J. Knörzer,

G. Giedke,

, J Ignacio Cirac

J. Christopher,

V. Paulo and . Santos,

E. Cerda,

H. Wang,

J. Hubert and . Krenner,

R. Geoff and . Nash,

L. Thevenard,

J. Duquesne,

, Julien Reboud

M. Jonathan and . Cooper,

F. Rehfeldt,

C. Westerhausen,

S. Volz, Nanophononics: state of the art and perspectives, Eur. Phys. J. B, vol.89, p.15, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01336733

, IEEE Future Networks Technology Roadmap Working Group 2017 IEEE 5G and beyond technology roadmap white paper

D. Go, M. Atashbar, R. Z. , and C. , Surface acoustic wave devices for chemical sensing and microfluidics: a review and perspective, Anal. Methods, vol.9, pp.4112-4146, 2017.

C. Caliendo and M. Hamidullah, Guided acoustic wave sensors for liquid environments, J. Phys. D: Appl. Phys, vol.52, p.153001, 2019.

C. Caliendo and M. Hamidullah, Pressure sensing with zero group velocity lamb modes in self-supported a-SiC/cZnO membranes, J. Phys. D: Appl. Phys, vol.51, p.385102, 2018.

A. Crespo-poveda, D. Bühler, A. Cantarero, P. Santos, and M. Morais-de-lima, Semiconductor optical waveguide devices modulated by surface acoustic waves, J. Phys. D: Appl. Phys, vol.52, p.253001, 2019.

M. Weiß and H. Krenner, Interfacing quantum emitters with propagating surface acoustic waves, J. Phys. D: Appl. Phys, vol.51, p.373001, 2018.

E. Nysten, Y. Huo, Y. H. Song, G. Rastelli, A. Krenner et al., Multi-harmonic quantum dot optomechanics in fused LiNbO 3 -(Al)GaAs hybrids, J. Phys. D: Appl. Phys, vol.50, pp.43-44, 2017.

S. Lazi?, E. Chernysheva, A. Hernández-mínguez, P. Santos, and H. Van-der-meulen, Acoustically regulated optical emission dynamics from quantum dot-like emission centers in GaN/InGaN nanowire heterostructures, J. Phys. D: Appl. Phys, vol.51, p.104001, 2018.

H. Hou, Y. Chung, G. Rughoobur, T. Hsiao, A. Nasir et al., Experimental verification of electrostatic boundary conditions in gate-patterned quantum devices, J. Phys. D: Appl. Phys, vol.51, p.244004, 2018.

T. Huang, P. Han, X. Wang, J. Ye, W. Sun et al., Theoretical study on dynamic acoustic modulation of free carriers, excitons, and trions in 2D MoS 2 flake, J. Phys. D: Appl. Phys, vol.50, p.114005, 2017.

A. Hernández-mínguez, Y. Liou, and P. Santos, Interaction of surface acoustic waves with electronic excitations in graphene, J. Phys. D: Appl. Phys, vol.51, p.383001, 2018.

T. Poole and G. Nash, Acoustoelectric photoresponse of graphene nanoribbons, J. Phys. D: Appl. Phys, vol.51, p.154001, 2018.

J. Liang, B. Liu, H. Zhang, H. Zhang, M. Zhang et al., Monolithic acoustic graphene transistors based on lithium niobate thin film, J. Phys. D: Appl. Phys, vol.51, p.204001, 2018.

Y. Liou, A. Hernández-mínguez, J. Herfort, J. Lopes, T. A. Santos et al., Acousto-electric transport in MgO/ZnO-covered graphene on, SiC J. Phys. D: Appl. Phys, vol.50, p.464008, 2017.

R. Fandan, J. Pedrós, J. Schiefele, A. Boscá, J. Martínez et al., Acoustically-driven surface and hyperbolic plasmon-phonon polaritons in graphene/h-BN heterostructures on piezoelectric substrates, J. Phys. D: Appl. Phys, vol.51, p.204004, 2018.

U. Bhaskar, S. Bhave, and D. Weinstein, Silicon acoustoelectronics with thin film lithium niobate, J. Phys. D: Appl. Phys, vol.52, pp.5-6, 2019.

S. Kuprenaite, Effect of LiNbO 3 polarity on the structural, optical and acoustic properties of epitaxial ZnO and Mg x Zn 1?x O films, J. Phys. D: Appl. Phys, vol.51, p.484003, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02024705

J. Shen, S. Fu, Q. Li, C. Song, F. Zeng et al., Simulation of temperature compensated waveguiding layer acoustic wave devices, J. Phys. D: Appl. Phys, vol.52, p.75105, 2019.

E. Muzar, G. Aval, and J. Stotz, Wet-etched phononic crystal waveguiding on GaAs, J. Phys. D: Appl. Phys, vol.51, p.44001, 2018.

M. Yuan, C. Hubert, S. Rauwerdink, A. Tahraoui, B. Van-someren et al., Generation of surface acoustic waves on doped semiconductor substrates, J. Phys. D: Appl. Phys, vol.50, p.484004, 2017.

E. Coffy, G. Dodane, S. Euphrasie, A. Mosset, P. Vairac et al., , 2017.

, Anisotropic propagation imaging of elastic waves in oriented columnar thin films, J. Phys. D: Appl. Phys, vol.50, p.484005

L. Schnitzler, S. Junger, D. Loy, E. Wagner, A. Wixforth et al., Size tunable nanoparticle formation employing droplet fusion by acoustic streaming applied to polyplexes, J. Phys. D: Appl. Phys, vol.52, p.244002, 2019.

A. Korovin, Y. Pennec, M. Stocchi, D. Mencarelli, L. Pierantoni et al., Conversion between surface acoustic waves and guided modes of a quasi-periodic structured nanobeam, J. Phys. D: Appl. Phys, vol.52, pp.32-33, 2019.

E. Cerda-méndez, D. Krizhanovskii, M. Skolnick, and P. Santos, Quantum fluids of light in acoustic lattices, J. Phys. D: Appl. Phys, vol.51, p.33001, 2018.

M. Boev, A. Chaplik, and V. Kovalev, Interaction of Rayleigh waves with 2D dipolar exciton gas: impact of Bose-Einstein condensation, J. Phys. D: Appl. Phys, vol.50, p.484002, 2017.

H. Krenner, S. Stufler, M. Sabathil, E. Clark, P. Ester et al., Recent advances in exciton-based quantum information processing in quantum dot nanostructures, New J. Phys, vol.7, p.184, 2005.

L. Bandhu and G. Nash, Controlling the properties of surface acoustic waves using graphene Nano Res, vol.9, pp.685-91, 2016.

R. Schoelkopf and S. Girvin, Wiring up quantum systems, Nature, vol.451, p.664, 2008.

D. Roy, C. Wilson, and O. Firstenberg, Strongly interacting photons in one-dimensional continuum, Rev. Mod. Phys, vol.89, p.21001, 2017.

M. Gustafsson, T. Aref, A. Kockum, M. Ekström, J. et al., Science, vol.346, p.207, 2014.

J. Koch, T. Yu, J. Gambetta, A. Houck, D. Schuster et al., Charge-insensitive qubit design derived from the Cooper pair box, Phys. Rev. A, vol.76, p.42319, 2017.

R. Manenti, M. Peterer, A. Nersisyan, E. Magnusson, A. Patterson et al., Surface acoustic wave resonators in the quantum regime, Phys. Rev. B, vol.93, p.41411, 2016.

R. Manenti, A. Kockum, A. Patterson, T. Behrle, J. Rahamim et al., Circuit quantum acoustodynamics with surface acoustic waves, Nat. Commun, vol.8, p.975, 2017.

B. Moores, L. Sletten, J. Viennot, and K. Lehnert, Cavity quantum acoustic device in the multimode strong coupling regime, Phys. Rev. Lett, vol.120, p.227701, 2018.

K. Satzinger, Quantum control of surface acoustic wave phonons, Nature, vol.563, pp.661-666, 2018.

A. Kockum, D. , P. Johansson, and G. , Designing frequency-dependent relaxation rates and Lamb shifts for a giant artificial atom, Phys. Rev. A, vol.90, p.13837, 2014.

A. Kockum, J. , G. Nori, and F. , Decoherence-free interaction between giant atoms in waveguide quantum electrodynamics, Phys. Rev. Lett, vol.120, p.140404, 2018.

L. Guo, A. Grimsmo, A. Kockum, P. , M. Johansson et al., Giant acoustic atom: a single quantum system with a deterministic time delay, Phys. Rev. A, vol.95, p.53821, 2017.

G. Andersson, B. Suri, L. Guo, T. Aref, and P. Delsing, Nat. Phys. accepted, 2018.

D. Lee, K. Lee, J. Cady, O. P. , B. Jayich et al., Topical review: spins and mechanics in diamond, J. Opt, vol.19, p.33001, 2017.

S. Whiteley, Spin-phonon interactions in silicon carbide addressed by Gaussian acoustics, Nat. Phys, vol.15, pp.490-495, 2018.

M. Ekström, T. Aref, J. Runeson, J. Björck, I. Boström et al., Surface acoustic wave unidirectional transducers for quantum applications, Appl. Phys. Lett, vol.110, p.73105, 2017.

D. Morgan, Surface Acoustic Wave Filters, 2007.

M. Gustafsson, P. Santos, J. , G. Delsing, and P. , Local probing of propagating acoustic waves in a gigahertz echo chamber, Nat. Phys, vol.8, p.338, 2012.

Y. Sato, J. Chen, M. Hashisaka, K. Muraki, and T. Fujisawa, Two-electron double quantum dot coupled to coherent photon and phonon fields, Phys. Rev. B, vol.96, p.115416, 2017.

J. Buller, R. Balderas-navarro, K. Biermann, E. Cerdaméndez, and P. Santos, Exciton-polariton gap soliton dynamics in moving acoustic square lattices, Phys. Rev. B, vol.94, p.125432, 2016.

C. Barnes, J. Shilton, and R. , Quantum computation using electrons trapped by surface acoustic waves, Phys. Rev. B, vol.62, p.8410, 2000.

M. Kuzyk and H. Wang, Scaling phononic quantum network of solid-state spins with closed mechanical subsystems, Phys. Rev. X, vol.8, p.41027, 2018.

M. Schuetz, E. Kessler, G. Giedke, L. Vandersypen, M. Lukin et al., Universal quantum transducers based on surface acoustic waves, Phys. Rev. X, vol.5, p.31031, 2015.

T. Byrnes, P. Recher, N. Kim, U. S. Yamamoto, and Y. , Quantum simulator for the Hubbard model with long-range Coulomb interactions using surface acoustic waves, Phys. Rev. Lett, vol.99, p.16405, 2007.

M. Schuetz, J. Knörzer, G. Giedke, L. Vandersypen, M. Lukin et al., Acoustic traps and lattices for electrons in semiconductors, Phys. Rev. X, vol.7, p.41019, 2017.

J. Knörzer, M. Schuetz, G. Giedke, H. Huebl, M. Weiler et al., Solid-state magnetic traps and lattices, Phys. Rev. B, vol.97, p.235451, 2018.

C. Bäuerle, D. Glattli, T. Meunier, F. Portier, P. Roche et al., Coherent control of single electrons: a review of current progress, Rep. Prog. Phys, vol.81, p.56503, 2018.

C. Ford, Transporting and manipulating single electrons in surface-acoustic-wave minima, Phys. Status Solidi b, vol.254, p.1600658, 2017.

E. Gibney, New definitions of scientific units are on the horizon, Nature, vol.550, p.313, 2017.

W. Van-der-wiel, D. Franceschi, S. Elzerman, J. Fujisawa, T. Tarucha et al., Electron transport through double quantum dots, Rev. Mod. Phys, vol.75, p.1, 2002.

S. Hermelin, S. Takada, M. Yamamoto, S. Tarucha, A. Wieck et al., Electrons surfing on a sound wave as a platform for quantum optics with flying electrons, Nature, vol.477, pp.435-443, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00733133

. Mcneil-r-p-g, M. Kataoka, C. Ford, C. Barnes, A. D. Jones et al., On-demand single-electron transfer between distant quantum dots, Nature, vol.477, pp.439-481, 2011.

B. Bertrand, S. Hermelin, S. Takada, M. Yamamoto, S. Tarucha et al., Fast spin information transfer between distant quantum dots using individual electrons, Nat. Nanotechnol, vol.11, pp.672-678, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01980841

T. Hsiao, Single-photon emission from an acoustically-driven lateral light-emitting diode, 2019.

L. Vandersypen, H. Bluhm, J. Clarke, A. Dzurak, R. Ishihara et al., Interfacing spin qubits in quantum dots and donors-hot, dense, and coherent NPJ Quantum Inf, vol.3, p.34, 2017.

M. Kataoka, Coherent time evolution of a singleelectron wave function, Phys. Rev. Lett, vol.102, p.156801, 2009.

S. Takada, Sound-driven single electron transfer in a tunable beam-splitter setup, 2019.

M. Lemonde, S. Meesala, A. Sipahigil, M. Schuetz, M. Lukin et al., Phonon networks with silicon-vacancy centers in diamond waveguides, Phys. Rev. Lett, vol.120, p.213603, 2018.

D. Golter, T. Oo, M. Amezcua, K. Stewart, and H. Wang, Phys. Rev. Lett, vol.116, p.143602, 2016.

D. Golter, T. Oo, M. Amezcua, I. Lekavicius, K. Stewart et al., Coupling a surface acoustic wave to an electron spin in diamond via a dark state, Phys. Rev. X, vol.6, p.41060, 2016.

C. Monroe and J. Kim, Scaling the ion trap quantum processor, Science, vol.339, p.1164, 2013.

S. Meenehan, J. Cohen, G. Maccabe, F. Marsili, M. Shaw et al., Pulsed excitation dynamics of an optomechanical crystal resonator near its quantum ground state of motion, Phys. Rev. X, vol.5, p.41002, 2015.

A. Sorensen and K. Molmer, Entanglement and quantum computation with ions in thermal motion, Phys. Rev. A, vol.62, p.22311, 2000.

H. Benisty, C. Sotomayor-torrès, and C. Weisbuch, Intrinsic mechanism for the poor luminescence properties of quantum-box systems, Phys. Rev. B, vol.44, pp.10945-10953, 1991.

B. Krummheuer, V. Axt, and T. Kuhn, Theory of pure dephasing and the resulting absorption line shape in semiconductor quantum dots, Phys. Rev. B, vol.65, p.195313, 2002.

C. Wiele, F. Haake, C. Rocke, and A. Wixforth, Photon trains and lasing: the periodically pumped quantum dot, Phys. Rev. A, vol.58, pp.2680-2683, 1998.

O. Couto, S. Lazi?, F. Iikawa, J. Stotz, U. Jahn et al., Photon anti-bunching in acoustically pumped quantum dots Nat, Photon, vol.3, pp.645-653, 2009.

J. Gell, M. Ward, R. Young, R. Stevenson, P. Atkinson et al., Modulation of single quantum dot energy levels by a surface-acoustic-wave, Appl. Phys. Lett, vol.93, p.81115, 2008.

F. Schülein, E. Zallo, P. Atkinson, O. Schmidt, R. Trotta et al., Fourier synthesis of radiofrequency nanomechanical pulses with different shapes, Nat. Nanotechnol, vol.10, pp.512-518, 2015.

M. Metcalfe, S. Carr, A. Muller, and G. Solomon, Resolved sideband emission of InAs/GaAs quantum dots strained by surface acoustic waves, Phys. Rev. Lett, vol.105, p.37401, 2010.

D. Fuhrmann, S. Thon, H. Kim, D. Bouwmeester, P. Petroff et al., Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons, Nat. Photon, vol.5, pp.605-614, 2011.

M. Weiß, S. Kapfinger, T. Reichert, J. Finley, A. Wixforth et al., Surface acoustic wave regulated single photon emission from a coupled quantum dot-nanocavity system, Appl. Phys. Lett, vol.109, p.33105, 2016.

R. Blattmann, H. Krenner, S. Kohler, and P. Hänggi, Entanglement creation in a quantum-dot-nanocavity system by Fourier-synthesized acoustic pulses, Phys. Rev. A, vol.89, p.12327, 2014.

R. Warburton, Single spins in self-assembled quantum dots, Nat. Mater, vol.12, pp.483-93, 2013.

K. Balram, M. Davanço, J. Song, and K. Srinivasan, Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits Nat. Photon, vol.10, pp.346-52, 2016.

J. Pustiowski, K. Müller, M. Bichler, G. Koblmüller, J. Finley et al., Independent dynamic acousto-mechanical and electrostatic control of individual quantum dots in a LiNbO 3 -GaAs hybrid, Appl. Phys. Lett, vol.106, p.13107, 2015.

M. Weiß, Dynamic acoustic control of individual optically active quantum dot-like emission centers in heterostructure nanowires, Nano Lett, vol.14, pp.2256-64, 2014.

A. Hernández-mínguez, Acoustically driven photon antibunching in nanowires, Nano Lett, vol.12, pp.252-260, 2012.

J. Blatt, K. Boeer, and W. Brandt, Bose-Einstein condensation of excitons, Phys. Rev, vol.126, p.1691, 1962.

D. Sanvitto and S. Kéna-cohen, The road towards polaritonic devices, Nat. Mater, vol.15, pp.1061-73, 2016.

A. Verger, C. Ciuti, and I. Carusotto, Polariton quantum blockade in a photonic dot, Phys. Rev. B, vol.73, pp.193306-193310, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00107401

N. N. Yamamoto and Y. , Massive parallel generation of indistinguishable single photons via the polaritonic superfluid to Mott-insulator quantum phase transition, New J. Phys, vol.12, p.123001, 2010.

C. Schneider, M. Glazov, T. Korn, S. Höfling, and B. Urbaszek, Two-dimensional semiconductors in the regime of strong light-matter coupling, Nat. Commun, vol.9, p.2695, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02057649

S. Anguiano, Micropillar resonators for optomechanics in the extremely high 19-95 GHz frequency range, Phys. Rev. Lett, vol.118, p.263901, 2017.

Á. Cuevas, First observation of the quantized exciton-polariton field and effect of interactions on a single polariton Sci, vol.4, p.6814, 2018.

I. Rosenberg, D. Liran, Y. Mazuz-harpaz, K. West, L. Pfeiffer et al., Strongly interacting dipolarpolaritons Sci. Adv, vol.4, p.8880, 2018.

E. Togan, H. Lim, S. Faelt, W. Wegscheider, and A. Imamoglu, Strong interactions between dipolar polaritons, Phys. Rev. Lett, vol.121, p.227402, 2018.

B. Villa, Surface acoustic wave modulation of a coherently driven quantum dot in a pillar microcavity, Appl. Phys. Lett, vol.111, p.11103, 2017.

A. High, E. Novitskaya, L. Butov, H. M. Gossard, and A. , Control of exciton fluxes in an excitonic integrated circuit, Science, vol.321, p.229, 2008.

C. Schindler and R. Zimmermann, Analysis of the exciton-exciton interaction in semiconductor quantum wells, Phys. Rev. B, vol.78, p.45313, 2008.

K. Cohen, R. Rapaport, and P. Santos, Remote dipolar interactions for objective density calibration and flow control of excitonic fluids, Phys. Rev. Lett, vol.106, p.126402, 2011.

A. Winbow, Electrostatic conveyer for excitons, Phys. Rev. Lett, vol.106, p.196806, 2011.

J. Rudolph, R. Hey, and P. Santos, Long-range exciton transport by dynamic strain fields in a GaAs quantum well, Phys. Rev. Lett, vol.99, p.47602, 2007.

S. Lazic, V. A. Cohen, K. Hey, R. Rapaport, R. Santos et al., Scalable interconnections for remote indirect exciton systems based on acoustic transport, Phys. Rev. B, vol.89, p.85313, 2014.

A. Violante, K. Cohen, S. Lazic, R. Hey, R. Rapaport et al., Dynamics of indirect exciton transport by moving acoustic fields, New J. Phys, vol.16, p.33035, 2014.

G. Schinner, J. Repp, E. Schubert, A. Rai, D. Reuter et al., Confinement and interaction of single indirect excitons in a voltage-controlled trap formed inside double InGaAs quantum wells, Phys. Rev. Lett, vol.110, p.127403, 2013.

M. Yuan, A. Hernández-mínguez, K. Biermann, and P. Santos, Tunneling blockade and single-photon emission in GaAs double quantum wells, Phys. Rev. B, vol.98, p.155311, 2018.

D. Unuchek, A. Ciarrocchi, A. Avsar, K. Watanabe, T. Taniguchi et al., Room-temperature electrical control of exciton flux in a van der Waals heterostructure, Nature, vol.560, pp.340-344, 2018.

M. Aspelmeyer, T. Kippenberg, and F. Marquardt, Cavity optomechanics Rev. Mod. Phys, vol.86, pp.1391-452, 2014.

R. Van-laer, B. R. Van-thourhout, and D. , Unifying Brillouin scattering and cavity optomechanics, Phys. Rev. A, vol.93, p.53828, 2016.

R. Andrews, Bidirectional and efficient conversion between microwave and optical light, Nat. Phys, vol.10, pp.321-327, 2014.

J. Bochmann, A. Vainsencher, D. Awschalom, and C. , Nanomechanical coupling between microwave and optical photons, Nat. Phys, vol.9, pp.712-718, 2013.

K. Fong, F. L. Jiang, L. , H. X. Tang, and H. , Microwave-assisted coherent and nonlinear control in cavity piezo-optomechanical systems, Phys. Rev. A, vol.90, p.51801, 2014.

A. Okada, Cavity enhancement of anti-stokes scattering via optomechanical coupling with surface acoustic waves, Phys. Rev. Appl, vol.10, p.24002, 2018.

M. De-lima and P. Santos, Modulation of photonic structures by surface acoustic waves, Rep. Prog. Phys, vol.68, pp.1639-701, 2005.

S. Tadesse and M. Li, Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies, Nat. Commun, vol.5, p.5402, 2014.

D. Sohn, K. S. Bahl, and G. , Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits Nat, Photon, vol.12, pp.91-98, 2018.

A. Vainsencher, K. Satzinger, G. Peairs, and C. , Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device, Appl. Phys. Lett, vol.109, p.33107, 2016.

C. Xiong, Active silicon integrated nanophotonics: ferroelectric BaTiO 3 devices, Nano Lett, vol.14, pp.1419-1444, 2014.

S. Gong and G. Piazza, Design and analysis of lithium niobate-based high electromechanical coupling RF-MEMS resonators for wideband filtering, IEEE Trans. Microw. Theory Tech, vol.61, pp.403-417, 2013.

C. Wang, Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages, Nature, vol.562, pp.101-105, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01939700

R. Mas-balleste, C. Gomez-navarro, J. Gomez-herrero, and F. Zamora, 2D materials: to graphene and beyond Nanoscale, vol.3, pp.20-30, 2011.

E. Preciado, Scalable fabrication of a hybrid fieldeffect and acousto-electric device by direct growth of monolayer MoS 2 /LiNbO 3, Nat. Commun, vol.6, p.8593, 2015.

A. Rezk, B. Carey, A. Chrimes, D. Lau, B. Gibson et al., Acoustically-driven trion and exciton modulation in piezoelectric two-dimensional MoS 2, Nano Lett, vol.16, pp.849-55, 2016.

S. Zheng, Acoustically enhanced photodetection by a black phosphorus MoS 2 van der waals heterojunction p-n diode, Nanoscale, vol.10, pp.10148-53, 2018.

S. Zheng, E. Wu, and H. Zhang, Anomalous acoustoelectric currents in few-layer black phosphorus nanocrystals, IEEE Trans. Nanotechnol, vol.17, pp.590-595, 2018.

B. Ash, S. Worsfold, P. Vukusic, and G. Nash, A highly attenuating and frequency tailorable annular hole phononic crystal for surface acoustic waves, Nat. Commun, vol.8, p.174, 2017.

M. Elhosni, Magnetic field SAW sensors based on magnetostrictive-piezoelectric layered structures: FEM modeling and experimental validation, Sensors Actuators A, vol.240, p.41, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01875420

M. Weiler, H. Huebl, F. Goerg, F. Czeschka, R. Gross et al., Spin pumping with coherent elastic waves, Phys. Rev. Lett, vol.108, p.176601, 2012.

P. Kuszewski, I. Camara, N. Biarrotte, L. Becerra, J. Von-bardeleben et al., Resonant magnetoacoustic switching: influence of Rayleigh wave frequency and wavevector, J. Phys.: Condens. Matter, vol.30, p.244003, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01812621

K. Roy, S. Bandyopadhyay, and J. Atulasimha, Hybrid spintronics and straintronics: a magnetic technology for ultra low energy computing and signal processing, Appl. Phys. Lett, vol.99, p.63108, 2011.

P. Graczyk, J. Klos, M. Krawczyk, K. Jaroslaw, and M. Krawczyk, Broadband magnetoelastic coupling in magnonic-phononic crystals for high-frequency nanoscale spinwave generation, Phys. Rev. B, vol.95, p.104425, 2015.

W. Li, B. Buford, A. Jander, and P. Dhagat, Acoustically assisted magnetic recording: a new paradigm in magnetic data storage, IEEE Trans. Magn, vol.50, p.3100704, 2014.

J. Torrejon, Neuromorphic computing with nanoscale spintronic oscillators, Nature, vol.547, p.428, 2017.

R. Verba, I. Lisenkov, I. Krivorotov, V. Tiberkevich, and A. Slavin, Nonreciprocal surface acoustic waves in multilayers with magnetoelastic and interfacial Dzyaloshinskii-Moriya interactions, Phys. Rev. Appl, vol.9, p.64014, 2018.

C. Brendel, V. Peano, O. Painter, and F. Marquardt, Snowflake phononic topological insulator at the nanoscale, Phys. Rev. B, vol.97, p.20102, 2018.

M. Marangolo, W. Karboul-trojet, J. Prieur, V. Etgens, M. Eddrief et al., Surface acoustic wave triggering of giant magnetocaloric effect in MnAs/GaAs devices, Appl. Phys. Lett, vol.105, p.162403, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01233807

M. Foerster, Direct imaging of delayed magnetodynamic modes induced by surface acoustic waves, Nat. Commun, vol.8, p.407, 2017.

R. Sasaki, Y. Nii, Y. Iguchi, and Y. Onose, Nonreciprocal propagation of surface acoustic wave in LiNbO 3, Phys. Rev. B, vol.95, p.20407, 2017.

P. Selmeier, R. Grünwald, A. Przadka, H. Krüger, G. Feiertag et al., SAW packaging Proc. IEEE Int. Ultrasonics Symp. (Atlanta, pp.283-92, 2001.

E. Schmidhammer, T. Metzger, and C. Hoffmann, Multiplexers: a necessary extension for 4G/5G systems, Proc. IEEE Int. Microwave Symp, p.4, 2016.

, Data sheet 'Band 38 LTE-2600: Series/type: B8804', TDK, Vers. 2.1, 2014.

, Data sheet 2017 Murata PN: SAHRT1G74BB0B0A Murata, 2017.

G. Fattinger, A. Volatier, A. , M. Yusuf, Y. Aigner et al., Carrier aggregation and its challenges-or: the golden age for acoustic filters Proc. IEEE Int. Microwave Symp, pp.22-27, 2016.

H. Nakamura, H. Nakanishi, J. Fujiwara, and T. Tsurunari, A review of SiO 2 thin film technology for temperature compensated SAW devices Proc. 6th Int. Symp. on Acoustic Wave Devices for Future Mobile Communication Systems, pp.67-72, 2015.

T. Takai, H. Iwamoto, Y. Takamine, T. Fuyutsume, T. Nakao et al., SAW technology and its application to microacoustic components (invited) Proc. IEEE Int. Ultrasonic Symp, p.8, 2017.

T. Takai, High-performance SAW resonator on new multilayered substrate using LiTaO 3 crystal, IEEE Trans. Ultrason. Ferroelect. Freq. Control, vol.64, pp.1382-1391, 2017.

M. Ayaz, M. Ammad-uddin, B. I. Aggoune, and E. , Wireless sensor's civil applications, prototypes, and future integration possibilities: a review, IEEE Sens. J, vol.18, pp.4-30, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01707323

K. Laenge, B. Rapp, and M. Rapp, Surface acoustic wave biosensors: a review Anal, Bioanal. Chem, vol.391, pp.1509-1528, 2008.

B. Paschke, A. Wixforth, D. Denysenko, and D. Volkmer, Fast surface acoustic wave-based sensors to investigate the kinetics of gas uptake in ultra-microporous frameworks ACS Sens, vol.2, pp.740-747, 2017.

H. Wohltjen, Mechanism of operation and design considerations for surface acoustic wave device vapour sensors Sensors Actuators, vol.5, pp.307-332, 1984.

H. Zhou, J. Long, and O. Yaghi, Introduction to metal-organic frameworks, Chem. Rev, vol.112, pp.673-677, 2012.

A. Müller, A. Darga, and A. Wixforth, Surface acoustic wave studies for chemical and biological sensors Nanoscale Devices-Fundamentals and Applications ed R Gross et al, pp.3-13, 2006.

A. Ghoufi, Electrically induced breathing of the MIL-53(Cr) metal-organic framework, ACS Cent. Sci, vol.3, pp.394-402, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01559999

H. Bruus, J. Dual, J. Hawks, M. Hill, T. Laurell et al., Acoustofluidicsexploiting ultrasonic standing wave forces and acoustic streaming in microfluidic systems for cell and particle manipulaton, Lab Chip, vol.11, pp.3579-80, 2011.

, Acoustofluidics, 2018.

M. Ohlin, I. Iranmanesh, A. Christakou, and M. Wiklund, , 2015.

M. Wiklund, Acoustofluidics 12: biocompatibility and cell viability in microfluidic acoustic resonators, Lab Chip, vol.12, pp.2018-2046, 2012.

K. Olofsson, B. Hammarström, and M. Wiklund, Ultrasonic based tissue modelling and engineering Micromachines, vol.9, p.594, 2018.

M. Wu, Acoustic separation of nanoparticles in continuous flow, Adv. Funct. Mater, vol.27, p.1606039, 2017.

A. Riaud, M. Baudoin, O. Matar, L. Becerra, and T. , Selective manipulation of microscopic particles with precursor swirling Rayleigh waves, Phys. Rev. Appl, vol.7, p.24007, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01519025

J. Karlsen and H. Bruus, Acoustic tweezing and patterning of concentration fields in microfluidics, Phys. Rev. Appl, vol.7, p.34017, 2017.

J. Bach and H. Bruus, Theory of pressure acoustics with viscous boundary layers and streaming in curved elastic cavities, J. Acoust. Soc. Am, vol.144, p.766, 2018.

R. Moiseyenko and H. Bruus, Whole-system ultrasound resonances as the basis for acoustophoresis in all-polymer microfluidic devices, Phys. Rev. Appl, vol.11, p.14014, 2019.

S. Shiokawa, Y. Matsui, and T. Moriizumi, Experimental study on liquid streaming by SAW Japan, J. Appl. Phys, vol.28, p.126, 1989.

R. Moroney, R. Moroney, R. White, and R. Howe, Microtransport induced by ultrasonic Lamb waves, Appl. Phys. Lett, vol.59, pp.774-780, 1991.

A. Wixforth, Acoustically driven planar microfluidics Superlattices Microstruct, vol.33, p.389, 2003.

J. Friend and L. Yeo, Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics, Rev. Mod. Phys, vol.83, p.647, 2011.

S. Zhan, Digital acoustofluidics enables contactless and programmable liquid handling, Nat. Commun, vol.9, p.2928, 2018.

Y. Fu, Advances in piezoelectric thin films for acoustic biosensors, acoustofluidics and lab-on-chip applications Prog. Mater. Sci, vol.89, pp.31-91, 2017.

A. Riaud, J. Thomas, E. Charron, A. Bussonnière, B. Matar et al., Anisotropic swirling surface acoustic waves from inverse filtering for on-chip generation of acoustic vortices, Phys. Rev. Appl, vol.4, p.34004, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01398054

R. Rambach, V. Skowronek, and T. Franke, Localization and shaping of surface acoustic waves using PDMS posts and application for particle filtering and washing RSC Adv, vol.4, pp.60534-60576, 2015.

R. Hodgson, M. Tan, L. Yeo, and J. Friend, Transmitting high power rf acoustic radiation via fluid couplants into superstrates for microfluidics, Appl. Phys. Lett, vol.94, p.24102, 2009.

R. Wilson, J. Reboud, Y. Bourquin, N. S. Zhang, Y. Cooper et al., Phononic crystal structures for acoustically driven microfluidic manipulations, Lab Chip, vol.11, pp.323-331, 2011.

E. Nazarzadeh, R. Wilson, X. King, J. Reboud, M. Tassieri et al., Confinement of surface waves at the air-water interface to control aerosol size and dispersity, Phys. Fluids, vol.29, p.112105, 2017.

A. Riaud, M. Baudoin, B. Matar, O. Thomas, J. Brunet et al., On the influence of viscosity and caustics on acoustic streaming in sessile droplets: an experimental and a numerical study with a cost-effective method, J. Fluid Mech, vol.821, pp.384-420, 2017.

A. Rezk, J. Tan, and L. Yeo, HYbriD resonant acoustics (HYDRA), Adv. Mater, vol.28, pp.1970-1975, 2016.

W. Coakley, D. Bardsley, M. Grundy, Z. F. Clarke, and D. , Cell manipulation in ultrasonic standing wave fields, J. Chem. Technol. Biotechnol, vol.44, pp.43-62, 1989.

M. Stamp, A. Jötten, P. Kudella, D. Breyer, F. Strobl et al., Exploring the limits of cell adhesion under shear stress within physiological conditions, p.38, 2016.

T. Franke, S. Braunmuller, L. Schmid, A. Wixforth, and D. Weitz, Surface acoustic wave actuated cell sorting (SAWACS), Lab Chip, vol.10, pp.789-94, 2010.

F. Guo, P. Li, J. French, Z. Mao, H. Zhao et al., Controlling cell-cell interactions using surface acoustic waves Proc, Natl Acad. Sci. USA, vol.112, pp.43-51, 2014.

D. Collins, B. Morahan, J. Garcia-bustos, C. Doerig, M. Plebanski et al., Two-dimensional singlecell patterning with one cell per well driven by surface acoustic waves, Nat. Commun, vol.6, p.8686, 2015.

S. Li, F. Guo, Y. Chen, X. Ding, P. Li et al., Standing surface acoustic wave based cell coculture, Anal. Chem, vol.86, pp.9853-9862, 2014.

M. Stamp, M. Brugger, W. A. Westerhausen, and C. , Acoustotaxis-in vitro stimulation in a wound healing assay employing surface acoustic waves, Biomater. Sci, vol.4, pp.1092-1101, 2016.

S. Ramesan, A. Rezk, C. Dekiwadia, C. Cortez-jugo, and L. Yeo, Acoustically-mediated intracellular delivery Nanoscale, vol.10, pp.13165-78, 2018.

C. Shields, K. Ohiri, L. Szott, and G. López, Translating microfluidics: cell separation technologies and their barriers to commercialization Cytom, vol.92, pp.115-140, 2017.

F. Rehfeldt, A. Engler, A. Eckhardt, A. F. Discher, and D. , Cell responses to the mechanochemical microenvironment-implications for regenerative medicine and drug delivery Adv, Drug Deliv. Rev, vol.59, pp.1329-1368, 2007.

A. Zemel, F. Rehfeldt, A. Brown, D. Discher, and S. Safran, Optimal matrix rigidity for stress-fibre polarization in stem cells, Nat. Phys, vol.6, pp.468-73, 2010.

M. Brugger, S. Grundeen, A. Doyle, L. Theogarajan, A. Wixforth et al., Orchestrating cells on a chip: employing surface acoustic waves towards the formation of neural networks, Phys. Rev. E, vol.98, p.12411, 2018.