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Abstract

This paper investigates the construction of an estimator for switching linear systems with unknown inputs (UI) and Gaussian noises, in
the case of unknown switching sequence. First, a maximum-likelihood switching sequence estimator is constructed. Then, both state and
UI estimators are proposed. An example illustrates the theoretical contributions.
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1 Introduction

A switching system is a dynamical system with both contin-
uous and discrete states. Several approaches exist in order to
estimate the discrete-state of such a system. If the switching
sequence is known, different observers have been proposed
for systems without [4] or with Unknown Inputs (UI) [6].
If the switching sequence is unknown but its dynamic fol-
lows a known pattern (as a particular Markov model), then
several estimators have also been proposed [7][5]. With-
out any assumption made on the discrete state dynamic,
[1] and [2] have proposed state estimation for discrete-
time linear switching systems affected by bounded noises.
For continuous-time systems with bounded perturbations, a
sliding-mode based observer is giving in [9]; in particular,
this observer also deals with UI. In [3], a linear switching
system affected by Gaussian noises in both state and mea-
surement equations has been considered, but without the
presence of UI.

The present paper focuses on discrete-time linear switching
systems affected by both Gaussian noises and UI in both
state and measurement equations. Its main contribution is
to provide both state and UI estimators for such systems.
It is the first paper dealing with linear switching systems
affected by UI in the case in which the matrix associated
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with the UI is not assumed to be constant. One of the main
difficulty is to decouple the UI from the state estimation
error despite of that fact. Another difficulty is to estimate
the UI in such a case. The paper is organized as follows.
In section 2, the problem is stated. In section 3, a method
used for a maximum likelihood estimation of the switching
parameter is presented. In section 4, a practical algorithm for
estimating both the continuous state and the UI and based
on the switching parameter estimation is given. Finally, in
section 5, an example illustrating the approach is given.

The following notations are used in the paper. For any matrix
A ∈Mn,p(R), AT denotes its transpose, and A† its pseudo-
inverse. For any square matrix A ∈Mn,n(R), tr(A) denotes
its trace, det(A) denotes its determinant, λ (A) denotes the
vector of its eigenvalues, and λmin(A) (resp. λmax(A)) de-
notes its minimum (resp. maximum) singular value. For any
vector v, ||v|| denotes its euclidean norm. For any symmet-
ric positive matrix M, let set the norm ||.||M such that, for
any vector v of appropriate dimension, ||v||M =

√
vT Mv. If

x is a stochastic vector, its expectancy is denoted by E[x].
For any vector sequence (vk)k=1,... and any integers α ≥ 0

and ω ≥ 0, let set vk−α:k+ω =
[
vT

k−α
vT

k−α+1 ... vT
k+ω

]T
.

2 Problem Statement

Let consider the following switching system:{
xk+1 = Aλk

xk +Dλk
dk +Fλk

wk

yk =Cλk
xk +Eλk

dk + vk
(1)
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where xk ∈Rnx is the continuous state, yk ∈Rny is the output,
dk ∈Rnd is the Unknown Input (UI), λk ∈Λ := {1,2, ...,nΛ}
is the unknown switching parameter (also called discrete
mode or discrete state). Matrices Aλk

, Dλk
, Fλk

, Cλk
and Eλk

are switching matrices with appropriate dimensions. The
perturbations wk and vk are independent Gaussian noises
with zero mean and covariance matrices denoted by Wλk
and Vλk

respectively. The unknown initial state follows a
Gaussian distribution (independent of wk and vk) with known
mean x̂0 and known covariance matrix P0. Let assume that
for any λ ∈Λ, the matrix Vλ is non singular, i.e. det(Vλ ) 6= 0
(it is a widely used assumption for Kalman filtering).

In the whole paper, let us consider two integers α ≥ 0
and ω ≥ 0, used as time indexes: for any time step k ≥
α , the measures obtained between time steps k− α and
k+ω are used for the estimation of the unknown switching
parameterλk. For any k ≥ α , let λk−α:k+ω be the switching
sequence from time step k−α to time step k+ω . Then, the
observation sequence yk−α:k+ω gives:

yk−α:k+ω =Aλk−α:k+ω
xk−α +Dλk−α:k+ω

dk−α:k+ω

+Fλk−α:k+ω
wk−α:k+ω + vk−α:k+ω (2)

with matrices Aλk−α:k+ω
, Dλk−α:k+ω

and Fλk−α:k+ω
given in

(3). The following assumption is needed for removing the
UI from equation (2).

Assumption 1 For any switching sequence π ∈ Λα+ω+1,
the rank rd(π) of Dπ satisfies rd(π)< (α +ω +1)ny.

For all π ∈Λα+ω+1, there exists a full row rank matrix Hπ ∈
M(α+ω+1)ny−rd ,(α+ω+1)ny(R) (with rank equal to rh(π) =

(α +ω +1)ny− rd(π)) such that HπDπ = 0. Assumption 1
ensures that rh(π) > 0. Then, if π = λk−α:k+ω , when left-
multiplying equation (2) by Hλk−α:k+ω

, it comes:

Hλk−α:k+ω
yk−α:k+ω = Hλk−α:k+ω

Aλk−α:k+ω
xk−α

+Hλk−α:k+ω
Fλk−α:k+ω

wk−α:k+ω +Hλk−α:k+ω
vk−α:k+ω

equation in which the unknown input does not appear any-
more.

3 Maximum-likelihood switching sequence estimation

This section deals with the switching sequence estimation
problem. Let us start by introducing a definition of observ-
ability adapted to the considered switching system.

Definition 1 π ∈ Λα+ω+1 and π ′ ∈ Λα+ω+1 are saying to
be jointly observable if:

rank
([

Hπ ′Aπ ′ Hπ ′Aπ Hπ ′Dπ

])
= 2nx +(α +ω +1)nd

(8)

Definition 1 does not depend on the matrix Hπ ′ chosen under
Assumption 1, as this matrix is uniquely defined modulo a
left-multiplication by a non singular square matrix.

Let us consider a time step k ≥ α , and let consider the
following maximization problem in the presence of a UI:

λ̂k−α:k+ω ∈ argmaxπ∈Λα+ω+1

[
maxx∈Rnx l(x,π|Hπ yk−α:k+ω)

]
(9)

where l(x,π|Hπ yk−α:k+ω) = p(Hπ yk−α:k+ω |x,π) is the like-
lihood function to maximize.

Due to the left-multiplication of yk−α:k+ω by Hπ in (9),
if π = λk−α:k+ω is the true switching sequence, then the
likelihood l(x,λk−α:k+ω |Hλk−α:k+ω

yk−α:k+ω) is not a func-
tion of the unknown input (see equation (8)). Moreover,
the vector Hπ yk−α:k+ω is normally distributed with mean
HπAλk−α:k+ω

xk−α and covariance matrix Hπ Σ̃λk−α:k+ω
HT

π

(where for any π ′ ∈ Λα+ω+1, Σ̃π ′ = Fπ ′Wπ ′F
T
π ′ +Vπ ′ ).

Then, following the same line as in [3], the maximum like-
lihood estimate can be obtained as:

λ̂k−α:k+ω ∈ argminπ∈Λα+ω+1

[
log |Σπ |+δ (Hπ yk−α:k+ω ,π)

]
(10)

where Σπ = Hπ Σ̃π HT
π , and for any vector v ∈ Rrh(π),

δ (v,π) = ||(I−∆π)v||2
Σ
−1
π

, with ∆π the projection matrix on
the linear span of HπAπ .

Given that the true continuous state is xk−ω at time step k−ω

and the true switching sequence is λk−α:k+ω between time
steps k−α and k+ω , the probability that λk−α:k+ω is more
likely to be chosen by (10) than a discrete sequence π ′ ∈
Λα+ω+1 is denoted by P(λk−α:k+ω � π ′|xk−α ,λk−α:k+ω).
The following theorem gives a lower bound of such a prob-
ability.

Theorem 1 Let assumption 1 hold. Let be k ≥ α . Let π ′ ∈
Λα+ω+1 be a switching-sequence. Then, the following in-
equality holds:

P(λk−α:k+ω � π ′|xk−α ,λk−α:k+ω)≥ γr(
k(λk−α:k+ω ,π ′)
h(λk−α:k+ω ,π ′)×

(||xk−α ||2 + ||dk−α:k+ω ||2)+ 1
h(λk−α:k+ω ,π ′) log |Σ

π′ |
|Σλk−α:k+ω

| )

(11)
where γr(.) is the cumulative distribution function of a χ2

random variable with r = (α +ω +1)ny degrees of freedom.
Moreover for any switching sequences π,π ′ ∈ Λα+ω+1, the
coefficients h(π,π ′) and k(π,π ′) are given by equations (4),
where Σ̃π =FπWπF T

π +Vπ . Besides, if π and π ′ are jointly
observable, k(π,π ′)> 0.

PROOF. In order to simplify the notations, λk−ω:k+ω is de-
noted by π in the following proof, but the reader has to keep
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Aλk−α+ω
=


Cλk−α

Cλk−α+1
Aλk−α

...

Cλk+ω
Aλk+ω−1

...Aλk−α+1
Aλk−α

 ,Dλk−α:k+ω
=


Eλk−α

0ny,nd ... 0ny,nd

Cλk−α+1
Dλk−α

Eλk−α+1
... 0ny,nd

... ... ... ...

Cλk+ω
Aλk+ω−1

...Aλk−α+1
Dλk−α

Cλk+ω
Aλk+ω−1

...Aλk−α+2
Dλk−α+1

... Eλk+ω

 ,

Fλk−α:k+ω
=


0ny,nv 0ny,nv ... 0ny,nv 0ny,nv

Cλk−α+1
Fλk−α

0ny,nv ... 0ny,nv 0ny,nv

... ... ... ... ...

Cλk+ω
Aλk+ω−1

...Aλk−α+1
Fλk−α

Cλk+ω
Aλk+ω−1

...Aλk−α+2
Fλk−α+1

... Cλk+ω
Fλk+ω−1

0ny,nv


(3)

k(π,π ′) = 1
2 λmin{

[
Aπ Dπ

]T
HT

π ′(I−∆π ′)
T Σ
−1
π ′ (I−∆π ′)Hπ ′

[
Aπ Dπ

]
}

h(π,π ′) = λmax{HT
π (I−∆π )

T Σ−1
π (I−∆π )Hπ +HT

π ′(I−∆π ′)
T Σ
−1
π ′ (I−∆π ′)Hπ ′}λmax{Σ̃π}

(4)

P(πk−α:k+ω � π ′|xk−α ,πk−α:k+ω )≥ P
(

zT Σ̃−1z≤ k(π,π ′)
h(π,π ′) (||xk−α ||2 + ||dk−α:k+ω ||2)+ 1

h(π,π ′) log |Σπ′ |
|Σπ |

)
, (5)

Φλk−α:k−1
=
[
Aλk−1

...Aλk−α
Aλk−1

...Aλk−α+1
Dk−α ... Aλk−1

Dλk−2
Dλk−1

]
,Ψλk−α:k−1

=
[
Aλk−1

...Aλk−α+1
Fk−α ... Aλk−1

Fλk−2
Fλk−1

]
(6)

[(Aλk
−A

λ̂k
)−Kk+1(Cλk+1

Aλk
−C

λ̂k+1
A

λ̂k
)]xk = [(Aλk

−A
λ̂k
)−Kk+1(Cλk+1

Aλk
−C

λ̂k+1
A

λ̂k
)]Φλk−α:k−1

 xk−α

dk−α:k−1


+[(Aλk

−A
λ̂k
)−Kk+1(Cλk+1

Aλk
−C

λ̂k+1
A

λ̂k
)]Ψλk−α:k−1

wk−α:k−1

(7)

in mind that it is the actual discrete sequence. The follow-
ing steps are similar to [3] in the structure, however, the
technical difficulties raised by the presence of the UI makes
the proof very different. Using equation (10), the probabil-
ity P(π � π ′|xk−α ,λk−α:k+ω) is equal to the probability that
the following inequality holds:

log |Σπ |+δ (Hπ yk−α:k+ω ,π)< log |Σπ ′ |+δ (Hπ ′yk−α:k+ω ,π
′)

(12)
Let set z = Fπ wk−α:k+ω + vk−α:k+ω . Then z is normally
distributed with zero mean and covariance matrix equal to
Σ̃π . On one hand, we have:

δ (Hπ ′yk−α:k+ω ,π
′)= δ (Hπ ′Aπ xk−α +Hπ ′Dπ dk−α:k+ω +Hπ ′z,π

′).
(13)

Besides:

δ (Hπ ′Aπ xk−α +Hπ ′Dπ dk−α:k+ω ,π
′)

= δ (Hπ ′Aπ xk−α +Hπ ′Dπ dk−α:k+ω +Hπ ′z−Hπ ′z,π ′)

≤ 2δ (Hπ ′yk−α:k+ω ,π
′)+2δ (Hπ ′z,π ′),

(14)
the last inequality coming from one of the property of the
function δ (.,π): δ (u− v,π)≤ δ (u,π)+δ (v,π). Thus:

δ (Hπ ′yk−α:k+ω ,π
′)

≥ 1
2 δ (Hπ ′Aπ xk−α +Hπ ′Dπ dk−α:k+ω ,π

′)−δ (Hπ ′z,π ′)

≥ k(π,π ′)(||xk−α ||2 + ||dk−α:k+ω ||2)−δ (Hπ ′z,π ′),
(15)

where k(π,π ′) is given by equation (4). Note, that un-
der the joint observability of π and π ′, it comes that
(I−∆π ′)Hπ ′

[
Aπ Dπ

]
is full column rank. Then, it follows

that k(π,π ′)> 0. On the other hand, we have:

δ (Hπ yk−α:k+ω ,π) = δ (HπAπ xk−α +HπDπ dk−α:k+ω +Hπ z,π)
= δ (Hπ z,π) (16)

as HπDπ dk−α:k+ω = 0, and (I − ∆π)HπAπ = 0. Then it
comes that:

δ (Hπ z,π)+δ (Hπ ′z,π ′) = ||(I−∆π)Hπ z||2
Σ
−1
π

+||(I−∆π ′)Hπ ′z||2
Σ
−1
π′
≤ h(π,π ′)||z||2

Σ̃
−1
π

(17)

where Σ̃π = FπWπF T
π +Vπ and h(π,π ′) is given by equa-

tion (4) Finally, by combining (15), (16) and (17) it comes
that

δ (Hπ yk−α:k+ω ,π)−δ (Hπ ′yk−α:k+ω ,π
′)

≤ h(π,π ′)||z||2
Σ̃
−1
π

− k(π,π ′)(||xk−α ||2 + ||dk−α:k+ω ||2)
(18)

and thus a sufficient condition for equation (12) to hold is:

h(π,π ′)||z||2
Σ̃
−1
π

−k(π,π ′)(||xk−α ||2+||dk−α:k+ω ||2)≤ log
|Σπ ′ |
|Σπ |

(19)
which leads to equation (5), and recalling that z is nor-
mally distributed with zero mean and covariance matrix
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Σ̃π , it comes that zT Σ̃−1
π z is a χ2 random variable with

dim(z) = (α +ω +1)ny degrees of freedom.

4 A maximum-likelihood estimator

The aim of this section is to construct a linear estimator based
on the maximum likelihood switching sequence estimation
developed in section 3. In order to do it, it is necessary (and
also sufficient as it will be seen in Theorem 2) to decouple
the UI from the state estimation error (otherwise the behavior
of this error would depend on the UI behavior), whether the
estimated switching parameter is the true one or not.

Assumption 2 The following rank condition holds:

rank

([
C E

DI 0

])
= rank

([
C E

])
, (20)

where I =
[
InΛnd ... Inλ nd

]
(nΛ times the matrix InΛnd ), D =[

D1 ... DnΛ

]
, C =

[
C1D ... CnΛ

D
]

and E =
[
E1 ... EnΛ

]
.

Note that this assumption differs from Assumption 1, as the
former one is used in order to make the information of the
output not affected by the UI, and thus to estimate at best the
switching sequence, whereas assumption 2 is used in order
to decouple the UI from the state estimation error for any
choice of λ̂k in Λ. Under assumption 2, there exists a matrix
K such that:

K
[
C E

]
=
[
DI 0

]
, (21)

with K given by:
K = G+XH, (22)

with G =
[
DI 0

][
C E

]†
and H = Iny,ny −

[
C E

][
C E

]†
,

and X ∈Mnx,ny(R) is any matrix (this means that for any
matrix X of appropriate dimensions, equation (21) holds
with K given by (22)). In fact, X is chosen differently at each
time step k ≥ α . Thus, from now, it will be denoted by Xk
and K will be denoted by Kk = G+XkH. It is worth noting
that, under Assumption 2, and according to what precedes
the following equation holds for any λ ,λ ′ ∈ Λ, and any
choice of Xk:

KkDλ ,λ ′ =
[
Dλ 0

]
, (23)

where Dλ ,λ ′ =
[
Cλ ′Dλ Eλ ′

]
. The following assumption is

needed for the UI estimation.

Assumption 3 The following rank condition holds:

rank

 C E

In2
Λ
,nd

0

= rank
([

C E
])

(24)

where In2
Λ
,nd

=
[
Ind ... Ind

]
(n2

Λ
times the matrix Ind ).

Following the same lines as previously, there exists a matrix
Lk such that for any λ ,λ ′ ∈Λ: Lk

[
Cλ ′Dλ Eλ ′

]
=
[
Ind 0nd

]
,

where Lk = J +ZkH with J =
[
Ind 0nd

][
Cλ ′Dλ Eλ ′

]†
, and

Zk is any matrix (Zk will be chosen later). Saying that, the
proposed state and UI estimator is the following for any
k ≥ α:

λ̂k−α:k+ω = argminπ∈Λα+ω

[
log |Σπ |+δ (Hπ yk−α:k+ω ,π)

]
Xk = [(Inx −GC

λ̂k
)P̃kCT

λ̂k

+GV
λ̂k
]HT [HC

λ̂k
P̃kCT

λ̂k
HT +HV

λ̂k
HT ]−1

Zk = J(Cλk
P̃kCT

λk
)HT [(H(Cλk

P̃kCT
λk
)HT ]−1

Kk = G+XkH, Lk = J+ZkH
x̂k = x̃k +Kk(yk−C

λ̂k
x̃k), d̂k−1 = Lk(yk−Cλk

x̃k)

Pk = (Inx −KkCλ̂k
)P̃k(Inx −KkCλ̂k

)T +KkVλ̂k
KT

k

x̃k+1 = A
λ̂k

x̂k, P̃k+1 = γ2A
λ̂k

PkAT
λ̂k
+F

λ̂k
W

λ̂k
FT

λ̂k

.

(25)

Remark 1 The global structure of algorithm (25) comes
from the structure of the Kalman filter in the presence of a
UI [8]. It is adapted using what precedes in order to take
into account the case of an unknown switching sequence.
Moreover, the case of the UI estimation is also added here.
The matrix Xk (resp. Zk) is constructed in order to minimize
the trace of the covariance matrix Pk (resp. Pdk = E[eT

dk
edk ]),

under the constraint of the unknown switching sequence.

In equations (25), γ is a scale factor chosen strictly greater
than 1. The aim of such a factor is to enforce a certain
convergence rate (more on this in the stability analysis given
in [3]).

Assumption 4 For any switching sequences π,π ′ ∈
Λα+ω+1, such that π[α + 1] 6= π ′[α + 1], the switching
sequences π and π ′ are assumed to be jointly observable.

Theorem 2 Let assumptions 1, 2, 3 and 4 hold. Then, equa-
tions (25) define both state and UI estimators for system (1)
with estimation errors ek = xk− x̂k and edk = Ldk− d̂k hav-
ing the following dynamics: ek+1 = (I−Kk+1C

λ̂k+1
)A

λ̂k
ek +

ξk and edk = −Lk+1C
λ̂k+1

A
λ̂k

ek + ζk, where ξk and ζk are
bounded in mean square, i.e. there exist positive constants ρξ

and ρζ such that for all k≥ 0, ||ξk||2 ≤ ρξ and ||ζk||2 ≤ ρζ .

PROOF. Due to space limitation, only the proof on the state
estimation error ek = xk − x̂k convergence is established,
the one of the UI estimation error edk follows the same
line. Using equations (25) and (23) the dynamics of the
state estimation error is: ek+1 = (I−Kk+1C

λ̂k+1
)A

λ̂
ek + ξk,

where ξk = [(Aλk
−A

λ̂k
)−Kk+1(Cλk+1

Aλk
−C

λ̂k+1
A

λ̂k
)]xk +

(I − Kk+1C
λ̂k+1

)Fλk
wk − Kk+1vk+1. Let prove the bound-

edness in mean-square of ξk. Its second and third terms
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are clearly bounded. Let be λk−α:k−1 the true discrete
state sequence between k − α and k − 1. It comes:

xk = Φλk−α:k−1

[
xk−α

dk−α:k−1

]
+ Ψλk−α:k−1

wk−α:k−1, where

Φλk−α:k−1
and Ψλk−α:k−1

are given by equation (6). Thus,
the first term of ξk can be written as in equation (7). Here
again, the second term is clearly bounded in mean square.
Following the same lines as in [3], let prove the bounded-

ness in mean-square of Φλk−α:k

[
xk−α

dk−α:k

]
. Given the state

xk−α and the unknown input sequence dk−α:k+ω , the mean

square error of Φλk−α:k−1

[
xk−α

dk−α:k−1

]
is given by:

E

[
||Φλk−α:k−1

[
xk−α

dk−α:k−1

]
||2|xk−α ,dk−α:k+ω ,π

]
= ∑λ ′∈Λ,λ ′ 6=λk

P
(

λ̂k = λ ′|xk−α ,dk−α:k+ω ,π
)
||Φλk−α:k−1

×[
xk−α

dk−α:k−1

]
||2.

(26)

On one hand, it comes: ||Φλk−α:k−1

[
xk−α

dk−α:k−1

]
||2 ≤

Φ(||xk−α ||2 + ||dk−α:k+ω ||2),

where Φ = maxπα∈Λα λmax{ΦT
πα

Φπα
}. On the other hand, it

comes:

P
(

λ̂k = λ ′|xk−α ,dk−α:k+ω ,π
)

= ∑π ′α∈Λα ,π ′ω∈Λω P

(
λ̂k−α:k+ω

= π ′α ⊗λ ′⊗πω |xk−α ,dk−α:k+ω ,π

)

≤ card(Λ)α+ω

[
1− γ(α+ω+1)ny(κ(||xk−α ||2

+||dk−α:k+ω ||2)+ν)

]
(27)

the last inequality coming from theorem 1, where κ =

minπ,π ′∈Λα+ω+1
k(π,π ′)
h(π,π ′) and ν =minπ,π ′∈Λα+ω+1

1
h(π,π ′) log |Σπ |

|Σ
π′ |

.
Note that thanks to assumption 4 and theorem 1, the con-
stant κ is positive. Then, using both previous items, it
comes that the quantity

E

[
||Φλk−α:k−1

[
xk−α

dk−α:k−1

]
||2|xk−α ,dk−α:k+ω ,π

]
(28)

is smaller than:

card(Λ)α+ω Φ(||xk−α ||2 + ||dk−α:k+ω ||2)
×
[
1− γ(α+ω+1)ny

(
κ(||xk−α ||2 + ||dk−α:k+ω ||2)+ν

)]
.

(29)

Then, recalling that γn(s) (with any positive integer n) con-
verges exponentially to 1 as s tends to infinity, we can con-
clude that (29) converges to 0 as ||xk−α ||2+ ||dk−α:k||2 tends
to infinity (κ being positive). Finally, noting that (29) de-
pends continuously on ||xk−α ||2+ ||dk−α:k+ω ||2 on the inter-
val [0;∞), it comes that (29) can be upper bounded by some
constant independent from ||xk−α ||2 + ||dk−α:k+ω ||2.

Remark 2 Note that in order to apply equations (25), a
delay equal to ω is needed. In order to avoid such a delay, it
is possible to use the following equations for i= k+1...k+ω

(so that xk+ω is estimated using yk−α:k+ω ):

Xi = [(I−GC
λ̂i
)P̃i +GVk]CT

λ̂i
HT [HC

λ̂i
P̃iCT

λ̂i
HT +HViHT ]−1

Zi = J(Cλi P̃iCT
λi
)HT [(H(Cλi P̃iCT

λi
)HT ]−1

Ki = G+XiH, Li = J+ZiH
x̂i = x̃i +Ki(yi−C

λ̂i
x̃i), d̂i−1 = Li(yi−Cλi x̃i)

Pi = (I−KiCλ̂i
)P̃i(I−KiCλ̂i

)T +KiViKT
i

x̃i+1 = A
λ̂

x̂i, P̃i+1 = γ2A
λ̂i

PiAT
λ̂i
+F

λ̂i
WiFT

λ̂i

.

(30)

Remark 3 The stability results stated in [3] remain true by
considering Xk instead of Kk (as in [3]) for the gain matrix,
and (I−GC

λ̂k+1
−XkHC

λ̂k+1
)A

λ̂k
instead of (I−KkCλ̂k+1

)A
λ̂k

(as in [3]) for the transition matrix of the state error vector,
as well as some minor adaptations. They are not detailed
here for a lack of space.

5 Illustrative Example

Let consider the following academic example (adapted
from [3]) of the form (1) where λ ∈ Λ = {1;2}, ∆ = 0.1,

A1 =

[
cos(ω1∆) −ω1 sin(ω1∆)

1
ω1

sin(ω1∆) cos(ω1∆)

]
, with ω1 = 0.5,

A2 =

[
cos(ω2∆) −ω2 sin(ω2∆)

1
ω2

sin(ω2∆) cos(ω2∆)

]
, with ω2 = 1, D1 =

[
0

1

]
,

D2 =

[
0

2

]
, F1 = F2 = I2, C =


0 1

2 1

1 0

, E =


0

1

0

, wk and vk

are Gaussian noises with covariance matrices W = 0.01Inx
and V = 0.01Iny respectively, the unknown input is set to
dk = 3sin(π/100k) for k≥ 0, the simulation is launched for
400 time steps, with γ = 1.1. By setting α = 3 and ω = 2, we
can check that assumptions 1, 2 and 4 are satisfied. The De-
layed Maximum Likelihood Estimator with UI (DMLEUI)
of equations (25) is compared with its Undelayed version
presented in remark 2 (’UMLEUI’), and with the Switching
Kalman Filter with Perfect Information (’SKFPI’), i.e. the
same filter applied with the true switching parameter at each
time step. Table 1 gives the performance of each estimator in
terms of the Root Mean Square Error (RMSE), defined for
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the ith component by RMSE(x[i]) =

√
1

400

399
∑

k=0
(xk[i]− x̂k[i]).

It is clear that the SKFPI is only slightly better to the DM-
LEUI. This is due to the possible error made by estimating
the switching sequence in the MLEUI estimator. Besides,
this error increases when there are less measurements avail-
able as in the case of the UMLEUI, which explains the
slightly worse performance of this former.
Table 1
RMSE (average on 100 simulations)

RMSE on... SKFPI DMLEUI UMLEUI

x[1] 0.1000 0.1000 0.7011

x[2] 5.1225 5.1689 5.2434

6 Conclusions

The main contribution of this paper is the development of
an observer for switching systems affected by Gaussian
noises and Unknown Inputs (UI) with unknown switching
sequence. The main contribution holds in the way of dealing
with the UI in order to decouple it from the state estimation
error. First, a method that estimates the switching parameter
with maximum likelihood is proposed despite the presence
of a UI. Then, this method is used in both state and UI es-
timators.
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