

Another observation: in French there are two different words, "inégalité" 
(inequality) and "inéquation" (*"inequation") (except in the 1902 syllabus). 
Carlo Bourlet writes, in his book "Elementary Algebra": "just as one 
distinguishes equalities in two species, identities and equations, one may 
distinguish amongst inequalities, those which occur for any value of the letters, 
and those which occur only if some letters, called unknown, are given particular 
values. We call the latter "conditional inequalities" (p. 160).In a footnote, the 
same author writes: "one uses also, sometimes, the words "unidentities" and 
"inequations" but as these expressions are rather unusual we preferred not to use 
them. 
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2. Context of inequalities in the syllabuses 

In order to precise the context of inequalities in the various syllabuses we will 
consider three broad stages. First stage, until the "new math" reform (1902 - 
1970), second stage, the "new math" until the 1977(counter-)reform (1970-
1977), third, the present one, mainly from 1985. 

 

2.1. First stage 

During the first stage inequalities are a part of "algebra" and the syllabuses of 
years 4th and 3rd are divided in two or three parts amongst "arithmetic", "algebra" 
and "geometry". In the 1902-1905 syllabus, inequalities come after operations 
on positive numbers, monomials, polynomials, and equations (first degree 
equations with one unknown, solving two equations with two unknown, systems 
of equations with more than two unknown). The problems of setting into 
equations come then, but there is no explicit reference to inequalities. 
Afterwards come the variations of the expression ax + b together with its 
graphical representations; eventually come the second degree equations. 

In 1947 equations, polynomials and monomials are also very close to 
inequalities but other objects come beforehand: locating a point in the plane, 
variables and functions from usual magnitudes, linear functions and graphical 
representations. First degree equations with an unknown come before 
inequalities and problems on equations come after inequalities. 

In the 1960 syllabus we find again the same objects in the same order. 
However there is a difference: it is no more about functions given from usual 
graphical magnitude but instead, simply about functions. This program brings 
another "little change", since in the year 4th inequalities are introduced with the 
comparison of negative numbers. 

In brief, during this period the context of inequalities is essentially made 
of equations. Inequalities are "almost" as equations, they follow the study of the 
equations and their techniques, (algebraic technique) just taking into account the 
sign of the a when both members of an inequality are multiplied by a. 
Inequalities are a part of "classical" algebra, of which the main topic are 
equations. 

"Small" changes operate on this organisation, which will turn into more 
radical changes in the second stage. These changes are firstly the appearance of 
the notion of function and of the graphical representation before the study of 
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equations and inequalities (1947 and 1960), then the appearance of the ordered 
structure of real numbers (although not explicit). 

 

2.2. Second stage 

This second stage is characterised by the dramatic changes of the so-called "new 
maths" reform. With respect to inequalities, the changes were "prepared" 
beforehand as we saw above. The classical organisation in the "collège" in 
"arithmetic", "algebra" and "geometry" is replaced by another organisation. For 
instance, in the year of 4th, there are four parts: Relations, Decimal numbers and 
approach to real numbers, Geometry of the straight line, Plane geometry. In the 
year of3rd, there are three parts: Real numbers, algebraic computation and 
numerical functions; Euclidean plane; Euclidean plane geometry. Inequalities 
appear in year4th in relationship with the fact that  is a totally ordered field; in 
year 3rd in relationship with the total ordered and the notion of interval. In this 
year, first degree inequalities with two unknowns appear, and also the graphical 
representation of the solution of this kind of inequality. Equations remain close 
to inequalities, and both are depending on numerical functions. This notion of 
function becomes then a core notion of the curricular organisation (just as 
number structures) and forms the basis for the study of equations and 
inequalities (at least for their definitions, even if it is not in the techniques that 
are taught and used). 

The 1977 reform takes a step back but it is not possible to come back to 
the same point as before the "new math" reform. The organisation of the year 4th 
is in two parts: Numerical computation; Plane geometry; in year 3rd we come 
back to a traditional organisation in two parts (Algebra, Geometry). The 
organisation related to inequalities is no longer the traditional one, however: in 
year 4th the first degree inequalities are associated with the order relation, and 
the first degree inequalities with two unknowns appear in year3rd in the algebraic 
part. It is to note that the graphical solving of a system of inequalities is 
explicitly noted and that problems do not refer explicitly to equations nor to 
inequalities. 

In brief, the context of inequalities is, at this stage, essentially structural 
and functional. Structural because the inequality is associated with the order 
relation (in 1971, students are taught the demonstration that  is a totally 
ordered field!) and functional since this object is depending upon the notion of 
function and upon its graphical representation. Inequalities enter here the field of 
"modern" algebra (study of numerical structures, in particular order structures) 
and, by means of functions, as a tool for calculus (this aspect is more evident in 
the French "Lycée", 15-17 ys.). As a consequence of this relationship, we may 
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note that in the syllabuses, appear first degree inequalities with one or two 
unknowns and systems of inequalities, of which the graphical solving is 
explicitly organised. Inequalities, although keeping a privileged association with 
equations, become more autonomous, in particular in the field of calculus. 

 

2.3. Third stage 

In the third stage, since 1985, all the years of the "collège" are organised in three 
parts: Geometrical works, Numerical works, Data organisation and processing, 
functions. Inequalities appear in the 'Numerical works' part in the year 4th 
(1985), and associated with the order relation in the year 3rd (1996). The solving 
of problems leading to inequalities is expected in 4th and in 3rd (1985 and 1996). 
The graphical solving method of a system of first degree inequalities is 
explicitly expected in 1985; however this type of inequality and the systems of 
inequalities vanished in the present syllabus. 

In brief, in this stage we observe a movement towards a structural 
(numerical) context and to the equations context by restraining to a unique type 
of inequalities, whereas systems of first degree equations with two unknown 
remain present. 

 

Tentative conclusion 

The study of the various curricular contexts related to inequalities must carry on 
with the study of the types of problems and of the various techniques (see 
Assude, 2000), which are their conditions of possibility. Moreover, these 
curricular studies must be completed by the study of other kind of context 
(historical, social, epistemological, among others). For this, works of historians 
of teaching is essential. 

The study of a curriculum may be done from various points of view. We 
took here the point of view of the institutions, applied to the official syllabus. 
This point of view, however, must be completed by others, in particular by the 
actual practices, by the analysis of school books, but also, as we already said, 
focusing on the three following kinds of context: social and economical, 
philosophical, ideological and cultural, and epistemological and content-based. 
A multidisciplinary approach is obviously one of the conditions for the success 
of such an enterprise. 
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Abstract: In the article the authors present some results of an empirical study on 
the final examination in mathematics of the previous four years. The results 
show that the former developmental procedure of the tests does not produce test 
items what satisfy the requirements of objectivity, validity and reliability. The 
distributions of the test achievements in different years varies very much. A new 
development procedure is under development. 

 

The past decade is the decade of the reforms in education all over the world. The 
great and fast social, economical and technological changes press the 
educational policy makers to think over what is the new role of schools. It is also 
question now, what is the social need, what to teach, how to teach in the new 
era, how to make education more effective and how to ensure the correct 
measure of the efficiency of education and the success of individual students. 
(Niss, 1993) 

Hungary also takes part in this long lasting procedure what includes - 
among others - the restructuring of the school system, the development of 
curriculum, the reform of the textbook �industry� and the examination reform. 
(Curriculum, 2000; Lukács, 2001) 

During this reform we have the opportunity to study the past and present 
examination procedures theoretical and empirical ways. (Tompa-a, 1999; 
Tompa-b, 1999) 

In this article we would like to describe some aspects of the Mathematics 
examination reform in Hungary on the basis of an empirical study.  

 
 
                                                 

1 The study is sponsored by OTKA (National Foundation of  Scientific Research Programs) 
The program number is: F 025689 
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1. Some characteristics of the Hungarian mathematical examination 
system 

Mathematics in the Hungarian education system always played a great role by 
tradition. One of the indicators of this fact is that the maturity examination 
procedure includes compulsory mathematics exam. One or another form of 
mathematics exam is compulsory for each pupils at the end of all types of 
secondary school. (Regularly at the age of 18-19.) We summarise the 
mathematical examination system in Table 1. 

Type of the 
examination 

Centrally developed matriculation 
exam 

Centrally developed combined 
matriculation and entrance exam 

Version For �academic� 
high school 

For vocational-
oriented high 

school 

For technical and 
mathematical 

oriented higher 
education 

For economy 
oriented higher 

education 

No. of items 
6 open problems 
+ 1 theorem to be 

proved 

6 open problems 
+ 1 theorem to be 

proved 
8 open problems 8 open problems

Time 180 min. 180 min. 240 min. 240 min. 

Score Maximum 80 Maximum 80 Maximum 100 Maximum 100 

Evaluators Regular teacher Regular teacher External + 
regular teacher 

External + 
regular teacher 

Form (*)  Selection of 
known problems 

(*)  Selection of 
known problems On printed sheets On printed sheets

Table 1: Summary of the existing Mathematics matriculation exams in Hungary 

According to the table we can differentiate 2 main types of matriculation 
exams in Mathematics: 

a) Those pupils who want to finish their Mathematics education after high 
school it is possible to take a less difficult examination either in 
�academic� or in vocational oriented high schools. This exam is centrally 
designed by a national institute and has to be taken in the school, so it is 
called the �school exam�. This exam is regularly compiled by a 
committee of experts. The 6 problems and the theorem to be proved are 
selected from a collection of 4000 problems of a specific textbook 
(exercices book). This book is well known (Gimes, 1992) and is used by 
students during their 4-years of studies. The content of the exam (the 6 
problems and the theorem) is announced via mass media (National Radio 
and National Television) on the examination day. 

b) Those pupils who want to enter a higher education institution (which 
requires entrance examination in Mathematics) there are the two types of 
combined exams, according to the field of interest. These exams fulfill 



Working Group 6 

 511

two purposes. They serve as matriculation exam and entrance exam to the 
higher education institution as well. They are more difficult then the 
school exams. These sorts of exams are also developed by team of experts 
and the problems are given to the pupils on sheets in the venue of the 
exam. The entrance examination takes place one or another higher 
education institution depending on where the pupils applied to. 

Both types of examination are developed by team of experts. The teams consist 
of mathematicians and mathematics educators with higher education and high 
school teaching background. The teams make very careful selections according 
to their best knowledge, and the experiences gained in the previous years 
examinations. In this procedure the problems are not pre-tested, and we do not 
have any data about them in advance. It happens sometimes that an exam more 
difficult in one year than another. 

 
2. Some data about the past years’ examination 

In order to get more information about the validity, objectivity and reliability of 
the present Mathematics examination we collected data on the school exam in 
year 1995-1998 from the �academic� high schools. It is to know that even if the 
development and the launch of the exam is central the schools are not obliged to 
report their results to any central place, and keeping the pupils� work is 
compulsory only for two years after the exam was taken. 

 
2.1 Examples of the examination problems 

In this article there is no place to show all problems of the exams in the studied 
period. However let us demonstrate the nature and the quality of the problems 
with Exam 97 and Exam 98. The intention is to have almost the similar 
characteristics of the examination year to year (number of problems, topics, 
validity, difficulty of the problems etc.) There are only problems covered by the 
national core curriculum and the theorem to be proved is also familiar to the 
pupils. So the Mathematics examination is supposed to measure the acquired 
knowledge. 

School Mathematics Examination - 1997 

1. (1214.) Does the area change if we lengthen one of the sides of a square by 
1/5 times than its original length, and shorten the other side by an equal 
amount? If it does, determine the percentage change. 
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2. (1548.) Solve the following inequality in the set of real numbers:  
)23(log

3
1 −x  > 0  

3. (2385.) The radii of the base and the upper circle of a truncated cone are 
�R� and �r�. A plane parallel to the base divides the superficies of the cone 
into two parts having equal areas. What will be the radius of the circle 
intersected by the above plane from the truncated cone? 

4. (3054.) Solve the following equation in the set of real numbers: 
1sin22sin3 2 += xx  

5. (3196.) The vectors from the origin to two adjacent vertices of a square are 
a(5; �2) and b(�4; 4). Give the co-ordinates of the vectors to the other 
vertices of the square. 

6. (4051.) How many positive divisors are there for 2700? 
7. Proof of a theorem (Meeting points of the altitudes of the triangle). 

School Mathematics Examination - 1998 
1. (1068.)2 Solve the following equation in the set of natural numbers:  

log (x+1)+log(x�1)=log8+log(x�2). 
2. (2066.) The length of one of the parallel sides of a trapezoid is 4.8 cm, and 

the length of the remaining sides is 3.2 cm. What is the area of the 
trapezoid? What are the angles of the trapezoid? 

3. (3385.) Find the point of the x-axis at which the line segment having 
endpoints A(0; �3) and B(6; 5) subtends a right angle. 

4. (2394.) The length of the sides of the base of a square pyramid is 8 cm, and 
the slant height of the side faces is 12 cm. What will be the radius of the 
sphere which is tangent to all the faces of the pyramid? 

5. (861.) Solve the following equation in the set of non-negative numbers:  
4�x2= 2. 

6. (4036.) How many 4-digit numbers can be made out of the digits 1, 3, 5, 7 
and 9, if each digit may appear only once? How many of these begin with 
13? How many numbers are there which has first digit as 1 and at the same 
time, last digit being 3? 

7. Proof of a theorem (The leg-theorem). 

 

 
                                                 

(The numbers in parentheses refer to the numbers of the problems in the specific exercices 
book.) 
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2.2 About participants of the study 

The design of the sample was representative for the population of age 18-19 
attending academic high schools. (There were only some schools that could not 
present the data, but the sample was big enough, so it did not mean bias 
problem.) A number of assistants went to see the schools and collected the 
results about the examinations. To give the data it was voluntary. Table 2 shows 
the number of examinees taking part in the study. 

Year 1995 1996 1997 1998 
No. of papers 1514 3740 4262 2423 

Table 2: Number of participants in the study 

We have also collected not only the final scores of the examination but 
10-15 percent of the complete examination sheets has been copied (without the 
pupils� identity) in order to analyse them deeper later.  

 

2.3 Some results of the study 

Our intention is to make deep analysis of the Mathematics examination based on 
the collected data, but here we would like to demonstrate only some general 
statements. Table 3 and 4 show the average of pupils� achievements on each 
problem, the theorem and the whole test in each year. So we can compare the 
achievements in the tests of the different years. 

Year P1 P2 P3 P4 P5 P6 Theorem Total 
1995 72,9 52,3 45,4 33,6 75,6 68,3 43,7 53,6 
1996 93,9 71,5 43,7 10,0 31,5 42,5 53,5 47,2 
1997 78,6 78,6 16,2 29,2 33,3 49,0 54,5 54,5 
1998 81,6 83,3 42,7 39,1 54,2 60,7 60,7 58,2 

Table 3: Pupils’ achievements on the different problems in percentages (Problems are in the 
order of their appearance in the test) 

This table shows that there are great differences in the total achievements 
year after year, and the difficulty of the problems (test items) differs very much. 
The first two problems supposed to be the easy items, and the range of their 
difficulties is 52,3-93,9. (See Table 3.) Rather great differences are what we can 
realise. 

The question is can it be due to the different populations? 
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However it is more interesting what Table 4 shows that is the great 
differences in difficulties of the items belonging to the same topic. 

Year To1 To2 To3 To4 To5 To6 Theorem Total 
1995 72,9 75,6 68,3 45,4 33,6 52,3 43,7 53,6 
1996 93,9 43,7 42,5 71,5 10 31,5 53,5 47,2 
1997 78,6 29,2 49 78,6 16,2 33,3 54,5 54,5 
1998 54,2 81,6 60,7 83,3 39,1 42,7 60,7 58,2 

Table 4: Pupils’ achievements on the different problems in percentages (The order is 
according to related topics) 

The observation of the great differences is easier if we see the graph made 
on the basis of the data in Table 4. 

Comparison of pupils' achievements according to related topics
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Figure 1: Comparison of pupils’ achievements in the matriculation exams year 1995-1998 

The topic list is the following: 
To 1: Algebra1 � percentages, linear ad second order equation 
To 2: Algebra2 � logarithmic, trigonometric equations and functions 
To 3: Number theory 
To 4: Plane geometry, coordinate geometry, geometric calculation 
To 5: Location, solid geometry 
To 6: Vectors, trigonometry 
Theorem: Proof of a theorem from the plane geometry 

The question is the same: Can it be due to the different populations? 

 
2.4 The distribution of pupils achievements 

In the following figures we show the distribution of the pupils� achievements on 
the whole tests in the four years. 
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Distribution of total achievement scores, 1995
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Figure 2: The distribution of total achievements’ scores – year 1995 

Distribution of total achievement scores, 1996
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Figure3: The distribution of total achievements’ scores – year 1996 

Distribution of total achievement scores, 1997
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Figure 4: The distribution of total achievements’ scores – year 1997 
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Distribution of total achievement scores, 1998
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Figure 5: The distribution of total achievements’ scores – year 1998 

These four figures show very different pictures of achievement 
distribution of the roughly the same four populations. 

It is not believable that the populations one after the other differ that 
much. It rather indicates that there has to do something about the reliability, 
validity and objectivity of the Mathematics examination. And we are working on 
now. 

 

3. Some reasons and trends of the change 

In this short article there is no possibility to describe a detailed program of the 
examination reform, but we can summarise the main reasons and the trends of 
the changes. They are the followings: 

• The examination system is rather old  (more then 20 years) 
• New curriculum includes new topics, it implies changes in examination 
• The tests need better characteristics according to the educational 

measurement theory 
• Better validity (harmonising requirements and test items) 
• Better reliability 
• Equality in the difficulty year to year 
• Comparability 

So our main reform activity is focusing now on the building of 
examination item bank. That means to develop a lot of new and old types of 
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problems, to pre-test them and on the basis of empirical data to parametrize 
them. 

At the end of the developmental and research period we have to present a 
new examination model by 2003. 
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Abstract: Finland participated in the TIMSS 1999 in 1998-2000, and the results 
of this study are analysed at the moment both nationally and internationally. 
Because of the nature of the Finnish curriculum, which was decentralised in the 
mid 90's, a textbook analysis on three most popular textbooks in Grade 7 was 
done to find out more about the nature of the intended and implemented 
curriculum in this grade level. The implemented curriculum was also explored 
by using the teacher questionnaire data of TIMSS 1999. In this paper results of 
these analyses are presented, as well as some connections between curricular 
characteristics and students’ achievement. The used textbook does not seem to 
have an effect on the overall results in the achievement test. However, in the 
analyses of smaller groups of items or individual items in the test, the textbook 
seems to matter, and it should not be forgotten. 

 

Introduction 

Finland participated in the TIMSS 1999 study (Third International Mathematics 
and Science Study Repeat) in 1998-2000. The main interests of TIMSS 1999 
were to get information about mathematics and science achievement, and the 
factors influencing students� achievement in different educational systems. The 
target population of TIMSS 1999 was the 13-years old children, which in 
Finland meant the 7th Grade students. 

The aim of my study was to find out the effect of using different 
mathematics textbooks in Grade 7. In what measure does the use of different 
textbooks explain the variation within students' achievement? 

 

Theoretical Background 

The theoretical background of this study was based on the conceptual 
framework for TIMSS, which was already used in the Second International 
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Mathematics Study. The curriculum is seen to be formed of three embedded 
levels: the intended, the implemented, and the attained curriculum. These have 
certain contexts, where they work, and each factor effecting education can be 
situated in some of these contexts. (Kangasniemi 1989, Robitaille et al. 1993)  

The intended curriculum is the mathematics content as defined at the 
national or the educational system level. In Finland this is outlined in the 
Framework Curriculum for the Comprehensive School 1994 published by the 
National Board of Education. It includes general goals for the education in 
Finland for Grades 1 to 9. Based on these general aims the individual schools 
are responsible to prepare their own curricula. As a consequence there may be 
great variation in the school level curricula. 

The implemented curriculum is the mathematics content made available to 
students. In a way it is the intended curriculum interpreted by teachers or other 
organisers of instruction. Because of this interpretation it is not identical to the 
intended curriculum, but it is however influenced by the intended curriculum. 

The attained curriculum means the outcomes of education. In 
mathematics it means the concepts, processes, and attitudes learned during 
instruction. This is influenced by the intended and implemented curriculum. 

Textbooks 
In the three level curriculum model outlined above textbooks can be related to 
both the intended and the implemented curriculum. This is why they can be seen 
as an intermediate level in the model and they are termed the potentially 
implemented curriculum (Schmidt et al. 1997). Depending on the educational 
system the role of the textbooks differ considerably and they can correspond 
more to either of the two levels related to them. 

On the basis of earlier studies in Finland the textbooks are very closely 
related both to the intended and the implemented curriculum. However the 
correspondence to the intended curriculum may have changed after the 
curriculum reform in 1994, which resulted in the Framework Curriculum 
mentioned earlier. In this connection the centralised control of the textbooks was 
finished. The teachers� use of textbooks is explored in this study, but based on 
earlier research in this field it is very regular (Korhonen 1994, Kupari 1993). 

 

Context of the Study 

In order to better understand the ideas of this study, it is reasonable to give a 
short description about the Finnish school system and mathematics teaching. 



European Research in Mathematics Education II 

 520

Finnish School 
The time the data of this research was gathered the Finnish comprehensive 
school included two parts: the lower level from grade 1 up to 6 and the upper 
level from grade 7 up to 9. Nowadays the "border" between the lower and upper 
level has been abolished at least in the legislation. The starting age of school is 
usually the year the child gets 7 years old, sometimes the school can be started a 
year earlier. 

Curriculum Reform in the 1990's 
During the 1990's the Finnish school system left the centralised control and the 
schools were given more possibilities for decision making. The National Board 
of Education released the Framework Curriculum for the Comprehensive School 
in the year 1994. It gives guidelines to the local administrators, who are then 
supposed to prepare their own school curricula. For example the Framework for 
the Comprehensive School does not specify, when various subjects are to be 
taught or what are the upper limits of lessons used to the subjects. It just gives 
the minimum number of lessons that must be taught during the upper and lower 
level in different subjects. It also states the general educational and subject-
related goals of the instruction. 

Mathematics Teaching 
The approach of mathematics in the upper and lower levels are quite different. 
In the lower level mathematics teaching is based on a spiral approach: the same 
main contents are covered each year, but some new ideas are brought up every 
year.  

In the upper level mathematics teaching is usually organised course-
based. In practise this means that there are contents which are taught thoroughly 
just once during the upper level (e.g. percentage). The schools may themselves 
decide, when different content areas are taught, and often the order of the 
content areas is the same as in the used mathematics textbook. 

 
Research Questions 

The research questions of the study were the following: 
1. What are the content areas to be found in the Finnish mathematics 

textbooks in Grade 7 according to the TIMSS framework?  
2. What contents have been taught in Grade 7 announced by the teachers?  
3. Is there any connection between the potentially implemented and 

implemented curriculum discussed in questions 1 and 2 and the attained 
curriculum described by the students' achievement in the TIMSS 1999 
test? 
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Description of Data 

The TIMSS 1999 sample in Finland consisted of 171 schools, 3290 students and 
641 teachers. Of the schools 151 were Finnish speaking, and 20 Swedish 
speaking, and of the teachers 175 taught mathematics. The data gathering took 
place in April 1999. 

Textbook Analysis 
Information of the mathematics and science textbooks the sample schools used 
in Grade 7 in the school year 1998-99 was collected. Responses were received 
from 134 schools. This study is based on the data from 104 schools, which used 
the following textbooks: Kolmio (K, 47 schools), Plussa (P, 37 schools), and 
Matematiikan maailma (MM, 20 schools). 

These three textbooks were analysed in this research. The textbook 
analysis was done using mainly the same method as in TIMSS 1995 (Bianchi et 
al. 1998, Isager 1996, McKnight 1992, McKnigh et al. 1992, Schmidt et al. 
1997). The textbooks were divided into analysis units and then the units into 
small blocks. These blocks were given codes describing content and 
performance according to the mathematics frameworks used in both TIMSS 
1995 and 1999. Each of the blocks could have more than one code in both 
aspects: for instance decimal fractions and measurement was a usual 
combination in the textbooks. The results are presented with percentages, which 
express the proportion of the textbook devoted to the content area in question. 
The percentages are not additive because of the possibility to give multiple 
codes to a single block. 

The reliability of the textbook analysis was estimated by using two 
reliability coders. There where some differences between the main coder and the 
other coders in given codes but in most cases the differences could be explained 
by not using multiple codes in a similar way or by the overlap of the categories. 
As a consequence, the results presented here can be considered fairly reliable. 

The results of the study are reported using the categories of the TIMSS 
1995 mathematics frameworks, and some of it is presented in table 1. 

Table 1. Main content categories and some subcategories of the TIMSS 1995 
mathematics frameworks 

1. Numbers 
1.1. Whole Numbers 
1.2. Fractions and Decimals 
1.3. Integer, Rational, and Real Numbers 
1.4. Other Numbers and Number Concepts 
1.5. Estimation and Number Sense Concepts 
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2. Measurement 
3. Geometry: Position, Visualisation, and Shape 
4. Geometry: Symmetry, Congruence, and Similarity 
5. Proportionality 
6. Functions, Relations, and Equations 
7. Data Representation, Probability, and Statistics 
8. Elementary Analysis 
9. Validation and Structure 

10. Other Content, e.g. History of Mathematics and Applications of 
Mathematics. 

Questionnaires and Achievement Test in TIMSS 1999 

Other sources of information in this study were the achievement tests and 
different questionnaires in TIMSS 1999. There were background questionnaires 
to teachers, students and schools. This study uses the data from the teacher 
questionnaire considering the use of textbooks and the contents taught to 
students during the school year 1998-99. Also the achievement test data is used. 

 
Results 

1. What are the content areas to be found in the Finnish grade 7 mathematics 
textbooks according to the TIMSS framework? 

The results presented here are based on the analysis of the three most used 
Finnish textbooks in grade 7. The content categories presented here have been 
chosen considering their relevance to questions number 2 and 3. 

 

 
 

 

 

 

 

 

 

 

Figure 1. Proportion of pages (%) with given content codes. 
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There were some shared content areas emphasised in all of the three 
textbooks: integers (negative numbers) and two-dimensional geometry 
considering both basics and polygons and circles. Bigger differences among 
textbooks occurred in case of equations, fractions, computing area and volume, 
and data representation. The textbook P differed distinctly from the others with 
the great proportion of Equations, which accounted for 27% of the textbook. As 
an interesting detail division of fractions was presented only in one of the 
textbooks. It is interesting to see students� achievements in these content areas, 
because most of them are usually not thoroughly taught in the lower level. 

 

2. What contents have been taught in Grade 7 announced by the teachers? 

The teachers were asked in what extent they had taught content areas included in 
the content frameworks during the last school year. The scale used was �Taught 
earlier�, �1-5 lessons�, �Over 5 lessons�, �Not yet taught�, �I don�t know�. In 
the analysis of these answers the categories �1-5 lessons� and �Over 5 lessons� 
were combined to one category �Taught this year�. The results were consistent 
with the results from the textbook analysis, and some of them are presented in 
Table 2. 

Table 2. Content areas taught according to the responses of the mathematics teachers. 

Content category K % taught P % taught MM % taught
Fractions, computations 87 31 36 
Decimal fractions, computations 85 53 80 
Percentages 12 8 69 
Negative numbers 88 92 86 
Measurement, units 65 63 78 
Perimeter and area of combined shapes 22 50 76 
Volume of solids 10 56 45 
Cartesian coordinates 87 93 86 
2-D geometry 87 69 100 
Congruence/similarity (also symmetry) 31 11 90 
Solving equations 19 94 16 
Data representation 65 57 72 
Simple probabilities 2 0 66 

 
In general teachers using the textbook K had taught number concepts 

more often than the others. Exceptions in this pattern were percentages and 
negative numbers (integers). The latter was covered in all of the books and also 
by almost all teachers. The former was covered only in the textbook MM, and 
teachers using this book had usually taught the content. The teachers using 
textbooks K and P had maybe used some other materials in the teaching of this 
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content. In the case of textbook K, the structure of the book can explain the 
results. It consists of a theory book covering all materials to be taught in the 
upper level, and separate exercise books for each Grade. 

The same explanation is appropriate at least concerning the results of 
solving equations and simple probabilities. The most surprising result were 
found in the category congruence, similarity and symmetry. The textbook 
analysis results were quite equal but the teachers using textbook MM had taught 
this content distinctly more often than others. However, most of the results were 
very consistent with the contents of the textbooks displayed in Figure 1. 

 

3. Relationships between instructional contents and student achievement 

Before considering results of the achievement test, it is reasonable to present 
results about teachers� usage of mathematics textbooks. Teachers were asked 
whether they use a textbook and what proportion of their teaching is based on a 
textbook. According to the answers 99% of the students were taught by teachers 
using textbooks. Furthermore 85% of the students were taught by teachers, who 
used textbooks in over a half of the lessons, and only 2% of the students used a 
textbook in less than a quarter of their lessons. These results are a good reason to 
analyse the textbooks, when looking for possible explanations to variation in 
students' achievement. The results showed quite high use of textbooks, when 
compared with international results from TIMSS 1995 (Foxman 1999). 

In general there were no significant differences in the achievement 
between students using different textbooks. In TIMSS 1999 the items were 
grouped in five main categories: fractions and number sense, measurement, 
geometry, algebra and data representation. The average scores for the overall 
mathematics achievement and each of the categories above were very similar 
between students using different textbooks. However, there could be seen some 
differences, when the items were grouped according to content subcategories. 

Table 3. Average percent correct calculated in content subcategories. 

Content subcategory  K P MM 
Fractions, computations (8 items) 52 48 46 
Division of fractions (1 Item) 38 5 0 
Equations, algebraic expressions (9 items) 40 55 39 
Perimeter and area (7 items) 38 47 46 
Volume (1 item) 51 57 66 
Congruence, similarity, and symmetry (10 items) 50 50 52 
Data representation (12 items) 78 76 81 
Simple probabilities (7 items) 67 71 75 
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In table 3 computations with fractions gives a quite good picture of the 
results. The percentages were quite close to each other, even though the 
textbook analysis and teachers� answers would have let us assume, that the users 
of the textbook K should have done better than the others. This was the case, but 
the difference was very small. However there is a very simple possible 
explanation for this: the computations with fractions has been already taught 
during the lower level. But there is one exception, namely the division of 
fractions, and the users of textbook K did much better than the others in the item 
of this subcategory. 

The results for congruence, similarity, and symmetry were a bit 
surprising. Based on the teacher questionnaire results one could have assumed 
that the users of textbook MM would have had higher scores than the other two 
groups. However, this is not the case and the results actually showed the same 
similarity as the textbook analysis. A closer look at the items might give some 
explanation to these results. Anyway, the results of the other categories were 
quite consistent with the results from the textbook analysis and teacher 
questionnaire, though the differences in achievement among different textbook 
users were small. 

 

Conclusions and continuation of the study 

Although the textbooks analysed covered different contents in Grade 7, the 
differences in students' achievement were small. This implies, that Finnish 
students have a very equal educational background in mathematics, when they 
come from the lower level to the upper level. This was the result also in a recent 
national mathematics assessment study in 6th Grade (Niemi 2001). Some 
statistically significant differences among different textbook users were found, 
but they were very small. On the other hand there seems to appear some 
differences on the upper level depending on the textbook used at the school and 
the content assessed. In the overall results of TIMSS 1999 there were no 
differences among different textbook users and this is a good result 
remembering the goal of equality in the Finnish school system. The result 
considering overall scores has been similar in national mathematics assessment 
studies in the 9th Grade (Korhonen 1994, 2001). Anyhow, when looking at 
smaller groups of items or individual items the textbook seems to have an effect 
on the results. This was also found in the mathematics assessment of Grade 9 
done in year 2000 (Korhonen 2001). This indicates, that when doing item level 
analyses, the textbook must be taken into account as a school level variable: 
looking at the results of the division of fractions item justifies this. 
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In the next phase of the study different content and item groups will be 
analysed. One problem to be solved is to determine the statistical significance of 
the differences in achievement. The textbook analysis has been expanded to 
cover also the textbooks used in Grades 5 and 6. The results of these analysis 
will be studied further and hopefully these results will give more information 
and better explanations concerning the results of TIMSS 1999. 
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INTRODUCTION TO WG7 
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The participants in the working group soon agreed that the goal of the sessions 
would be to share and compare the various standpoints and research problems. 
We were not trying to achieve an agreement on the various concepts and 
constructs we were dealing with, or on the different possible focuses of attention 
or theoretical approaches. Our aim was to create understanding and search for 
common points. Too much agreement would had been suspicious, especially 
taking into account the wide range of issues that could be tackled on a working 
group labelled "The Role of Metaphors and Images in the Learning and 
Understanding of Mathematics". 

As regards mathematical subjects, a wide range of domains were 
addressed by the members of the group: elementary arithmetic, algebra, 
geometry, analysis ... From a didactical standpoint as well, various theoretical 
frames were represented: some referred mostly to Duval, some to Nunez and/or 
Lakoff, some to Fischbein ... and some to several of these. This double 
"classification" shows that many -if not all- mathematical domains (and not only 
geometry) are concerned with metaphors and images, and that this theme has 
many strong theoretical references. A contrario, this shows that some work is 
still needed to provide the researchers with a more general frame, which could 
be helpful in any area of mathematics (and perhaps even beyond them). 

However, despite the differences in interests and standpoints, we all 
considered that the usual ways of teaching mathematics nowadays have negative 
effects on the developing and using of images by students. Therefore, we 
concluded that some changes should take place in the teaching of mathematics, 
in order to help students make a more effective use of them. Therefore, the 
discussions around the research works presented within the working group 
aimed at knowing more about the role of images and metaphors in the learning 
and teaching processes of mathematics in order to have models to try to improve 
the situation. It seemed clear to the group that if any changes are to be produced, 
then teachers, among others, could be agents for these. But then, the question 
arose whether or not we can teach prospective or in-service teachers to teach 
their students how and when to use metaphors and images?  
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We all seemed to accept that students spontaneously produce their own 
images and metaphors, and that a long-term intention of teaching is to have the 
students functioning as mathematicians do. Images and metaphors were 
recognised as being extremely useful in mathematics, not only for 
communication but also for conceptualisation. Therefore, during the discussion 
of the different research approaches, experimental designs and research 
methods, many issues arose about how to conduct the students to do the same as 
mathematicians do: what are the metaphors and images that should be promoted 
by teachers? How do the models used by the teachers help or disturb the 
students? How can teachers recognise and collect their students' initial thinking 
mode? Is the active imitation of the teacher's models helpful in the students' 
construction of their own images and metaphors? Even if everyday metaphors 
can be very rich, is intuition linked to everyday life always helpful for the 
formal thinking that we want to promote? Or can it be an obstacle? The 
potentiality of the source domain relies on the possibility for inferences, but how 
can we come to know the spontaneous source domain of our students? 

It seemed obvious to the group that more research is needed, focusing not 
only on partial aspects but also on trying to find a more global interpretation of 
the issues, from an open-minded theoretical standpoint, trying to build on the 
different theoretical constructs already existing, without introducing new terms 
that only introduce small differences and not merely on doing 'theoretical 
tourism'. 

To conclude, we would like to say that we were very pleased to work in 
this group; its size (10 members) was well adapted to its way of functioning, 
since there was substantial time to discuss the paper of every participant, and we 
recommend it for future congresses of ERME. This work resulted in changes in 
the papers that are presented here below, and we hope that it improved their 
quality. We also hope that the other members took as much pleasure as we did in 
working together. 
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Abstract: University teachers often declare that using « geometrical intuition » 
would help students in their learning of linear algebra. My work aims at 
investigating such an affirmation. I will first present a definition of 
« geometrical intuition », relying upon the work by Fischbein about intuition in 
mathematics, and especially the use of models. I submitted a questionnaire to 
post-graduate students, in order to draw out the different aspects of geometrical 
intuition and the various kinds of models they use in their practice of linear 
algebra. The use of a geometrical or a figural model can be associated with a 
good understanding of linear algebra, but it can also raise specific difficulties. 

 

Introduction 

Many teachers mention geometry as helpful for learning and working in linear 
algebra. In a recent report about teaching geometry, the mathematical teaching 
reflection commission writes:  

“The link between linear algebra and geometry seems to be more 
interesting in the opposite way, because usual geometry in dimension 2 or 3 
provides an intuitive basis to work when the dimension is greater than 3, or even 
infinite…” (C.R.E.M. 2000)  

This quotation raises several questions. What is the “usual geometry in 
dimension 2 and 3”? Is it the geometry now taught in secondary school, or 
Euclidean geometry (with the historical meaning of that expression)? What is 
exactly an “intuitive basis”? Do students use such a basis when they work in 
linear algebra, and does it really improve their understanding and practices? 
These are the questions I address and try to answer in my doctoral dissertation 
(Chartier 2000). I will first present the theoretical framework I used in order to 
make the meaning of the expression “geometrical intuition” precise, and to study 
it in the practices of students. I used Fischbein’s work: indeed it allowed me to 
present a definition of geometrical intuition, and to describe potential uses of it 
in the practices of students. I proposed a questionnaire to post-graduate students, 
in order to observe such uses of geometrical intuition. I will present here a short 
review of the questionnaire and of the analysis of the answers. 
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1. Geometrical intuition 
1.1. Intuition in mathematics : the work of Fischbein 

According to Fischbein (1987), intuition offers behaviourally meaningful 
representations, allowing the reasoning activity to rely upon apparently certain 
conceptions. An important factor of intuition is the use of models. Fischbein 
defines a model as follows: a system B represents a model of system A if, on the 
basis of a certain isomorphism, a description or solution produced in terms of A 
may be reflected consistently in terms of B and vice-versa. If a notion cannot be 
represented intuitively, one tends to produce (deliberately or unconsciously) a 
model which can replace the notion in the reasoning process. Fischbein 
distinguishes several kinds of models; I will briefly present here the ones I used 
for my study. 

Abstract and intuitive models 
These are two opposite kinds of models. Some mathematical relations are 
abstract models for concrete realities. For example, a 3-dimensional Euclidean 
space can intervene as an abstract model for the physical space. On the contrary, 
an intuitive model can be perceived like a concrete reality; for example, 
drawings of arrows can constitute an intuitive model in vectorial plane geometry 
(in this paper, the term “drawing” denotes a material representation). 

Analogical and paradigmatic models 
These are two opposite kinds of intuitive models. In the case of analogical 
models, the model and the original belong to two distinct conceptual systems. In 
the case of a paradigmatic model, the model is a subclass of the original. 

Intra-mathematical and extra-mathematical models 
An analogical model can be either intra-mathematical, or extra-mathematical. 
For example, a drawing is an extra-mathematical model (in that particular case, I 
will use the expression “figural model”); a geometry can be used as an intra-
mathematical, analogical model for linear algebra. 

In my work, “geometry” will denote a mathematical theory which is an 
abstract model for physical space, and hence has a special connection with 
reality. A geometrical model is a model stemming from a certain type of 
geometry. 

A geometrical model is then directly related to physical space, and 
apparently offers certain conceptions to the reasoning activity (it can therefore 
be considered as intuitive). It can inspire solving strategies and confirm 
meaningfulness of solutions: but it can also smuggle uncontrolled components 
into the reasoning process, especially because it is associated with a figural 
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model. Different geometrical models can be used in different parts of linear 
algebra; these models can be either analogical (if they stem from elementary 
Euclidean geometry, independent of linear algebra) or paradigmatic (if they 
stem from a geometry relying on linear algebra). 

“Geometrical intuition” denotes here the use of a geometrical or figural model.  

Studying the use of figural models led me to refer also to Fischbein’s 
theory concerning figural concepts. According to Fischbein, a figural concept is 
“a mental entity which is controlled by a concept, but which preserves its 
spatiality” (Fischbein 1993). Fischbein uses figural concepts in geometry; here, I 
will mention figural models rather than figural concepts; indeed in linear 
algebra, there is no certitude about the possibility of fusion between the 
conceptual and the figural aspects. 
 

1.2. Students practices in linear algebra and geometrical intuition 

Several geometries can be involved in students practices, and therefore provide 
different models for general linear algebra, with the associated figural models.  

- Secondary school geometry: all my research takes place in France, were 
geometry is a very important topic in the secondary school curriculum. 
Since 1986, linear algebra is not presented at secondary school in France; 
but some notions like basis, projections and symmetries are still 
encountered in vectorial plane and space geometry. It is then possible that 
some students establish links between secondary school geometry and 
linear algebra. Moreover, a questionnaire proposed to university teachers, 
that I will not present here, showed that they are still strongly influenced 
by the choices made during the “modern mathematics” reform. Thus, 
some teachers praise a structural approach of linear algebra, with almost 
no drawings. Students, who followed such a course, if they are looking 
for an apparently concrete support, may find it in secondary school 
geometry. 

- University geometry: some universities propose a geometry course 
preceding the introduction of linear algebra (in France, it corresponds also 
to a position discussed during the modern mathematics reform, and 
opposed to the structural approach). Various contents are presented, 
depending on the university: analytical geometry, axiomatic affine 
geometry … These courses are intended to help students understanding of 
linear algebra; they are a source of geometrical models in linear algebra, 
deliberately proposed by teachers. 
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Models issued from these geometries are analogical models; a paradigmatic 
model can also intervene if, for example, students use linear algebra in IR2 and 
IR3 as a model for general linear algebra. Linear algebra itself is a model for 
polynomials, or sequences… The relation “being a model for” is transitive; thus, 
the figural models used, for example, in linear algebra in IR2 and IR3 can also be 
models for polynomials. 

Each use of these models could be investigated for itself. The use of 
drawings, for example, requires specific didactical research, where various 
activities of the students can be examined: the heuristic use of drawings, to 
understand the course, or to solve linear algebra problems; the production of 
drawings when the students are asked to draw … Some of the results I will 
present here are related to different uses of drawings; but I will not give here 
details about the heuristic function of drawings, because I present a short review 
of a work aiming at specifying global structures describing the use of 
geometrical and figural models by students. 
 
2. Testing students practices  
2.1. The questionnaire 

The aim of a questionnaire for the students is to provide answers to the two 
following questions: 

- What kind of geometrical or figural models do students use in their linear 
algebra practices? I will try to observe if students use secondary school 
geometry notions and results in linear algebra, and whether it helps them 
or rather creates difficulties. I will investigate the use of drawings, 
especially in critical cases. Do students illustrate linear algebra situations 
with drawings, even in dimension four and higher? Do they accept the 
representation of polynomials as vectors? 

- Are some kinds of geometrical models associated with a good 
understanding of linear algebra, while other are correlated with 
misconceptions and difficulties? 

I have chosen to interview post-graduate students, because they have already 
learned the main notions of linear algebra, including the theory of Euclidean 
spaces. I gave them a questionnaire and then met them individually for further 
questions. The students I asked are in the University of Rennes, in France; they 
did not follow geometry courses at the university. 47 students agreed to fill in 
the questionnaire and answer the interview. 

I can not examine here the whole questionnaire. I will briefly present two 
questions, referring to two different aspects of “geometrical intuition”. 
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2.2. Symmetries 

I proposed the following exercise in the questionnaire: 

Give a 4x4 matrix representing a symmetry. 

I have chosen the notion of symmetry, because it is first encountered in 
geometry courses, even in primary school; it is then studied again in linear 
algebra, and Euclidean spaces.  

That exercise is not a usual one: matrices of symmetries are generally 
required when the symmetry is a reflection, in a Euclidean space of dimension 2 
or 3, during the study of the orthogonal group. The choice of the dimension 4 
prevents the students from staying in a geometrical context; however, they can 
use some geometrical properties of the symmetries to answer. They can for 
example associate a drawing to a symmetry in dimension 2 or 3, representing the 
image of a suitable basis, and generalise it in dimension 4. 

They can also refer only to structural properties, using for example the 
characterisation of the matrix M of a symmetry by M2=I (I being the identity 
matrix) or simply the fact that, in a suitable basis, the matrix of a symmetry is 
diagonal with coefficients equal to 1 or –1 on the diagonal. 

During the interview following the written questionnaire, students were 
asked for details of their investigation process: which properties of the 
symmetry did they use; did they use a drawing? (This is the only case of 
“heuristic” use of drawing I will consider here.) I also asked the students, if they 
were able to produce a drawing to illustrate such a symmetry. I supposed that 
the fact the dimension was 4 would prevent some of them to produce a drawing. 

I used the following criteria for the analysis of the answers: 
- Correct answer: I consider the answer as correct as soon as a matrix of a 

symmetry has been given, even with no explanation or justification. 
- Central symmetry: some students present the matrix they propose as 

representing a central symmetry. In that case, the matrix proposed was (–
I), the diagonal matrix whose diagonal coefficients are (–1). The notion of 
central symmetry is not encountered at university; these students use 
reminders of secondary school in a non-appropriate context. 

- Linear algebra symmetry: when, in their argumentation, students use 
linear algebra properties of the symmetries, talking, for instance, of the 
kernel of (s-Id), or of supplementary spaces, or of the square of a 
symmetry. 

- Affine drawing: students representing a symmetry acting on points. 
- Vectorial drawing: students representing a symmetry acting on vectors. 
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- Coordinates: students filling in the matrix using the analytical expression 
of the symmetry. 

- Basis : students filling in the matrix using the image of a basis. 

The following table gives the results concerning these different points, for the 47 
students: 

 Central 
sym. 

Linear 
algebra 
sym. 

Affine 
drawing 

Vectorial 
drawing 

Coord. Basis 

Central 
symmetry 

16 1 3 1 9 4 

Linear 
algebra 
symmetry 

1 16 1 10 3 12 

Affine 
drawing 

3 1 9 0 7 1 

Vectorial 
drawing 

1 10 0 11 1 9 

Coordinates 9 3 7 1 16 0 
Basis 4 12 1 9 0 17 

Most of the students gave a matrix of a symmetry. But a third of them 
presented it as a central symmetry; only another third used linear algebra 
properties of symmetries. Less than a half proposed a drawing (even after I 
asked for one); most of the others argued that the dimension being four, it was 
not possible to draw. Half the drawings proposed were affine, and half vectorial. 
Only four students declared, during the interview, that they used a drawing to 
solve the exercise. 

I studied the correlation between the different items; it led me to 
distinguish two groups of students, gathering two third of the ones who 
proposed a suitable matrix. 

In the first group (13 students), students use linear algebra properties 
relative to the notion of symmetry; they use the image of a basis to find the 
matrix. They do not all give a drawing; but all their drawings are vectorial. 

In the second group (12 students), students talk of “central symmetry”; 
they use coordinates to find the coefficients of the matrix, and the drawings they 
give are essentially affine. These students refer to the notion of symmetry they 
learned at secondary school; their use of coordinates allow them to find the 
matrix, although they refer to a symmetry acting on points.  
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2.3. Representing polynomials 

The question I present here belongs to the interview. I asked the students to 
produce, if possible, a drawing to illustrate notions or properties of linear 
algebra. I proposed for example the following property: 

P, Q, R are the polynomials defined by P(X) = X, Q(X) = X2 and R(X) = X3. {P, 
Q, R} is linearly independent. 

My aim was to observe if the notion of a set of independent vectors is 
associated with a drawing, even if the corresponding vector space does not stem 
from geometry. I assumed that the students had already constructed some figural 
concept in relation with the notion of basis; since that notion, and the 
corresponding drawing, are already encountered in secondary school. But {X, 
X2, X3} is not often considered as a basis. Interpreting a set of independent 
vectors as a basis requires the implicit use of a span subspace, which is 
unfamiliar to many students. 

I have chosen polynomials, rather than functions, in order to prevent 
confusion with vectorial representation and graphs of functions. 

Less than half of the students give a drawing here. Some students drew 
the graph of the corresponding functions; finally, 28 students (among 47) 
proposed no drawing, or an unsuitable drawing. 18 students propose a suitable 
drawing, with vectors. Two third of them evoke the notion of basis. I observed 
the difficulty I mentioned above, about the span subspace.  

Some students say: “It would have been easier with {1, X, X2}, because it 
is a basis”. These students refer to the space IR2[X]; some others say that the 
situation takes place in IR3[X], thus in particular in dimension 4, so they are not 
able to draw. It seems that the notion of a set of independent vectors is not 
strongly associated with a drawing, while the link with the same drawing, for the 
notion of basis, is strong enough for the students to use it, even to represent 
polynomials. 
 

3. Conclusion 
Comparing the results of the different parts of the questionnaire led me to 
distinguish three attitudes among the students. 

Students using affine drawings in linear algebra 
These students use an affine figural model, unsuitable for linear algebra. 

That model probably stems from secondary school geometry; because as I 
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mentioned it above, these students did not have affine geometry courses at the 
university. They also evoke secondary school properties in their answers.  

Perhaps no other figural model has been proposed to them since they 
entered the university, if they only encountered teachers praising a structural 
approach to linear algebra. They clearly encounter difficulties in linear algebra 
(all of them failed at least at two of the three linear algebra questions I 
proposed). 

Students using vectorial drawings in linear algebra 
These students seem to frequently use vectorial drawings in their practice 

of linear algebra. Around a half of these students seem to have good competence 
in linear algebra, while the other half seem to encounter difficulties. So the use 
of vectorial drawings, more convenient than affine drawings to illustrate linear 
algebra situations, does not seem to be associated with a good understanding of 
linear algebra.  

Students using no or few drawings, and succeeding in linear algebra 
Some students seem to use almost no drawing, while they seem to have a 

good understanding in linear algebra. They sometimes mention using a mental 
representation, but mostly when they do not remember a property; they do not 
seem to find it useful otherwise. The existence of that group suggests that a 
purely algebraic approach to linear algebra is possible, at least for some 
students. 

Using geometry does not provide a way of avoiding all the difficulties 
related to the learning of linear algebra. One of the advantages of linear algebra 
is that it unifies several mathematical domains; the historical part of my work 
(Chartier 2000) shows that the wish to unify these domains has been a 
determining factor in the genesis of linear algebra. In France, the transposition 
process that took place during the “modern mathematics” reform, and led to the 
introduction of linear algebra in the secondary school curriculum, accentuated 
the link between geometry and linear algebra. A geometrical model can be used 
to introduce linear algebra, but it must be associated with others, as polynomials 
or sequences for instance; linear algebra can not be presented as a mere 
generalisation of plane or space affine geometry. 

However, the use of a figural, vectorial model not only in geometry but 
also in vector spaces of functions or polynomials, and in general linear algebra, 
can be useful for the students. Some of them succeed without it, while some 
students use a vectorial figural model and fail anyway. But the use of an affine 
figural model is clearly associated with difficulties in linear algebra. A vectorial 
model, proposed by the teacher, could at least prevent the students from using an 
affine model. It may also help them to understand the unifying aspect of linear 
algebra. 
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Abstract: This paper focuses on the introduction of the concept of limit at 
secondary school level. Drawing on research on the role of metaphors, 
movement and perception in the construction of mathematical concepts, we 
developed an approach to the concept of limit which considers perceptive 
elements as a starting point. The students are required to construct and 
manipulate representations of functions in a graphic calculator environment 
(namely, the TI89). The transition from the register of graphical representations 
to the symbolic one takes place in two ways: through the re-elaboration of the 
language used by the students to describe their graphic manipulation of the 
functions and through the introduction of symbols which will support the 
algebraic manipulation to be done later on. 

 

Introduction 

The work presented in this paper lies within the field of research on the didactics 
of analysis, at secondary school level. A number of studies, centred on the 
teaching and learning of analysis, have pointed out difficulties and obstacles 
emerging when the students face this mathematical field. M. Artigue (1991, 
1998) classifies these difficulties into three main categories: 

〈 difficulties due to the complexity of the elementary objects of the field, 
such as real numbers, sequences and functions; 

〈 difficulties due to the conceptualisation and formalisation of the concept 
of limit, the basic concept of the field;  

〈 difficulties due to the specific features of analysis  and to the gap between 
algebraic and analytic thinking modes. 

She also stresses that, up to now, research in that area has mainly dealt with the 
first two categories of difficulties, with much of the work about the notion of 
function (Dubinsky & Harel, 1992), limit (Cornu, 1991; Sierpinska, 1985), 
derivatives and areas (Schneider, 1991). From a theoretical point of view, 
research relied on different frames: the duality between concept definition and 
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concept images (Tall & Vinner), the duality between processes and objects 
(Sfard, 1992) and the ensuing notion of procept (Tall, 1994), the notion of 
epistemological obstacle (Cornu, Sierpinska, Schneider). Progressively, as 
evidenced in (Tall, 1996), research has included also technological issues, with 
the development or use of computer languages favouring the encapsulation of 
processes into objects, the interplay between the different semiotic registers used 
in analysis, and, more recently, the analysis of potential and pitfalls of computer 
algebraic systems. 

Up to now, research has been less sensitive to the third category of 
difficulties mentioned above. M. Legrand (1993) has pointed out some “rupture” 
between algebraic and analytic thinking modes, focusing on the necessary 
changes in the meaning of equality (to be considered not only as a sign for 
equivalence as this was the case in algebra, but mainly as a sign for “infinite 
proximity”) and on the change in reasoning modes (especially from reasoning 
by equivalence to reasoning by sufficient conditions). 

Our research project mainly deals with this dimension. We study the 
entrance in the field of analysis and the transition towards new thinking modes, 
of students who have already gained some familiarity with algebraic thinking 
modes. These are characterised by important changes, beyond those mentioned 
above: 

〈 the dominant role played by infinite processes with respect to finite 
processes; 

〈 the transition from global points of view on functional objects to local 
points of view; 

〈 the complexification of algebraic practices linked to the necessary 
differentiation between orders of magnitude in computations. 

Beyond the theoretical frames which have traditionally been attached to research 
on the didactics of analysis, in this study we are especially sensitive to what can 
be offered by cognitive approaches which stress the role played by metaphors, 
perception and movement in human cognition (Longo, 1997, 2000; Lakoff & 
Núñez, 2000; Sfard, 1994). In the next paragraph, we briefly present these 
approaches and the way they have influenced our research work. 

 

1. Some basic elements of our research project 
1.1 Construction of sense in mathematics 

In his research, Longo (1997, 2000) presents a cognitive approach to the 
problem of the Foundations of Mathematics, introducing elements of analysis 
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outside the formalistic approach, which is usually taken in this field of study. He 
assumes that simple mathematical objects are cognitive facts and that 
mathematical problems and constructions are expressions of thinking rules, 
which also have a cognitive nature, as for example: comparing, classifying, 
making analogies. We draw on his work as concerns the importance he gives to:  

1. the interactions with the real world (perceptions, spatial relationships, 
movement) in the process of construction of meaning for new 
mathematics concepts; 

2. To the reciprocal and constant influences between the perceptive 
(phenomenological) level and the mathematical level (at which concepts 
are formalised) in doing mathematics. 

 

1.2 Metaphorical structure of mathematics 

Besides Longo’s research, Lakoff and Núñez’s work shows an analysis of the 
structure of mathematics that is strongly based on the human mind structure 
(“mind-based mathematics”). The study of the cognitive structures which seem 
to support mathematical reasoning (as for example metaphors) is the key 
element of this research.  

Metaphors1 become an important basis for understanding some 
mathematical concepts. The operational aspect, which distinguishes the 
definition of metaphor previously presented, proves a key element with respect 
to our research. This seems to be a constant element of mathematical thinking. 
For example we can consider some aspects of the analysis of the concept of 
limit, based on the following definition: “suppose that, as the variable x gets 
closer and closer to the point a from either side, f(x) gets correspondingly closer 
and closer to a unique value L. We define L to be ‘the Limit of f(x) as x 
approaches a’”. The metaphorical character of this definition is highlighted by 
the use of the words “approach” and “closer and closer”: they are connected 
with the everyday understanding and experience of motion through space.  

 

2. Considerations and hypothesis 

As regards our study of the transition from algebra to analysis, we remark that 
the treatment of functions can involve global and local dynamic aspects that are 
                                                 
1 Metaphor is an important kind of conceptual mappings (the concepts are organised through 
vast networks of these mappings), “which project the inferential structure of a source domain 
onto a target domain” (Lakoff & Núñez, 2000) 
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respectively related to algebraic and analytic work. For example, a global 
dynamic aspect is given by the transformation of the representative curve 
function through known geometrical transformations. This change corresponds 
also to a transformation of the algebraic formula. Another example regards the 
tangent (Castela, 1995): the global perception of the tangent to a curve (a 
straight line that intersects the curve in two coincident points but that does not 
cross it anywhere) is algebraic and geometric. These dynamic aspects (and 
metaphors) seem to be different if we are concerned with a local context. 
Drawing on the previously mentioned research, the first hypothesis is that the 
basis for the introduction of the notion of limit relates to perceptual aspects, that 
involve a transition from a global to a local point of view. We choose the 
graphic register as a starting point because the dynamic aspects (with the 
metaphors which can be defined) seem to be more useful in this case rather than 
in the algebraic register.  

The second hypothesis is that it is possible to introduce some kind of 
dynamics into the treatment of graphical representations of functions through the 
Zoom-controls of graphical calculators in order to foster the passage to a local 
point of view. Using these Zoom-controls, we meet a phenomenon, identified as 
the phenomenon of “microstraightness”, which can be expressed as follows: “a 
graph enlarged around a point seems to become a line”. We want to study the 
cognitive and educational potentialities of the zoom and of the related metaphor 
of “microstraightness”. Our hypothesis is that this graphical manipulation allows 
the discovery of a phenomenon that requires the introduction of a new operator, 
i.e. the limit, into the construction of its mathematical model. The passage to the 
algebraic register becomes necessary to overcome the limits of the graphic 
register2. In the construction of the model, the symbols that are introduced 
acquire meaning on the basis of the previous graphical work and the 
computations bring into play orders of magnitude. 

 

3. The classroom experiment 

The theoretical elements we have previously highlighted were used to develop 
“didactic engineering” (Brousseau, 1998) in order to introduce mathematical 
activity which seems to constitute the basis for analytic concepts such as concept 
of limit and derivative. The experiment was implemented in a fourth year 
classroom of a ‘Liceo Scientifico PNI’3 (12th grade) in May 2000 and it 
consisted of 6 sessions. Every student was given a TI-89 graphic-symbolic 

                                                 
2 Were we are not able to distinguish between the tangent line and the other straight lines, 
which mix up with the curve around the chosen point only through the Zoom-controls. 
3The students have 5 mathematics classes per week 
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calculator to keep for all experiments. The eighteen students were divided into 
six groups; each group was given one calculator. Each session was organised in 
two parts: group activities first and then collective work orchestrated by the 
teacher. The teacher and myself managed all the sessions, lasting one hour and 
forty minutes each. The observation of the sessions was organised in the 
following way: a video camera filmed the whole classroom, both during the 
group activities and during the collective debates. Five university students 
observed five groups filling a grid, constructed by us on the basis of our a priori 
analysis. The a posteriori analysis is based on all the data collected (videos and 
fieldnotes) and on the a priori analysis. 

In the following we describe the first two sessions pointing out the 
elements highlighted above. 

3.1 The first session: Some elements of analysis and the students’ work 

Goal: to lead the students to encounter the “microstraightness” phenomenon. 
Activity. Two different tasks are given to different groups in the 

classroom. The exploration of representative graphs of some functions around 
fixed points, through the Zoom-controls of the calculators, is the main task (we 
propose six functions, some of which are differentiable everywhere and others 
which have singularity points). At the beginning the exploration is guided, as the 
number of zooms to execute is suggested; then the students are asked to use the 
zoom more freely. The change from the calculator environment to paper and 
pencil is determined by us. The students are asked to draw on paper what they 
see in the initial window ZoomStd (the dimensions of standard window are [-10, 
10]x[-10, 10]) (first step), then what they see after two zooms (second step) and 
finally what they see at the end of exploration (third step). In this way, the whole 
exploration is in front of the students’ eyes and provides a record of their work. 
A global point of view on the whole function shows its variation, extremes and 
infinite branches. The three pencil and paper representations each student makes 
have the purpose of introducing the phenomenon of “microstraightness”: the 
given curves are different but at the end of the exploration almost all of them are 
locally represented as lines. One function isn’t differentiable at chosen point. 
These elements show that the phenomenon they encountered has a local 
character. In the collective phase, that follows the group activity, the teacher 
gathers the results of students’ observations, underlying the property previously 
pointed out and discussing with the students a name for it (which ends up to be 
“linear zooming”). 

Some variables of the situation: the choice of the functions to explore and 
of the values of x, at which the functions are to be calculated, allows the 
students to highlight the local feature of the phenomenon. The ZoomStd was set 
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at the beginning in order to provide the same starting conditions for all the 
students. After doing many zooms, the axes are no longer visible, therefore a 
horizontal line4 is introduced, as well as another reference for the y-coordinates 
of the point around which the increases are made.  

We now present some elements of analysis, taken from the work of a 
group of students during the first lesson. 

Task: “Explorations of y1(x)= 273 −− xx  around the given point (-1;4)”. 
Students: CF, GL, CA. Teacher: T 

First step. The ZoomStd representation shows all the typical graphical 
features that students are used to see when they work with graphs, since the 
beginning of their work with function: the co-ordinates system, the grid units. 

STUDENTS’ WORK ANALYSIS 
The students perform exploration 
work. They represent function on the 
standard window; the plotted line 
corresponds to the constant function 
y6. The chosen point is marked by the 
cursor 

 
 
 
 

Fig. 1 

Second Step. The exploration of the graph around the chosen point begins 
and this allows the transition from a global to a local point of view. This takes 
place by choosing the increases with the calculator. At each step, everything that 
does not appear on the display-screen must be ignored. 
After reading the task again, the 
students are considering y1(x) 
23. CA: “Do two zooms…do 
ZoomIn! ”  
After two subsequent ZoomIns5

around the given point, we obtain 
the following fig 2 is obtained6 
 
 

The guided process stresses the transition to 
a local point of view which needs totally new 
gestures for the students: it is a new dynamic 
aspect “of entering (going into)  the graph”. 

  
Fig. 2 

                                                 
4 whose equation is y6(x)=4, which equals the values taken by the different functions  
5 With the command ZoomIn, the new window is homothetic to the previous one 
6 the dimensions of this window are displayed next to it 
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24. GL: “Draw the graphical 
representation we obtained” 
CF draws the representation of a 
line. 
25. CA: “what’s this line? But it 
isn’t a line!” 

CF’s drawing depends on his interpretation 
of the screen; but another student makes an 
objection. At first the perceptive image of a 
line prevails (#25), then the memory of the 
curve they started from leads the students to 
say that it cannot be a line. 

26. GL: “Yes, it seems to become 
a line; it looks as if it becomes 
more and more similar to a line! It 
approaches to become a line” 

Then, the exploration goes on with another 
ZoomIn, which leads GL, who has used the 
calculator since the beginning of the activity, 
to suggest that the graph becomes a line 
(#26).  

Third step. The students are not told when they have to stop the 
exploration. Our hypothesis is that they will stop when some kind of stable state 
seems to be reached for the first function, and that they will try to reproduce the 
same kind of phenomenon when dealing with the other examples. 

Three other ZoomIns follow the 
observation #26. Exploration stops 
at fig3, which is then reproduced 
on paper by CF.  
 
 
 

CF needs to improve the precision for the co-
ordinates of the fixed point on the calculator. 

  
Fig. 3 

The students analyse the second 
function  

 

31. CF: “Enlarge it” addressed to 
Angelo, who does two ZoomIns. 

There the effect of enlargements begins to be 
clear.  

32. GL: “Come on! It’s a line!” 
(…) 
38. GL: “yeeeaaahh, it becomes a 
line, come on! …” 
39. CF: “there are no graphic 
references” 
 

The use of zooms does not show any 
difficulties; the transition to a local point of 
view is indeed more difficult. The two 
students show different reactions to the 
image they see on the screen. CF, who had 
been dealing with the representations on 
paper, finds the problem of not having any 
reference system (#39), when he needed to 
draw the screen on their paper sheet. GL, 
who had seen a line in the exploration of the 
previous example, identifies a line again. 
Such a representation shows the transition to 
a local point of view (#38). 
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The fifth function is linear and it is 
represented on the standard 
window (ZoomStd).  
41. GL: “Well, … it already was a 
line, so it remains a line!” (…) 

GL clearly shows he constructed the image 
of a line and the step of recognising the 
graph as a line constitutes the standard way 
of stopping the exploration (#41). 

They work with a function, which is 
not differentiable at the chosen 
point. 
46. GL: “But, that will never 
become a line … excuse me, what 
was the point?” 
47. CA: “Go back and repeat”  

The discovery of straight line is their 
criterion for stopping exploration. If it is not 
obtained, there is a mistake in process.  
The exploration begins (#47). 

 

3.2 The second session: Some elements of analysis and the students’ work 

Goal: to go beyond this first perceptive approach of local linearity and to help 
students to build a mathematical model for this phenomenon. 

Activity. We created a unique group activity, which required finding the 
equation of a line “to which the graph around a given point seems to approach” 
for a quadratic function, because parabolas are familiar objects to Italian 
students in grade 12. We hypothesise that this knowledge will help the 
mathematisation process we aim at. More precisely, students are asked to test 
the microstraightness of the parabola in the neighbourhood of the given point, 
and then to find the equation of the line they have obtained on the screen of their 
calculator (this can be easily achieved by using the Trace command in order to 
obtain the co-ordinates of a second point of this line). It is expected that 
different equations will be obtained, with close coefficients of course, leading to 
some interesting discussions about the way the microstraightness phenomenon 
can be mathematised. Mathematisation will be then helped by the use of the 
ZoomOut command, which will restore a more global vision with a parabola and 
lines in a tangential position with respect to it. An algebraic computation will 
then allow the students to find the equation of the tangent and compare it with 
the equations previously obtained, linking the tangent yet known with the 
microstraightness phenomenon and giving to the tangent a new status of limit 
object. 

We present a part of the collective discussion, in which the break 
secant/tangent and the necessity to specify the “idea of points closer and closer” 
are evident. Students: GA, PM, CF, DAL. Teacher: T 
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16. T: “y=x^2, is it ok? I will 
enlarge it. This is the equation of a 
line. They seem very close. If I re-
explode it, what do I find?” (…) “If 
you observe from far off, what do 
you find?” 
17. GA: “it should seem a 
tangent”  
18. T: “… you say it should be a 
tangent”. He draws the tangent at 
the graph at the given point on the 
blackboard (…) 

In the group work phase, CF and CA 
interpreted the line they got on the screen 
as the tangent line to the curve and 
calculated its equation algebraically. The 
beginning of the classroom discussion 
shows that other students considered the 
line they got after some enlargements as 
the tangent line to the parabola at the given 
point.  
 

25. PM: “but, it can’t be the 
tangent, because there we have 
taken two points of the graph … if 
we have taken two points, it will be 
a secant line” 

According to our hypothesis, the conflict 
between the conception of tangent line and 
the representation of straight lines, 
obtained during group activity, comes out. 
 

26. CF: “The unique known given 
point, which we have, is the one 
provided by the text, we have found 
the other point in a different way”. 
(…) 

CF explains his solution process  
 

54. T: “If I want to find the 
tangent line…?” (…) 

The teacher goes on with discussing a way 
of determining the tangent line in order to 
solve the conflict.  

55. DAL: “I should make the two 
points closer and closer” (gesture 
with his hands) 
 

It seems that DAL continues the 
enlargement game which started with the 
calculator: he considers the nearness of the 
points of the graph as a spatial nearness 
which may get to a contact. 

The teacher fosters the transition 
from the graphics to a numerical 
point of view.  
The first step is that of writing the 
ratio of increments on the 
blackboard for the points 
(2.5;f(2.5)) and (2.5+h; f(2.5+h)). 

This transition is made through a 
translation into numerical or symbolic 
elements of what was said around the 
points on the graph.  
The teacher fostered the operationalisation 
of the images obtained after exploration.  
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123. PM: “If I want the tangent, I 
take the same point 2.5” 
124. T: “Aaahhh, let’s take it, let’s 
take 2.5. Above we have 6.25 … 
what’s the result for the ratio of 
increment, PM?” 
125. PM: “Undefined”  
126. Teacher: “We have zero over 
zero. Then, it isn’t right.” (…) 

The conflict is transferred to h; this transfer 
encourages some calculations.  
. 
 
 
 
The parameter h is contextualised. Its value 
different from zero has sense in this 
situation, not only algebraically. 

136. DAL: “I consider a point 
approaching more and more …” 
138. AI: “get a point nearer” 
140. DAL: 2,500001 
165. T: “(...) what Mathematics 
made? They considered plus 
something very small.” 

The experience with the calculator formed 
the basis and support for the discussion. 
Interventions #136 contain an aspect of 
what has been identified as the 
“microstraightness metaphor”, which is 
then translated in the calculation with h. 
The parameter h has a fixed order of 
magnitude, based on the situation in which 
it was introduced.  

 

4. Conclusions 

This paper shows an attempt to use new theoretical constructs, referring to 
metaphors and dynamic aspects, for the study of the introduction of analysis in 
the classroom. In this part we will outline some preliminary conclusions coming 
from the on-going analysis of the data collected up to now. Different approaches 
(Artigue et. al., 1998) to the concept of limit with calculators have been 
presented, our approach is different from these. Our analysis seems to show that 
the “zoom approach” and the “microstraightness” metaphor may be helpful in 
order to address the transition from global to local points of view. Moreover, the 
microstraightness phenomenon appears as a striking one to the students, 
motivating mathematical attention. However, the mathematisation of this 
phenomenon is not so easy. The constructed situation helps to question the 
initial perceptive evidence: “it becomes a line”, but generates an evident 
cognitive conflict with previous conceptions of the tangent object which are of 
an algebraic-geometrical nature, and associated with other images and 
perceptions. Of course, such conflicts cannot be avoided as they are constitutive 
of the transition towards analysis. They cannot be resolved at a perceptive and 
metaphorical level and the data collected show the role that the game between 
the algebraic and the graphic registers plays. They also tend to show that this 
effect cannot be managed in an autonomous way by the group of students, but 
the way the teacher organises and pilots the discussion, which is fostered by the 
situation, is essential. The conversion from the graphic register to the algebraic 
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one was possible thanks to the introduction of the symbol “h” at the end of the 
second session.  

The study of the potentialities of the use of metaphors in the teaching and 
learning of mathematics is just beginning. Still many issues are to be 
investigated, as for example: do different metaphors have different results on 
learning processes and/or teaching processes (and, if yes, how and why?)? Is it 
possible to construct metaphors for the teaching and learning of some 
mathematical concepts? 
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Abstract: In order to examine whether the form of data-presentation may 
influence success in solving a given problem, we are interested in the teachers’ 
use of semiotic registers. We are particularly concerned to see if 8 or 9 year old 
children are confronted in their classrooms with different semiotic registers and 
if the teachers are aware of this confrontation in the way they work with their 
pupils. 

 

Introduction 

In our research (1) which investigates the effects of solving a given problem, 
concerning data-presentation (which includes text, table, graph, diagram, text 
mixed with drawings not related to the data, and a variety of registers), we 
worked on the results of a questionnaire which we presented to Primary school-
teachers. Eighty-one teachers of three districts belonging to two different Local 
Education Authorities (France) and 1081 pupils were concerned. 

This paper presents the form and the results of the teacher’s questionnaire 
which was articulated in four parts: 

− the pupil tools 
− solving problems at school 
− the teacher’s lesson preparation 
− the classroom 

We have located our study principally within the theoretical framework 
developed by R. Duval (2). The learning of mathematics requires cognitive 
activities which in natural language particularly requires the use of a variety of 
semiotic systems. Besides the transformations of representations in the interior 
of a given semiotic system, it is necessary to consider the cognitive activity of 
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the conversion of representations from one semiotic register to another, together 
with their articulation. According to R. Duval, these essential activities of 
conversion and articulation become involved in the activity of resolution of 
problems at the centre of the didactic situation created by the teacher. 
 
1. Pupils tools 

Our first question was : « When they have to solve arithmetical problems, do 
pupils have to read varied registers of semiotic representation? » So, we asked 
if the mathematical text books really contain a variety of representations and we 
also asked if the 8 or 9 year old pupils have, and also use mathematical 
workbooks in their classrooms. 

In order to investigate these questions, we examined different 
mathematical text books which were edited by different French editors between 
1960 to 1970 and between 1995 to 1999. 

We used the classification proposed by Raymond Duval (3) who 
distinguishes two types of situations: 

− the situations where the representations are produced by one and only one 
system (for example : development of a discourse, development of an 
algebraic calculus ; transformation of a geometrical figure ...). In this case, 
the production is made just as if each representation was self-sufficient for 
the part of the step in which it is produced. 

− the situations where the representations are produced in order to be placed 
in parallel or to be associed with other representations produced by 
another system (for example : a key for a caricature ; the hypothesis for a 
geometrical figure ; a drawing just near a descriptive or a narrative text). 
In this case, the production is made just as if, for some representations, an 
auxiliary representation was necessary. 

 analysed 
exercices 

 

Terms presented in natural 
language 

in situation of 
« self-sufficient production »

Terms presented in natural 
language 

Not in situation of 
« self-sufficient production » 

In the mathematical textbooks published from  1960 to 1970 

number 72 65 7 
percentage  90,3% 9,7% 

In the mathematical textbooks published since 1995 
number 41 13 28 
percentage  31,7% 68,3% 

Table 1 
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For the representations, we distinguished different functions. We adopted 
the classification proposed by R. DUVAL (4) who has found seven functions 
about the auxiliary representations. In our analysis of the 113 exercises, we 
noticed principally four functions: 

− further information: it means that there are informations which are not 
present in the principal representation (see problem 2), 

− illustration 
− explanatory interpretation which means that the auxiliary representation 

gives informations which are already present in the principal 
representation 

− heuristic interpretation which means that the auxiliary representation 
offers possibilities of processing which are very different of these of 
principal representation-register. 

  
                         Problem 1                                            Problem 2 

extracts: CHAMPEYRACHE G, Maths élem CE2, Belin, Paris, 1997 

Functions of auxiliary representations 

  Terms presented in natural language 
Not in situation of  « self-sufficient production » 

 Analysed 
exercises 

 

Total 
Number 

Percentage 

Further 
information 

Number 
Percentage 

Illustration 
Number 

Percentage 

Explanatory 
interpretation 

Number 
Percentage 

Heuristic 
interpretation 

Number 
Percentage 

Math. 
books 
1960 to 
1970 

72 7 (9,7%) 3 (43,0%) 0 (0,0%) 3 (43,0%) 1 (14,0%) 

Math. 
books  
1995 to 
1999 

41 28 (68,3%) 19 (49,0%) 8 (20,5%) 8 (20,5%) 4 (10,0%) 

Table 2 
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We noticed that the actual textbooks contain a variety of representations 
(see table 1). But are these textbooks really present in the classrooms and do 
pupils use them when they have to solve problems? 

So when comparing the different functions of representations in books 
between 1960 and 1970 and between 1995 and 1999 (see table 2), we can ask 
whether through their mathematical books, 8 or 9 year old pupils can effectualy 
be confronted with a variety of semiotic representations, which was not the case 
before. They also may be confronted with the conversion (5) of representations 
where they need to change from one register to another. This example is taken 
from a textbook of 1995: 

 

Problem 3 (extract: CORRIEU, L, dir, Vivre les mathématiques CE2, A. Colin, Paris, 1995) 

 

According to R. Duval (5), in any mathematical activity, at least two 
registers of representations are simultaneously used and you have the possibility 
to change a register when you want. Mathematical comprehension thus assumes 
the coordination of at least two semiotic registers of representations. 
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But are the pupils actually confronted with this variety of representations? 
The following questions were given to the teachers: 

Does each pupil in your class in the 8/9 age group have a maths text book? 
                                                                                                                      _____ 
                                                                                           a maths workbook? 
                                                                                                                      _____ 
If so please give the title, editor and collection. _________________________ 
                                                                             _________________________ 
If not, is there at least one book for two pupils? __________ 
                       please give the title, editor, collection _____________________ 
                                                                                     _____________________ 

Number of mathematical-books per pupil (8 or 9 years old) 
At least onebook or working file per pupil 79% 

No book or working file per pupil 21% 
Table 3 

It appears that in 79% (see table 3) of the classes in our sample, some 
document consisting of mathematics texts is present which each pupil can use in 
whatever manner they wish, according to the instructions of the teacher. 

2. Solving problems at school 
The following questions about the frequency of exercises were given to the 
teachers: 

• Number of problems  
On average, how often do you set arithmetical problems to your pupils in the 8/9 age group? 
 
once a day  number or problems set  _____ 
once a week number of problems set _____ 
once a fortnight  number of problems set _____ 
 
Other response 
 

Frequency of arithmetical problem resolution (8 or 9 year old pupil) 
Once a day 10,0% 

Three times a week 1,2% 
Twice a week 3,7% 
Once a week 76,2% 

Once a fortnight 6,3% 
Variable 2,5% 

Table 4 
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• Approach to the problem 

Please tick the box corresponding to the approach that you most frequently adopt. 

As a general rule, when you set a problem to your pupils in  the 8/9 age group  

- do you read the problem to your pupils 
- do you ask one of your pupils to read the problem to the class 
- do you ask your pupils to read the problem silently  
    in this case : do you then read out the problem to the class 
 : do you then ask a pupil to read out the problem to the class 
 : the problem is not read out in class. 

In more than 3 classes out of 4 the pupils are confronted with a weekly 
activity of resolution, but this happens daily only in one class in ten (see table 
4). This results in the resolution of problems becoming an infrequent activity if 
we quantify the time which a pupil spends in the activity in a school year in this 
didactic situation. 

• Correction of the problem 

As a general rule where problem solving is concerned you usually opt for: 

- individual correction 
- collective correction 

If you usually use collective correction: 

You use as a basis for this correction: 
- the correct solution of one of your pupils 
- several correct solutions of pupils presented in different ways 
- the comparison of at least one correct solution and one erroneous solution. 
- you prefer giving the correct solution yourself immediately 
- you include systematicaly during the correction yet another solution that has not been given 
by your pupils. 

Again, in 3 classes out of 4, the correction phase is managed by whole 
class participation, as is the French custom. In this activity of collective 
correction more than 80% of the teachers start with a comparison of the 
solutions proposed by the pupils (see table 5). Some (48%) rely on a comparison 
between an exact answer and an erroneous one, while others (37%) use a 
comparison between many correct answers. Clearly, in this case, some teachers 
utilise representations involving errors since they recognise the status and the 
role in learning of erroneous representations. We could also interpret these facts 
as a tentative and implicit taking into account by the teachers of the variability 
of semiotic registers of representations and expressions produced by the pupils 
in the resolution of the problems. 
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Correction of the problems

21%

6%

73%

Collective correction
Individual correction
Mixed correction

 
Graphic 1 

Start point: correct answer by a pupil 6,3%
Start point: comparison of a number of correct answers, using different methods. 36,7%
Start point: confrontation of at least one correct answer with at least one incorrect 
answer. 

48,1%

The teacher immediately proposes their own solution. 0%
The teacher systematically introduces a different form of solving than the one(s) 
proposed by the pupils during the collective correction. 

2,6%

No response  6,3%
Table 5 

A teacher who systematically introduces a different form of solving 
explained that this moment is very important in her learning, because she 
introduces different forms of representation and makes it possible for the pupils 
to progress from one register to another. For example, move from a table to a 
text (or natural language), in order to solve and to explain the resolution.  

This is an example of a problem during the correction phase with a number of 
different registers: 

Problem 1 
Here are the numbers of pupils in the Marie Curie Primary school: 
In Primary 1 there are 10 boys and 8 girls. In Primary 2 there are 8 boys and 14 girls. In 
primary 3 there are 14 boys and 10 girls. In primary 4 there are 12 boys and 14 girls. Primary 
5 is composed of 12 boys and 16 girls. 

 
classrooms CP CE1 CE2 CM1 CM2
boys 10 8 14 12 12
girls 8 14 10 14 16
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a) What is the total number of pupils attending this school? 
b) How many boys are there in this school? 

 

3. Lesson Preparation 

We also investigated the tools used by the teachers in preparing their tasks and 
we analysed several elements related to classroom practice using the following 
questions: 

•Teachers' resources 
Do you use a specific book for the preparation of you maths lessons ? _______ 
If so please give the title, editor, collection, master's copy, pupil's copy) 
_______________________________________________________________ 
 
If not what other method of preparation do you use? _____________________ 
_______________________________________________________________ 
 
•Problem solving 
As a general rule, when preparing your lessons involving problems,  for pupils in the 8/9 age 
group : 
 
a) do you prepare a written solution to the problem in advance ? 
d) do you usually calculate the reply mentally ? 
c) do you put down onto paper, all the possible ways of solving the problem ? 
 
If you have replied "yes " to question c) , please explain what, for you, is the purpose of this 
method of preparation and in what way you use it in class with your pupils. 

The table below shows that the modality “mental resolution” becomes 
dominant before the “written form of the solution”. We might interpret this 
result as explaining the fact that most of the teachers spend most of the time in a 
situation which does not address the explanation by reference to a semiotic 
register of representation and expression. 

 yes no No 
response 

The teacher systematically solves the problem in writing 
beforehand. 21,2% 75% 3,8% 

The teacher usually solves the problem mentally. 53,7% 42,5% 3,8% 
The teacher systematically explores in writing a number 
of ways of solving the problem. 29,6% 66,6% 3,8% 

Table 6 
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4. Display in the classroom 

The kinds of displays used by teachers in the classroom were investigated as 
follows: 

Please  give in the space provided the number of elements displayed on the class-room walls, 
visible for the pupils, at the precise moment of filling in this form : 
 
- tables / grids _____ 
- diagrams _____ 
- maps _____ 
- graphs _____ 
- children's drawings, reproductions of artists' works _____ 
- photos _____ 
- others (indicate the nature )     _____ 

 

79,0% 79,0%

70,4%
56,8%

38,3%

17,3%
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Graphic 2 

These results show that in the classes in this sample the teachers use some 
display such as types of table, scheme which increases the variety of semiotic 
registers utilised in the resolution of mathematical problems. But we noticed that 
only 17% of the classrooms use display such as graphics. However we do not 
have here any information about the relation between these two elements: the 
use of displays and solving problems. 
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Conclusion 

The objet of our study is to locate the use of  semiotic registers of representation 
and expression in the teaching-learning situations proposed by mathematics 
teachers in French primary schools. The results that we have obtained come 
from responses to a questionnaire given to a sample of 81 teachers training a 
total of 1081 pupils of age 8 to 9 years old, in classes of CE2 ( 3rd year in French 
primary school). 

It emerged that 79% of the classes (see table 3) use mathematical books or 
working files and in these actual mathematical books or working files, 68% of 
the exercises which we analysed are presented with a variety of representations 
(see table 1). The pupils thus have to learn to deal with the problems when some 
of the essential information is not in the written text. Only 10% of the 81 
teachers proposed a daily review and solution during school time. The style of 
correction could suggest that the variability of semiotic registers of 
representation and expression is taken into account, but we noticed that only 
2,6% of the teachers systematically introduces a different form of solving than 
the one(s) proposed by the pupils during the collective correction (see table 5). 
We also noticed that 57% of the classrooms used at least a table in the display 
but that only 17% use at least a graph (see graphic 2). However, the written 
practice of problem resolution by the teacher at the time of the preparation of the 
didactic sequences was relatively neglected in favour of a “mental resolution” 
which does not provide the opportunity for comparison and use of explicit 
semiotic registers. A more careful analysis of the data will ultimately allow 
other richer aspects of the use of these semiotic registers to emerge.  
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Abstract: The study reported in this paper concerns the dialectic relationship 
between the figural register and the natural language register when students try 
to solve plane geometry problems. I will present a theoretical framework and 
some preliminary results concerning the following problem: how and to what 
extent does natural language act as a mediator and a control tool between the 
“operational handling” (Duval) of the drawing and the theoretical reference (in 
our case, Euclidian geometry)? 

 

1. The theoretical framework and the research hypotheses  

In geometry, since we deal with theoretical objects and their representations, we 
need to state what we mean by “drawing”, “figure” and “geometric object”. 
Even if in the literature it is not usual to consider these elements separately, after 
Fischbein, Parzysz and Laborde’s definitions I think it becomes necessary. So, I 
considered the definitions given by Parzysz (1988) and by Laborde and Capponi 
(1994). 

Parzysz suggests that “the FIGURE is the geometrical object which is 
described by the text defining it" and “The figure is most often REPRESENTED” 
(Parzysz pg. 80). Parzysz calls "drawing" the illustration of a figure. 

Referring to Parzysz' elaboration, Laborde and Capponi propose the 
following definition: “Drawing can be considered as a signifier of a theoretical 
reference (an object of a geometric theory, like Euclidean Geometry or 
Projective Geometry). A geometric figure involves the joining of a given 
reference to all of its drawings: it can be defined as the set of all couples which 
have the reference as the first term, while the second term belongs to the 
universe of all possible drawings of the reference".  

Referring to the abovementioned elaborations, from now on I will 
consider “geometric object” the object of a geometric theory related to a 
definition. The "description" will be the verbal presentation of the "geometric 
object" (i.e. the text of the definition). By “drawing” I then mean one of the 
different graphical expressions of the definition itself. 
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I can now define the “figure” (F) as the set of couples made up by the 
geometrical object (O) and one among the drawings (di) that are material 
representations of that geometrical object (O): 

F = {(O, d1), (O, d2), (O, d3),    … (O, di)}.  

In this way the theoretical aspect is linked to the graphic one and a kind of 
bridge is established between them.  

The differences (and relations) between drawing, figure and geometrical 
object play a very important role in handling the drawing when trying to solve a 
plane geometry problem. Therefore, we adopted the “operational handling” of a 
drawing considered in Duval's theory (Duval, 1994): operational handling of 
drawing (“appréhension opératoire”1) involves an immediate perception of the 
drawing and its different variations (“mereologiques”, optical or of position)2. 

Our research concentrates mainly on analysing the influence of natural 
language on the relationship between the operational handling of drawings and 
the theoretical reference to which it is related. We define "theoretical reference" 
in a given geometric theory as theorems and definitions of that theory, which are 
related to the figure by the student who is solving the problem. Since solving a 
plane geometry problem involves reciprocal relationships between drawing and 
theory, we note a two-way relationship between the handling of the drawing and 
the choosing of a particular theoretical reference: choosing a particular 
theoretical reference leads to the operational handling of the drawing and vice 
versa the drawing operational handling can suggest how to choose a particular 
theoretical reference.  

Carrying on this idea the following general hypothesis can be formulated: 

H) The relationship described above, between the drawing and the 
theoretical reference, is guided and controlled by the natural language.  

Testing this general hypothesis is not an easy task. A preliminary study is 
needed in order to identify the functions of the natural language in geometrical 
problem solving and specify what guide and control function mean. In order to 
perform this investigation it is necessary to develop an appropriate Research 
methodology. 

                                                 
1  « L’appréhension opératoire est l’appréhension  d’une figure en ses différents 
modifications” . 
2 A variation is called  “mereologique” when it divides the drawing into parts; it is designated 
as optical if it is an enlargement or a reduction of the drawing ; it is called positional when the 
figure background changes position. 
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A preliminary investigation about these issues is reported in this paper.  

I will elaborate a research methodology suitable to investigate the 
function of the natural language in geometrical problem solving. Moreover, I 
will present preliminary results intended to support general hypothesis H). 

 

1.1 Research methodology 

In order to analyse the function of language I considered a situation of 
communication between two students who were solving the problem. 
Communication is necessary to address to an interlocutor, but, at the same time, 
just because we address ourselves to an interlocutor, language can support a 
conceptual evolution. 

The research’s hypothesis immediately pose a problem concerning 
research methodology: How can we access the students’ solving process? 
Basically, I tried to elaborate a methodology that should be suitable for tackling 
this problem. Such a problem depends on the fact that language plays two 
different roles: it is a tool for the researcher (as a "revealer" of students' 
processes) and, at the same time, it is a tool for students, because they use it to 
solve the problem (and our inquiry concerns its role in the solving process). We 
elaborated a model for analysing protocols, based on the use of language as a 
revealer, which allowed us to point out the role of language as a problem-
solving tool for students. The model is based on the assumption that solving 
processes are mainly expressed through two registers: the linguistic and the 
figural. Then, the model distinguishes between two strategies: one developing 
from the figure drawn after reading the text of the problem, and the other 
developing from the question posed in the text or from the sub-questions 
obtained by transforming that question. 

We named these strategies “drawing strategy” and “discourse strategy”. 

The “drawing strategy” involves handling the drawing (in Duval’s sense 
of operational handling of drawing), or its perceptive apprehension (cf. Duval, 
1994) in order to construct a “work environment” by means of a list of 
information 

The “discourse strategy” consists of a structured sequence of questions, 
starting from the question of the text; or from some key words taken from the 
text, by talking with a schoolmate, or with a teacher; or from a key configuration 
isolated in the drawing. 
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So, the “discourse strategy” is closely linked to the text of the problem 
but, on the contrary, the “drawing strategy” is not strictly related to the text. 

Both strategies may intervene in the same student’s solution. 

• Aim of strategies 

If the “discourse strategy” consists of a structured sequence of questions, its aim 
is a structured sequence of answers. On the contrary, the aim of the “drawing 
strategy” is collecting information starting from the drawing or by acting on the 
drawing itself. So, the change of aim in the procedure is the key element that 
reveals the intention to go on to another solving strategy. The “discourse 
strategy” usually is a part of a deductive strategy, in which the aim is to prove 
something. On the contrary, the aim of the “drawing strategy” isn’t proving 
(indeed this strategy is used to create a set of information that constitutes the 
working environment). 

• Criteria for distinguishing between the two strategies 

We now try to provide some criteria that are useful for recognising a 
“drawing strategy”. In detail, language makes it possible to recognise this 
strategy when we can detect: 

− Words that refer to perception, such as " you can see that…” 
− Words and adverbs indicating space, such "here, there,” besides 

demonstrative adjective or pronouns, such "this (one), that (one), …", 
accompanied by gestures; 

− The present tense recurring frequently 
− A descriptive rather than deductive discourse, without any connection 

linking the information in the list. 
− Unjustified inferences: they carry the formal shape of ordinary inferences 

"since we know that…, then it follows necessarily that…” But the term 
“necessarily” introduces perceptive evidence and takes the place of “then, 
since…” The following is an example containing some of the above-
mentioned inferences, made at the drawing level.  

123. Taina: "because, since we have OD diagonal, I go on tracing the OD line, then we have 
the parallel, no, the perpendicular, which is AE, since it is a circle, since we know than OA, 
OD and OE are circle radii and that AO is equal to AD and that OE is also equal to AD, then 
necessarily DE is equal too”. 
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We now try to provide some rules that are useful for recognising a 
“discourse strategy”: 

− The variation in the use of verb forms and tenses. For instance a sentence 
like "we should be able to demonstrate that" points out an attempt to get 
out of the solving procedure, in order to provide a plan of it. 

− The complexity of sentences: coordination between several complete 
propositions. 

− The “final”3 structure of a sentence as “to have…it is necessary that…” 
This structure allows us to determine the theoretical reference that guided 
the answers to the questions. 

− The presence of “key words” such as “perpendicular” or “isosceles 
triangle, height, medians”. These words play a key role for the subject, 
which refers back to a concept belonging to his/her knowledge system. 
Therefore, these words are a kind of bridge between the subject's 
knowledge and the text of the problem or the discussion with some 
schoolmates. Let’s take a look at the word "parallelogram", for example: 
it reminds the subject of the quadrilateral figure, then the student will 
relate it to all the theorems and properties defining it which are part of 
his/her knowledge system, thus becoming capable of handling the 
drawing. 

• The presence of “Key configurations”, which is recognised and 
isolated by the subject in the drawing. 

• The deductive structure of discourse (the premises of a 
deductive step is the conclusion of the preceding one) 

 

2. Experimental situation and early research results 

As pointed out above, the object of our research is the functions of language in 
the link between the operational handling of a drawing and the theoretical 
reference to which it is related. So, our aim is to analyse the students' oral and 
written texts using the models of the “drawing strategy” and the “discourse 
strategy” in order to point out the function of the natural language. As an early 
result of our analysis we were able to identify various behaviours which we 
called "action models", in the students’ solving processes. Such models put 
some specific functions of the natural language into evidence. A short 
description of the first experiment performed is presented, followed by the early 
results. 
                                                 
3 This term indicates that the subject begins to search for the “cause” starting from the “effect” (consequence). 
The action focuses on a search of the theoretical reference to reach the “effect” that, in the specific case of our 
pre-experimentation, is the rhombus.  



Working Group 7 

 569

2.1 The experimental situation 

We performed a preliminary experiment involving an Italian Scientific Upper 
School and French Grade X students (14-15 year old). They worked in pairs, 
trying to solve a plane geometry problem involving geometrical objects already 
studied by the students in the middle school. It is necessary to underline that 
there is a substantial difference between the sillabi about geometry teaching in 
France and in Italy. Briefly, we can say that France is teaching the geometry of 
the transformations while Italy is teaching the Euclidean geometry. 

Audio and video-recordings as well as students' written texts were collected. 

Task 

Given a circle C; its centre O; its diameter AB; D is a point 
on this circle, so that AD = AO. 
The perpendicular to DO through A meets the circle C 
again in point E. 
Prove that OADE is a rhombus.  

During the experimentation different versions of this task were proposed, 
for instance, without drawing or with different data. We are presenting now only 
the above version. 

We can consider the necessity to represent a mathematical object and 
several semiotic systems from the duality of cognitive modes: images and 
language, to the symbolic algebraic writing notations. Now, to represent the 
geometrical object we consider the linguistic register and the figural register as 
semiotic systems. Within a semiotic system we have the representations of 
geometry objects as compositions of signs. So that for any geometrical object 
we can have different representations produced by different semiotic systems. 
However, this variety of semiotic systems raises coordination problems. The 
code activity represents a coordination system between the conceptual aspects 
and the figural aspects. For this reasons the problem given by the form of 
drawing and statement forces students to coordinate two registers: the figural 
and the linguistic ones. As Duval said “the conceptual understanding is possible 
when such a coordination for mathematical objects are not confused with 
content of representation” (Duval, 2000) 
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2.2 Early research results 
We identified several "verbal action models" implemented by pupils: some of 
them will be described. 

It is within the context of these models that we are trying to determine the 
functions of natural language as a problem-solving tool.  

Action models in the “drawing strategy” 
Among the results obtained by analysing the students’ “drawing strategy”, there 
is one action model involving the creation of a list of information. This list can 
be analysed in two different ways: as a simple list of information or as a list 
where some information can be connected to the drawing interpretation or to an 
inference. Let’s use a French student's work as an example of simple list (Taina 
worked with Sophie - see later for additional excerpts). 

40. Taina: diagonals AE and OD cut each other in their middle point, making a right angle, 
and AO is equal to EO, EO is equal to AD. 

The information in the list is, obviously: 
1) Diagonals AE and OD intersect each other in their middle point. 
2) They both make a right angle 
3) AO is equal to EO 
4) EO is equal to AD. 
As we can see, the information in the list is not related to each other. 

How and where do students get the information (theoretical references, 
geometrical relations, properties, etc.) for making their own list? We already 
said that the information in a list can be collected from the drawing, through 
operational handling or through the perception of it, but it can also be collected 
through implicit or explicit inferences. It is necessary to underline that these 
inferences are not linked together by a deductive development of the discourse, 
because they are tools to add new information to the list. Here are two examples 
of second type list: Taina - Sophie and Gaelle - Camille: 

− Explicit inference: 

59. Sophie: Look! AO is a radius of the circle and EO is a radius of the circle too (this 
information comes out from the drawing interpretation field4) 
60. Taina: then, AO is equal to EO too 
61. Sophie: and AO is equal to AD too 
62. Taina: so, and AO is equal to AD, so AD is equal to OE 

                                                 
4 The drawing interpretation field it was defined by Laborde as the set of spatial drawing’s 
properties which are related to the geometrical properties of the object. (Laborde and 
Capponi, 1994, pp. 171 – 172) 
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− Implicit inference: 

36. Gaelle: maybe, look! this one is symmetrical to this one (OA and DE) then it is the 
same. 

The above inference is implicit, since it comes out from the drawing 
perception and not from the transition towards a deductive procedure, even if the 
connector “then” occurs. We can see some revealing signs of the “drawing 
strategy” in the action model of the list:  

• The verb “to look at”, related to a perception of the figure (interventions 
59 and 36) 

• Deictics such as “this one” are present. They take the place of the object 
name as, for instance, in intervention (36) where the segment AO and the 
segment DE are not named but indicated by gestures and by the deictic 
“this one” 

• The recurring present tense  
• A descriptive discourse is present in (36) with the adjectives 

“symmetrical” and “the same” which come from the drawing perception. 
At the same, in (40) “diagonals AE and OD cut each other in their middle 
point” is a descriptive discourse deriving from the drawing perception. 

Experience shows that students try to handle the list whenever it becomes 
too long to be managed. Such handling involves some operations geared to 
modify the list. These operations include: putting the information in the correct 
order, picking up useful information and leaving useless information off the list 
through inference, adding some information to the list. For instance, the 
following dialogue is an example of how information is deleted from the list:  

26 O: But …wait, …look: this one is equal to 
that one (Ad = AO) 
27 D: NO, but… look: OD is equal to OE, which 
is equal to OA, because they are radii of the 
circle, three radii…then… since this one is equal 
to that one (OD = OE) and OE is equal to AO, 
then DE is equal to OE 
 
31 D: Since in the text they say that AD is equal 
to OA, and that OE is a radius, then it (OE) is 
equal to AO, because AO is a radius. Then OE is 
equal to OA, which is equal to AD. 
 

Intervention 26/27   
List:  
C1: AD = AO 
C2: OE radius 
C3: AO radius 
By inference we can get to the information 
 C4: OE=AO 
 
Intervention 31 
Handled list (useless information C2, C3 kept 
out of the list through inference): 
C4: OE=AO 
C1: AO=AD 
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In order to point out the functions played by language in the drawing 
strategy and its handling in the relationship between the operational handling 
and the theoretical reference, let's see the results of analysing the student’s oral 
and written work: 

1) The ordering function of language (language as an “organiser”): there is 
no order in the information carried by drawing, because it is global and 
two-dimensional (the operational handling of the drawing, doesn't give 
any ordered information). On the contrary, language is straight and 
sequential and because of these qualities the information must come out in 
order. 

2) The selective memory function of language (language as a selective 
memory tool), which makes it possible to select only the useful part of the 
information given in the drawing. The drawing has everything, but there's 
even too much! Therefore we need to select the information and thus 
build a system to keep such data in mind. (For instance, deleting an 
useless information: see the interventions 26(31) 

3) The function of control in handling the drawing: the presence of language 
in handling the figure is a tool for controlling the entire operation. (For an 
example, see the interventions 36(46) 

Action models in the “Discourse strategy” 
Based on the results obtained by analysing the students’ output related to the 
“discourse strategy”, two action models were identified: one related to the 
discourse procedure starting from the question of the problem, and the other 
related to the procedure started by key words (or by key configurations). The 
latter will be described in detail in this report while the former will not be 
discussed at this time. 

The key words act like a kind of label and carry out two functions: they let 
students recall a particular theoretical reference and they can refer to a linking 
concept, by which it is possible to switch to another theoretical field, leaving the 
given one (such a situation is not described in this report). 

The action model that refers to key words that can be used to recall the 
theoretical reference needed for the solution. In this action the word is 
associated to the concept5, that is the word recalls the concept starting from a 

                                                 
5I adopted the Vergnaud’s definition of concept. The concept is composed by three elements: 

• The situations which gives signification to the concept (in our case, the problem) 
• The invariants by which the “schemes” of action act (in our case the geometrical 

properties) 
• The linguistic and non-linguistic forms by which the concept is symbolically 

represented (in our case the drawing, the definition…) 
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figural aspect up to a link with a theoretical aspect, or starting from the 
theoretical aspect up to a link with a figural aspect. Usually, the associative 
operations are started by pronouncing a word or by reading it.  The concept 
allows us to consider particular geometrical objects. In this sense, based on the 
definition of Parallelogram, we can consider two equal segments which are also 
parallel segments. This defines a set of information that must be found again in 
the drawing by handling it: we need to identify two opposite and parallel 
segments. 

We can identify a “Key configuration” in the same way. This 
configuration acts as a sort of label to recall a particular concept obviously 
starting from the figural aspect. 

Here is an example of how key words work: 
36. Gaelle: maybe we can prove… well, look at it! This one is symmetrical to the 
other one (AO and DE), so it is the same. 
37. Camille: and then? 
38. Gaelle: and then we should be able to prove that (this is a meta discourse) it is 
parallel to that one there (AO parallel to DE). 
39. Camille: yes, but what we have to say is that this one is the middle point (the 
diagonals intersection). 
…it is the middle point of this one and of that one (DO and AE)…wait! AO is equal to 
AD… and what if we could prove that (meta discourse) triangle DAO is isosceles? 
Because, you know, it is important with reference to this one (DO). 
42: Gaelle: yes, because it is the height. 
43. Camille: yes, it is the height. 
44. Gaelle: Yes, it is also the median ….Yeees!!! it is the median!!! 
45. Camille: and this means that it is an isosceles triangle because the height is equal 
to the median… AE is perpendicular to OD and AH is the height in the triangle ADO 
(H intersection of the two diagonals). 
46. Gaelle: then AE cuts OD in the middle. 

The sequence of these pieces of information (isosceles triangle, height and 
medians, as underlined in the text) is the standard sequence of the properties by 
which an isosceles triangle is described in France. After naming the medians, 
Gaelle realizes that it is connected to "middle point"; then she relates this word 
to the theoretical reference, the isosceles triangle, and then she goes on to the 
discourse procedure. 

We can see some revealing signs of the “discourse strategy” in the “key 
word” action model:  

• The variation in the use of verb forms and tenses: for example in 
intervention (38) “…we should be able to prove that”  

• The complexity of sentences by the coordination between several 
complete propositions: for example in interventions (39) “what if we 
could prove that…” or (45) “this means that…because…and…”  
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• The deductive structure of the discourse: for example in interventions (45-
46) “this means that it is an isosceles triangle…then AE cuts OD in the 
middle” 

• The presence of “key words”: “isosceles triangle, height, median” 

We notice that the meta-discourse usually reveals the transition to a new 
strategy (see the above-mentioned interventions no. 38 and no. 41) and it plays a 
function of control on the solving procedure.  

The dialogue reported above is an example showing quite clearly how a 
change of aim is decisive in transforming the descriptive structure of the 
discourse into a deductive one, to go on to the discourse strategy. The language 
functions support the change of aim, so the language association function 
supports the passage from a list of information to a theoretical reference, as we 
can see in the following paragraph. 

An example of the passage from a “drawing strategy” to a “discourse strategy” 
We will describe a language protocol extract in which it is possible to identify 
the passage from the handling manipulation of the drawing to the choosing of a 
particular theoretical reference. The handling manipulation of the drawing 
produces a list of information, while the evocation of a particular theoretical 
reference is possible on the base of a “key configuration” action model. The 
language function, which supports the evocation of a particular theoretical 
reference starting from an action model of a list and a “key configuration”, is the 
language association function. Briefly, this language function allows the 
association of a Key configuration (key word) to a concept. 

Here is an example of how the language association function works: 

1 E: hypothesis: AO is a radius of the circle, OE is a radius of the 
circle, and AD is equal to AO. H is the intersection point between 
DO and AE. AHO is a rectangle triangle but…AOD is an isosceles 
triangle, not an equilateral triangle, so the triangle AHO is a 
particular triangle with angles of 30°, 60° and 90°. 
2 A: hypothesis: all of these triangles (AHO, AHD, DHE, OHE) 
are equal among themselves because AD is equal to AO, then AO 
is equal to OE because they are radii and ED is equal to the radii 
because we have demonstrated it…. and then? 
3 E: DH and HO are equal and AH is equal to HE too so hence, 
… there is a theorem about the diagonals of the parallelogram 
which cuts them  in their middle point. Is it so? 
4 A: Yes, “if the diagonals of a quadrilateral cut each other   in 
their middle point, then it is a parallelogram” 
5 E: Ok, and if a parallelogram has four equal sides, then it is a 
rhombus! 

 

LIST 

THEOREM 

 LANGUAGE 
 
ASSOCIATION 

KEY 
CONFIGURATION
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The interventions (1) and (2) are examples of the list of information, on 
the contrary, the interventions (3), (4) and (5) concern a theoretical reference (“if 
the diagonals of a quadrilateral cut each other in their middle point, then it is a 
parallelogram”) in a deductive structure of the discourse. We can recognize an 
operational handling of the drawing in the sub-configuration of rectangle 
triangles and an inference by which the information “AOD equilateral triangle” 
is obtained. 

In intervention (3) the theorem (theoretical reference) is evocated. How do 
students evocate the theorem starting from the list? 

I think that the key element, which works as a bridge, is the configuration 
of diagonals, which cut each other in their middle point. The configuration is a 
sort of label, which makes possible to evocate a theoretical aspect (the theorem) 
of the concept linked to the parallelogram. For this reasons this label is a “key 
configuration”. The function of language here is that of an association function, 
which makes possible to link the figural aspect of the parallelogram to the 
theoretical aspect (mentioned theorem). 

 

3. Conclusion 

Up to now, results seem to show that natural language plays a really important 
role of mediation between the handling of the drawing and the theoretical 
reference in plane geometry problem solving. By using the set of criteria 
elaborated to recognize students' strategies (the drawing strategy and the 
discourse strategy), I was able to identify different functions that the natural 
language seems to have assumed in students' problem solving. In particular, I 
was able to partly describe the function of mediation of natural language and 
give a list of some other functions. Among these: the association function, the 
guide function, the planning function and the control function. 

It is within the context of action models that we are trying to determine 
and to put into evidence the functions of natural language as a problem-solving 
tool.  

The first experiment I carried out suggests that further steps in the 
research project should be made at a micro-analysis level concerning the 
identification of functions of the natural language by considering students' 
"action models" related to their macro-strategies. This analysis should make it 
possible to find the appropriate area where the teacher can intervene in students' 
problem-solving activities. 
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Abstract: This paper examines the ways in which the language of algebra has 
developed through the problems arising from iconic representation in 
elementary arithmetic and geometry. The ability of a language to express, 
explain and integrate new ideas is discussed, some examples are drawn from 
historical material, and the idea of “semiotic condensation” is proposed as a 
way of thinking about teaching and research.    

 

1. The Languages of Mathematics 

Algebra is a powerful and expressive medium which lives in the space between 
arithmetic and geometry, abstracting the essences of arithmetic and geometric 
objects and providing a means of transformation from one kind of reality to the 
other. It hides the complexity of the processes which have developed over 
thousands of years and which now enable us to formulate sophisticated 
mathematical models to aid the solution of a wide range of problems.This 
facility of modelling has enabled different cultures to cope with increasingly 
complex human problems; to be able to classify problem situations and abstract 
from them essential aspects which lead to methods for their solution. In doing 
this we have invented written representations of objects, operations, relations 
and procedures, enabling the development of abstract concepts which take us far 
from the physical world and into the intellectual world of pure mathematics. The 
development of algebraic language in its many forms, is a vital and fundamental 
part of human endeavour. 

In order to examine the development of algebraic language, I propose a 
working definition of language as “an infinitely developable symbol system”.  
The term “symbol system” is inclusive of context, discourse, and genre and 
refers to general forms of text. Thus I concur with Pimm (1995) that 
mathematics is a specialised language with its own contexts, metaphors, symbol 
systems and purposes. Furthermore, I aim to show that there is not just one 
“mathematical language” but a number of different languages which have arisen 
at different times, each having its own special purpose and its own particular 
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rules and domain of application. Mathematical language in its broadest sense 
therefore involves a number of symbol systems, each arising from attempts to 
overcome particular problematic situations. Identifying these different languages 
can help to reveal situations where the variation from one language to another 
causes difficulties for students. According to Kvasz (2000) as a mathematical 
language develops, it has the following aspects, to a greater or lesser degree: 

a) Logical Power concerns the ability of the language to develop general 
procedures and proofs and make it possible to create a concept of reality 
independent of the language itself, against which results can be verified. 
Logical Boundaries occur when this is not possible. For example, the 
language of elementary arithmetic does not contain variables, so all 
problems have to be formulated with concrete numbers and tested against 
real situations. There is no independent, general procedure whereby 
calculations can be tested. 

b) Expressive Power is the ability to express concepts, formulate problems 
and provide models arising from a given problem situation. Expressive 
boundaries happen where the language is unable to express certain 
problematic situations. To cope with new problems, elementary arithmetic 
(of positive integers) has been gradually extended to include fractions, 
negative, non rational, and complex numbers. 

c) Explanatory Power concerns the ability to explain whether or not a 
problem can be solved by referring to the logical structure of the language 
or to the ontological basis of the concepts. Hence the full explanation of 
why and how “imaginary” numbers “worked” had to wait until the 
concept of complex numbers  was developed and integrated into the 
current algebraic language. 

d) Integrative Power: as a language develops in response to the growing 
number of problems it meets in different contexts, it gradually evolves the 
ability to create universal analytic methods and so to include a wide range 
of problems. 

 

2. 2. Icons, Indexes and Symbols 

Recent interpretation of the available archaeological evidence suggests that over 
time we have created icons, used indexes and developed symbols which first 
replace and later become the objects of thought (Deacon 1997). In our case 
mathematical objects are represented by icons, indexes and symbols which we 
use as tools to develop processes whereby we describe and manipulate the 
world. The distinction between icons, indexes and symbols is a subtle one. On 
one level, an icon can be taken to represent the object itself. For example, a 
passport photograph is iconic of the person it represents. The interpretive 
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process that generates iconic reference is what we call recognition. The word 
“re-cognition” means thinking about something again, and “re-presentation” is 
to present something again. Iconic relationships are the most basic means by 
which things can be “re-presented”, and hence “re-cognised”. 

The next level of sophistication is indexical. The function of indexes are 
to associate one thing with another. Numerals on a scale can indicate 
temperature, pressure, consumption of fuel, etc., and we learn to associate the 
smell of smoke with fire, and so on. Our indexical competence is constructed 
from a set of relationships between icons, and indexical interpretation is 
accomplished by using iconic relationships to interpret new stimuli. 

Symbols1 denote objects, operations, relations, and other situations, but  
the nature of symbols means that they also have connotations (Barthes 1973). 
For symbols there is some form of social connection; a convention, a tacit 
agreement or an explicit code which makes the link between what we see and its 
deeper meaning. For example, the algebraic expression ax2 + bx + c, essentially 
denotes a series of instructions to take some numbers and operate on them 
according to particular arithmetical rules. However, the connotations involved 
indicate that the individual elements have different meanings; “x” stands for a 
variable, usually a real number; “a”, “b” and “c ” are parameters; the “+” sign 
means addition in the field of real numbers; the whole expression is a quadratic 
form which can be re-presented as a parabola; the curve is one of the conic 
sections, and so on. We often claim that algebraic and graphical representations 
denote the “same” mathematical object; however, this kind of symbolic identity 
only arrives with the greater sophistication of written text and the gradual 
accretion of the accompanying conventions. The situation is even more 
confusing for students when they meet the expression (x -  a)(x - b)  which 
denotes the same object, but is a change of connotation because it focusses on 
different algebraic properties of the object.  Algebraic transformations are 
invariant with respect to denotation of the symbolic expression they act upon 
because they can change the connotation but not the denotation of the symbolic 
expression itself. The converse is not true; if two different expressions have the 
same denotation, they are not always reducible to each other by algebraic 
transformations. For example the two equations x2 - 4 = 0  and x2 + 5 = 0  both 
denote zero, but have very different connotations.  

While denotation concerns the first, immediate level of meaning, 
connotation, the second level, is much more complex. This second level of 
meaning Barthes calls the “myth”. Any analysis of the second level meanings 
involves an explanation of the semiotic process whereby the myths have been 
established, and of course different people may see different meanings, and 
hence interpret different myths. Failure to appreciate the semiotic content of 
symbols leads to problems when students try to make a transformation from one 
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form to another (Duval 2000). Since the symbol system has been developed 
historically, it is important for students and teachers to have some appreciation 
of what this involves and how we came by the symbols we use today2.  

 

3. Mathematics in History 

The history of algebra has been popularly divided into three periods: 
“Rhetorical” where problems are expressed in words, and solutions given as 
instructions, as in Egyptian and Babylonian mathematics; “Syncopated” where 
some symbols are beginning to be used as in the early Renaissance; and 
“Symbolic” where algebra appears in the time of Viete and Descartes, rather like 
we write it today. These three stages defined a progression from some kind of 
“primitive” state to a more sophisticated way of dealing with problems, but even 
a brief investigation into historical detail will show that this interpretation is 
much too simplistic.  

Mathematics, like any other human enterprise develops in “communities 
of practice” (Wenger 1998, Adler, 2000), and within these communities we find 
an evolution of shared meanings. Newcomers are initiated into the practices 
which are passed on from one generation to another. Not all of these meanings 
or variations of practice are written down, but are shared as “tacit knowledge” 
by the community (Polanyi 1964). However, not all people share the same 
meanings and so variations occur where new problems can be seen from 
different points of view.  

Illustrating the development of mathematics by reference to iconic, 
indexical and symbolic representations has its problems. The narrative form of 
this paper means that conventions of writing arrange ideas in a certain order, 
which then implies that there is some kind of progression from one idea to 
another. While this may be true in one sense, it is important to realise that 
cognitive development is holistic, and while there may be some necessary 
stages, rarely is it the case that this development can be seen as a series of 
distinct phases where those involved pass through and leave behind one phase 
before reaching the next.  

The problem is that no objects in themselves are icons, indices or 
symbols. They are interpreted as such according to what is produced in response 
to someone perceiving them. This means that the differences between iconic, 
indexical or symbolic relationships derive from regarding things either with 
respect to their form, their correlations with other things, or their involvement in 
systems of conventional relationships or practices. We continually act in the 
flow of meaning which encompasses all of these modes. The use we make of 
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these ideas depends on our purpose, and so the definition and exemplification of 
these terms in mathematics (as also in everyday language) is inherently 
ambiguous. 

 

4. The Invention of Icons 

In the Ancient Near East, iconic representation originated in Neolithic times. 
Small stones were used to represent objects for the purpose of calculation. These 
gave way to clay models representing the objects, animals, or products which 
were the subject of the calculations. There now exists a considerable amount of 
evidence (Friberg 1984, Nissen et. al. 1993) to indicate that the first kind of 
writing invented was not for any literary or religious purpose, but as numerical 
symbols. The principal motivation for the invention of writing was for the 
purpose of economic administration which included the development of number 
systems and ways of calculation. As writing developed, it took over a wide 
variety of representations which depended on the ways in which objects were 
counted, and the qualitative significance of the objects themselves within the 
society.   

So the first mathematical language was an arithmetic based on iconic 
representations, and aspects of this can be seen in “Pythagorean” arithmetic. 
Pythagorean representations consist of patterns of dots for odd and even 
numbers, triangular and square numbers, etc., which provided visual 
justification for the establishment of basic arithmetical relationships. This kind 
of iconic representation led to the belief that all objects were composed of a 
large but finite number of elements. In this respect, the iconic representation of 
integers failed to solve the problem of representation of nonrational numbers, so 
this language failed in its expressive power because it was unable to express 
exactly the situation represented by the diagonal of the square. Fowler (1997) 
remarks that the translation of the Greek term for these numbers ought to be 
“inexpressible” (not “incommensurable”). 

Another kind of problem solving was motivated by ritual practices. 
Siedenberg (1962) describes how the famous problem of doubling the size of the 
altar originated in the Vedic rituals of ancient India. In the geometry of classical 
Greece, we have a sophisticated system of iconic representation of variations of 
this problem in the transformation of areas as developed in Euclid Book II. 

Knorr (1986) and Netz (1999) have examined the tradition of solving 
geometric problems in ancient Greek mathematics, and claim that geometric 
icons have ontological primacy since they were the first means of re-presenting 
a problem situation. The ways we talk about diagrams and instruct people to 
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draw them embody a number of verbal conventions, and so diagrams are a 
referent for the text. The truth value of an assertion lies in the relation between 
the assertion and the diagram, and the identity of the object rests with the visual 
faculty. For example, for the straight line AB, the relation AB = BA is 
“obvious” as can easily be seen from a diagram. 

So in the geometrical icon there exists an inherent kind of generality 
where the naming of objects and their relations is based on their visual status, 
and the identity of geometrical objects is confirmed by visual and not symbolic 
means. Today we rely on “capturing the beast with a nest of verbal formulation” 
(Netz 1999 p. 38) which is exactly the process described in Lakatos (1976) 
where the ontological primacy of the physical object referred to by the term 
“polyhedron” is challenged, and strings of symbols are created to replace it.  

The important role of the diagram in relation to the accompanying 
assertions in the text can be seen in many examples in the development of 
algebra from Al Khowarizmi to Cardano and beyond. We can also see this 
ontological primacy of the diagram in the development of Projective Geometry 
which arose from the practical art of Perspective and where the early proof 
methods relied upon “projection and section”. 

 

5. Classification, Systematisation and the Development of Algorithms 

Very gradually, as well as the representations of the things, we have descriptions 
of what can be done to or with the things. These descriptions are initially in 
terms of “action metaphors” describing the operations on the objects, and are 
indexical because they indicate what is to be enacted. As the level of 
sophistication grew, the procedural character of many of the calculations was 
gradually recognised, and so methods which were seen to be similar evolved 
into more general techniques which became applicable outside their original 
domain. However, it was not possible to use this iconic language of elementary 
arithmetic to express unity or order. In the early stages, the classification of 
problems was based on their practical use in a specific context. 

The conjunction of the classification of problems by context and the 
gradual use of a more universal system of calculation led to the development of 
a systematic approach which can be found in texts of the early second 
millennium BC. The usual instructions to the student were “we do it like this... 
”. But it was still the case that the language of elementary arithmetic did not 
make it possible to create a concept of reality independent of the language itself, 
against which results could be verified. Two different methods applied to the 
same problem could come up with different results, but this was avoided by 
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everybody using the same method. For example, a method given for measuring 
the area of a trapezoidal field, (take the average of the two short sides and 
multiply by the length of the field) is correct for rectangles, but wrong in other 
cases. 

An efficient notation is not always necessary for the development of  
algorithms. In Babylonian mathematics the instructions for finding the sides of a 
rectangle given the sum and the product of two adjacent sides appears in many 
general histories of mathematics. The purpose of these algorithms for scribal 
practice is now well documented (Robson 1996) and the exercises were 
carefully arranged to give integer solutions. Negative solutions and other 
problematic situations were not shown, and the inability to do some calculations 
within the arithmetic system of positive integers and fractions eventually led to 
development of a new language which could express these problems more 
clearly. For example, the tablet which shows a calculation of the diagonal of a 
square, while not giving the arithmetic algorithm explicitly, suggests a 
realisation of an infinite process which had to be approximated for practical 
purposes.(Resnikoff and Wells,1973). Much later, problems of this kind were 
expressed in a geometrical language which was still iconic, but enabled a 
distinction to be made between number and magnitude.  

 

6. Representation of Objects, Operations and Relations 

Notation began as iconic representations, which were gradually decontextualised 
and became “the thing”, the unknown. Basic arithmetic operations and relations 
like addition, subtraction and equality, were initially represented by verbal 
expressions or their abbreviations, and as the arithmetical and writing techniques 
developed, these representations evolved to cover a wider and more 
sophisticated range of operations and relations. We can regard the development 
of notation as a process which combines the iconic representation of objects and 
the indexical representation of operations and relations. The notation becomes 
more efficient as the signs themselves become decontextualised from their 
qualitative origins and this allows abstraction and generalisation to occur. In this 
way, the rules for symbol manipulation become clearer (to the initiates) and this 
provides the potential for the development of new concepts. In contrast, as this 
happens, it makes participation in the meanings more difficult for any 'outsider'. 

However, the verbal expressions for relations were not all superseded by 
written signs. In the classical geometrical tradition, the diagram is the referent 
for the text, and this persisted until the change from geometry to algebra as a 
basis for mathematical reasoning was begun in the mid nineteenth century with 
the 'arithmetisation of analysis'3. Relations in geometry are initially defined in a 



European Research in Mathematics Education II 

 584

visual sense; same, similar, perpendicular, parallel, congruent, etc., but again 
became more complex. As the concepts and techniques develop these relations 
come to be expressed in text which begins to capture the idea but which still 
uses the diagram as the referent. 

 

7. Symbolism and the Reification of Concepts 

Symbols have a semiotic history and are the result of the development of 
systems of representation which move from iconic through indexical to 
symbolic modes. The major period for the development of algebraic symbolism 
was from the latter part of the fifteenth century to about the middle of the 
seventeenth century and is marked by a number of important contributions 
beginning about the time of Pacioli’s “Summa de Arithmetica... ” (1492) and 
continuing to Descartes and Fermat in the 1630s whose most significant 
contribution was to combine the two languages of algebra and geometry into the 
new language of analytic geometry. Descartes declared that his programme was 
to develop a system for the easier solution of geometrical problems, and the 
graphs were an important referent for the written algebra. Furthermore, two 
significant problems had arisen in the use of both the language of elementary 
arithmetic and elementary geometry; these were the status of negative and 
imaginary numbers. However, by the 14th century the use of double entry 
bookkeeping began to give negative quantities a numerical “reality”, so that the 
manipulation of negative numbers had a referent in real world experience. 

In the early stages, the solutions to problems were written in prose and 
numerals with no consistent general notation to express operations, relations and 
other ideas and the proliferation of symbols in the sixteenth century to cope with 
the elaboration of problems became a serious obstacle to understanding.4 
However, during this period the development of printing began to modify the 
way in which algebraic symbols were written since many of the complicated 
symbols were gradually replaced by choices from the easily available alphabet, 
and others (like the square root sign) quickly became 'standardised'.  

This raises an interesting question as to whether, when a particular 
notation is introduced, the original concept could really be conveyed exactly by 
the new notation. For example, according to Vergnaud's (1990) theory of 
conceptual fields, a concept is a system which includes semiotic representations, 
so when you introduce a language, (or a notation) you change the concept. The 
system of representation chosen changes our apprehension of the original iconic 
representation, bringing other images of connections and contexts to mind. This 
can often help in broadening our concept images (Tall and Vinner 1981) but it 
can lead to false interpretations as shown in Hoyrup's (1994) discussion on the 
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varieties of discourse in 'subscientific mathematics' in the development of 
algebraic processes from arithmetic problems in the period up to about the ninth 
century AD.  

Cardano (1545) advocated a general theoretical basis for the solution of 
equations. He used geometric demonstrations to justify his algebraic solutions 
for quadratic and cubic equations but was clearly uneasy since he could not 
supply any geometric justification for quartic solutions, nor could he find a way 
of expressing the new numbers in geometric terms. His application of the 
quadratic algorithm and the problem of the “irreducible case” for cubic and 
quartic equations led him to the discovery of new entities which he insisted were 
numbers to be “imagined”. Thus he began to extend the domain of application of 
algebra from integers and fractions to negative and the new “imaginary” 
numbers. 

The turning point in the development of the Language of Algebra is 
generally recognised to be the work of Vieta who in his In Artem Analyticam 
Isagoge of 1591 demonstrated how the consistent use of letters of the alphabet 
could make the operations which went into the building of the terms in an 
expression more visible. In this work he generalised algebraic calculation and 
freed himself almost entirely from geometric representation. His claim that the 
key to solving equations is to know how they are built up in the first place was 
an extremely powerful principle which gave rise to new methods and new ways 
of conceiving the problems. After Vieta both Descartes and Newton gave 
algebraic solutions for geometric problems and geometric solutions for algebraic 
problems, and mathematicians were beginning to use the new symbolic entities 
and operate with them as if they were “real” quantities. However there was still 
a strong belief in the ontological primacy of the geometrical diagram. 

 

8. Abstraction of General Theories 

In La Geometrie (1637) Descartes produced a weak version of the fundamental 
theorem of algebra, proposing that equations would have as many roots as their 
highest power, but since imaginary numbers had no geometric construction and 
corresponded to no definite quantity, they were not included. Girard had already 
stated in his L’invention Nouvelle en L’Algebre (1629) the general principle of 
the fundamental theorem where every equation in xn has n roots, but the 
mathematical community was not ready to make this leap into unknown 
territory. Finally, in his Treatise of Algebra (1685) Wallis showed that 
algebraists could not solve the irreducible case unless they were prepared to 
admit “imaginaries” as quantities which could be manipulated according to 
certain rules. 
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Towards the end of the eighteenth century the work of Lagrange, 
Vandermonde and Ruffini began to produce a generalised theory of algebraic 
equations. The essential activity of “re-cognising” patterns, regularities and 
similarities in the role of concepts and procedures was the key to this gradual 
process of abstraction and generalisation. In the evolution of mathematical ideas, 
we see that at certain stages where particular problems arise, new icons, indexes 
and aspects of the symbol system are employed in order to overcome the 
difficulties. These developments of the symbolic systems helped in their turn to 
develop new aspects of the languages of mathematics to enable them to become 
more integrative, expressive and explanatory, and gradually shift attention away 
from purely iconic representation into the abstract symbolic world we now 
inhabit as mathematicians. 

It is clear that these transitions from icon through index to symbol did not 
occur at one time, nor is it true to say that we now do mathematics exclusively 
in a symbolic mode. It is also clear that we have not banished the icon 
altogether, for it is likely that the ontological primacy still rests with the objects 
we can see, or that we create on our page, or on our computer screen. 

 

9. What lessons can we learn for the classroom? 

In the process of understanding, the most attractive and immediate ways of 
gaining access to an idea are through iconic representations. In the early stages 
of learning, icons have ontological primacy and are the first way in which we 
begin to access deeper meanings. We use all kinds of icons with young children 
to represent objects, demonstrate properties, relations, and so on. This reliance 
on the icon never entirely leaves us; and it may be one of the most dominant 
aspects of the way we learn. In teaching mathematics we use many signs which 
re-present objects and ideas. These indexes are used to focus attention on 
particular relations or aspects that are significant in the mathematical sense. The 
“semiotic condensation” of icons and indexes into symbols is the most powerful 
aspect of mathematisation.   

We can find many examples of this in our teaching of mathematics at all 
levels. Duval's work on the difficulties students of high school and university 
have in translating from one representation to another is indicative of the deep 
rooted problems students have in understanding the subtle meanings in different 
notations (Duval 2000). Work done by Vassakos (2001) on the problems 
students in the Greek Lyceum have in understanding the Dirichlet - Bourbaki 
definition of function deconstructs a series of aspects necessary for the 
understanding of this concept which rely heavily on iconic representations. 
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These, and other similar results indicate that serious attention should be paid to 
the ways in which symbols are introduced much earlier in the school system. 

The motivation for the development of mathematical language was the 
need to tackle more sophisticated problems which arose from internal pressures 
concerning the nature of the mathematical problems themselves. However, the 
problems for which the symbols were originally developed are not now of any 
relevance to pupils. We seem not to be aware of these facts in our presentation 
of mathematics and expect pupils to be able to understand easily the semiotic 
significance of the different representations and symbol systems we employ. 
The way in which we might see an algebraic expression and a graph as 
“equivalent”, and the way in which we gain insights into the properties of these 
objects by movement from one kind of representation to another is a very 
important part of our mathematical awareness. The ongoing work of the 
'Arithmetic to Algebra' project shows how, given interesting problem contexts 
and a sensitive teaching approach, young pupils can develop and manipulate 
meaningful mathematical symbolism of their own, and come to some 
understanding (albeit implicit) of the process of building a symbol system5 and 
becoming confident in the use of mathematical languages (Malara and Navarra 
2001). 

 

Notes 

1. Here I make no distinction between the terms 'sign' and 'symbol' (compare 
Radford 2001 p. 239 and his note 2). Later, I use the term 'notation' to mean 
the particular choice of alphanumeric or agreed conventional mark made on 
the paper. A collection of marks becomes a symbolic re-presentation when it 
is interpreted in a particular way. 

2. This is not necessarily a reference to history of mathematics in the usual 
sense. Vygotsky (1978 Ch. 8) talks about the development of written speech, 
and similarly, the development of mathematical writing is also embedded in a 
meaningful historical socio-cultural context.  

3. However, Nunez and Lakoff (1998) raise serious questions about the popular 
belief in the banishment of intuition in Weierstrass' formulation of the 
limiting process. 

4. For example Rudolff (Die Coss 1525) and Stifel (Arithmetica Integra 1544) 
did considerable work on equations with powers and non-rational numbers 
and created a great variety of symbols to express the numbers and relations 
between them. However, the learning of new symbols is difficult - it is easy 
to get confused if they are too elaborate and not clearly related to each other, 
and the audience already has a fairly efficient orthographic system in the 
Roman alphabet lettering in which the problems could be posed anyway, so 
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why go to the bother of learning something new when there is already a 
simpler system available? The payoff in terms of intellectual effort in 
learning a new system must be seen to be worthwhile. 

5. This longitudinal project, with teachers and children in Italian Middle 
Schools in Belluno, aims at introducing algebraic symbolism by using a 
number of pedagogical devices to develop contexts and discourses where 
children are encouraged to work collectively on solving problems and 
communicate their solutions by developing notations for the objects and 
processes employed. In many respects this project is similar to that described 
by Radford (2001) whose work I have already cited.  
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SAMPLE OF PEDAGOGICAL COMMUNICATION  
IN MATHEMATICS LESSON 

Monika Barešová 
Academy of Sciences of the Czech Republic, Czech Republic 

baresova@math.cas.cz 

Keywords: communication of students, change in character of communication, 
contentual aspect of communication, formal aspect of communication 
Abstract: This poster presentation deals with changes in the character of 
communication between students in the course of gaining pieces of knowledge. 

We search for and study phenomena which, in our opinion, describe the 
character of students� communication. We focus our attention on the following 
two aspects: 

• contentual (semantic) - this aspect includes especially searching for and 
finding an idea, deciding for a strategy; discussion about the found 
strategy; explanation, argumentation, abstraction; following the theme, 
holding attention; � 

• formal - here we observe mainly voice intensity; wording; frequency and 
length of pauses; affective reaction; � 

By means of the mentioned phenomena we try to discover differences between 
communication (a) before learning a topic and gaining new pieces of 
knowledge, (b) after familiarising oneself with the topic and new pieces of 
knowledge. 

We will show the discovered differences on a sample of students� 
communication in the course of learning �Pythagorean theorem�. 
Acknowledgments: The research was supported by the Research Project GACR 406/99/D080. 

THE EFFECTS OF TYPE OF SUPPORT 
ON CHILDREN’S THINKING 

WHEN TACKLING MATHEMATICAL INVESTIGATIONS 

Clare Green 
University of Cambridge Local Examinations Syndicate, UK 

Green.C@ucles.org.uk  

Keywords: image schema, cognitive objects, natural numbers, preschool 

Abstract: This study is stimulated by an interest in mathematical investigations 
and in their value in maths education.  The aim of the study is to consider the 
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effects of support provided within a task on children�s performance when 
carrying out investigations and in turn to improve the question writing process in 
this domain. Such support should improve access for children of all abilities, to 
enable them to show evidence of positive achievement and be rewarded for 
doing so. The idea of providing support in a written investigation is not intended 
to make the activity easier, but rather to make the activity more valid, prompting 
pupils, thus enabling them to spend more valuable time on the task. Evidently, 
this support should not offer a complete solution, but rather assist pupils in 
shaping a response. A set of parallel investigations was designed to explore 
differences in pupils� procedural and strategic working in response to the 
support provided. Types of support considered were worked and un-worked 
examples, suggestions for recording systems and �clues�. A pilot study was 
completed in December 2000 and the full trial will be completed with 500 ten 
and eleven year olds in March 2001. Pilot scripts were marked against criteria 
developed in terms of theories of problem solving and focus on recording 
systems, strategies used and the influence of the support given, as well as the 
overall success of the solutions. The study of children�s written scripts was 
complemented by clinical interviews allowing their conceptual as well as 
procedural and strategic knowledge to be explored. This poster will set out 
background theories and beliefs regarding investigations, the methodology, 
some of the results to date along with the possible implications of the results of 
the project. 

 

THEORY AND PRACTICE OF TEACHING FROM  
PRE-SERVICE AND IN-SERVICE TEACHER EDUCATION -  

PHENOMENA OF IN-SERVICE PRACTICE TRAINING  

Michaela Kaslová 
Charles University, Faculty of Education, Czech Republic 

michaela.kaslova@pedf.cuni.cz  
 

Keywords: didactic thinking, phenomena of in-service training 

Abstract: The aim of in-service training of teachers is first of all to further 
develop their didactic thinking. In line with this main aim there is a series of 
partial objectives such as drawing teachers into participating in research, 
publishing the research results as well as new items, including information about 
math competitions, solution of topical questions as for instance evaluation, 
quality of text books and so on. 
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Summarisation and analysis of 10 years experience collected in 530 
classes of in-service training in 10 districts of the Czech Republic � aimed at 
teachers of 1st degree of fundamental schools. There is no doubt that teachers of 
this category ought to undergo in-service training in math didactics. In-service 
training is been blocked by a certain number of phenomena.  

Some of them will be illustrated (examples of pupils work and photo-
documentation) by the poster the function of which is to provoke discussion end 
exchange of information. 

IMPROVING TEACHERS’ BELIEFS ABOUT 
MATHEMATICAL EDUCATION 

Marie Kubínová 
Charles University, Faculty of Education, Czech Republic 

marie.kubinova@pedf.cuni.cz  
 

Keywords: Approaches to teaching, constructivism, teacher’s beliefs 

Abstract: In the Czech Republic changes in education are being prepared. These 
changes originate in: 

• the national community needs (in 1999 these were expressed in the 
government document Conception of education and development of the 
educational system in the Czech Republic), 

• from the postulates formulated in the scope of unifying school systems in 
Europe as an educational need for 21st century. 

Our research projects proved that: 
• in the Czech Republic the present mathematical (and not only 

mathematical) education is aimed mainly towards students� performance 
but does not develop their abilities and potencies accordingly, 
transmission and instructive approaches prevail, 

• the basis of expected changes of the (mathematics) education nature is the 
change of the teacher�s beliefs. 

Experimentally, we check activities supporting the development and cultivation 
of teacher�s beliefs about the nature of mathematical education: 

Two target groups in our experiment: 
A. students, future teachers of mathematics: 

• In most cases we diagnosed a strong fixation to the prototype of a teacher 
of instructive or transmission type, 
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• the basic activity � guided confrontation of students with educational 
reality coming from the constructivist nature of mathematics education, 
the stress being put on the creation of the space for influencing the 
individual conception of teaching profession by individual students. 

B. practising teachers interested in further education (further education for 
practising teachers is not obligatory in the Czech Republic at the moment) 
• were in most cases diagnosed as teachers of transmission or instructive 

type, 
• basic activity � active participation in workshops with follow-up activities 

for concrete teaching, teachers are guided to grasp and describe precisely 
didactic problems, to search independently their alternative solutions 
using corresponding theoretical knowledge and self-reflection of both 
running thinking processes and realised activities. 

Our experiments and some of their outcomes will be presented on our poster.  

References 
Kubínová, M � Bare�ová, M. � Hanu�ová, J.: The Use of Project as a Catalyst for Changing 

Beliefs of Pupils, Parents and Teachers. In.: Sborník CIEAEM 51, Chichester 2000, 
265 �270. 

Pehkonen, E. � Törner, G.: Mathematical beliefs and different aspects of their meaning. ZDM 
28, 4, 101-108. 

Pehkonen, E. � Törner, G.: On the structure of mathematical belief system. ZDM 28, 4, 109-
112. 

Tichá, M. � Bare�ová, M.: Cultivation of student�s and teacher�s beliefs about mathematics 
education. In: Sborník Ninth European MAVI Workshop on Mathematical Belief 
Research, Vídeň 2000, 96 � 102. 

Acknowledgments: The research was supported by the Research Project MSM 141100004 
Cultivation of Mathematical Thinking and Education in European Culture.  

EULER’S THEOREM 

Josef Molnár 
Palacký University, Czech Republic 

molnar@risc.upol.cz  
 

Keywords: Platon’s solids, Euler’s theorem, polyhedrons 

Abstract: Suggestion how to introduce polyhedrons to primary school pupils:  
The well known solids- cube, pyramid etc., vertex, edge, face, net (surface), 
cube volume, shapes of solids (convex and non-convex solids), Platon�s solids, 
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number of vertexes (v), edges (e), faces (f), Euler�s theorem f + v � e = 2. There 
are also included results of research, which was aimed to realization of the 
above-described method. It continues in my previous work in this area, which 
was supported by grants of Ministry of Education of Czech Republic and grants 
of Palacký University. 

 

REASONING PROCESS AND PROCESS OF CONTROL IN 
ALGEBRA 

RECENT THEORETICAL AND EXPERIMENTAL TRENDS 
IN THE PROJECT "CESAME" 

Mabel Panizza1, Jean-Philippe Drouhard2 
Universidad de Buenos Aires, Argentina 

mpanizza@mail.retina.ar 

IUFM de Nice, France 
drouhard@math.unice.fr  

 

Reasoning process and process of control 
Writing in algebra is not (in general) just to think in its mind and then to take a 
pencil and write something in a sheet of paper. In elementary algebra, reasoning 
is made with signs, on signs, by signs. In the international research group 
CESAME we try to address this point, amongst others. In order to understand 
better the role of written signs in the algebraic reasoning, we were led to two 
related questions: 

1. To what extent do students and teachers share a common opinion about 
the role and use of written signs? 

2. What are the processes of control involved in reasoning and using of 
written symbols in elementary algebra? 

We conceived the late question as a concrete starting point for the study. As a 
matter of fact, the subject's reasoning process is not easy to observe directly. 
Particularly in algebra, the "syntactical" reasoning (i. e. the subject's reasoning 
process on written symbols) is very often implicit or hidden by the use of 
unquestioned algorithms. This is why we chose to study the subject's processes 
of control, which are intimately related to the syntactical reasoning but are 
(slightly) easier to observe directly. 
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In this Poster we will not address the first question but rather we will 
present a preliminary experimental study aimed to collect clues on the students' 
processes of control when achieving a task involving some algebraic reasoning. 

The circumference problem1 

NAME: ....................................................................................................................  

We ask you to work alone, to write your draft computations in this sheet of 
paper, to use ink pen, neither to use eraser nor white correcting fluid. All your 
ideas are interesting, please write them down in details. 

Problem: 

A Student2 has to solve the following system: 

x2 + xy + y2 = 25
xy = 0

 
 
 

 

He says that the solution is the set of points such as: 

x2 + y2 = 25 

Indicate whether his solution is correct or not, giving mathematical explanations 
of how he could proceed. 

Synthesis of the Productions of the Students from Buenos Aires (Argentina) 

Percentages are of a population of College students, very beginners in the 
"CBC" (Common Basic Cycle) of the University of Buenos Aires. 

A. Give a correct answer (via a counterexample). They explain why Juan 
made a mistake, a. s. o.: 30%. 

                                                 
1 We show the problem as it appeared to the students 
2  "Juan" in the Argentinian version 

A (30%)
B1 (18%) 
B2 (12%)
C (40%)



Posters 

 599

B. Say that Juan is right, but in a defective way (30%). They form two 
categories: 

B1) Those who say that Juan done well but "did not take into account 
that just one of the two (x or y) must be null, he just take into account xy 
as a number", and stop here. These students do not succeed to integrate 
this into a system, to reformulate it as a set of solutions, set that has to 
preserve all the information and in particular the denotation3. However, 
their writings are correct (60% of the 30%). 
B2) Those who say that Juan done well but in an incomplete way 
"because he did not know which (x or y) was 0" (40% of the 30%). 

C. Those who produce a contradictory information but do not appear to 
perceive it, since they let it their writings as they are (40%) 

Example of this kind of production 
"Juan done well, he made a substitution: as xy = 0  he could substitute it in the 
equation x2 + xy + y2 = 25 and leaves x2 + y2 = 25. 

Then, as xy = 0 , therefore x = 0  or y = 0 . In the first case we deduce that 
y2 = 25 therefore y = ±5, and in the second x2 = 25  therefore x = ±5. 

In general they conclude indicating the four points, but do not see the 
relationship with the first answer. 
Here it is interesting to note that the control may come: 

• From a reasoning on the conservation of all solutions 
• From consideration of the solution set, at least with a change of register 

(Duval, 1995) and "seeing" a circumference into x2 + y2 = 25! 

Further Steps 

As a second step we made interviews of students (in France and in Argentina) in 
order to better understand and more in details their various reasoning processes 
and the associated processes of control. The analysis of these interviews is a part 
of the ongoing study.  

References 
Drouhard, J-Ph. � Léonard, F. � Maurel, M. � Pécal, M. � Sackur, C. (1994): �Blind 

Calculators�, �Denotation� of Algebra Symbolic Expressions, and �Write False� 
Interviews. In: D. Kirshner (ed.), Proceedings of the Sixteenth Annual Meeting, North 
American Chapter of the International Group for the Psychology of Mathematics 
Education. Louisiana State University, Baton Rouge, LA. 

                                                 
3  Drouhard et al., 1994 
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SPACE IMAGINATION ON THE CUBE 

Jaroslav Perný 
Technical University, Faculty of Education, Liberec, Czech Republic 

Jaroslav.Perny@vslib.cz  

 
Keywords:  Space imagination, cube and motion, walking on a cube, 
understanding the direction ahead–to the back, type of cube model, tilting a die, 
regularity in tilting. 

Abstract: The poster presents some results of the space imagination research in 
the environment �cube and motion� carried out on 8-to-14-year old students. 

The following two types of tasks were used: �Walking on a cube� and 
�Tilting a die�. Some phenomena are important for the solving strategy in both 
types of tasks. These are for example the use of movement and difficulties 
in understanding the direction ahead-to the back. Other phenomena are 
important only in one of the above mentioned tasks: The type of imagined cube 
model plays a role in the first task, regularity in tilting in the second one. By 
using these exercises a difference between boys� and girls� space imagination 
and between younger and older students� space imagination was investigated. 
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GENERATING KNOWLEDGE AND MEANING 
TO TEACH MATHEMATICS1 

Vinício de Macedo Santos 
Sao Paulo State University (UNESP), Brazil 

visantos@uol.com.br  
 
Keywords: Professional knowledge; Pré-service/In-service teacher education; 
learning dificults in mathematics; situated knowledge 

Abstract: This work is inscribed in the scope of the investigations on the 
teaching and learning of concrete mathematical notions and on the idea of 
situated knowledge as sources for the generation of pedagogical content 
knowledge by the teacher. It refers to a research2 that has been conducted by 
university professors, teachers and students of elementary school teachers� 
training courses in secondary level and aims at: 1) identifying and analyzing the 
difficulties to learn mathematics presented by students of elementary school; 
2) planning and developing activities based on the reflections about the 
difficulties found and their implications for qualifying teachers; 3) promoting an 
articulation between theory and practice based on the social interaction among 
the subjects involved. The results of the research have to do with the type of 
professional knowledge produced; with the relationship between theory and 
practice in the qualification of teachers and with the reduction of the high levels 
of difficulty in mathematics learning. The investigative action has made it 
possible to achieve the following results: 1) the development of professional 
knowledge of teachers and future teachers in three relevant domains: concepts 
related to mathematical contents, problem-solving processes, inter-relationship 
among concepts, history of concepts ... (mathematical knowledge); knowledge 
on teaching procedures, planning of situations to approach 
concepts...(pedagogical knowledge); how students learn and think about specific 
mathematical content, what difficulties they present, what mistakes they 
make...(knowledge of the learners� cognition in mathematics); 2) the conduction 
of an proposal for initial and continuing education; 3) the improvement of 
learning in mathematics. 

                                                 
1 Work deriving from project Mathematical education and the  necessary qualification for 
investigators in Mathematical Education, developed at the Department of Mathematics 
Didactics,University of Seville. Financial support Sao Paulo State Agency for Reserch 
Support(FAPESP)since 09/2000 up to 06/2001. 
2 Improvement of teachers’ qualification in elementary school teachers’ training courses 
(secondary school): the difficulties in learning mathematics by students in the 1st to the 4th 
grades as a reference for reflection. UNESP/Brazil. Supported by FAPESP since 1998. 
Researchers in charge: Leny Rodrigues M. Teixeira and Vinicio de M. Santos. 
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STUDY OF ANTHROPO-DIDACTIC FUNCTIONS AND 
COGNITIVE EFFECTS OF INTERACTIONS 

IN THREE CONTRASTED TEACHING CONTEXTS 

Bernard Sarrazy 
Université Victor Segalen Bordeaux 2, France 

Bernard.Sarrazy@sc-educ.u-bordeaux2.fr  
 

Keywords: didactical interactions - theory of didactical situations - anthropo-
didactical approach 

Abstract: Which didactical functions are assumed by interactions between the 
teacher and pupils in mathematical teaching?  

The research concerned 7 classes in elementary school (142 pupils). Each 
teacher did two lessons on the resolution of TTT problems (Vergnaud). There 
had an interval of 10 days between the lessons, and they were preceded and 
followed by a pre-test and a post-test comprising 22 problems involving only 
two numbers (lower than 10). 

These interactions are in the present case approached as adaptations of 
modes of the teachers� action to two types of subservience: the first case, 
defined within anthropological limits, allows identification of a certain number 
of non-didactical conditions (the teachers� pedagogical conceptions, for 
instance); the second case, strictly didactical, permits the identification of the 
objective conditions of teaching. This two-way approach (anthropo-didactical) 
shows that the different forms of interaction can be explained as a result of the 
adequacy (or inadequacy) of these two types of subserviences; therefore, a 
unique interactive form gives evidence of very different didactical intentions and 
generates varying cognitive effects according to the different didactical contexts. 

 

THE ATOMIC ANALYSIS OF THE CONCEPTUAL FIELDS: 
SIMILARITY (A CASE STUDY) 

Ewa Swoboda 
Pedagogical University in Rzeszow, Poland 

eswoboda@univ.rzeszow.pl  
 

Keywords: development, understanding, similarity, solving scheme 

Abstract: Filip, a junior-secondary student, was subjected to a series of tests and 
observations. At the end of 1996 he has taken part in the experiment in which he 
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has been taught how to understand the statement: �figures have the same shape�. 
Three years later I have met him again. During the investigation I tied to 
describe actual level of his competence on the using an informal idea of 
similarity. The poster shows the results of the investigation. 

 

SEMIOTIC REPRESENTATIONS IN THE PROCESS  
OF CONSTRUCTION OF MATHEMATICAL CONCEPT 

Václav Sýkora 
Charles University, Prague, Czech Republic 

vaclav.sykora@pedf.cuni.cz  
 

Keywords: semiotic representations, construction of mathematical concept, 
articulation of semiotic representations, structuralist methods 

Abstract: Understanding the role of the semiotic system of representations will 
help us to comprehend how students construct mathematical concept. For 
example similarity in mathematic is one of those concepts formulated at a quite 
later age. Semiotic representations and their mutual transformation play a 
substantial role in creating the concept of similarity. A number of studies 
(Duval, Hitt) show that variability of semiotic representations during the genesis 
of the concept is an essential part of the accurate understanding of the concept. 
We try to identify the signs and sign representation used by Czech pupils of 
elementary school during different phases of the similarity concept. It shows the 
possibilities of mutual coherent articulation of these semiotic representations. 

 

THE ROLE OF IMAGE SCHEMATA  
IN THE DEVELOPMENT OF NEW COGNITIVE OBJECTS 

Andreas Ulovec 
Institut für Mathematik, Universität Wien, Austria 

Andreas.Ulovec@univie.ac.at 
 

Keywords: image schema, cognitive objects, natural numbers, preschool 

Abstract: Our current work bases on the theories of Sfard, Dubinsky and Malle 
regarding the development of new cognitive objects with respect to the 
development of natural numbers. These theories propose that new cognitive 
concepts are developed by actions with concrete material objects, which uncover 
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relations between these objects. By disregarding the concrete material objects, 
action schemata and relation schemata are developed, coordinated and 
condensed to build new cognitive objects. In these theories, the existence of 
image schemata, a schematic structure representing the most important features 
of an object, an action or a relation in a pictorial, very stylistic manner, is only 
suggested. Nevertheless image schemata are believed to be very important in the 
development of elementary mathematical objects. The purpose of the work is 
twofold: First, to clarify and exactly describe the concept of image schemata and 
its role in developing new objects, and second, to present a research study 
examining the existence of image schemata with the result that such an existence 
is very likely. 
 



Authors 

 605

AUTHORS 
Ainley, J. ........................................................................................................ 128
Assude, T. ....................................................................................................... 502
Back, J. ........................................................................................................... 347
Barešová, M. .................................................................................................. 593
Barton, B. ....................................................................................................... 128
Barwell, R. ..................................................................................................... 358
Bazzini, L. ...................................................................................................... 447
Bilousova, L. .................................................................................................. 257
Bishop, A. J. ................................................................................................... 368
Björkqvist, O. ................................................................................................. 501
Boero, P. ........................................................................................................ 447
Brandt, B. ....................................................................................................... 377
Byelyavtseva, T. ............................................................................................. 257
Carrillo, J. ..................................................................................................... 269
Cerulli, M. ...................................................................................................... 139
Chartier, G. .................................................................................................... 533
Chioca, C.-M. ................................................................................................ 262
Chumak, O. .................................................................................................... 258
Clarkson, P. C. ............................................................................................... 368
Climent, N. ..................................................................................................... 269
Cohors-Fresenborg, E. ............................................................................. 7, 457
Dreyfus, T. ..................................................................................................... 81
Drouhard, J.-P. .............................................................................................. 597
FitzSimons, G. E. ........................................................................................... 368
Furinghetti, F. ................................................................................................ 265
Gallopin, P. .................................................................................................... 152
Garuti, R. ....................................................................................................... 447
Green, C. ........................................................................................................ 593
Grevholm, B. .................................................................................................. 265
Hedrén, R. ...................................................................................................... 386
Hejný, M. .................................................................................................. 13, 14
Hershkovitz, S. ............................................................................................... 469
Hershkowitz, R. ......................................................................................... 81, 241
Holmquist, M. ................................................................................................ 193
Hošpesová, A. ................................................................................................ 163
Houdement, C. ............................................................................................... 292
Ilína, A. N. ...................................................................................................... 335
Ivanov, O. A. .................................................................................................. 335
Jirotková, D. .................................................................................................. 101
Jones, K. ................................................................................................. 125, 128
Kaldrimidou, M. ............................................................................................. 322
Kaslová, M. .................................................................................................... 594



European Research in Mathematics Education II 

 606

Kontozisis, D. ................................................................................................. 262
Krainer, K. ............................................................................................. 265, 281
Kratochvílová, J. ............................................................................................ 25
Krummheuer, G. ............................................................................................ 339
Kubínová, M. ................................................................................................. 595
Kuzniak, A. ..................................................................................................... 292
Lagrange, J.-B. ...................................................................................... 125, 170
Landa H., J. A. ............................................................................................... 183
Leder, D. ........................................................................................................ 259
Lemut, E. ........................................................................................................ 125
Lingefjärd, T. ................................................................................................. 193
Littler, G. H. ................................................................................................... 13
Lukács, J. ....................................................................................................... 509
Malara, N. ...................................................................................................... 35
Maracci, M. ................................................................................................... 478
Marchini, C. ................................................................................................... 47
Marshall, P. ................................................................................................... 304
Maschietto, M. ............................................................................................... 542
Maury, S. ........................................................................................................ 399
Meissner, H. ................................................................................................... 58
Mercier, A. ..................................................................................................... 420
Mogetta, C. .................................................................................................... 203
Molnár, J. ....................................................................................................... 596
Nesher, P. ....................................................................................................... 469
Novotná, J. ..................................................................................................... 469
Oleinik, T. ...................................................................................................... 335
Oliveira, H. .................................................................................................... 310
Olivero, F. ...................................................................................................... 215
Pange, J. ........................................................................................................ 262
Panizza, M. .................................................................................................... 597
Parzysz, B. ..................................................................................................... 531
Pedemonte, B. ................................................................................................ 70
Pellegrino,C. .................................................................................................. 260
Perný, J. ......................................................................................................... 600
Pfannkuch, M. ................................................................................................ 128
Ponte da, J. P. ................................................................................................ 310
Priolet, M. ...................................................................................................... 554
Rakov, S.A. ..................................................................................................... 261
Régnier, J.-C. ................................................................................................. 554
Robotti, E. ...................................................................................................... 564
Robutti, O. ...................................................................................................... 215
Rogers, L. ....................................................................................................... 577
Routitsky, A. ................................................................................................... 227



Authors 

 607

Rowland, T. .................................................................................................... 408
Sakonidis, X. .................................................................................................. 322
Santos, V. de M. ............................................................................................. 601
Sarrazy, B. ..................................................................................................... 602
Scheriani, C. .................................................................................................. 259
Schubauer-Leoni, M.-L. ................................................................................. 420
Schwank, I. ..................................................................................................... 489
Schwarz, B. ............................................................................................... 81, 241
Seah, W. T. ..................................................................................................... 368
Sensevy, G. ..................................................................................................... 420
Singer, M. ....................................................................................................... 92
Stehlíková, N. ................................................................................................. 101
Steinbring, H. ................................................................................................. 434
Stephan, S. ..................................................................................................... 399
Swoboda, E. ................................................................................................... 602
Sýkora, V. ....................................................................................................... 603
Thomas, M. .................................................................................................... 128
Tobin, P. ......................................................................................................... 227
Tompa, K. ....................................................................................................... 509
Törnroos, J. .................................................................................................... 518
Tsamir, P. ....................................................................................................... 112
Tzekaki, M. ..................................................................................................... 322
Ulovec, A. ....................................................................................................... 603
Ursini, S. ........................................................................................................ 183
Zuccheri, L. ..................................................................................... 152, 259, 260 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Univerzita Karlova v Praze, Pedagogická fakulta 
 
European Research  
in Mathematics Education II 
Proceedings 
Sborník příspěvků z konference CERME II, Mariánské Lázně, 24.-27.2.2001 
Editor: Jarmila Novotná 
 
Grafická úprava: Karel Kubín, Jarmila Novotná 
Tisk: Univerzita Karlova v Praze, Pedagogická fakulta 
Rok vydání: 2002 
Počet stran: 607 
 
 
ISBN 80-7290-075-7 
 
 


	European Research in Mathematics Education II
	Contents
	E. Cohors-Fresenborg: A young European society establishing a tradition for scientific conferences
	WORKING GROUP 1: Creating experience for structural thinking
	M. Hejný, G.H. Littler: Introduction to WG1. Building structures in mathematical knowledge
	M. Hejný: Creating mathematical structure
	J. Kratochvílová: Building the infinite arithmetic structure
	N. Malara: From fractions to rational numbers in their structure: Outlines of an innovative didactical strategy and the question of density
	C. Marchini: Instruments to detect variables in primary school
	H. Meissner: Procepts in geometry
	B. Pedemonte: Relation between argumentation and proof in mathematics: cognitive unity or break?
	B. Schwarz, R. Hershkowitz, T. Dreyfus: Emerging knowledge structures in and with algebra
	M. Singer: Thinking structures involved in mathematics learning
	N. Stehlíková, D. Jirotková: Building a finite algebraic structure
	P. Tsamir: Intuitive structures: The case of comparisons of infinite sets

	WORKING GROUP 2: Tools and technologies in mathematical didactics
	K. Jones, J.-B. Lagrange, E. Lemut: Introduction to WG2. Tools and technologies in mathematical didactics
	J. Ainley, B. Barton, K. Jones, M. Pfannkuch, M. Thomas: Is what you see what you get? Representations, metaphors and tools in mathematics didactics
	M. Cerulli: Introducing pupils to theoretical thinking: The case of algebra
	P. Gallopin, L. Zuccheri: A didactical experience carried out using, at the same time, two different tools: A conceptual one and a technological one
	A. Hošpesová: What brings use of spreadsheets in the classroom of 11- years olds?
	J.-B. Lagrange: A multi-dimensional of the use of IC technologies: The case of computer algebra systems
	J. A. Landa H., S. Ursini: Mediation of the spreadsheet: Composition of the argument
	T. Lingefjärd, M. Holmquist: Mathematics, technology and examination in distance education
	C. Mogetta: Struggling to prove motion: From dynamic perception to static theory
	F. Olivero, O. Robutti: An exploratory study of students’ measurement activity in a dynamic geometry environment
	A. Routitsky, P. Tobin: Graphic calculators: Use in mathematics in Victorian secondary schools
	B. Schwarz, R. Hershkowitz: Production and transformation of computer artifacts: Towards construction of meaning in mathematics

	POSTERS AND ABSTRACTS OF ADDITIONAL PAPERS LINKED WITH WG2
	L. Bilousova: Development of intellectual skills of the pupils with computer technologies
	T. Byelyavtseva: Student’s projects are a tool for the formation of investigating skills
	O. Chumak: Basic structurization and interactive algorithmization in mathematical education
	D. Leder, C. Scheriani, L. Zuccheri: The mathematics of the boys/girls: exchange of experience among boys/girls of the same age
	C. Pellegrino, L. Zuccheri: A video about mathematics
	S. A. Rakov: Mathematical packages as a tool of a constructive approach in mathematical education
	C.-M. Chioca: What kind of obstacles may be expected in the simultaneous learning of mathematics and computer software?
	D. Kontozisis, J. Pange: Using cooperative learning to teach primary mathematics to AD/HD children in a computer-based environment

	WORKING GROUP 3: Theory and practice of teaching from pre-service to in-service teacher education
	F. Furinghetti, B. Grevholm, K. Krainer: Introduction to WG3. Teacher education between theoretical issues and practical realization
	N. Climent, J. Carrillo: Developing and researching professional knowledge with primary teachers
	K. Krainer: Investigation into practice as a powerful means of promoting (student) teachers’ professional growth
	A. Kuzniak, C. Houdement: Pretty (good) didactical provocation as a tool for teacher’s training in geometry
	P. Marshall: A study of primary ITT students’ attitudes to mathematics
	J. P. da Ponte, H. Oliveira: Information technologies and the development of professional knowledge and identity in teacher education
	M. Tzekaki, M. Kaldrimidou, X. Sakonidis: Reflections of teachers’ practices in dealing with pupils’ mathematical errors

	ABSTRACTS OF ADDITIONAL PAPERS LINKED WITH WG2
	A. N. Ilína, O. A. Ivanov: Simulators in mathematics teacher education
	T. Oleinik: Development of critical thinking

	WORKING GROUP 4: Social interactions in mathematical learning situations
	G. Krummheuer: Introduction to WG4. The comparative analysis in interpretative classroom research in mathematics education
	J. Back: Some numbers are straight and some are round: Considering meaning and focus in classroom talk
	R. Barwell: Narrative orientation in the construction and solution of word problems by English additional language (EAL) learners of mathematics
	A. J. Bishop, P. C. Clarkson, G. E. FitzSimons, W. T. Seah: Studying values in mathematics education: Aspects of the VAMP project
	B. Brandt: Classroom interaction as multi-party-interaction: Methodological aspects of argumentation analysis
	R. Hedrén: Learning in mathematics during group discussions of some rich problems
	S. Maury, S. Stephan: Solving an algebra problem in a triadic situation in tenth grade
	T. Rowland: Pragmatic perspectives on mathematics discourse
	G. Sensevy, A. Mercier, M.-L. Schubauer-Leoni: A model for examining teachers’ didactic action in mathematics, the case of the game “RACE TO 20”
	H. Steinbring: Forms of interactive construction of new mathematical knowledge

	WORKING GROUP 5: Mathematical thinking and learning as cognitive processes
	L. Bazzini, P. Boero, R. Garuti: Algebraic expressions and the activation of senses
	E. Cohors-Fresenborg: Individual differences in the mental representation of term rewriting
	S. Hershkovitz, P. Nesher, J. Novotná: Cognitive factors affecting problem solving
	M. Maracci: Drawing in the problem solving process
	I. Schwank: Analysis of eye-movements during functional versus predicative problem solving

	WORKING GROUP 6: Assessment and curriculum
	O. Björkqvist: Introduction to WG6. Assessment and curriculum
	T. Assude: Elements on evolution of official curriculum in France. The case of inequalities in the "Collège" level
	J. Lukács, K. Tompa: About the reform of mathematics examination in Hungary
	J. Törnroos: Mathematics textbooks and students’ achievement in the 7th grade: What is the effect of using different textbooks

	WORKING GROUP 7: The role of metaphors and images in the learning and understanding of mathematics
	B. Parzysz: Introduction to WG7. Working together on metaphors and images
	G. Chartier: Using «GEOMETRICAL INTUITION» to learn linear algebra
	M. Maschietto: The transition from algebra to analysis: The use of metaphors in a graphic calculator environment
	J.-C. Régnier, M. Priolet: Teachers’ use of semiotic registers
	E. Robotti: Verbalization as a mediator between figural and theoretical aspects
	L. Rogers: From icons to symbols: Reflections on the historical development of the language of algebra

	POSTERS
	M. Barešová: Sample of pedagogical communication in mathematics lesson
	C. Green: The effects of type of support on children’s thinking when tackling mathematical investigations
	M. Kaslová: Theory and practice of teaching from pre-service and inservice teacher education - Phenomena of in-service practice training
	M. Kubínová: Improving teachers’ beliefs about mathematical education
	J. Molnár: Euler’s theorem
	M. Panizza, J.-P. Droughard: Reasoning Process and Process of Control in Algebra
	J. Perný: Space imagination on the cube
	V. de M. Santos: Generating knowledge and meaning to teach mathematics
	B. Sarrazy: Study of anthropo-didactic functions and cognitive effects of interactions in three contrasted teaching contexts
	E. Swoboda: The atomic analysis of the conceptual fields: Similarity (A case study)
	V. Sýkora: Semiotic representations in the process of construction of mathematical concept
	A. Ulovec: The role of image schemata in the development of new cognitive objects


	AUTHORS

