O. Behar, A. Khellaf, and K. Mohammedi, A review of studies on central receiver solar thermal 2 power plants, Renewable and Sustainable Energy Reviews, vol.23, 2013.

J. Blanco, S. Malato, P. Fernández-ibañez, D. Alarcón, W. Gernjak et al., Review 5 of feasible solar energy applications to water processes, Renewable and Sustainable 6 Energy Reviews, vol.13, pp.1437-1445, 2009.

J. M. Gordon and K. C. Ng, High-efficiency solar cooling, Solar Energy, vol.68, pp.23-31, 2000.

T. Nakamura, Hydrogen production from water utilizing solar heat at high temperatures, 10 Solar Energy, vol.19, pp.467-475, 1977.

D. Barlev, R. Vidu, and P. Stroeve, Innovation in concentrated solar power, Solar Energy 12 Materials and Solar Cells, vol.95, pp.2703-2725, 2011.

C. K. Ho and B. D. Iverson, Review of high-temperature central receiver designs for 14 concentrating solar power, Renewable and Sustainable Energy Reviews, vol.29, pp.835-850, 2014.

A. L. Avila-marin, Volumetric receivers in solar thermal power plants with central receiver 17 system technology: a review, Solar Energy, vol.85, pp.891-910, 2011.

A. Kribus, Y. Gray, M. Grijnevich, G. Mittelman, S. Mey-cloutier et al., The promise and 20 challenge of solar volumetric absorbers, Solar Energy, vol.110, pp.463-481, 2014.

M. Romero, R. Buck, and J. E. Pacheco, An update on solar central receiver systems, projects, 23 and technologies, Journal of Solar Energy Engineering, vol.124, pp.98-108, 2002.

H. Fricker, Proposal for a novel type of solar gas receiver, Proceedings of the 26 International Seminar on Solar Thermal Heat Production, pp.38-40, 1983.

P. Heinrich, G. Keintzel, and C. Streuber, Technology Program Solar Air Receiver-2.5 MWt 29 System Test on Volumetric Air Receiver Technology, Proceedings of the 6th 30 International Symposium on Solar Thermal Concentrating Technologies, p.261, 1992.

T. Hellmuth, L. Matthews, J. Chavez, and C. Hale, Performance of a wire mesh solar volumetric 33 air receiver, Solar Engineering, pp.573-573, 1994.

R. Pitz, Evaluation of the CATREC II Receiver Test, vol.35, 1996.

T. Hellmuth and L. Matthews, Modeling and optimum design of a wire mesh solar volumetric 37 air receiver, Journal of Solar Energy Engineering, vol.119, pp.208-213, 1997.

F. Tellez, M. Romero, M. Marcos, and D. Of, SIREC-1" Wire Mesh Open Volumetric Solar 40 Receiver Prototype, Solar Engineering, pp.357-364, 2001.

J. M. Chavez and C. Chaza, Testing of a porous ceramic absorber for a volumetric air receiver, p.42

, Solar Energy Materials, vol.24, pp.172-181, 1991.

R. Pitz-paal, J. Morhenne, and M. Fiebig, A new concept of a selective solar receiver for high 44 temperature applications, Solar Energy Materials, vol.24, issue.91, pp.90070-90072, 1991.

F. Reale, G. Ruocco, A. Carotenuto, U. Nocera, and F. Bonomo, Final design of a multi cavity 1 volumetric solar receiver, Solar Energy Materials, vol.24, issue.91, p.90069, 1991.

B. Hoffschmidt, The development strategy of the HiTREC volumetric receiver technology 4 up scaling from 200 kW h via 3 MW h up to 10 MWel, Proceedings of the 11th SolarPACES 5 International Symposium on Concentrated Solar Power and Chemical Energy, 6 Technologies, 2002.

B. Hoffschmidt, F. M. Téllez, A. Valverde, J. Fernández, and V. Fernández, Performance 8 evaluation of the 200-kWth HiTRec-II open volumetric air receiver, Journal of Solar Energy 9 Engineering, vol.125, pp.87-94, 2003.

B. Hoffschmidt, G. Dibowski, M. Beuter, V. Fernandez, F. Téllez et al., Test results of a 11 3 MW solar open volumetric receiver, 2003.

F. Tellez, M. Romero, P. Heller, A. Valverde, G. Dibowski et al., Thermal performance 13 of SolAir 3000 kWth ceramic volumetric solar receiver, International Symposium, vol.14, p.12

, Instituo de 15 Investigaciones Electricas, 2004.

Z. Wu, C. Caliot, G. Flamant, and Z. Wang, Coupled radiation and flow modeling in ceramic 17 foam volumetric solar air receivers, Solar Energy, vol.85, pp.2374-2385, 2011.

S. Mey-cloutier, C. Caliot, A. Kribus, Y. Gray, and G. Flamant, Experimental study of ceramic 20 foams used as high temperature volumetric solar absorber, Solar Energy, vol.136, pp.226-247, 2016.

F. Zaversky, L. Aldaz, M. Sánchez, A. L. Ávila-marín, M. I. Roldán et al.,

W. Füssel, J. Beckert, and . Adler, Numerical and experimental evaluation and optimization of 24 ceramic foam as solar absorber-Single-layer vs multi-layer configurations, Applied Energy. 25, vol.210, pp.351-375, 2018.

F. Wang, Y. Shuai, H. Tan, and C. Yu, Thermal performance analysis of porous media receiver 27 with concentrated solar irradiation, International Journal of Heat and Mass Transfer, vol.62, pp.247-254, 2013.

M. Alaa, M. Rady, M. Attia, and E. Ewais, Optical study of using ceramic foams for volumetric 30 solar receivers, Renewable and Sustainable Energy Conference (IRSEC), pp.284-289, 2016.

R. Capuano, T. Fend, H. Stadler, B. Hoffschmidt, and R. Pitz-paal, Optimized volumetric solar 33 receiver: Thermal performance prediction and experimental validation, vol.114, pp.556-566, 2017.

H. Lee, J. Kim, S. Lee, and Y. Kang, Consistent heat transfer analysis for performance 36 evaluation of multichannel solar absorbers, Solar Energy, vol.86, pp.1576-1585, 2012.

T. Fend, P. Schwarzbözl, O. Smirnova, D. Schöllgen, and C. Jakob, Numerical investigation of 39 flow and heat transfer in a volumetric solar receiver, Renewable Energy, vol.60, p.661, 2013.

M. Sanchez, M. Marcos, M. Romero, and C. Estrada, Design Parameters Influence on Flux 42 Distribution Through Prismatic Channels of Volumetric Absorbers, EuroSun2004, 43 Conference Proceedings, pp.953-962, 2004.

M. Cagnoli, L. Savoldi, R. Zanino, and F. Zaversky, Coupled optical and CFD parametric analysis 45 of an open volumetric air receiver of honeycomb type for central tower CSP plants, Solar 46 Energy, vol.155, pp.523-536, 2017.

B. Yilbas and S. Shuja, A Solar Volumetric Receiver: Influence of Absorbing Cells Configuration 1 on Device Thermal Performance, International Journal of Thermophysics, vol.38, issue.2, 2017.

O. Smirnova, T. Fend, R. Capuano, G. Feckler, P. Schwarzbözl et al., Determination of 4 critical thermal loads in ceramic high concentration solar receivers, Solar Energy Materials 5 and Solar Cells, vol.176, pp.196-203, 2018.

R. Capuano, T. Fend, P. Schwarzbözl, O. Smirnova, H. Stadler et al., 7 Numerical models of advanced ceramic absorbers for volumetric solar receivers, 8 Renewable and Sustainable Energy Reviews, vol.58, pp.656-665, 2016.

F. Gomez-garcia, J. Gonzalez-aguilar, S. Tamayo-pacheco, G. Olalde, and M. Romero, 11 Numerical analysis of radiation propagation in a multi-layer volumetric solar absorber 12 composed of a stack of square grids, Solar Energy, vol.121, pp.94-102, 2015.

A. Kasaeian, H. Barghamadi, and F. Pourfayaz, Performance comparison between the geometry 15 models of multi-channel absorbers in solar volumetric receivers, Renewable Energy, vol.105, pp.1-12, 2017.

G. Levêque, R. Bader, W. Lipi?ski, and S. Haussener, High-flux optical systems for solar 18 thermochemistry, Solar Energy, 2017.

M. J. Blanco, J. M. Amieva, and A. Mancillas, The Tonatiuh Software Development Project: An 20 open source approach to the simulation of solar concentrating systems, ASME 2005 21 International Mechanical Engineering Congress and Exposition, pp.157-164, 2005.

M. Blanco, A. Mutuberria, and D. Martinez, Experimental validation of Tonatiuh using the 24

, Plataforma Solar de Almería secondary concentrator test campaign data, 16th Annual 25 SolarPACES Symposium, 2010.

A. Mutuberria, A. Monreal, A. Albert, and M. Blanco, Results of the empirical validation of 27 Tonatiuh at Mini-Pegase CNRS-PROMES facility, Proceedings of the 17th SolarPACES 28 Int. Symposium on Concentrating Solar Power and Chemical Energy, 2011.

R. H. Pletcher, J. C. Tannehill, and D. Anderson, Computational fluid mechanics and heat 30 transfer, 2012.

S. Patankar, Numerical heat transfer and fluid flow, 2013.

T. Fend, O. Reutter, J. Bauer, and B. Hoffschmidt, Two novel high-porosity materials as 34 volumetric receivers for concentrated solar radiation, Solar Energy Materials and Solar 35 Cells, vol.84, pp.291-304, 2004.

C. C. Agrafiotis, I. Mavroidis, A. G. Konstandopoulos, B. Hoffschmidt, P. Stobbe et al., , p.37

V. Fernandez-quero, Evaluation of porous silicon carbide monolithic honeycombs as 38 volumetric receivers/collectors of concentrated solar radiation, Solar Energy Materials and 39 Solar Cells, vol.91, pp.474-488, 2007.

D. Sciti, L. Silvestroni, L. Mercatelli, J. Sans, and E. Sani, Suitability of ultra-refractory diboride 41 ceramics as absorbers for solar energy applications, Solar Energy Materials and Solar Cells, vol.42, pp.8-16, 2013.

D. Sciti, L. Silvestroni, J. Sans, L. Mercatelli, M. Meucci et al., Tantalum diboride-based 44 ceramics for bulk solar absorbers, Solar Energy Materials and Solar Cells, vol.130, pp.208-253, 2014.

E. Sani, L. Mercatelli, J. Sans, and D. Sciti, Optical properties of black and white ZrO2 for solar 1 receiver applications, Solar Energy Materials and Solar Cells, vol.140, issue.2, pp.477-482, 2015.

Y. Kim, A. Zangvil, J. S. Goela, and R. L. Taylor, Microstructure comparison of transparent and 4 opaque CVD SiC, Journal of the American Ceramic Society, vol.78, pp.1571-1579, 1995.

B. Kim, K. Hiraga, K. Morita, H. Yoshida, T. Miyazaki et al., Microstructure and 7 optical properties of transparent alumina, Acta Materialia, vol.57, pp.1319-1326, 2009.

R. Munro, Material properties of a sintered ?-SiC, Journal of Physical and Chemical 9 Reference Data, vol.26, pp.1195-1203, 1997.

P. Auerkari, Mechanical and physical properties of engineering alumina ceramics, p.11

T. K. Papathanasiou, F. Corso, and A. Piccolroaz, Thermo-mechanical response FEM 13 simulation of ceramic refractories undergoing severe temperature variations, Journal of 14 the European Ceramic Society, vol.36, pp.2329-2340, 2016.

W. Sutherland and L. , The London, Edinburgh, and 17 Dublin Philosophical Magazine and, Journal of Science, vol.36, pp.507-531, 1893.

G. Barreto, P. Canhoto, and M. Collares-pereira, Three-dimensional modelling and analysis of 20 solar radiation absorption in porous volumetric receivers, Applied Energy, vol.215, p.614, 2018.

X. Chen, F. Wang, X. Yan, Z. Cheng, Y. Han et al., Thermal and chemical analysis of 23 methane dry reforming in a volumetric reactor under highly concentrated solar radiation, 24 Solar Energy, vol.162, pp.187-195, 2018.

M. Nakakura, K. Matsubara, S. Bellan, and T. Kodama, Efficiency and heat loss analysis of 26 honeycomb receiver varying air mass flow rate and beam width, International Journal of 27 Heat and Mass Transfer, vol.137, pp.1027-1040, 2019.

M. Nakakura, S. Bellan, K. Matsubara, and T. Kodama, Conjugate radiation-convection-30 conduction simulation of volumetric solar receivers with cut-back inlets, Solar Energy, vol.170, pp.606-617, 2018.

C. K. Ho, A. R. Mahoney, A. Ambrosini, M. Bencomo, A. Hall et al., Characterization 33 of Pyromark 2500 paint for high-temperature solar receivers, Journal of Solar Energy 34 Engineering, vol.136, p.14502, 2014.

M. H. Gray, R. Tirawat, K. A. Kessinger, and P. F. Ndione, High temperature performance of high-36 efficiency, multi-layer solar selective coatings for tower applications, Energy Procedia. 69, vol.37, pp.398-404, 2015.