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Abstract—Global checkpointing to external storage (e.g., a
parallel file system) is a common I/O pattern of many HPC
applications. However, given the limited I/O throughput of
external storage, global checkpointing can often lead to I/O
bottlenecks. To address this issue, a shift from synchronous
checkpointing (i.e., blocking until writes have finished) to asyn-
chronous checkpointing (i.e., writing to faster local storage and
flushing to external storage in the background) is increasingly
being adopted. However, with rising core count per node and
heterogeneity of both local and external storage, it is non-trivial
to design efficient asynchronous checkpointing mechanisms due
to the complex interplay between high concurrency and I/O
performance variability at both the node-local and global levels.
This problem is not well understood but highly important for
modern supercomputing infrastructures. This paper proposes
a versatile asynchronous checkpointing solution that addresses
this problem. To this end, we introduce a concurrency-optimized
technique that combines performance modeling with lightweight
monitoring to make informed decisions about what local storage
devices to use in order to dynamically adapt to background
flushes and reduce the checkpointing overhead. We illustrate this
technique using the VeloC prototype. Extensive experiments on
a pre-Exascale supercomputing system show significant benefits.

Index Terms—parallel I/O; checkpoint-restart; immutable
data; adaptive multilevel asynchronous I/O

I. INTRODUCTION

High performance computing (HPC) applications can pro-
duce massive amounts of output data during their run times.
The output data is often used for defensive purposes, i.e., to
survive failures that can occur frequently at large scale using
fault tolerance strategies based on checkpoint-restart. Output
data can also be productive: the data is needed to describe the
state of the application at key moments during run time to
facilitate post-analytics or to revisit previous states as part of
the computational model (e.g. adjoint computations).

Regardless whether defensive or productive, the output data
typically needs to be coordinated, i.e., all processes that make
up the HPC application contribute with a piece of data to form
a global checkpoint. Therefore, persisting the global check-
point to external storage (typically a parallel file system such
as Lustre) involves a large number of concurrent writers that
either write to individual files or to one or several shared files.
In either case, they compete for limited I/O resources, which
leads to poor scalability and large performance overhead.

In the quest to reach Exascale, many architectural trade-offs
are necessary. One such trade-off involves the growing gap
between the compute and I/O capabilities, which means less
I/O bandwidth will be available per compute unit. Therefore,
straightforward approaches that write checkpoints directly to
external storage in a blocking fashion (synchronous check-
pointing) are not scalable and lead to unacceptable overhead.

In order to overcome the high overhead, a popular solu-
tion is asynchronous checkpointing: nodes are increasingly
equipped with local storage (e.g., HDDs, SSDs, NVMs, etc.)
that can be used to cache the checkpoints while they are being
flushed to external storage in the background. The advantage
of this solution lies in the fact that the application is blocked
only for the duration of the writes to the local storage, which
is assumed to be much faster than the external storage.

However, as many-core architectures become more popular,
increasing high node-level parallelism, asynchronous check-
pointing involves many concurrent writers per node (e.g.,
several MPI ranks using one or more I/O threads per rank)
that compete for the I/O bandwidth of the local storage.
Under these circumstances, I/O bottlenecks at node-level are
increasingly problematic, as they are detrimental both directly
(i.e., they block the application for longer) and indirectly (i.e.,
they lead to longer background flushes to external storage that
can cause prolonged interference with the application).

Furthermore, in the design of modern supercomputing in-
frastructure, heterogeneity plays an increasingly important
role. This trend is visible at the level of external storage,
as parallel file systems are complemented with burst buffers,
key-value stores, etc. Despite significant improvement over
parallel file systems, such alternatives do not fully solve the
problem of I/O bottlenecks under concurrent I/O [1]. There-
fore, heterogeneity is adopted also at node-level in the form
of heterogeneous local storage (HDDs, SSDs, storage class
memory devices, etc.). As a consequence, there is significant
I/O performance variability between the various options, both
at the level of local storage and external storage.

Under these circumstances, it is non-trivial to design an
asynchronous checkpointing strategy that can take advantage
of the heterogeneity of local storage to cache checkpoints
without causing local I/O bottlenecks.

In this paper, we propose an adaptive asynchronous check-
pointing strategy that is specifically designed to manage het-



erogeneous local storage in such a way that it avoids local
I/O bottlenecks. Our proposal is based on the key idea that
performance variability introduced by heterogeneity can be
exploited make better decisions regarding where to store the
local checkpoints. Specifically, it may be better to wait until
asynchronous writes to external storage free up space on fast
local devices rather that directly write to slow local devices. To
this end, we introduce a lightweight technique that facilitates
such decisions efficiently under high write concurrency. We
summarize our contributions as follows:

• We present a series of design principles that enable
efficient asynchronous checkpointing with heterogeneous
local storage. In particular, we emphasize the importance
of: (1) hiding the complexity of heterogeneous storage;
(2) consolidating asynchronous writes to external storage
on an active back end to enable elastic control of the I/O
parallelism; (3) fine-grained chunking of the checkpoints
to exploit node-local devices better; (4) adaptive chunk
placement using performance modeling (Section IV-A).

• We demonstrate these design principles in practice
through a series of algorithmic descriptions that are
implemented on top of the VeloC (Very Low Overhead
Checkpoint-Restart) runtime (Section IV-D) using a ref-
erence implementation (Section IV-E).

• We evaluate our approach in a series of experiments
conducted on Theta, a pre-Exascale system hosted at
Argonne National Laboratory (ANL). We use both a
synthetic benchmark and an HPC application. The results
show significant performance and scalability improve-
ments for our proposal when compared with state-of-art
approaches (Section V).

II. RELATED WORK

Cache management for many-core processors and deep
hierarchies have been explored in various contexts: location-
awareness [2], latency-power trade-offs [3], locality-aware data
access control [4], software-defined cache hierarchies [5].
However, the aspect of using cache hierarchies for multi-core
nodes in the context of producer-consumer scenarios received
relatively little attention in the literature.

Exploiting local storage as a write cache before flushing
application data to external storage asynchronously has been
proposed before in the context of node-level I/O aggregation
from multiple cores [6], or I/O forwarding [7]. However, such
efforts use a single level of cache, placing the emphasis on ag-
gregation. Other efforts such as [8] focus on smart ordering of
asynchronous flushes from memory to local storage. Again, a
single level of local storage is considered, but such approaches
eliminate the need to perform blocking local writes, which is
an interesting complement to our own work.

Multilevel checkpoint-restart is a popular approach to lever-
age multiple storage levels in the context of checkpoint-
ing. One example in this direction is the Scalable Check-
point/Restart Library (SCR) [9], which supports local storage,
partner replication, and XOR encoding on remote nodes in
addition to the parallel file system. The Fault Tolerant Interface

(FTI) [10] is another related effort that offers similar support
while adding Reed-Solomon (RS) encoding [11]. Both offer
limited support for asynchronous checkpoint flushes between
the levels and there is no coordination between the levels as
in our approach.

An alternative to asynchronous checkpointing that can be
used to reduce I/O bottlenecks to both local and external
storage is reducing the checkpoint sizes. In this context, incre-
mental checkpointing was proposed: it is based on the idea that
checkpoint data does not fully change from one checkpoint to
another, thus storing only incremental differences is enough
to reconstruct the original checkpoint. Incremental approaches
can be broadly classified into two categories: page-based and
deduplication-based. Page-based approaches [12], [13] trap
writes to memory in order to track all changes and build a
set of dirty pages that need to be saved. De-duplication based
approaches [14], on the other hand, identify differences by
means of computation (most often hashing). Furthermore, de-
duplication can be extended beyond the scope of a single
process by identifying memory pages with identical content
across groups of processes [15], [16]. In either case, incre-
mental checkpointing can be complemented with compression
techniques [17] to further reduce the checkpoint sizes.

Several other efforts address related issues. CRUISE [18]
is a user-space file system that stores data in main memory
and transparently spills over to other storage. However, unlike
our approach, it does not have a dynamic mechanism that
exploits performance variability introduced by heterogeneity
to optimize placement decisions. Triple-H [19] is a HDFS-
based file system that uses heterogeneous devices and proposes
optimized data placement decisions. It aims to be an all-around
solution for generic I/O patterns, which is different to the
write-intensive I/O pattern under concurrency we target in this
work. Intermediate data placement and shuffle strategies for
MapReduce [20] have used online profiling before to take
decisions dynamically. Our approach is different in that it
combines performance modeling for local storage with online
profiling of external storage to minimize the overhead of
dynamic decisions.

To the best of our knowledge, we are the first to explore
the benefits of adaptive asynchronous checkpointing based on
performance modeling of hybrid local storage.

III. PROBLEM SPECIFICATION AND CHALLENGES

A distributed application that needs to persist a global
checkpoint is composed of n processes distributed across N
nodes, with each node hosting p processes (which we refer
to as writers). For simplicity, we assume two types of node-
local heterogeneous storage: fast main memory and slower
secondary storage (e.g., an SSD). This scenario is easy to
generalize to an arbitrary number of local storage devices.

We assume the application allocates a majority of the
main memory to hold the data structures needed during the
computation, and only a small number k of checkpoint pieces
can be cached in memory. On the other hand, we assume the
secondary storage has enough capacity to cache the remaining
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Fig. 1. An application distributed on N = 2 nodes with p = 3 writers per
node (light circles), each writing to either a cache of capacity k = 4 slots
or flash storage. Each node has c = 2 I/O threads (dark circles) that flush
to a shared parallel file system in the background. There is only one empty
(colorless) cache slot on Node 1 and it is mapped to the top-left writer. The
unmapped writer (bottom-left) has two options: either wait for another cache
slot to free up or proceed to write to flash storage.

checkpoint pieces until they are flushed to the external storage.
This assumption is reasonable since the application typically
does not checkpoint more data than it can keep in main
memory.

Under these circumstances, the problem of asynchronous
checkpointing can be modeled using a producer-consumer
scenario: the p writers hosted on each node are the producers
of checkpoint pieces, while there are c I/O threads per node
that act as the consumers and flush the checkpoint pieces to the
external storage in the background. Note that they compete for
I/O bandwidth at two levels: (1) on each node, the producers
compete for the combined I/O bandwidth of the two local
storage types; (2) globally all consumers compete for the
I/O bandwidth of the external storage. An example of this
is provided in Figure 1.

At first, it may seem that the producers are decoupled from
the consumers. A naive strategy to handle this scenario could
simply write to the cache as long as there is enough room
and fall back to the secondary storage otherwise. However,
adopting such a strategy may not always be optimal. This can
happen when the background flushes are faster than the local
writes to secondary storage, in which case it is better to wait
until enough room is available in the cache.

Such a situation is non-trivial and can happen for several
reasons: (1) modern supercomputing infrastructure is equipped
with a large number of cores per node, therefore p is large
and the competition for local I/O bandwidth is significant; (2)
external storage is increasingly heterogeneous (e.g., parallel
file systems, object stores, key-value stores, etc.) and may be
shared by multiple applications, which leads to high perfor-
mance variability; (3) there is significant interference between
the local writes and the flushes to external storage.

The last point is particularly interesting to develop. To
illustrate the effects of the interference, we refer the reader
to Figure 5, where the ssd−only curve corresponds to an
increasing number of p producers writing the same amount
of total checkpointing data (64 GB) to an SSD while it is
being flushed asynchronously in the background to a parallel
file system. Details about exact hardware configuration can be
found in Section V-A. As can be observed, there is a high

performance variability despite the fact that the amount of
written data is the same.

Therefore, the design of efficient asynchronous checkpoint-
ing strategies for modern supercomputing infrastructure needs
to address the complexity of the interplay between the pro-
ducers and the consumers to avoid I/O bottlenecks both at the
level of the node and at the level of the external storage.

IV. SYSTEM DESIGN

A. Design principles

Our proposal is based on the following general design
principles:

Hidden complexity of heterogeneous storage: Given
the increasing complexity of heterogeneous storage both at
node-local and global levels, it becomes unfeasible for ap-
plications to manage their checkpoints directly. Many users
are simply unaware of the various types of storage available
on the nodes where they run their applications. Even when
they are aware of them, the users report difficulty in using
complicated vendor-specific APIs and understanding the per-
formance characteristics. To address this issue, we propose
a transparent checkpointing runtime that exposes a single,
simple checkpointing API to the users similar to FTI [10].
Specifically, each application process designates the memory
regions that it needs to include in a checkpoint. Then, when
global checkpointing is required, the processes collectively
call a checkpoint primitive. From this moment, it is the
responsibility of the runtime to decide where and how to save
the protected memory regions into checkpoints. Therefore, if
the user is not aware of the existence of a certain type of local
storage, the runtime will take advantage of it automatically.

Aggregation of asynchronous I/O using an active
backend: With increasing core count per node, asynchronous
checkpointing involves a significant coordination overhead
needed to manage the producers and consumers. Therefore,
it is difficult to design a strategy that is embedded directly
into the application processes. To address this issue, we
propose to consolidate the management of the consumers into
a dedicated process we call the active backend. Using this
approach, the I/O threads responsible for flushing the local
checkpoints to external storage can be spawned elastically on-
demand in response to notifications from the producers, which
enables better control over the interference introduced by the
background flushes. Furthermore, since the I/O threads share
the same memory space, monitoring the performance of the
background flushes to external storage is trivial and incurs
minimal overhead.

I/O load-balancing using fine-grained chunking: The
size of the checkpoint each producer needs to write can be
large. Therefore, if each producer needs to write the whole
checkpoint to a single local storage device, it may happen that
only some producers can find room on fast but low capacity
devices, while others need wait or use slow but higher capacity
devices. Under such circumstances, some producers will finish
faster at the expense of other producers. This unfairness
is a problem for two reasons. First, an application process



can continue running only after its producer has finished.
Therefore, stragglers may cause unacceptable delays in some
processes. Second, if a producer started writing the whole
checkpoint to a slow device but a fast device becomes available
meanwhile (due to consumers making room on it), it will
lose the opportunity to speed up the writing, which causes
unnecessary delays that slow down the entire group. To address
this issue, we propose to split each checkpoint into fixed-sized
chunks, which are then written to local storage and flushed
independently. Such an approach improves the utilization of
the fast but low capacity devices, therefore improving load
balancing and reducing the checkpointing overhead.

Adaptive chunk placement strategy using performance
modeling: Since the local storage devices may exhibit non-
linear performance characteristics under concurrency, it is not
enough to decide about the placement of the chunks on local
storage based on instantaneous utilization alone. To address
this issue, we introduce performance models to predict the
write throughput on each local storage device as a function
of how many producers are already writing to it. Based on
the predictions, we propose the following placement strategy:
select the local device that has enough free space to hold a new
chunk and is predicted to be the fastest. If this device is faster
than the external storage, then write the chunk to it, otherwise
wait until a flush has finished (thereby releasing space on a
local device) and then try again.

B. Algorithms

In this section, we briefly introduce a series of high-level
algorithms that show how to implement the design principles
introduced in Section IV-A for an arbitrary number of local
storage devices (which form a set denoted Local).

Algorithm 1 Each producer invokes PROTECT to declare the
memory regions that are part of the checkpoint, then invokes
CHECKPOINT to serialize them to local storage

1: procedure PROTECT(Addr, Size)
2: MemRegions←MemRegions ∪ (Addr, Size)
3: end procedure
4: procedure CHECKPOINT
5: for ∀Chunk ∈MemRegions do
6: enqueue P in Q
7: Dest← wait for notification
8: write Chunk to Dest
9: Destw ← Destw − 1

10: notify active backend of new Chunk
11: end for
12: end procedure

Specifically, each producer P acts according to Algo-
rithm 1. The memory regions that are part of the checkpoint
are declared using PROTECT, which accumulates them into
the MemRegions set. Checkpointing is performed by the
CHECKPOINT primitive: the memory regions are split into
chunks, each of which is written to a local storage device Dest
that is assigned by the active backend. Destw keeps track of

the number of concurrent writers to Dest and is incremented
by the active backend before notifying P . Once P has finished
writing Chunk to Dest, it decrements Destw and notifies the
active backend to flush Chunk to the external storage.

Algorithm 2 Active backend: assignment of local devices to
producers

1: procedure ASSIGN DEVICES
2: while true do
3: dequeue P from Q
4: Dest← null
5: while Dest = null do
6: MaxBW ← AvgF lushBW
7: for ∀S ∈ Local|Sc < Smax do
8: SBW ← MODEL(S, Sw + 1)
9: if SBW > MaxBW then

10: MaxBW ← SBW

11: Dest← S
12: end if
13: end for
14: if Dest = null then
15: wait for any flush to finish
16: else
17: Destw ← Destw + 1
18: Destc ← Destc + 1
19: notify P to use Dest
20: end if
21: end while
22: end while
23: end procedure

The active backend assigns a local storage device Dest
to a producer P according to Algorithm 2. First, it looks
for all local storage devices S that have enough free space
to hold a chunk (Sc is the number of chunks waiting to be
flushed, Smax is the maximum number of chunks that S can
hold) and that are predicted to be faster than external storage
(according to the performance model MODEL). If no S satisfies
this condition, then the active backend waits for any flush to
finish and tries again. Otherwise, Dest holds the fastest S
that satisfies the condition. Then, both Destw and Destc are
incremented (to claim a slot on Dest) and P is notified that
it can write to Dest.

Since Q is a FIFO queue, this approach guarantees fairness:
a producer that is ahead of another producer in the queue
will always claim the best local device unless a flush has
finished meanwhile and the conditions have changed. Also,
note that we assume that there is at least one local device that
is faster than the external storage (otherwise there is no need
for asynchronous checkpointing). Therefore, P will never wait
indefinitely to be assigned to Dest.

The active backend flushes the chunks according to Al-
gorithm 3: it waits for notifications from the application
processes in an infinite loop. Once a chunk was written to local
storage, it begins flushing it to external storage using an elastic
I/O thread pool. Each flush is handled by the FLUSH primitive,



Algorithm 3 Active backend: flushes to external storage
1: procedure FLUSH(S, Chunk)
2: write Chunk to ExtStore
3: Sc ← Sc − 1
4: update AvgF lushBW based on moving average
5: end procedure
6: procedure PROCESS CHECKPOINTS
7: while true do
8: wait for notification of new Chunk
9: execute FLUSH(S,Chunk) as async I/O

10: end while
11: end procedure

which is responsible for performing the write, releasing the
space on the local storage device by decrementing Sc and
finally updating AvgF lushBW based on a moving average
of the observed flush throughput.

C. Performance Model

We model the performance of local storage based on a
calibration that runs on a single representative node of the
system for each device type (assuming all nodes have similar
access performance to the same device types). This is an infre-
quent process that needs to be performed only in exceptional
circumstances (i.e., first-time installation, new devices added
to nodes, device re-configuration or degradation due to wear).

Specifically, the calibration involves a series of benchmarks
that measures the average write throughput for an increasing
number of concurrent writers. Only a small set of representa-
tive samples (less than 10% of the maximum possible write
concurrency) is needed. These samples are then interpolated
using cubic B-spline, which is numerically stable as it uses
compactly supported basis functions constructed via iterative
convolution. One advantage of cubic B-spline is that it is
known to be fast and accurate for samples that are equally
spaced, which makes the gathering of samples much easier.

The interpolation function is then used during run time to
predict the throughput under concurrency. The only dynamic
information needed during run time is the number of concur-
rent writers, which can be maintained with minimal overhead
using a single atomic inter-process counter per device. The
interpolation function itself can be evaluated in any point in
O(1), which means the call to MODEL in Algorithm 2 is trivial
and incurs minimal overhead.

D. VeloC: Very Low Overhead Checkpoint-Restart

We have developed VeloC, a low overhead checkpoint-
restart runtime specifically designed to deliver high perfor-
mance and scalability for complex heterogeneous storage hi-
erarchies without sacrificing ease of use and flexibility. VeloC
is part of the Exascale Computing Project [21] and serves the
needs of the future Exascale applications.

The architecture of VeloC is depicted in Figure 2. The client
is responsible for exposing the checkpointing API (mentioned

Fig. 2. Architecture of VeloC (Very Low Overhead Checkpoint-Restart)

in Section IV-A) to the application and to manage the lo-
cal checkpoints. The engine is responsible to perform post-
processing on the local checkpoints, which includes optimized
transfer support to heterogeneous external storage (e.g. parallel
file systems, burst buffers, key-value stores, etc.) using vendor
APIs (where applicable). The active backend runs an instance
of the engine in the background to asynchronously mask the
overhead of post-processing from the application.

VeloC also supports additional post-processing needed to
implement multilevel checkpointing: the local checkpoints
can be persisted on other nodes (using techniques such as
replication or erasure coding), which enables them to survive
a majority of failures, thereby reducing the frequency of
checkpointing to external storage. In a strict sense, multilevel
checkpointing is outside the scope of this paper. However, it
is worthwhile mentioning it because the notion of external
storage can be extended to include the local storage available
on other nodes too.

E. Implementation details

We implemented VeloC using a modular design that fa-
cilitates easy extensions. Specifically, the notifications sent
by the clients on the control plane are forwarded to each
post-processing module, which then decides locally how to
handle it. The order in which the modules are notified can
be controlled such that the effects of one module can change
the behavior of another module. For the purpose of this work,
we activated only the transfer module that is responsible for
optimized background flushes to external storage.

To implement the algorithms presented in Section IV-B,
we extended the control plane of VeloC to include a shared
memory space that holds Sw and Sc and AvgF lushBW using
atomic integers to enable lock-free read/update operations.

The active backend implements an elastic I/O threading
model to parallelize asynchronous flushes to external stor-
age using dedicated C++ language constructs (in particular,
std::async). Using this approach, VeloC avoids explicit thread
management, which enables compiler-level optimizations that
are specific to the platform where VeloC is running (e.g.
lightweight user-space threads). The monitoring of the asyn-



chronous flushes to external storage and computation of the
moving average is implemented using an optimized circular
buffer available in the Boost C++ collection of libraries [22].

V. EVALUATION

A. Experimental Setup

The experiments were performed on Theta, a 12 PetaFlops
pre-Exascale Cray XC40 system based on KNL Intel Xeon
Phi 7230 SKU. The system is equipped with 4392 nodes,
each containing a 64 core processor (256 hardware threads)
with 16 gigabytes (GB) of high-bandwidth in-package memory
(MCDRAM), 192 GB of DDR4 RAM (20 GB/s), and a
128 GB SSD (700 MB/s). The interconnect topology is based
on Dragonfly with a total bisection bandwidth of 7.2 TB/sec.
In terms of software, the system is using the Cray ecosystem
(Linux-based), on top of which we added the Boost C++
collection of libraries v1.66.

For the purpose of this work, the node-local storage is
composed of a fraction of the main memory (DDR4 RAM)
acting as the cache and the SSD acting as the secondary
storage. In both cases, the memory regions are serialized into
checkpoints that are split into 64 MB large chunks. Each chunk
is stored locally as an independent file. The file system used
for the cache is tmpfs, which is provided by default under the
/dev/shm mount point. The file system corresponding to the
SSD is ext4. The KNL nodes were configured to boot in the
flat mode (MCDRAM and DDR4 RAM managed separately).
The external storage is provided a Lustre PFS deployment,
which is mounted using POSIX.

B. Methodology

We compare several approaches throughout our evaluation.
Cache-only and SSD-only: These two approaches are

used as baselines for comparison. Specifically, cache−only
corresponds to the ideal case when enough cache space is
available to store all chunks, which means there is no need for
the SSD. This is the fastest possible solution. Therefore, the
goal of any other approach is to perform as close as possible to
cache−only. On the other hand, ssd−only corresponds to the
worst case scenario when no cache is available and all local
checkpoints need to be stored on the SSD. This is the slowest
possible solution. Any other approach needs to be faster than
ssd−only to be viable.

Hybrid-Naive: This approach implements a standard
multi-tier caching strategy (write to the cache if space avail-
able, otherwise to the SSD). It is a good reference for
comparison because it is not aware of the background flushing
and therefore lacks the adaptability dimension but implements
everything else (chunking and I/O flushing using an elastic
thread pool). This emphasizes the limitations of using standard
multi-tier caching for asynchronous checkpointing.

Hybrid-Opt: This approach implements our adaptive
asynchronous checkpointing strategy for two-tier hybrid local
storage as detailed in Section IV-B. Specifically, it uses the
cache (which is always faster than the PFS) when possible,

otherwise it either waits for the cache or uses the SSD if the
predicted throughput is higher than the PFS flush rate.

These approaches are compared using an asynchronous
checkpointing benchmark and an HPC application. The sce-
nario we consider is coordinated checkpointing at regular
intervals. Both applications consist of a set of distributed
processes that use MPI to communicate and synchronize.
Specifically:

Asynchronous Checkpointing Benchmark: Each MPI
process allocates a fixed-sized array, fills it with random data
and protects it using the VeloC PROTECT primitive. After all
processes have finished this step (by synchronizing using a
barrier), they checkpoint the array by invoking CHECKPOINT
concurrently. Each process reports individually the time re-
quired to write to local storage, then waits on a barrier until
all processes have finished checkpointing. At this point, the
first rank reports the total time to checkpoint to local storage.
Then, all processes wait for the asynchronous flushes to the
parallel file system to finish (using a dedicated WAIT primitive
offered by VeloC) and then synchronize again using a barrier.
Finally, the first rank reports the overall completion time until
all asynchronous flushes have finished.

HPC application - HACC: HACC [23] is a complex
framework that simulates the mass evolution of the universe
using particle-mesh techniques. HACC splits the force cal-
culation into a specially designed grid-based long/medium
range spectral particle-mesh (PM) component that is common
to all architectures, and an architecture-specific short-range
solver. Parallelization of the long-range force calculation uses
MPI. Short-range force algorithms, which depend on the
architecture, are expressed in the appropriate programming
model (OpenMP, CUDA, OpenCL) and complement the use
of MPI. HACC uses OpenMP on Theta. HACC features an in-
situ analytics framework called CosmoTools, which is called
by HACC at the end of certain time steps (specified either
explicitly or implicitly as a stride). CosmoTools has a modular
architecture, enabling the user to write a custom module that
can access the information about the particles at the specified
time steps. For the purpose of this work, we developed a
VeloC module that checkpoints the information about the par-
ticles. Specifically, at initialization it protects the critical data
structures, then it initiates asynchronous checkpoints every
time it is called by CosmoTools. Note that all MPI ranks are
synchronized with a barrier before HACC calls CosmoTools,
which means all ranks checkpoint simultaneously through the
VeloC module.

C. Accuracy of the Performance Model

We begin by evaluating the accuracy of the performance
model introduced in Section IV-C. To this end, we run
an experiment that compares the predicted vs. actual write
throughput on the local SSD of the compute nodes under
increasing write concurrency.

First, we run the calibration using a size of 64 MB (i.e., the
default chunk size) for each writer. We start with one writer
and increase the number of concurrent writers in steps of 10
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Fig. 3. Accuracy of the performance model: prediction based on cubic B-
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up to 180. Each time we record the average throughput. The
samples are then interpolated to obtain predicted throughput
for each number of concurrent writers. Next, we repeat the
same experiment (using the same data size for each writer)
but we increment the number of concurrent writers by one
each time to obtain a direct measurement for each possible
concurrency level.

The results are depicted in Figure 3. As can be observed, our
approach based on interpolation has very high accuracy (the
predicted curve almost overlaps with the actual curve) despite
using a fast calibration (less than 30 mins) that is based on
10x fewer measurements than actual. Thus, the calibration is
lightweight enough to create a negligible overhead.

D. Vertical Scalability of Checkpointing

In this section we evaluate the performance and scalability
of our approach on a single node. To this end, we use the asyn-
chronous checkpointing benchmark described in Section V-B.

First, we study the weak scalability. This involves an in-
creasing number of concurrent writers that need to checkpoint
each a fixed amount of data. We chose 256 MB per writer,
because it represents approx. 1/3 of the total memory available
per unit of parallelism (192 GB divided by 256), which is a
typical proportion of data that needs to be checkpointed. We
gradually increase the number of benchmark processes from
64 up to 256, which is the maximum number of hardware
threads. We fix the cache size to 2 GB, which corresponds
to a minimal overhead that is acceptable for most users. We
study the impact of higher cache sizes in Section V-E.

We focus on two metrics. The duration of the local check-
pointing phase refers to the total time required for all concur-
rent writers to finish writing the checkpoints to local storage.
This metric is important because it directly contributes to the
increase in application run time, as the application is blocked
during the local checkpointing phase. The flush completion
time refers to the additional time required after the local check-
pointing phase to finish writing all local checkpoints to the
parallel file system. This metric is important because the extra
time required for asynchronous flushing indirectly contributes
to the increase in application run time due to background
interference (shared CPU and network bandwidth).

Figure 4(a) shows the total time to finish the local check-
pointing phase for all four approaches. As expected, the
overhead of cache−only is negligible, as the I/O bandwidth

of the main memory cannot be saturated by the writers. The
opposite is seen for ssd−only: due to its limited I/O bandwidth,
the local checkpointing phase grows with increasing number
of writers. It is interesting to notice the fact that the growth
is not linear, which means a high degree of I/O concurrency
negatively impacts the performance of the SSD. Using a 2 GB
cache can dramatically lower the duration of the local check-
pointing phase, as demonstrated by both hybrid−naive and
hybrid−opt. However, hybrid−opt leverages the cache much
more efficiently, as it is up to 40% faster than hybrid−naive,
which itself is up to 30% faster than ssd−only.

For flush completion time, depicted in Figure 4(b), the gap
between hybrid−opt and the rest of the approaches is even
higher: it is 2x faster than hybrid−naive and 2.5x faster than
ssd−only. Furthermore, it can be observed that hybrid−opt is
very close to cache−only, which represents the ideal case.
Thus, it can be concluded that hybrid−opt is not reducing the
local checkpointing phase at the expense of increasing the
flush completion time, effectively becoming a double winner.

To understand these results better, in Figure 4(c) we show
how many chunks were written to SSD using each of the
approaches, with chunk size of 64 MB and each checkpoint
consisting of 4 chunks. The ssd−only approach acts as a base-
line, showing the total number of chunks. Since cache−only
does not write to the SSD at all, it is omitted. As can be
observed, hybrid−naive eagerly uses the SSD since the cache
is always full. However, this is suboptimal since it is trapped
by the low I/O throughput of the SSD. By contrast, hybrid−opt
shows high flexibility in adapting to the parallel file system,
effectively avoiding the SSD when it becomes a bottleneck.

Next, we study the strong scalability. This involves an
increasing number of concurrent writers (from 1 to 256) that
need to checkpoint a fixed total amount of data. We fix the
total amount of data to 64 GB. Therefore, each writer needs to
checkpoint an increasingly smaller amount of data. The cache
size is 2 GB, same as in the previous case.

Figure 5 shows the total time to finish the local checkpoint-
ing phase. Since the overhead is negligible for cache−only, we
omit it. Interesting to observe is the behavior of ssd−only: with
less than 16 concurrent writers, the write performance to the
SSD is very poor. In this case, caching seems to dramatically
help alleviate this effect, as both hybrid−naive and hybrid−opt
are up to an order of magnitude faster, which happens due to
the better parallelization opportunities between the local writes
and the asynchronous flushes to the parallel file system. After
16 concurrent writers, the write performance to the SSD starts
dropping again due to contention. Nevertheless, hybrid−opt
manages to outperform hybrid−naive in all configurations,
ranging from 15%-60%. In the optimal case (16 concurrent
writers), hybrid−opt is 38% faster than hybrid−naive and 6.5x
faster than ssd−only.

E. Impact of Cache Size

In the previous sections, we evaluated the performance of
our approach for a variable number of writers using a fixed
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Fig. 4. Vertical weak scalability: an increasing number of concurrent writers (256 MB per writer) checkpoint on a single node.

cache size of 2 GB. In this section, we fix the total check-
point size and the number of writers for two representative
concurrency scenarios, while increasing the cache size. Our
goal is to study the impact of the cache size on the local write
performance. Note that 0% corresponds to ssd−only, while
100% corresponds to cache−only. Since these were discussed
in the previous section, they are not included here. We compare
the performance of our approach with hybrid−naive.

Figure 6(a) shows the results for 16 ranks per node, which
is a common case when a large number of threads per rank
is desired (up to 16 threads per rank for KNL). In this case,
each rank writes a checkpoint that is 4 GB large, for a total
size of 64 GB. The cache size varies from 2 GB (1% of
the total RAM) to 8 GB (4% of the total RAM). We have
chosen to use a cache size below 5% because this amount
of spare RAM is within the tolerance level of most HPC
applications. As expected, both hybrid−naive and hybrid−opt
benefit from a larger cache size. However, the impact of an
increasing cache size is more pronounced for hybrid−naive,
in which case a 4x increase in the cache size leads to a 30%
faster local checkpointing phase. By contrast, hybrid−opt is
already efficient with a small cache size: a 4x increase in the
cache size leads to only 5% faster local checkpointing phase.
Interesting to observe is that hybrid−opt is at least 25% faster
than hybrid−naive, regardless of cache size. Thus, our proposal
is both faster and more memory-efficient.

Figure 6(b) shows the results for 64 ranks per node, which
is common when a small degree of parallelism is desired in
each rank (up to 4 threads). In this case, each rank writes a
checkpoint that is 1 GB large, for a total size of 64 GB. The
cache size varies like in the previous case from 2 GB to 8 GB.
In this case, the higher write concurrency leads to a large I/O
bottleneck on the SSD in the case of hybrid−naive, as it is more
than 2x slower that hybrid−opt for 2 GB and 4 GB. Doubling
the cache size seems to have little effect. Only starting from
6 GB does the gap between hybrid−naive and hybrid−opt get
smaller. By avoiding the SSD under concurrency, our approach
can maintain a good performance for all cache sizes. Again,
it is both faster and more memory-efficient.

F. Horizontal Weak Scalability
In this section we evaluate the performance and scalability

of our approach for an increasing number of nodes. To
this end, we use the asynchronous checkpointing benchmark
described in Section V-B.

We fix the number of concurrent writers per node to 16, with
each checkpointing 2 GB of memory for a total of 32 GB per
node. Then, we gradually increase the number of nodes from
64 to 256. We use a smaller total size per node than in the
previous experiments because of the quota limit on the parallel
file system (10 TB). The cache size is fixed at 2 GB per node,
same as in the previous experiments described in Section V-D.

Figure 7(a) shows the total time to finish the local check-
pointing phase. As expected, ssd−only maintains a stable
trend, since the configuration is fixed for each node and the
overhead of writing to the SSD is not dependent on the number
of nodes. By contrast, the overhead of hybrid−naive and
hybrid−opt is growing with increasing number of nodes. This
is also expected, since it puts more I/O pressure on the parallel
file system, therefore flushes are slower and the chunks spend
more time in the cache. However, interesting to note is the that
hybrid−opt keeps a steady advantage over hybrid−naive (up
to 1.5x speedup), despite increasing I/O pressure and slower
flushes. This can be explained by the fact that the parallel file
system is behaving more dynamically with increasing number
of nodes, therefore creating more opportunities to adapt to the
variability of the flushes.

The same pattern is also visible in the flush completion time,
depicted in Figure 7(b). This time, the gap between hybrid−opt
and hybrid−async is even more amplified. This shows that
the increasing I/O pressure on the file system is not enough
to offset the overhead of writing locally on the SSD. This
will eventually happen at much larger scale, in which case
the gap between hybrid−naive, hybrid−opt and ssd−only will
gradually close.

G. HACC: Real-life HPC application
In this section, we evaluate our proposal for HACC, an HPC

application that simulates the evolution of the universe using
particle-mesh techniques, as described in Section V-B.

We obtained two representative problems from the HACC
team for 8 and 128 Theta nodes (8 MPI ranks per node × 16
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OpenMP threads per rank), which involves 128 PEs (parallel
processing elements) per node. We run the problem for 10
iterations and initiate an explicit checkpoint at iterations 2, 5,
8. The total number of particles is fixed at 960 (8 nodes) and
2560 (128 nodes), which corresponds to an overall checkpoint
size of 40 GB and 1.4 TB.

Since we are using asynchronous checkpointing, the metric
that is the most relevant from the application perspective is
the increase in run time due to checkpointing when compared
with the baseline (no checkpointing). This metric captures both
the local checkpointing phase (during which the application is
blocked) as well as the indirect overhead due to background
interference.

HACC’s default checkpointing mechanism is a highly opti-
mized synchronous strategy using the GenericIO library [24].
Specifically, the MPI ranks are partitioned in a system-specific
manner, with one partition per I/O node and each partition
writing data in a custom self-describing file format. Each rank
writes its data into a distinct region of the file in order to reduce
contention for file system level page locks. Furthermore, this
approach also reduces contention to the metadata servers due
to reduced number of files.

Therefore, in addition to the four approaches we used
throughout our experiments so far, we also include GenericIO
in our comparison. The cache size for hybrid−naive and
hybrid−opt is fixed at 2 GB per node. The results are depicted
in Figure 8. As can be observed, at small scale (8 nodes,
1024 PEs), ssd−only is slightly faster than GenericIO, while

hybrid−naive and hybrid−opt are 2.9x and 3.3x faster. At much
larger scale (128 nodes, 16384 PEs), the gap between Gener-
icIO and the asynchronous approaches increases significantly:
ssd−only is 2x faster, hybrid−naive 5.5x faster, hybrid−opt
9.4x faster and cache−only 11x faster. This shows excellent
performance and scalability potential for our approach, despite
using a small cache size.

VI. CONCLUSIONS

This paper has proposed an adaptive asynchronous check-
pointing strategy that introduces several novel principles:
hidden complexity of leveraging heterogeneous storage, active
backend to aggregate I/O requests, fine-grained chunking,
smart placement decisions on hybrid local storage based on
performance modeling.

We have illustrated the benefits of our proposal using both
an asynchronous checkpointing benchmark and an HPC appli-
cation (HACC). We have performed extensive experiments that
show the benefits of our proposal for a variety of scenarios.
Despite using only a fraction of the total RAM as cache
(less than 5%), we have shown ≈10x speed-up over state-
of-art synchronous approaches, up to 5x improvement over
asynchronous approaches that use a single local tier and
up to 40% improvement over flush-agnostic asynchronous
approaches that combine multiple local tiers.

An important aspect that requires further discussion is how
to tune the number of concurrent writers. Based on our
experiments, there is a sweet spot and users can run similar



experiments to ours at small scale to find the best configu-
ration for their application. However, many HPC applications
cannot afford to change the number of ranks per node just
to optimize checkpointing. However, regardless whether users
can optimize the number of writers or not, our approach shows
significant improvement in all configurations.

Overall, we conclude that leveraging hybrid local storage ef-
ficiently greatly improves the benefits of asynchronous check-
pointing and minimizes the background interference with the
application run time, as demonstrated by the results obtained
for a real-life HPC application.

Encouraged by these results, we plan to broaden the scope
of our work in future efforts. We see asynchronous checkpoint-
ing as a promising general direction. In this regard, we plan as
a next step to increase the scale of the experiments, in order
to further study the effects of I/O variability of the external
storage under I/O pressure. Another interesting direction is
to study how to leverage periodicity in the behavior of the
application (e.g., CPU, network, local storage utilization) to
run the asynchronous checkpointing in “work stealing” mode
that further minimizes interference.
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