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Abstract

The rapid expansion of  urban populations  and concomitant  increase in  the generation  of
municipal solid waste (MSW) exert  considerable pressure on the conventional centralized
MSW management system and are beginning to exceed disposal capacities. To tackle this
issue, the conventional centralized MSW management system is more likely to evolve toward
a  more  decentralized  system  with  smaller  capacity  waste  treatment  facilities  that  are
integrated  at  different  levels  of  the  urban  environment,  e.g.,  buildings,  districts,  and
municipalities. In addition, MSW can become an important urban resource to address the
rising  energy  consumption  through  waste-to-energy  (WTE)  technologies  capable  of
generating  electricity,  heat,  and  biogas.  This  shift  toward  the  combined  centralized-
decentralized waste-to-energy management system (WtEMS) requires an adapted decision-
support methodology (DSM) that can assist decision-makers in analyzing MSW generation
across large urban territories and designing optimal long-term WtEMS.

The proposed integrated DSM for WtEMS planning relies on: i) an MSW segregation and
prediction methodology, ii) an optimization methodology for the deployment of multi-level
urban waste infrastructure combining centralized and decentralized facilities, and iii) a multi-
criterion sustainability framework for WtEMS assessment. The proposed DSM was tested on
a case study that was located in Singapore. The proposed WtEMS not only reduced the total
operational expenses by about 50%, but also increased revenues from electricity recovery by
two times in comparison with the conventional MSW management system. It also allowed
more optimal land use (capacity-land fragmentation was reduced by 74.8%) and reduced the
size of the required transportation fleet by 15.3% in comparison with the conventional MSW
system. The Global Warming Potential (GWP) was improved by about 18.7%.

Keywords: mega-cities,  municipal  solid  waste,  waste-to-energy,  combined  centralized-
decentralized management systems, waste sources segregation, long-term planning

Nomenclature

Abbreviations

AD – Anaerobic Digestion

MSW – Municipal Solid Waste



WtE – Waste-to-Energy

WtEMS – Waste-to-Energy Management System

LCA – Life Cycle Analysis

DSM – Decision Support Methodology

DF – Decentralized Facility

CF – Centralized Facility

WGS – Waste Generation Source

WTF – Waste Treatment Facility

DF – Decentralized Facility

CF – Centralized Facility

KPI – Key Performance Indicator

GWP – Global Warming Potential

Sets

|T|,t ∈T  – Life span period of a WTF [year]

|I|,i∈ I  – Number of waste generators [unit]

|J|, j∈ J  – Number of candidate sites where decentralized (on-site) and centralized (off-
site) treatment facilities can be installed [unit]

|A|, a∈ A  – Set of technologies available for the deployment

|L|, l∈L  – Possible number of units of each technology that can be deployed at  each
candidate site [unit]

Parameters and variables

qi , t  – Amount of waste generated at each time step, t, by each waste generator, i [tons of
waste/year]

ka
0  – Unit transformation capacity of treatment facility [tons of processed waste/day]

K a , j  –  Limitation  of  land  space  represented  by  the  maximum  number  of  units  of
technology, a, to be installed at candidate site, j [units]

λa ,r
0  – Amount of recovered resource per ton of treated waste of technology, a [Amount of

recovered energy/material/ton of processed waste]



ma ,r
0  – Amount of additional resources, i.e., water and electricity, required for one ton of

waste treatment by technology, a [amount of consumed resource/ton of treated waste]

k2  – Amount of waste which can be transported by one transportation unit (e.g., a truck)
[tons of waste/transportation unit]

Di , j  – Distance between a waste generator, i ,  and candidate site, j  [km]

ca ,l
0  – Waste treatment facility deployment cost for the technology, a, and unit, l, per one-

ton capacity [$/unit capacity]

c1  – Cost associated with waste transportation per kilometer [$/km]

ca
2  – Operations cost of technology, a, including facilities maintenance and other possible

expenditures, e.g., lease costs for treatment machines [$/unit capacity]

c l ,a , j
3  – Cost associated with land use required for waste treatment unit, l, of technology, a,

at each candidate site, j  [$/ unit capacity]

c l ,a
4  – Manpower cost depending on type of technology, a, and number of installed units, l

[$/unit capacity]

c5  – CO2 penalties or taxes associated with waste transportation and treatment [$/ton of
CO2 equivalent]

pr
0  –  Resources  price  for  resource  consumption  or  recovery  during  waste  treatment

process [$/amount of energy/material]

ea
0  – Emissions per ton of treated waste [gCO2 equivalent/ton of processed waste]

e1  – Emissions per km of waste transportation [gCO2 equivalent/km]

r  – Discount rate

za ,l  - The coefficient for cost reduction for every subsequent unit, l, of technology, a

EoSa  – Economy of Scale factor

M  – Arbitrarily large number

xa , j ,l ,t  – Decision variable indicating the number of capacity units, l, of technology type,
a, to be deployed at candidate site, j , at time step, t

ya ,i , j ,t  – Decision variable indicating the amount of waste generated by waste generator,
i , assigned (i.e., transported) to the technology of type, a, installed at candidate site, j ,

at time step, t



−
+, ut

❑

ut
❑

 -  Additional  continuous  variables  to  determine  the  smaller  value  between  the

quantity of waste, qi , t , generated at WGS i at time step t  is greater than or equal to the

system capacity, x j ,l , t , installed at candidate site, j

v t  – Binary decision variable, equal to 1 if the quantity of the waste, qi , t , generated at

WGS i at time step, t , is greater than or equal to the system capacity, x j ,l , t , installed at
candidate site, j

1. Introduction

Over the past decades, the global urban population increased significantly, has reached  3.9
billion residents, and is projected to increase 66% by 2050 (UN 2014). The disparity between
urban and rural populations will become drastic for some regions, with about 90% of the
population  living  in  cities  and  driving  the  creation  of  large  mega-cities  (UN  2014).
Continuous  urbanization  amplifies  challenges  related  to  the  adequate  delivery  of  basic
services and infrastructure to ensure a minimum quality of life for the residents (UN Habitat
2016). One of these challenges concerns the efficient management of municipal solid waste
(MSW), the amount of which is expected to increase from 1.3 billion tons per year in 2012 to
almost 2.2 billion tons per year in 2025 (Hoornweg & Bhada-Tata 2012). 

Classical strategies for MSW management rely on incineration, sanitary landfills, and open
dumps. For  Organisation for Economic Co-operation and Development (OECD) countries,
incineration covered 21% of waste, whereas sanitary landfills hosted more than 42% of MSW
generated in 2012 (Hoornweg & Bhada-Tata 2012). In AFR countries, 78% was sent to open
dumps and 88% was landfilled (Hoornweg & Bhada-Tata 2012). 

More  recently,  several  countries  started  their  journeys  toward  more  responsible  MSW
management,  with  an  emphasis  on  increasing  resource  recovery  and  decreasing  waste
disposal. Countries with modest land territories showed exemplary results in achieving waste
management goals by transforming their disposal space shortage bottleneck into a driver for
the deployment of sustainable MSW management. Japan went under an 11% threshold of
MSW disposal rates by promoting new waste management incentives starting in 1970 (JESC
2014). South Korea decreased its landfill rate from over 90% in the 1980s to under 10%,
while its recycling rate increased to 80%  (WMR 2015). Germany reduced the number of
landfill  sites  from 50,000 in  1950  to  300 in  2016,  and  is  planning  to  recommission  all
remaining landfills  by 2022  (Greentumble  2016).  Belgium is  regarded as  one of  the  top
performers  in  waste  management,  with  75%  of  its  waste  being  reused,  recycled,  or
composted.  This resulted from the implementation of waste  management  plans  that  were
crafted 25 years ago (Greentumble 2016).

At the same time, the reliance on centralized MSW management architecture has been proven
to be inefficient by many scholars based on the experience of other countries. The increasing
MSW  amounts  require  the  expansion  of  the  waste  collection  fleets  and  extension  of
transportation journeys that contribute to traffic jams (Yukalang et al. 2017), local pollution,
and  road  deterioration  (Ejaz  et  al.  2010).  Increasing  MSW amounts  also  stimulate  the



deployment  of  new large  disposal  and incineration  facilities  to  replace  the  existing  ones
whose  capacities  are  being  rapidly  exceeded  (UN 2011).  These  factors  make  centralized
MSW management  expensive and unsustainable in  practice,  which  can also decrease the
resilience of cities and amplify risks related to public health and the environment (UN Habitat
2016).  The  option  of  shrinking  large  disposal  capacities  has  been  recognized  to  be  an
important world concern in the face of rapid urbanization (Yadav et al. 2017) (Figure 1(a)).

Various waste recycling technologies and initiatives have been adopted as alternatives to the
classical centralized strategies for waste disposal. Indeed, by considering MSW as a valuable
resource, new recycling technologies can generate electricity and useful heat  (Xiong et al.
2016), syngas and biodiesel (Wen et al. 2016), compost and liquid fertilizer (Wei et al. 2017),
and other by-products. In some cases, waste becomes an important alternative to address
resource scarcity, e.g., waste-to-energy (WtE) technologies that can generate electricity, heat,
and  biogas.  Such  technologies  have  been  considered  in  different  countries  to  overcome
energy production scarcity issues (Korai et al. 2017; Halder et al. 2015). To enable this multi-
resource  recovery,  the  classical  approach  to  MSW  management  that  consists  of  large
centralized  plants  located  in  the  city  periphery  is  more  likely  to  evolve  towards  a
management system with waste treatment facilities of smaller capacity integrated directly
into  the  urban  environment  (Xiong  et  al.  2016) (Figure  1(b)).  On  one  hand,  this
decentralization of waste treatment will ensure the minimization of waste collection areas,
transportation distances, and requirements for the transportation fleet by treating MSW at a
site closer to waste generation sources (WGS) and recovering valuable resources closer to the
final consumers. On the other hand, this decentralization will relieve the pressure on existing
centralized  landfill  infrastructures.  This  new  combined  waste  management  system  will
become integral  to  the  city  metabolism that  is  aimed at  eliminating  waste  and  pollution
resulting  from residents,  municipal  activities,  and  businesses.  An  urban-integrated  MSW
management framework will  further  contribute to mitigating climate change.  A relatively
modest  effort  toward  waste  source  segregation  and  recovery  can  lead  to  a  considerable
environmental  improvement  (Kayakutlu  et  al.  2017) and  even  conversion  of  the  waste
management system into a carbon sink (Menikpura et al. 2013).

While a wide range of waste management planning tools  (Morrissey & Browne 2004) and,
more specifically, decision-support tools (Vitorino de Souza Melaré et al. 2017) exists, they
are not adapted for current planning conditions and may not always accommodate planners’
concerns. Indeed, a better understanding of the factors related to multi-level centralized and
decentralized  waste  treatment,  resource  recovery,  and  associated  economic  outcomes  are
required  in  modern  planning  tools.  Additional  considerations  include  extended
environmental, social, and urban planning constraints (e.g., available land and transportation
limitations) and clear solution benchmarking. This is confirmed by the ongoing international
initiatives  for  the  development  of  digital  and  data-driven  management  systems,  e.g.,  in
Amsterdam (Fitzgerald 2016) and Singapore (Bhunia 2018). 

A decision-support methodology (DSM) is required to establish a more systematic long-term
system planning approach that capitalizes on the examples of the foremost countries in terms
of implementing MSW management strategies. The DSM must allow a successful transfer of
MSW management  practices  between  counties,  while  considering  local  peculiarities  and
constraints.  Extensive  work  is  still  required  for  the  development  of  coherent  MSW
management  solutions  in  an  urban  context  in  the  presence  of  multiple  stakeholders  and



decision factors (Kayakutlu et al. 2017). Thus, the focus of this paper is on the development
of a novel DSM for MSW recycling that is consistent with this analysis and the hierarchy of
MSW management measures defined by (DIRECTIVE 2008/98/EC 2008).

A detailed review of these recent advancements and their bottlenecks is provided in Section
2. In response to these bottlenecks, the paper addresses the  issue of establishing a sustainable
WtEMS  urban  architecture  based  on  MSW source  territorial  distribution.  It  does  so  by
developing a novel integrated DSM with a demonstration application and contributions along
the following three pillars:

(i) It  makes  an  important  advancement  toward  segregation  of  MSW sources  and
modeling  of  their  distribution  across  large  urban  territories.  The  proposed
approach  explicitly  defines  the  relationship  between  MSW  generation  and
explanatory variables based on different urban activities and their intensity across
large urban territories. This approach requires neither the collection of large data
amounts  nor  extended  surveys.  In  addition,  it  provides  MSW  estimations
depending on the evolution of the urban landscape defined by urban planners.

(ii) It proposes a methodology for WtEMS design optimization that considers multi-
level candidate locations (e.g., at the level of buildings, districts, and global cities)
for facilities combining various treatment technologies of different capacities. In
addition,  it  takes  into  account  not  only  specific  urban-planning  constraints  in
transportation flows (when waste can be transported only to one treatment site)
but also limitations in land-space occupation. The proposed methodology provides
the optimization schedule for MSW treatment facilities deployment over a large
planning  horizon,  alongside  optimal  waste  assignment  (i.e.,  transportation
schedule) for different time periods.

(iii) It  provides  an  extended  multi-criteria  framework  as  an  additional  filter  to
evaluate the compliance of the WtEMS design with economic, environmental, and
social  indicators.  This  evaluation  method  avoids  the  complexity  arising  from
multi-objective optimization accounting for these factors.

The  proposed  integrated  methodology  provides  guidance  to  decision-makers  to  identify
WtEMS with an optimal balance between centralized and decentralized facilities by selecting
optimal  technologies,  their  locations,  capacities,  and  waste  assignment.  A  tractable
optimization model provides an optimal solution for decision-makers in a reasonable time
and illustrates the trade-off between economic, environmental, and social factors.

The remaining sections of the paper are organized as follows. Section 2 provides an extensive
literature review related to the three key research pillars for sustainable WtEMS and analyses
existing  bottlenecks.  Section  3 outlines  an  integrated  DSM  for  sustainable  planning  of
combined centralized-decentralized WtEMS. In Section 4, the methodology is applied to the
analysis of a Singapore case study as an illustration. In Section  5, a critical analysis of the
proposed methodology is provided and future research directions are identified. Section  5
concludes with a synthesis and discussion of the main research outputs. 



a)

b)
Figure 1. Conceptual illustration of a MSW management system relying on a) centralized and

b) combined centralized-decentralized WtEMS configurations.

2. Expanded literature review

This section summarizes the main research contributions presented in the introduction by
enumerating  the  major  bottlenecks  and  challenges  for  each.  The  analysis  relies  on  the
findings of the previously conducted extensive review of existing DSM, such as (Vitorino de
Souza Melaré et al. 2017). It also integrates recent bibliographical references in the area of
MSW modelling and prediction, management system optimization, and solution assessment. 

The major challenges related to MSW modeling concern the prediction of MSW output based
on either the statistics of MSW generation or construction of complex prediction models
relying on an available (although extended) number of input parameters (Table 1). The first
group of these type of models, such as the one proposed in (Abbasi & El Hanandeh 2016),



struggles to capture changes in future MSW trends since their estimations are based on MSW
historical data. They also do not account for the impact of other explanatory variables, such
as  taxes.  The  second  group  of  prediction  techniques  involves  big  data  analytics  and
implementation of extended surveys to perform spatially-distributed predictions (Keser et al.
2012), or reliance on advanced prediction models that integrate a large number of explanatory
variables  (Li  et  al.  2011).  However,  the  relationship  between  MSW  generation  and
explanatory  variables  is  not  usually  explicitly  identified.  In  view of  this,  additional  data
collection (Keser et al. 2012; Li et al. 2011; Lebersorger & Beigl 2011) and model training
(Abbasi & El Hanandeh 2016) may be required to perform MSW estimations for predictions
over different time horizons. In addition, only a limited number of studies, such as (Keser et
al.  2012),  have  attempted  to  provide  global  estimations  of  MSW  outputs  or  other
subcategories, or to model MSW distribution for urban territories.

Table 1. Detailed review of the recent MSW prediction approaches.
Bibliographical
reference

Waste category Tested approaches Modelled
period  and
granularity

Explanatory variables (1) Case study

(Keser  et  al.

2012)

MSW Spatial auto regression
(SAR)  and
geographically
weighted  regression
(GWR) models 

Total
generation
for  1-year
period
(2000)

Population  density,  higher  education
graduation  ratio,  infant  mortality  rate,
number  of  facilities  in  small  organized
industrial  districts,  agricultural  production
value, asphalt-paved road ratio in rural areas,
unemployment  rate,  annual  average
temperature, and annual rainfall 

Turkey
divided
into  81
provinces

(Li et al. 2011) - Kitchen waste
-  Recyclable
materials
- Other wastes

Statistical  analysis,  a
sampling  survey  and
the Analytic Hierarchy
Process

5  years
(2004  –
2008),
yearly
time step

Activities:  maintenance,  subsistence  and
leisure
Social  parameters:  floating  population,  non-
civil  servants,  retired  people,  civil  servants,
college  students  (including  both
undergraduates  and  graduates),  primary  and
secondary students, and preschoolers

Beijing,
China

(Lebersorger &

Beigl 2011)

Commercial
and  household
waste

Explorative data 
analysis and
a multiple regression 
analysis

Total
generation
for  1-year
period
(2001)

23 main variables divided into groups: Private
households  and  demographic  variables,
economic  variables,  integrated  waste
treatment  facilities  (local  solid  fuel  heating
and  composting),  general  indicators,
describing regional structure 

Styria
region,
Austria

(Abbasi  &  El
Hanandeh

2016)

MSW Support vector 
machine, adaptive 
neuro-fuzzy inference 
system, artificial 
neural network and k-
nearest neighbors

5  years
(2015  –
2020),
monthly
time step

Amount of waste generation Logan
city,
Australia

(Adamovic  et

al. 2017)

MSW General regression 
neural network and 
Structural break 
general regression 
neural network 
models

2  years
(2011  –
2012),
yearly
time step

GDP,  urban  population,  average  household
size, tourism expenditure, unemployed rates,
household  expenditure,  domestic  material
consumption,  population  density,  industry
value  added,  population  from  20  to  65,
alcohol consumption and co2 emission

44
countries
(OECD
and  non-
OECD
countries)

(Chen  et  al.

2012)

MSW  divided
into  recycled,
industrial  and
domestic waste

System dynamics 
prediction model

40  years
(2005  –
2045),
five-year
time step

total  population,  birth  rate,  industrial  gdp,
industrial growth rate

Singapore

(1) The input variables used in the prediction approaches to estimate waste generation.

The  major  recent  developments  involved  solving  the  problems  of  facility  allocation,
technology selection, and capacity expansion (Table 2). By extension, these studies can be



naturally connected to MSW modelling since optimization models require inputs related to
the amounts and location of generated wastes and to assessments of the sustainability  of
MSW management  strategies.  However,  current  optimization  approaches  usually  rely  on
statistical data related to a specific case study.

Table 2. Research topics addressed in recent bibliographical references.
Reference Research topics as core pillars of DSM

Waste
modeling  and
prediction

Optimization Solution
assessment

Vehicle
routing

Facilities
location

Technologies and
connection to the
end user

Size/capacity

Realistic
representation
of  the
amounts  and
types  of
generated
waste  in  a
given territory

The  amount
of waste to be
transported;
vehicle
routing and 
fleet

Selection  of
optimal
location for a
treatment
facility  for  a
given number
of  candidate
locations 

Selection  of
optimal treatment
technologies  and
energy  /material
output

Expansion  of
facility  for
the  long-time
planning
horizon,
assignment to
different
treatment
technologies

Complex
assessment
framework taking
into  account
economic,
environmental
and  social
considerations

(Mirdar Harijani et al. 2017) X X X X

(Yadav et al. 2017) X X

(Lee et al. 2016) X X(1)

(Rentizelas et al. 2014) X X X X(2)

(Dai et al. 2011) X X X

(Minciardi et al. 2008) X X

(Yu et al. 2012) X X

(Santibanez-Aguilar et al. 2015) X X
(1) The facility location problem is approximated by a waste assignment problem where CAPEX represents plant
opening cost.
(2) Environmental impact is accounted for in the objective function through CO2 emissions monetization.

Table  3 summarizes  the  key  details  of  the  reviewed  optimization  approaches  for  MSW
management system deployment.

In most of the papers reviewed, except (Mirdar Harijani et al. 2017), the optimization models
did  not  include  a  selection  of  waste  treatment  technology  for  each  candidate  site.  Each
candidate site was predefined for the deployment of a specific waste treatment technology,
e.g.,  incineration or biomass treatment.  Although this  can be explained by specific  urban
constraints and requirements, it restricted exploration of the types of technologies considered
for deployment at each site. In addition, many studies (Mirdar Harijani et al. 2017; Rentizelas
et al. 2014; Dai et al. 2011), did not distinguish between centralized and decentralized waste
treatment facilities. This oversight is of note because the maximum treatment capacity for
decentralized facilities can be considerably different (e.g., up to 106 times smaller) than the
maximum  capacity  of  centralized  facilities.  Therefore,  decentralized  deployment  implies
different  company  sizes  and  business  models,  which  generate  different  investments  and
operation costs per ton of waste treated in comparison with the more sizeable centralized
facilities.



Table 3. Detailed review of selected deployment approaches.
Bibliographical
reference

Aim  of  the  optimization
approach and case study

System specific focus – waste categories and
waste treatment technologies

Objective  function  and
additional  assessment
indicators 

Deployment
horizon

(Mirdar
Harijani  et  al.

2017)

NPV  optimization  of
recycling  and  disposal
network in Tehran (Iran)
Waste  generator  clustering
around collection points or
22 municipalities centers.

Waste categories: plastic, glass, paper, metal,
organic,  others.  Transformation  into
recyclable material (plastic, paper and metal),
electricity, compost fertilizer. 
Technologies: material recovery facilities, 
anaerobic digester, composting facilities, 
landfill with gas recovery system, advanced 
thermal treatment (pyrolysis and gasification).
Off-site centralized facilities of important 
capacity (about 250 – 500 tons/day)

Revenues  (output  generation
+  gate  fees  for  waste
processing)
CAPEX
OPEX
Environmental cost

Medium  –
5-year
planning
horizon

(Yadav  et  al.

2017)

Selection  location  for
transfer  station  for  waste
collection
Hypothetical  urban  center
of 192 km2 and 1.8 million
of habitant in 2035

Waste categories: compostable, recyclable and
landfill.
Accounts  for  different  collection  schedules,
transportation capacities of public and private
companies  from residential,  commercial  and
institutional sources.

CAPEX  of  transfer  station
deployment
OPEX for  transportation  and
operation  of  existing  and
deployed facilities

Lon-term  –
20-year
planning
horizon

(Lee  et  al.

2016)

Optimization of waste 
transfer, collection truck 
management strategies, 
optimal locations for new 
waste treatment facilities
Hong Kong (waste transfer 
to China is a possible 
feasible solution)

Technologies: incineration and landfills CAPEX (incinerator and 
warehouse)
OPEX (operational cost in the
incinerator and landfill, 
transportation cost from
each two points, cost of 
moving replacement truck to 
waste collection point and 
incinerator, truck cost) 
Revenues (from incinerator)

Short-term –
1-year
planning
horizon

(Rentizelas  et

al. 2014)

NPV of WtE facilities and
associated  electricity  grid
and  heating/cooling
infrastructures deployment
Thessaly district,
Greece

Biomass-type waste from MSW and 
agricultural sources related to wheat straw, 
maize, cotton stalks and prunings from olive 
and almond trees.

CAPEX 
OPEX  (related  to  the  power
plant,  the  supply  chain  of
MSW  and  biomass,  the
district  heating  and  cooling
(district energy) network with
the  connection  to  the
customers,  as  well  as  the
electricity  transmission  line
and connection to the grid)
Revenues 

Long-term –
20-year
planning
horizon

(Dai  et  al.

2011)

Waste  generation
prediction and expansion of
the  existing  composting
and  incineration  facilities
in Beijing, China

Technologies: landfill, composting and 
incineration.

CAPEX
OPEX
Revenues 

Medium  –
5-year
planning
horizon

(Minciardi  et

al. 2008)

Waste  assignment  to
different  waste  treatment
facilities in Genova, Italy

Waste categories: paper, plastic, glass, wood, 
organic, metals, inert matter, scraps, textiles
Technologies: landfill, incineration plant, 
plant for organic materials treatment and 
refuse derived fuel plant

OPEX
Revenues
Unrecycled waste
Sanitary  landfill  disposal
Environmental  impact
(incinerator emissions)

Short-term –
1-year
planning
horizon

(Yu et al. 2012) Waste management for the
abstract case study of three
cities in China

Waste categories: glass and other types of 
waste
Technologies: glass recycling plant, 
incineration and sanitary landfill

OPEX  (collection,
transportation,  recycling,
treatment and disposal costs) 
Risks  associated  to  waste
management  procedures  and
technology used

Medium  –
5-year
planning
horizon

(Santibanez-
Aguilar  et  al.

2015)

Waste management for the
case study of five cities in
Mexico,  each  one  divided
into 10 subzones.

11 waste categories including MSW, brown 
glass, paper, aluminum and non-recyclable 
waste.
Technologies: material recycling, thermal and 
chemical recycling, pyrolysis, incineration, 
pyrolysis and gasification, plasma arc 
gasification, conventional gasification

Net profit (Revenues, CAPEX
and OPEX)
Amount of processed waste
Total number of fatalities

Short-term –
1-year
planning
horizon



Another  bottleneck  is  related  to  the  way  environmental  and  social  impacts  of  MSW
management  systems  are  integrated  as  part  of  the  DSM.  To  avoid  compromising
computational  tractability,  multi-objective  optimization  may  require  aggregating  several
objectives into one function, either by converting environmental impacts into an economic
unit of global optimization objective  (Mirdar Harijani et al. 2017) or by using a weighting
approach to aggregate social risk  (Yu et al. 2012). Despite allowing easy aggregation, this
method may underestimate  the  weights  or  prices  of  different  objectives  and “hide”  their
effects  on  optimization  results.  Another  way to  illustrate  the  optimization  trade-off  is  to
perform a classical multi-objective optimization. This may imply greater complexity for the
optimization model and can drastically increase the computational burden in comparison with
single-objective optimization. This requires a range of assumptions or simplifications to deal
with the computational complexity that arises, e.g., by adopting a reference point (Minciardi
et  al.  2008) or  obtaining  Pareto  fronts  through  optimization  of  individual  objectives
(Santibanez-Aguilar  et  al.  2015).  In  this  view,  the attempt  to  incorporate  LCA, or  social
oriented criteria, into the optimization model poses additional challenges to it, such as the
introduction  of  a  greater  complexity  into  the  problem,  tractability,  and  the  difficulty  of
aggregating  different  objectives  into  one  term.  To  date,  no  multi-criteria  assessment
framework  based  on  economic,  environmental,  and  social  indicators  exists  to  assess  the
sustainability of an MSW management system. 

3. Integrated Decision Support Methodology (DSM)

The paper  proposes  an  integrated  DSM by addressing  the  aforementioned challenges.  In
addition, a promising solution to overcome the limitations of individual approaches lies in the
combination of modeling, optimization, and assessment frameworks for the development of
the  extended  models.  Figure  2(a)  depicts  the  DSM  flowchart  composed  of  three  main
modules:  (1)  the waste  modelling and prediction,  (2)  optimization of  WtEMS, and (3)  a
multi-dimensional  assessment.  In  Step  1,  the  MSW  sources  are  categorized  and  their
distribution  across  the  urban  territory  is  modelled.  By  relying  on  the  projections  for
explanatory  variables,  e.g.,  demographic  and  economic  conditions,  this  module  provides
MSW source predictions and helps quantify uncertainties in MSW generation for all planning
horizon durations (Figure 2(b)). These MSW output scenarios, as well as data related to the
abstract models of waste treatment technologies, are used as input data in Step 2 focusing on
WtEMS optimization. The optimization module encompasses all related technical and cost
parameters  and,  guided  by  the  optimization  objective,  aims  at  finding  the  optimal
configuration for the WtEMS. After the optimization module yields an optimal deployment
plan,  Step  3  evaluates  it  using  a  multi-criterion  assessment  framework.  The  assessment
module uses the base line MSW treatment strategy typically represented by the current MSW
treatment  with  incineration.  The  waste  treatment  strategy  assessment  can  be  done under
projections of future operational conditions, e.g., resource costs or specific urban planning
conditions, and can lead to the update of the specific optimization model constraints. In this
view,  projections  of  economic  conditions  and  urban  planning  strategies  may  lead  to
adjustments of  the optimization constraints  related to  maximum available  local  space for
waste technology deployment in order to improve the final sustainability key performance
indicator (KPI) of the global WtEMS solution. Eventually, after multi-criteria assessment of



different WtEMS and comparison with benchmark scenario is done, optimal WtEMS designs
with the associated deployment schedule can be selected.

a)

b)

Figure 2. Integrated DSM for WtEMS design: a) methodology flowchart and b) WtEMS
design procedure.



3.1. MSW distribution across urban territories 

Several  attempts  have  been  made  to  narrow  waste  quantification  by  categories.  These
attempts  are  mainly  based  on  long-term  campaigns  of  waste  sampling  covering  large
territories and interviews at various stages of the existing MSW management systems. The
general tendency of MSW segregation by category is summarized in  (Hoornweg & Bhada-
Tata 2012) that discussed similar waste proportions in different regions across the globe.

However, the waste management system is a spatial problem requiring not only knowledge of
the  global  amounts  of  MSW generated  in  a  territory,  but  also  an  understanding  of  the
distribution of these sources across this territory, which is also referred as the “geography of
waste”.  Indeed, WGS quantification and distribution  impact not only the choice of waste
treatment technologies, but also waste collection and transportation, e.g., fixed routines for
regularly produced waste of large amounts, infrequent schedules for seasonal waste, and upon
request collection for irregular and bulky waste types  (Nilsson & Christensen 2011). The
waste  management  system of  each  territory  is  defined  by  its  administrative  subdivision
responsible for performing, organizing (e.g., hiring private companies) and supervising waste
management profiles. For example, waste management profiles have been found to differ by
metropolitan  areas  regrouped  into  regions  in  Turkey  (Goren  &  Ozdemir  2010),  by
municipalities in the Metropolitan Region of São Paulo (Brazil) (Jacobi & Besen 2011), and
by urban districts or communes in the municipality of Bamako (Mali)  (Kéita 2001).  In this
view,  the  waste  management  follows  the  municipal  ordinances  for  collecting  waste
management taxes and prescribing collection routes, frequency, bin systems, etc. (Nilsson &
Christensen 2011).

However, WGS are usually non-uniformly distributed across urban territories depending on
residential, commercial, office, industrial and mixed activities subzones, illustrated in Figure
3(a),  with different  waste  distribution  proportions  for  each waste  category.  The  MSW is
broken down into categories and analyzed to determine its sources (i.e., activities subzones)
and  associated  factors  affecting  its  waste  generation  and  distribution  (Figure  3(b)).
Subsequently,  the  activities  subzones  are  analyzed  and  linked  to  specific  datasets
characterizing those subzones. Apart from industry data and population census, historical data
on waste generation and distributions will be required for modeling and validation purposes.
Another reason to model the waste distribution by administrative subzones lies in the typical
availability of datasets by these administrative subdivisions.



a)

b)

Figure 3. MSW analysis: a) abstract illustration of urban territory subdivision on the activities
and administrative subzones and b) steps for MSW profiling. 

The first step to determine the MSW distribution starts with profiling the subzones and waste
types for a better understanding of associated explanatory variables. This information can
then be used for a weight calculation for each waste type in each subzone. In this view, it is
ideal to identify the breakdown of activities in each subzone for accurate modeling of waste
distributions, e.g.,  on manufacturing, retail and construction, and their intensity. However,
since  such  specific  information  is  usually  unavailable,  more  generalized  methods  and
assumptions can be used to obtain waste distributions.



Figure 4. Framework for modeling of MSW distribution across urban territories.

The procedure for waste distribution modeling across territories is as follows:

1. MSW profiling. Following the example of MSW profiling in Figure 3(c), MSW must
be analyzed and split into categories defined by scenario,  s. These categories can be
related to the global MSW categories identified and quantified for the whole urban
area.  The  possible  activities,  responsible  for  the  generation  of  each  of  the  waste
categories in urban territory, along with explanatory variables, must be identified.

2. Activities subzones. The urban territory of interest must be split into the activities
subzones,  n. This split can be supported by the data issued from urban development
strategies (Figure 3(a)).

3. Administrative  subzones. The  division  of  the  same  urban  territory  into
administrative subzones, i, according to urban governance structure, e.g., by districts
(Figure 3(b)), must be performed.

4. Administrative  subzones  classification. Each  administrative  subzone  must  be
classified by the occupation fraction of each urban activity. The framework proposes
the classification into residential,  industrial,  commercial,  natural,  mixed, and other
types of activities groups. 

5. Weight  factors  calculation. The  subzone  layer  calculates  the  weightage  of  each
relevant land occupation by different urban activities. For example, under domestic
waste,  the relevant  subzones  are  residential  subzones.  In  this  view,  the residential
population  in  each  subzone  will  be  weighed  against  the  total  residential  subzone
population to obtain a weight or fraction of the domestic waste generated in each
subzone. The sum of all subzones weights is equal to1.

a. Domestic Waste



Domestic  waste  is  generated  from only  residential  areas  and  the  population  is
chosen  as  the  weightage  factor.  The  domestic  subzone  weightage  (DSW)  for
domestic waste is calculated based on its residential population:

DSW i=
Populationi

∑
i

Population i

, for i∈C
(1)

where C is the set of subzones i with residential classification.

Subzones that do not have residential occupations have been assigned with a zero
weightage for domestic waste.

b. Non-Domestic Waste

For  non-domestic  waste,  the  intensity  of  activities  has  been  assumed  to  be
proportional to the territory occupied by this activity, i.e., more land space leads to
greater intensity of the activity or business transactions. In this view, the land area
is  used  as  the  weightage  factor.  However,  commercial  spaces  are  likely  to  be
denser in terms of their activities and, thus, in specific waste generation per land
area than the mixed land categories. To take this into account, a modifier matrix is
introduced  to  calculate  the  effective  area  matrix  (EAM) as  a  weightage  factor
appropriately:

EAM i , s=M s , n∙ A i ,n (2)

where  s is  the scenario defining MWS categories  under  consideration,  n is  the
number of activities/purpose selected for subzone  i classification.  The land area

matrix,  A i ,n ,  is calculated by multiplying an occupation fraction by the land
area  of  the  corresponding subzone.  In  case  additional  data  is  available  for  the
explanatory  variables  influencing  MSW  generation,  the  waste  output  can  be

adjusted through the Modifier matrix, M s ,n . This possibility is discussed further
in Section 4.1. 

The non-domestic subzone weightage (NDSW) for scenario,  s,  in subzone,  i,  is
calculated as:

NDSW s , j=
EAM i , s

∑
i

EAM i ,s

(3)

6. Waste distribution. By using global records on the amounts of MSW categories and
weight  factors  for domestic  and non-domestic  MSW, the actual  waste  distribution
across urban territories is calculated.



3.2. Optimization of waste management

3.2.1.Overview and assumptions for the optimization model 

Figure  5 presents  the  conceptual  superstructure  for  WtEMS deployment  including WGS,
energy, and material flows exchanged in the urban territory and surrogate model of waste
treatment technology.

The assumptions underlying the optimization model are as follows:

- The term “on-site machine” refers to the decentralized facilities (DF) of smaller capacity
located in the proximity of each waste source. Conversely, the term “off-site machine”
refers to the centralized facility (CF) of larger capacity treating waste flows transported
from different WGS.

- Each WGS, as well as the candidate site for deployment, is abstracted as a geographical
(waste generation and treatment) node. The distance between a WGS and a candidate site
(DF or CF) is calculated based on the longitude and latitude coordinates by applying the
triangle location algorithm (Ivis 2006).

- All candidate locations can host various waste treatment technologies targeted by the
decision-maker. The on-site installed capacity has to be such that the on-site installed
machine  can  process  all  waste  generated  locally  without  transportation  of  any
outstanding waste to off-site facilities to limit transportation flows.

- The capacities of on-site and off-site Waste Treatment Facility (WTF) cannot be reduced
upon deployment.

- The optimization model has been developed using global planning perspectives and does
not account for economic relationships between WtEMS stakeholders. In this view, no
disposal cost or tipping fees have been considered in the model.

- The  optimization  model  for  deployment  of  MSW treatment  infrastructure  has  been
formulated conceptually and independently from the MSW source type considered for
infrastructure deployment. In this view, the theoretical framework can deal with various
types of MSW, e.g., paper and cardboard, horticultural waste and plastic, and associated
treatment technologies as model inputs.



Figure 5. Conceptual superstructure of WtEMS.

3.2.2. Optimization model formulation

The optimization model has been formulated as a mixed integer linear programming (MILP).
The  objective  is  to  minimize  the  “absolute”  expenses  over  the  long-term  period,  T,

represented as the differences between the total  costs and the revenues,  PRV ,  obtained
from the resources recovery (Eq. (5)):

min
x, y

(CT − PRV ) (4)

PRV =∑
t=0

T
1

(1+r )
t ∑

I
∑

A
∑

R

pr
0∙ λa , r

0 ∙ qi ,t

(5)

By taking into account the aforementioned installation cost,  CCAPEX , and operation cost,
COPEX  , the total WtEMS cost, CT , over a period, T , is defined as the summation of

all relevant costs discounted over lifecycle period,  T , to obtain the net present value of
future cash flows: 



CT=∑
t=0

T
1

(1+r )
t [CCAPEX t+COPEXt ]

(6)

The optimization problem accounts for the installation cost of WTF for which capacity can be
progressively  deployed  during  a  long-term  planning  horizon  (from  several  years  up  to
decades).  For more convenience, the investment cost has been divided into two terms: (i)
initial investment cost at time t =0 and (ii) deployment cost for the remaining future planning
horizon for t = 1,…,T:

CCAPEX t=∑
J
∑

L
∑

A

ca , l ∙
0 xa , j , l ,t , t=0 (7)

CCAPEX t=∑
J
∑

L
∑

A

ca , l
0 ∙ za ,l ∙ ( xa , j , l ,t − xa , j ,l , t − 1) , t=1, …,T (8)

where

za ,l=l EoSa− (l− 1 )
EoSa (9)

The EoS factor has been also integrated in Eqs. 9 – 11 to account for the reduction in variable
costs. It is of note that the EoS factors for different costs can vary for different industries and
types of plants. However, it has been concluded that many plants exhibit substantial savings
due to their increased capacities (Haldi & Whitcomb 1967). For the purpose of this study, the
same formulation of EoS based on the capacity expansion has been assumed for fixed and
variables costs.

The operational  cost,  COPEX t ,  encompasses  transportation,  CTRSt ,  land use,  CLDt ,

operation  and  maintenance,  (O&M)  COMt ,  manpower,  CMPt ,  cost  of  additional

resources  required  for  waste  recovery  (e.g.,  water  and  electricity  inputs),  CRCt ,  and

pollution cost CPLt :

COPEX t=CTRSt+COMt+C LDt+CMPt+CPLt +CRCt , t∈T . (10)

The  transportation  cost,  CTRSt ,  is  proportional  to  the  transportation  distances  and  the
amount of waste allocated to each technology installed at candidate site, j:

CTRSt=365 ∙ c1∑
I
∑

J

D i , j ya ,i , j , t ⌈
qi , t

k2 ⌉ , t∈T .
(11)

Expenditures involving O&M, land use, and manpower are calculated by using Eq. 12, 13
and 14, respectively. For simplicity, the EoS factor for these variable costs has been expressed
as a function of installed capacity:



COMt=∑
A

za ,l ∙ ca
2∑

L
∑

J

xa , j , l ,t , t∈T (12)

CLDt=∑
L
∑

J
∑

A

za,l ∙c l , a , j
3 ∙ xa , j , l ,t , t∈T (13)

CMPt=∑
L
∑

A

za ,l ∙ cl ,a
4 ∑

J

xa , j ,l ,t , t∈T (14)

The pollution cost CPLt  Eq. 15 consists of two parts: (i) the amount of waste transported
from the WGS to WTF and (ii) the emissions generated by the waste treatment activities: 

CPLt=c5∙365 ∙ e1∑
I
∑

J
∑

A

Di , j y a ,i , j ,t ⌈
q i ,t

k2 ⌉+ea
0∑

I
∑

J
∑

A

ya ,i , j ,t (qi , t −ut
plus )>, t∈T

.

(15)

It is of note that the pollution cost integrated in the  COPEX  can account for the specific
economic measures for the reduction in CO2 emissions adopted in different countries.

Finally,  during waste recovery,  WTF consumes energy and materials  (e.g.,  electricity and

water). The expense for the consumption of these resources is monetized with CRCt  and is
proportional to the quantity of treated waste: 

CRCt=∑
R

pr
0∑

I
∑

J
∑

A

ma ,r
0 ∙ ya ,i , j ,t (qi , t −ut

plus ) (16)

Equations (15) and (16) define the costs of pollution and resource consumption and introduce

non-linearity into the optimization model. To linearize it, additional variables  +ut
plus  and

ut
minus  that  are  introduced in  Eqns.  (18)  and (19)  are  used  to  determine  which  of  the

quantity of generated waste,  qi , t , or the capacity of the system, x j ,l , t , is smaller. The
constraint  in  Eq.  (17)  ensures  that  the  waste  from WGS,  i,  assigned  and  transported  to
technology,  a,  at  candidate site,  j,  at period,  t,  cannot be greater that the capacity of this

technology, i.e., ∑
i

q i ,t −∑
J
∑

L

x j ,l , t  is equal to zero when qi , t>x j , l ,t :

∑
i

q i ,t −∑
J
∑

L

x j ,l , t=u t
plus

−u t
minus ,t∈T (17)



0 ≤u t
plus≤ M vt , t∈T (18)

0 ≤u t
minus≤ M ( 1− v t ) , t∈T (19)

In addition, the amount of waste sent to a given treatment facility cannot be greater than the
installed capacity: 

∑
I

ya , i , j ,t q i ,t ≤ ka
0∑

L

xa, j , l ,t , a∈ A , j∈J ,t∈T (20)

The waste generated at WGS i  cannot be sent to a candidate site j  where the WTF has
not been installed yet. Also, to limit the number of transportation flows, the waste from one
WGS, i, can be transported to one and only one candidate site:

 

ya ,i , j ,t ≤ xa , j ,l , t ,l=0, a∈ A , i∈ I , j∈ J ,t ∈T (21)

∑
J

ya , i , j ,t=1,a∈ A ,i∈ I , j∈ J ,t∈T (22)

Equation (23) shows that the capacity deployment of technology, a, at each candidate site, j,
is progressive. Equation (24) ensures that the installed capacity cannot be reduced throughout
the time: 

xa , j ,l −1, t ≤ xa , j ,l ,t , a∈ A , j∈J ,l∈L , t∈T (23)

xa , j ,l ,t −1≤ xa , j ,l , t , a∈ A , j∈J ,l∈L , t=1,…,T (24)

It should be noted that the land surface available in each candidate site and its price can be
defined by the decision maker in the input parameters as the function of maximum possible
installed capacity. For each technology type,  a, and at each time step,  t, the total installed
capacity cannot exceed the limitation of land space reflected by the total number of possible
waste treatment units which can be hosted by each candidate site, j:

∑
L

xa , j ,l , t ≤ K a , j , a∈ A , j∈ J , t∈T (25)



3.3. Multi-dimension assessment of WtEMS 

Although  the  economic  performance  remains  dominant  for  WtEMS design  optimization,
other key performance indicators (KPI) must be taken into consideration in the selection of
the optimal WtEMS architecture. Until now, the amount of CO2 emissions generated by the
new waste treatment strategy played the role of this additional non-economic KPI able to
evaluate WtEMS sustainability.  However,  with the progressive shift  toward the combined
centralized-decentralized  strategy,  WtEMS  becomes  an  inherent  part  of  the  urban
environment and warrants a more extended multi-dimensional assessment framework. 

The proposed multi-dimensional framework supports the decision-maker in evaluating the
WtEMS optimality from the point of view of:

- Deployed  capacity. The  technological  specifications  of  waste  treatment  technologies
allow their  deployment  by unit  blocks  of  predefined capacities.  In  this  regard,  large
centralized facilities are typically composed of “building blocks” of several dozens or
hundreds of tons per day capacities. Under some conditions, the optimization model can
lead to an important capacity over-deployment to cover the total MSW generation. This
over-deployment  can  create  undesirable  “lock-in”  effects,  when  the  large  capital
investments  but  relatively  low  capital  and  operating  costs  can  push  higher-valued
mechanisms  of  waste  recycling  (e.g.,  DF)  out  of  the  market  (WEF  2016).  The
effectiveness of capacity usage can be quantified through the capacity utilization rate
(Mahadevan 2007) or over-deployment rate as follows:

-

u=1 −
∑

t
∑

I

q i ,t

K Σ

(26)

where KΣ  is the total deployed waste treatment capacity. The parameter, u , takes

its value from the range of  [ 0 −1 ]  and tends to zero with increasing capacity usage
effectiveness. It is noteworthy that, at the same time, the over-deployment rate represents
a reserve capacity that can be useful to deal with uncertainties in waste generation.

- Reserved  land.  Land  use  required  for  the  waste  treatment  facilities  deployment  can
become a critical asset not only in the context of land-constrained territories, such as
Singapore and Hong Kong, but also large mega-cities. Indeed, efficient land allocation
between  municipal  activities  represents  a  major  challenge  in  the  context  of  rapidly
growing cities (Ichimura 2003). In this regard, the decision-maker must be able to select
WtEMS in order to avoid large land occupation at one candidate location and ensure the
optimal  dispersion  of  waste  treatment  capacities  across  urban territories.  Indeed,  the
capacity  dispersion  can  offer  important  advantages.  The  spatial  spread  of  WTF  can
minimize potential risks due to facility failures, ensure a presence of WTF in different
urban districts, and provide a uniform waste distribution across all urban territories. To
evaluate this capacity dispersion, the indicator of urban fragmentation index (Demetriou
2014) is converted into a capacity-land fragmentation factor as follows:



F=

∑
J
∑

A
∑

L

ka , j
Σ ∙ s j ,a , l

2

KΣ ∙ S2

(27)

where s j . a ,l  is the land surface occupied by unit, l, of technology, a, at candidate site,

j.  Variable  ka , j
Σ  is  the total  waste treatment capacity of technology,  a,  deployed at

candidate site,  j, and  S is the total surface of case study. Variable  F  takes its value
from the range of [ 0 −1 ]  and tends to zero in case of high capacity-land fragmentation
across urban territories.

Of note, this KPI equips the decision-maker with information regarding land occupation
required  for  WtEMS deployment.  Its  values  must  be  analyzed  individually  for  each
particular urban territory, since the decision-maker can aim for low or high capacity-land
fragmentation for different urban situations. For example, for dense or land-constrained
areas, it can be assumed that a big land portion, i.e., for CF, can be inconvenient. The
more feasible alternative is instead to have more dispersed land occupation, i.e., with DF,
when the KPI of land-capacity fragmentation will decrease. However, a small KPI may
nonetheless generate urban planning challenges since it will imply the need to earmark
numerous lots of small land parcels in the city. In this view, the final analysis about the
suitability of the WtEMS design based on this KPI must involve urban planners. 

- Pressure on the transportation network. Another important KPI concerns the pressure
exerted  by the WtEMS on the  existing urban transportation  system.  Indeed,  detailed
evaluation and optimization of the waste transportation routine is typically performed
after the problem of WtEMS capacity allocation. The transportation cost is considered in
the WtEMS capacity allocation problem; however, this does not enable evaluating the
pressure applied by the waste transportation fleet on the urban mobility network. In this
view, the additional KPI on the waste transportation fleet has been included in the multi-
dimensional  assessment  framework.  The  pressure  on  the  transportation  network  is
evaluated through an average number of trucks per day required to transport the MSW
from generation source, i, to candidate site, j. It has been calculated based on the results
from the optimization model regarding the waste assigned from WGS to WtE facility by
using Eq. (11). This indicator gives a first approximation about the fleet size required for
waste  transportation;  however,  the  number  of  trucks  can  be  further  optimized  with
geographical information system models for waste collection.

- Global Warming Potential. A carbon emission tax is included in the optimization OPEX
for the process and transportation impact. However, pollutant emissions may originate
from other waste treatment related processes, e.g., electricity and material consumption,
which  are  not  considered  in  the  economic  model.  In  addition,  carbon  value  can  be
defined based on different economic mechanisms and different criteria across countries.
Indeed,  one  of  the  major  bottlenecks  of  a  carbon  tax  is  related  to  the  difficulty  of



estimating  the  real  costs  of  carbon  emissions  for  the  environment.  The  amount  of
equivalent pollutants from different MSW management strategies was evaluated in terms
of  their  global  warming  potential  in  tons  of  CO2 equivalent  emitted  throughout  the
system lifecycle under consideration:

GWP=365 ∙∑
T
∑

J
∑

A

k a , j , t ∙GWPa
treat

+∑
T
∑

I
∑

J
∑

A

⌈
ai , j ,a , t

k2 ⌉ Di , j ∙GWPtransp (28)

where ka , j , t  is the waste treatment capacity of technology, a, deployed at candidate site, j,

at time period, t. Variable ai , j , a ,t  is the amount of waste transported from WGS, i, to the

technology,  a,  located  at  candidate  site,  j,  per  time  period,  t.  Variables  GWPa
treat  and

GWPt ransp  are the amounts of equivalent CO2 emissions associated with operation of waste
treatment technology, a, and waste transportation, respectively.

As  mentioned  in  Section  3.2.,  these  factors  are  already  indirectly  accounted  for  in  the
optimization  model  through  cost  functions,  i.e.,  the  technology  unit,  land  rental,
transportation and emission costs.  However,  the associated prices  cannot  fully  reflect  the
importance of these factors. For example, land rental reflects the actual land value but does
not allow the direct evaluation of land scarcity. The transportation cost provides estimations
of transportation fleet  maintenance and fuel cost  but  does not provide estimations of the
pressure exerted by the waste transportation fleet on urban mobility. Therefore, in assessing
the  WtEMS  optimality,  the  decision-maker  needs  to  assess  these  additional  factors
independently from the purely economic-based optimization. To this end, this paper proposes
a  multi-dimensional  assessment  framework  for  the  decision-maker  after the  optimization
model has identified the economically-optimal solution.

4. WtEMS in Singapore – waste distribution modeling, system deployment
optimization, and design evaluation

This section provides a demonstration of the complex integrated methodology presented in
Section 3. It mirrors each subsection to present the outputs and analysis for Singapore based
on publicly available information for MSW distribution modeling, WtEMS optimization, and
multi-criterion assessment.

4.1. MSW distribution modeling

4.1.1. Urban area profiling and MSW distribution results

By relying on Singapore’s 2011 land-use plan (URA 2013) that shows subzone activities with
the administrative subdivisions of Singapore, the island activities have been classified into
five different categories:  Residential  (R),  Nature (N),  Commercial  (C),  Industrial  (I),  and
Other (O) (Figure 6). The “Other” category consists of special use, infrastructure and areas



reserved for further development. As shown in Figure 6, certain subzones can fall into more
than one category due to their diverse land use; such subzones are labeled as Mixed (M).

Figure 6. Singapore administrative subzones classification.

The assignment of land subzones to specific categories (e.g., residential, industrial) has been
done based on a detailed review of all subzone activities, in addition to the (URA 2013) map
that gives a broad and simplified view and the particular assumptions of the land space these
activities occupy. In other words, to some extent, all subzones will include residences, parks,
infrastructure  installations,  and  businesses,  which  makes  all  subzones  mixed  by  default.
However, the goal of this paper is to make a first step toward a “geography of waste” concept
and to model waste distributions only from the major waste contributors in each subzone. To
identify dominant activities in each subzone, an occupation threshold has been fixed. If land
space occupied by an activity in the specific subzone exceeds this threshold, this activity is
qualified to be one of the major ones in this subzone. If the subzone accounts for two or more
dominant activities, it is qualified as mixed; otherwise, it is qualified according to its major
dominant activity. Figure 6 has been generated with the threshold of 20% of land occupation
by activity by subzone. 

Table 4 shows the MSW profiling based on its possible sources.

Table 4. Waste type profiles.
Waste Type Examples Possible Sources Classification
Construction Debris Unwanted material from constructions Construction Sites Non-Domestic
Used Slag Waste matter from smelting Steel Mills Non-Domestic
Ferrous Metals Steel Cans, Aluminum Households, Factories Mixed
Wood/Timber Pallets, Furniture, Crates Households, Factories Mixed
Horticultural Waste Tree trunks, Branches Maintenance of trees Non-Domestic
Paper/Cardboard Books, Boxes Households, Offices, Factories Mixed
Food Waste Meat, Fish, Vegetables Households, Restaurants Mixed
Plastics Plastic bottles, Plastic bags Households, Offices Mixed
Others - - Mixed



Following this  waste profiling,  Table 5 identifies the type of waste based on its  possible
sources, depending on the subzone classification.

Table 5. Waste type subzone classification
Waste Type Subzone Classification

Residential Commercial Industrial Nature Others

Construction Debris X X X X

Used Slag X

Ferrous Metals X X X X

Wood/Timber X X X X

Horticultural Waste X X X X X

Paper/Cardboard X X X X

Food Waste X X X X

Plastics X X X X

Others X X X X X

The above tables offer insights into the assignment of waste to the different subzones. The
classification of the areas was done using qualitative online research and analysis of the land
use plan. Categories of land activities present in the administrative subzones are given a score
of 1 while those absent are given 0. Based on this analysis, mixed subzones involving more
than one  activity  have  been assigned a  score  between 0  and 1 based on the  land space
percentage  occupied  by  each  activity  in  each  administrative  subzone.  For  this  purpose,
Singapore’s  land  development  plan  has  been  used.  Attention  should  be  drawn  to  the
possibility that these scores can be adjusted to reflect different activity densities, e.g.,  the
population density in the respective residential sectors and intensity of commercial activities.

Figure 7 gives an overview of the available statistical data for waste generation in Singapore
from 2003 to 2015. The available data was used to obtain a fixed percentage ratio for waste
types falling in both categories. The percentages of domestic and of non-domestic wastes for
mixed waste types were estimated to be 60.85 and 39.15%, respectively. 



Figure 7. Statistical data overview for MSW generation evolution and recycling rates in
Singapore from 2003 to 2015 (NEA 2016).

Figure 8 depicts the example of food waste distribution across Singapore in 2015.

Figure 8. Food waste distribution across Singapore in 2015.



The major sources of food waste generation have been estimated to be Bedok, Woodlands,
and  Jurong  West  with  5.9,  5.1,  and  4.8%  of  the  total  Singapore  food  waste  output,
respectively (Figure 11(c)).  The highly  dense residential  areas  involve  a  high number  of
markets, food centers, and restaurants responsible for the considerable food waste generation.

4.1.2. MSW model analysis

While the calculation based on land area and population may be logical for domestic and
non-domestic waste generation, it may present some drawbacks.

Firstly,  the  MSW distribution  model  considers  only  basic  geographical  and  demographic
attributes. However, more accurate MSW distribution modeling requires more data related to
different subzones activities. By considering this, subzones situated remotely from residential
areas  could  be  less  frequented  and  may  generate  less  MSW than  remote  areas  holding
attraction elements. Accordingly, hotspot places such as Tampines with many conveniently
located shopping malls or Geylang with nightlife activities could hold an increased human
traffic and, thus, increased waste generation. In addition, the types of waste generated during
day  and  night  times  can  vary.  Accordingly,  a  modifier  matrix  becomes  important  to
encompass such social and economic parameters in the MSW distribution model. A possible
contribution could be in the MSW modeling distribution and urban development areas in
order  to quantify the attractiveness of  different  urban areas  and,  thus,  model  their  MSW
distribution. The modifier matrix can be established based on the centrality index quantifying
the centrality of a given location by combining the number of people attracted to locations
and the range of their activities engaged at these locations (Zhong et al. 2017).

Secondly, the MSW distribution uses 12 years of statistical data to obtain the fixed percentage
ratios  for  waste  types  falling simultaneously in  categories  of  domestic  and non-domestic
waste.  However,  for accurate  waste  profiling,  a more detailed analysis  is  required of the
waste categories and activities sources. This work can be done in collaboration with local
authorities by holding survey campaigns for waste generation and collection. 

Moreover, MSW distribution modeling is based on fixed 2015 population census data and
land area subzones for weight calculations. In this view, the weights for each subzone will be
constant and not change over time. One possible improvement would be to link the MSW
distribution model to the prediction of explanatory variables to determine the evolution in
domestic and non-domestic MSW. For example, the growth of a subzone population based on
projects for development of residential areas or the extent of industrial development based on
the opening of new industrial sites could be considered. 

4.2. WtEMS design optimization 

4.2.1. Optimization model input

The optimization model can exploit the output of the MSW distribution modeling (Section
4.1)  or  the  specific  information  of  MSW generation  provided  by  a  decision-maker.  For
simplicity, the proposed methodology has been illustrated here through one stream of food
waste representing an important portion of the world MSW (Chainey 2015). The disposal rate
of food waste reaches almost 86% for Singapore (NEA 2016).



Figure 9. Food WGS established on the Google Map representation of Singapore.

For the purpose of this study, the WGS have been represented by the nodes of food waste
generation in 111 food courts, hawker centers, and markets across Singapore. To estimate the
amount of food waste produced daily by each hawker center, waste generation data have been
collected in several targeted sources. By using this data, as well as WGS area estimation from
the GIS software, the average food waste per unit area has been estimated to be 1.409 kg/m2

per day. Under the assumption that the same food waste amount, qi , t , is generated per unit
area, the waste output for 111 WGS was estimated (Figure 9). The amount of waste generated
at each WGS,  i,  has been assumed to grow linearly over the considered lifecycle with a
constant increase of 2% per year.

Table A1 in Appendix A. summarizes the data related to possible technologies to be deployed
at  candidate  locations.  The  first  prototype  of  micro-scale  Anaerobic  Digestion  (AD)
technology, considered here for the on-site deployment, was built in 2013 in London (UK) to
process  urban food waste and continues to operate to date  (Walker et al. 2017). Currently,
three similar pilot  plants have been established,  with two in Central  London  (Izabelanair
2017). The equivalent large scale AD plant has been considered for the off-site deployment
(Izabelanair  2017).  Although,  current  waste  treatment  in  Singapore  mainly  relies  on
incineration,  the  technical  specifications  of  the benchmark technology have been defined
based on open source data for waste-to-energy technology from (Cook 2014).

Two candidate sites have been preselected for the off-site facilities locations: the reserved
construction area in Seletar subzone and the area near the water reclamation plant in Changi.
At each candidate site, five AD units can be deployed, subjected to the limitation of available
land space. The transportation distances have been calculated between the WGS and these
candidate sites, i.e., the average distances from the WGS to candidate sites at Seletar and at
Changi are 11.6 km and 17.6 km, respectively.



The candidate sites for on-site DF coincide with WGS coordinates. In this view, no specific
transportation efforts are needed to ensure the supply of food waste from the WGS to the DF
equipped with micro-scale  AD.  The land cost  is  assumed to  be  $15/m2 per  year  for  the
industrial areas and $25/m2 per year for residential areas (JTC 2016). The CO2 emission tax
has been assumed to be $10 per ton of CO2 equivalent (Lam 2017). The CO2 emissions for
food waste transportation has been defined to represent on average 600 g CO2  per kilometer
travelled (Dunnebeil & Lambrecht 2012). The electricity price has been fixed to  $0.15/kWh
(EMA 2017). The discount rate, EoS factor, and lifecycle duration have been set up to 0.01,
0.8, and 15 year, respectively. The convergence gap has been fixed to 1%.

4.2.2. WtEMS deployment 
The following figures illustrate a progressive deployment of waste treatment infrastructure
for  Year  1  (Figure  10(a)),  Year  10  (Figure  10(b)),  and  Year  15  (Figure  10(c))  across
Singapore. In addition, they depict the evolution of food waste assignment from the WGS to
different WtE CF. The optimization starts with the deployment of AD at Year 1 at both off-
site candidate sites of 250 and 200 tons/day capacity, respectively. The capacity at site 2 is
expanded at Year 3 up to 250 tons/day. The DF are deployed progressively throughout the
lifecycle to treat food waste exceeding the WtE CF capacity. 

a)



b)

c)
Figure 10. Progressive WtEMS deployment over the lifecycle: a) Year 1, b) Year 10, and c)

Year 15.

The deployment strategy is visible from the detailed cash flows distribution for the entire
lifecycle (Figure 11(a)). The main CAPEX investment for CF deployment is done in Year 1
and another additional CF unit is deployed in Year 3. The DF starts its deployment in Year 2
to deal with waste exceeding the capacity of the WtE CF. Following the increase in the food
waste generation, a progressive addition of DF treatment capacities continues to be observed
in the optimization. The installed capacity proportion of DF/CF reaches about 84% for CF
and 16% for DF in the final Year 15.

The discounted cash flow distribution of the total lifecycle is illustrated in  Figure 11(b). It
shows  that  the  major  expenses  are  shared  by  CAPEX,  O&M,  and  manpower  costs
representing 17.5%, 31%, and 31%, respectively. Resource consumption and transportation
expenses occupy around 11.8% and 6.8% of the total lifecycle investment, respectively. At
the current levels of carbon price and rent cost, pollution tax and land cost represent 0.4% and
1.4%, respectively, and are not significant in the decision-making.



a)

 

b)

Figure 11. Optimized solution discounted cash flows: a) yearly cash flows and b) total
lifecycle cash flows.



4.2.3. Sensitivity analysis

a. EoS impact
Figure 12(a)-(c) illustrates the WtEMS deployment for different EoS factors. The CF is used
to treat the majority of the waste generation whereas the DF are used to adjust the installed
treatment capacity to tackle the increase in the waste generation.

a) b)

c)
Figure 12. Progressive WtEMS deployment for a) EoS = 0.6, b) EoS = 0.8, and c) EoS = 1.



This deployment is in line with observations done in (Manne 1967) for the addition of new
capacities  under  the  constant  growth  of  demand  and  a  non-zero  discount  factor.  While
decreasing  the  EoS factor  (or  reinforcement  of  EoS)  and  maintaining  the  same discount
factor, it is preferable to build a large capacity earlier in the planning period, even though
operators need to pay immediately for capacity that will only be used later. This is confirmed
by the  evolution  of  the  over-deployment  of  the  total  WtEMS capacity  for  different  EoS
factors, as illustrated in Figure 13. The over-deployment peaks are situated in order from EoS
= 0.6 to EoS = 1 during the planning lifecycle.

Figure 13. Total WtEMS capacity over-deployment for different EoS factors.

b. Initial capacity input 

An important consideration concerns the selection of parameters used by a decision-maker as
input to the optimization model. Such inputs will define an optimized WtEMS configuration
regarding the sizes of waste treatment vertexes, such as the WTF capacity and edges length
that involves the transportation distance. Indeed, the decision-maker must specify the input
parameters related to the capacities of waste treatment units, number of units allowed to be
deployed, and candidate sites locations that define the distances between the WGS and WTF. 

As shown in Section 4.2.2, transportation expenses have a moderate contribution to the total
NPV for the case study under consideration. As a consequence, the distance does not exert a
significant influence on the deployment results for the case study size similar to Singapore
(i.e., several dozens of km) at a similar transportation price. In this regard, the decision-maker
has the freedom to predefine candidate sites in this perimeter without considerably affecting
the final WtEMS configuration. The analysis below focuses on the impact of the initial waste
treatment  capacities,  preselected for  deployment  by the decision-maker,  on the optimized
WtEMS configuration. Indeed, even if the producers of the technologies could offer various



waste treatment capacities, the decision-maker’s input is required to be more specific. A large
range of preselected capacities can lead to waste treatment technologies of various capacity
sizes in the deployment solution, resulting in customized and costly WtEMS. Moreover, some
capacity sizes selected for deployment can lead to the decreased effectiveness in capacity
usage.

The following analysis shows the influence of the initial CF capacities (defined as inputs by
decision-maker) on the proportion of CF- and DF-deployed capacities for EoS = 0.8 (Figure
14). 

Figure 14. Proportions of CF and DF capacities deployed under different initial input of CF
unit capacities.

The WtEMS configuration or CF- or DF-deployed capacities proportions can be affected by
the  initial  input  of  the  CF  capacity  unit.  By  minimizing  the  objective  function,  the
optimization model identifies the optimal WtEMS configurations under different initial input
of CF capacities. In this context, for the initial input of CF capacities is equal to 50, 100, and
250 tons/day, and the total deployed capacity is composed of about 84% of CF and 16% of
DF facilities. For the initial input of CF capacity equal to 150 tons/day, the deployed DF
portion is reduced to about 1%, whereas for the initial input of CF capacity equal to 200, 300,
and 350 tons/day, no DF facilities have been deployed.

One possible explanation is related to the fact that the optimization problem searches for the
best combination of CF and DF units to address the total waste generation at the most optimal
cost. In this view, when the total waste generation exceeds the CF capacity but is insufficient
to activate the deployment of another centralized unit, the optimization model deploys a DF



to cover this outstanding waste generation. Also, with an increase of the initial input to the CF
unit  capacity,  the  EoS  influence  increases  as  well.  This  leads  to  a  situation  where  the
optimization model attempts to rely entirely on the centralized deployment. However, this
output can change with the modification of costs associated with CF and DF deployment and
operation.  In  this  view,  the  deployment  mechanism  for  the  combined  centralized-
decentralized WtEMS must be further analyzed in detail. Moreover, this mechanism must be
accounted by the decision-makers at the early stage prior to the optimization to achieve the
optimal  balance between centralized and decentralized capacities  suitable  for the specific
urban territory.

The influence  of  DF capacities  on  the  deployment  results  for  the  combined  centralized-
decentralized WtEMS has been found to be minor and are therefore not discussed in this
paper.

4.3. Multi-dimensional assessment 

To assess the performance of the optimized deployment strategy integrating both the CF and
DF,  the  combined  WtEMS  has  been  compared  with  the  pure  centralized  WtE  and
decentralized MSW management strategies (Table 6). The metrics for the benchmark case, if
all generated waste has been processed in the conventional incineration facility, have also
been calculated.  It  was  assumed  that  this  conventional  treatment  is  done in  the  existing
facility, which does not require CAPEX investment. 

The inputs for the global warming potential (GWP) assessment of different MSW strategies
were retrieved from the LCA study by  (Tong & Tong 2016) conducted for Singapore. The
incineration used for the benchmark was associated with 113∙106 g CO2 equivalent/ton of
treated waste and the AD with 83∙106 g CO2 equivalent/ton of treated waste. These values
were calculated by taking into account the avoidance factor of electricity generation during
waste treatment. The GWP input for transportation activities was estimated to be 1014∙g CO2

equivalent/km for a six-ton load  truck (Tong & Tong 2016). 

Table 6 summarizes the core economic indicators from the optimization (Section 4.2) and the
multi-dimensional  assessment  for  different  MSW  management  strategies  based  on  i)
combined  centralized-decentralized  WtE  facilities,  ii)  centralized  WtE  facilities,  iii)
decentralized WtE facilities integrated in the urban environment, and iv) conventional waste
treatment by incineration.

The centralized WtEMS shows good performance in the economic KPI. It requires the lowest
CAPEX  and  OPEX  over  the  planning  horizon.  In  comparison,  the  deployment  of  the
combined WtEMS incurs more expenses and, as a result, the Total NPV more than doubled in
comparison  with  that  of  the  centralized  waste  management  strategy.  The  decentralized
WtEMS requires  important  Total  NPV related  to  the  deployment  of  multiple  stand-alone
facilities and associated infrastructures for local waste treatment. However, it shows slightly
higher  revenues  than  the  centralized  and  combined  cases  due  to  its  slightly  better
transformation efficiency. All three strategies based on the AD technology perform better than
the conventional  incineration.  More  specifically,  the proposed combined WtEMS reduces



OPEX by half  and  more  than  doubles revenues  in  comparison  with  conventional  MSW
treatment. 

Table 6. Comparison of MSW management strategies.

MSW  management
strategies / Parameters

Combined Centralized Decentralized
Conventional

treatment (existing
incineration)

Best

Total  NPV,  ,
M$/lifecycle

-20.82 -8.82 -47.57 - Centralized

Total  NPV  CAPEX,
M$/lifecycle

-22.18 -15.66 -55.02 - Centralized

Total  NPV  OPEX,
M$/lifecycle

-100.64 -94.9 -98.55 -202.8 Centralized

Total  NPV  Revenues,
M$/lifecycle

102 101.74 106 50.87 Decentralized

Average capacity over-
deployment rate

0.022 0.055 0.11 -(1) Combined

Total reserved land, m2

(2)

11,860 (84.32% for CF
and 15.68% for DF)

12,000 12,860 12,000 Combined

Land-capacity 
fragmentation

4.09∙10-12 1.62∙10-11 1.98∙10-13 1.62∙10-11 Decentralized /
Combined

Average  transportation
fleet, trucks

72 85 - 85 Decentralized

Global  Warming
Potential,  Mtons
CO2/lifecycle

238 245.4 254.8 292.75 Combined

(1) Capacity  over-deployment  for  the  conventional  treatment  could  appear  if  currently  installed  capacity  is
insufficient to handle the increase in food waste generation and will depend on the capacity of incineration unit
assumed for plant expansion.
(2) Average land use does not take into account the land use by auxiliary installations and equipment  (e.g.,
warehouse, office).

The combined centralized-decentralized case outperforms other waste management strategies
in terms of over-deployment of the average capacity, total land surface reserved for treatment
facilities,  and  environmental  impact.  Indeed,  the  combined  WtEMS  allows  the  optimal
combination of large centralized units with micro-scale decentralized facilities. This desirably
leads to the minimum rate of the total capacity of over-deployment and land occupation. In
addition,  the  combined  WtEMS  reduces  GWP by  about  18.7%  in  comparison  with  the
conventional  strategy  and  performs  slightly  better  than  the  purely  centralized  and
decentralized strategies due to the minor over-deployment in capacity.

Although  a  decentralized  WtEMS  achieves  the  least  capacity-land  fragmentation,  the
combined  WtEMS  allows  an  important  decrease  in  capacity-land  fragmentation.  The
capacity-land  fragmentation  was  reduced  by  74.8%  in  comparison  with  centralized  and
conventional waste treatment strategies. In addition, the combined WtEMS relieved the need
for transportation by reducing the number of fleet by 15.3% in comparison with centralized
and conventional systems. Figure 15 shows some of these tradeoffs graphically.



Figure 15. MSW management strategies comparison.

Although the  results  above were  obtained  for  a  realistic  case  study,  the  authors  wish  to
highlight  that  these  are  not  practical  recommendations  for  waste  treatment  system
deployment  in  Singapore.  Such  applied  recommendations  must  be  defined  with  strong
implication of government authorities. 

5. Conclusions and further contributions

The paper proposed a novel  integrated decision-support methodology (DSM) for  waste-to-
energy  management  system (WtEMS) development  in an urban environment.  It  made an
important  advancement  toward  segregation  of  MSW  sources  and  modelling  of  their
distributions  across  large  urban  territories.  It  proposed  a  WtEMS design  optimization
methodology accounting for multi-level candidate locations (e.g.,  at building, district,  and
global  city  levels)  for  facilities  combining  various  treatment  technologies  of  different
capacities. The proposed methodology provides the optimization schedule for waste treatment
capacity deployment over a large planning horizon together with optimal waste allocation
schedule for different time periods. It provides a multi-criteria evaluation framework helping
to assess optimal WtEMS design using not only economic criteria, but also environmental
and social aspects important for urban planning. 

The proposed DSM was tested using a case study for food waste management in Singapore
using  publicly  available  information  and  considering  the  deployment  of  a  combined
centralized-decentralized WtEMS. To identify a sustainable food waste management strategy,
the promising technologies of micro- and large-scale AD were successfully tested under real
urban conditions and have been considered for deployment.  The scale effect for different
installations was accounted for in two ways. On the one hand, the optimization methodology



explicitly defines models for the decentralized (on-site) technologies of small capacities and
the equivalent centralized (off-site) technologies of large treatment capacity. The economic
and technical parameters for the technology were established based on the peculiarities of the
real  installations  of  different  capacities  ranges.  On  the  other  hand,  the  decrease  in  the
installation cost with the increase of treatment unit capacities was accounted for through the
economy  of  scale  (EoS)  for  both  decentralized  and  centralized  facilities.  The  capacity
utilization  was  indirectly  accounted  for  in  the  objective  function  through  the  costs  and
revenues formulation. In this view, the optimization model naturally tends to maximize the
capacity utilization of each installation in order to increase their revenues from electricity
recovery and to avoid investments for new facilities deployment. The performance of the
proposed  combined  WtEMS  was  compared  with  purely  centralized,  decentralized,  and
conventional  MSM management  strategies.  The  results  show that  the  combined  WtEMS
reduced total  operational  expenses by about 50% and increased revenues from electricity
recovery  almost  two-fold  in  comparison  with  conventional  MSW  management.  It  also
allowed more optimal land use (i.e., capacity-land fragmentation was reduced by 74.8%) and
reduced the required transportation fleet by 15.3% in comparison with conventional MSW
systems. The global warming potential (GWP) was improved by about 18.7%.

Future  developments  were  discussed  around  major  topics  related  to  MSW  modelling,
optimization  of  WtEMS  deployment,  and  assessment.  The  design  of  cost-efficient  and
sustainable waste treatment infrastructure requires clear segregation of MSW into categories
(e.g., food waste, paper/cardboard, horticultural waste, etc.), estimation of their generation
amounts, and distribution across large urban territories. The MSW generation depends on
various  demographic  and  economic  variables.  Moreover,  MSW amounts,  categories,  and
generation schedules in different urban subzones can be influenced by various factors, e.g.,
social attractiveness of urban subzones. A possible axis for future research will be devoted to
the development of an explicit MSW generation meta-model by connecting MSW categories
with specific demographic and economic variables. Following the analysis in Section 4.1.2,
different  urban  development  indicators,  e.g.,  centrality  index,  can  be  explored  for  MSW
distribution modelling.

The preselection of MSW treatment technologies to be considered for possible deployment is
crucial.  This  choice  is  highly  dependent  on  the  properties  and  composition  of  waste,
economic parameters, treatment and resource recovery efficiency, and environmental factors.
As per usual practice, the decisions regarding deployed technologies are guided not only by
the  facilities’ CAPEX and  OPEX,  but  also  by  the  amounts  of  consumed  and  generated
resources and their respective costs. In addition, the importance of other performance criteria,
analyzed  in  Section  4.3,  could  significantly  rise  in  future  decades  and  require  careful
consideration  for  WtEMS  design.  To  provide  an  adequate  decision-support  tool,  an
optimization methodology must enable realistic modelling of environmental and operational
factors, but also of related uncertainties. The integration of uncertainties in the operational
and  environmental  conditions  will  require  further  development  and  integration  with  the
proposed  optimization  methodology.  This  can  be  considered  by  integrating  the  current
deterministic optimization model with data-driven real options analysis, supporting flexible
and adaptable deployment strategies in the face of uncertainty (Cardin et al. 2017; Caunhye



& Cardin 2017).  Moreover,  different decision rules can be tied with different uncertainty
conditions to trigger different deployment options, i.e., system expansion with amounts of
waste  generation,  technological  shift  with  advancements  in  technology development,  and
system reconfiguration with changes in resources prices. This will allow integrating emerging
technologies with more attractive economic, technical, and environmental performance into
the  MSW  treatment  deployment  schedule,  as  well  as  accounting  for  treatment  plant
deterioration and decommissioning.

The paper provides deployment results for a combined centralized-decentralized WtEMS and
analyzes the main advantages of this strategy. Optimal results show that the proportion of CF
and DF deployment under EoS = 0.8 represents 84.32% and 15.68%, respectively. However,
possible  conversion  of  non-economic  criteria,  evaluated  in  Section  4.3,  into  additional
objective functions for the multi-objective optimization can change the CF/DF proportion.
The  WtEMS  deployment  optimization  based  not  only  on  economic,  but  also  on
environmental (e.g., GWP) and operational (e.g., fleet size and land use) objectives, could
lead to an increase in installed capacity at decentralized candidate sites. In this view, future
work can be related to the exploration of optimal equilibrium between CF and DF under
different optimization objectives. Under current incentives for high recycling rates, the major
factor selecting appropriate type of waste treatment technology remains the type of MSW
sources.  Indeed,  to  ensure  coverage  of  the  major  recycling  pathways,  the  appropriate
technology must be identified for each MSW source. Furthermore, to improve the recycling
outcomes, different symbiotic cross-relations (i.e., closed material loops) can be considered
between major pathways when the resource recovered from treatment of one WMS source
can be used in another MSW source technology or urban activity (Geng et al. 2010). In this
view,  DF enables  treating  MSW locally  and  closer  to  final  consumers  of  the  recovered
resources. However, urban symbiosis brings not only opportunities but also bottlenecks. One
of them is that it requires involvement from various stakeholders possibly holding conflicting
objectives, which makes the overall decision-making process less straightforward and more
complex (Kayakutlu et al. 2017). In this view, other techniques like graph theory (Melese et
al.  2017) or  agent-based modelling  (He et  al.  2017) may be required to  model  complex
decisions in a multi-stakeholder setting. 

However, under current incentives for high recycling rates the major factor for this selection
remains number and type of MSW sources identified in the territory. Indeed, to ensure the
major  recycling  pathways,  the  appropriate  technology  must  be  identified  for  each  MSW
source. Further, to improve recycling outcomes, different symbiotic cross-relations can be
considered  between major  pathways when the  resource  recovered  from treatment  of  one
WMS source can be used in another MSW source technology or urban activity (Geng et al.
2010). This joins the above conclusion on the need of deeper exploration of urban symbiotic
relations applied to MSW treatment.

The  integration  of  decentralized  technologies  into  an  urban  environment  leads  to
reconsideration of urban planning strategies and the increased importance of social cohesion
and acceptance (Adil & Ko 2016). To ensure the sustainability of WtEMS, a proper design
approach integrate different perspectives, including environmental and social considerations
(Chong et al. 2016). In this view, one of the future developments relates to the expansion of



the multi-criteria assessment framework in order to include indicators related to social safety.
Despite  the  attempt  of  (Yu  et  al.  2012) to  address  social  risk  issues,  the  proposed
methodology still contains some bottlenecks (e.g., equal weighting factors to economic and
risk objectives that made the cost dominant and social risk effect approaching zero in the
decision framework). In this view, the consideration of social factors requires an appropriate
analysis before a more adequate evaluation framework can be proposed.

A more detailed analysis of the empirical deployment strategy and on field diagnostic test can
be  done  through  the  application  of  the  developed  DSM for  an  MSW management  pilot
project. Such a pilot project, selected to play the role of the representative urban context on
the restricted territory perimeter, enables simultaneous development, test, and implementation
of  the  technological  developments  for  waste  treatment  and  data-driven  decision-support
methodologies. This work is foreseen for the next phase of the current research project.
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Appendix A.Optimization model input

Table A1. Overview of food waste treatment technologies.
Technology Category Resource

output
Resource
requirements

Advantages Capacity(1) CAPEX O&M Manpower Carbon
emissions(2)

Waste-to-
Energy
Incineration
(Benchmark)
(Cook 2014)

Thermal
processing

Energy
positive

Electricity  ~
130  kWh/ton
of  processed
MSW;
Ashes  15  –
20% of MSW
by weight

Electricity  ~
70  kWh/ton
of  processed
MSW  (Khoo
et al. 2010)

Suitable  for
energy
generation
for  urban
usage,  close
location  to
municipalitie
s  facilitating
MSW
transportatio
n  and
recovered
electricity
supply

Large
capacity:
~  500  –
3,000  ton
of  MSW
per day
150
tons/day

~  $650/ton
of  annual
capacity
35,6
M$/unit 

Regular
on-going
costs
associate
d  with
operatio
n,
cleaning
and  ash
removal
$900,00
0/year
per unit 

Required
trained
operating
staff  –
requires
around  50
staff  to
operate
$900,000/
year  per
unit

5.93∙105 g
CO2

equivalent/to
n  of  treated
waste  (Khoo
et al. 2010)

Wet/Dry
Anaerobic
Digestion
(AD)  (Cook
2014;
Sanscartier et
al.  2012;
Leffertstra
2003)

Biological
digestion  +
thermal
processing

Energy
positive 

70%  of  CH4

converted
into
electricity  ~
260  kWh/ton
of  processed
waste  (Khoo
et al. 2010); 
Organic  solid
sludge  (can
be  further
processed
into
compost);
Waste  water
(may  require
further
treatment)

Electricity  ~
32  kWh/ton
of  processed
MSW  (Khoo
et al. 2010)

Qualified  as
a  versatile
and
adaptable  to
different
applications
and  sizes;
viable  and
economically
feasible
technology
for  large
application 

Small  and
medium
capacity >
50  ton  of
MSW  per
day

~  $110–
150 /ton of
annual
capacity
1.08
M$/unit 

Regular
maintena
nce
required
on  all
machine
s,  costs
associate
d  with
removal
of
digested
material
$360,00
0/year
per unit 

Large
industrial
units
requires
>20  staff
to operate
$360,000/
year  per
unit 

0.2∙105 g
CO2

equivalent/to
n  of  treated
waste  (Khoo
et al. 2010)

Micro-scale
Anaerobic
Digestion
(Walker et al.
2017;  Yaman
et al. 2013)

Biological
digestion  +
thermal
processing

Energy
positive
Net
electricity
output for the
whole  site  -
271 kWh/ton 

Electricity  ~
117  kWh/ton
(without
considering
logging
system) 

Perfect  for
small  and
medium  size
urban
applications
(e.g.,
restaurants)

Small
capacity:
>  20  m3

digester
equivalent
to about 1
ton/day 

~  $345/ton
of  annual
capacity
0.125
M$/unit

Regular
technical
servicing
,
removal
of
residues
$4300/y
ear  per
unit 

Almost
automated
charging
 $4300/yea
r per unit 

0.2∙105 g
CO2

equivalent/to
n  of  treated
waste  (Khoo
et al. 2010)

(1) CF units capacities have been downscaled to fit with total food waste generation in WGS of Figure 9.

(2) Process emissions from (Khoo et al. 2010) have been converted into CO2 emissions equivalent to estimate 
their Global Warming Potential (IPCC 2007).
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