A. Aksamit and L. Li, Projections, pseudo-stopping times and the immersion property, Séminaire de Probabilités XLVIII, pp.459-467, 2016.

A. Aksamit and M. Jeanblanc, Enlargement of Filtration with Finance in View, SpringerBriefs in Quantitative Finance, 2017.

M. Chaleyat-maurel and T. Jeulin, Grossissement Gaussien de la filtration Brownienne, Grossissements de filtrations: exemples et applications, Lecture Notes in Mathematics 1118, pp.59-109, 1985.

P. Cheridito, A. Nikeghbali, and E. Platen, Processes of Class Sigma, Last Passage Times, and Drawdowns, SIAM J. Financial Math, vol.3, issue.1, pp.280-303, 2012.

T. Choulli, C. Daveloose, and M. Vanmaele, A martingale representation theorem and valuation of defaultable securities, 2018.

D. Coculescu and A. Nikeghbali, Hazard processes and Martingale hazard processes, Math. Finance, vol.22, pp.519-537, 2012.

S. Crépey and S. Song, Invariance times, Ann. Appl. Probab, vol.45, pp.4632-4674, 2017.

C. Dellacherie, B. Maisonneuve, and P. A. Meyer, Probabilités et Potentiel, 1992.

C. Dellacherie and P. A. Meyer, A propos du travail de Yor sur le grossissement des tribus, Séminaire de Probabilités XII, vol.649, pp.70-77, 1978.

D. Duffie, M. Schroder, and C. Skiadas, Recursive Valuation of Defaultable Securities and the Timing of Resolution of Uncertainty, Ann. Appl. Probab, vol.6, p.10751090, 1996.

C. Fontana and T. Schmidt, General dynamic term structures under default risk, Stochastic Process. Appl, vol.128, pp.3353-3386, 2018.

S. W. He, J. G. Wang, and J. A. Yan, Semimartingale Theory and Stochastic Calculus, 1992.

L. I. Gal'c?k, Optional martingales. Math. USSR Sbornik (N.S), vol.112, pp.483-521, 1980.

L. I. Gal'c?k, Decomposition of optional supermartingles, Math. USSR Sbornik (N.S), vol.43, issue.2, pp.145-158, 1982.

L. I. Gal'c?k, Stochastic integrals with respect to optional semartingales and random measure, Theory Probab. Appl, vol.29, pp.93-108, 1985.

P. Gapeev, M. Jeanblanc, L. Li, and M. Rutkowski, Constructing random times with given survival processes and applications to valuation of credit derivatives, Contemporary Quantitative Finance, pp.255-280, 2010.

F. Gehmlich and T. Schmidt, Dynamic Defaultable Term Structure Modeling Beyond the Intensity Paradigm, Math. Finance, vol.28, issue.1, pp.211-239, 2016.

J. Jacod, Grossissement initial, hypothèse (H ) et théorème de Girsanov, Grossissements de filtrations: exemples et applications, Lecture Notes in Math. 1118, T, pp.15-35, 1985.

J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes, 2003.

M. Jeanblanc and S. Song, An explicit model of default time with given survival probability, Stochastic Process. Appl, vol.121, pp.1678-1704, 2011.

M. Jeanblanc and S. Song, Random times with given survival probability and their Fmartingale decomposition formula, Stochastic Process. Appl, vol.121, pp.1389-1410, 2011.

T. Jeulin, Semi-martingales et grossissement d'une filtration, Lecture Notes in Math, vol.833, 1980.

Y. Jiao and S. Li, Generalized density approach in progressive enlargement of filtrations, Electron. J. Probab, vol.20, pp.1-12, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01263358

C. Kardaras, On the characterisation of honest times that avoid all stopping times, Stochastic Process. Appl, vol.124, pp.373-384, 2014.

C. Kardaras, On the stochastic behaviour of optional processes up to random times, Ann. Appl. Probab, vol.25, pp.429-464, 2015.

C. Kardaras, On random times, 2010.

É. Lenglart, Tribus de Meyer et théorie des processus In: Séminaire de probabilités XIV, Lecture Notes in Mathematics, pp.500-546, 1980.

L. Li, Characterisation of honest times to optional semimartingales of class-(?), 2018.

L. Li and M. Rutkowski, Random times and multiplicative systems, Stochastic Process. Appl, vol.122, pp.2053-2077, 2012.

L. Li and M. Rutkowski, Progressive enlargements of filtrations with pseudo-honest times and their applications in financial mathematics, Ann. Appl. Probab, vol.24, pp.1509-1553, 2014.

M. Jeanblanc, Y. Lim, and L. Yin, Construction of density processes, Working paper, 2019.

J. Mertens, Théorie des processus stochastiques généraux : applications aux surmartingales, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, vol.22, pp.45-72, 1972.

D. Lando, On Cox processes and credit risky securities, Review of Derivatives Research, vol.2, pp.99-120, 1998.

R. Mansuy and M. Yor, Random Times and Enlargements of Filtrations in a Brownian Setting Lectures Notes in Mathematics 1873, 2006.

P. A. Meyer, Représentations multiplicatives de sousmartingales d'après Azéma, Séminaire de Probabilités XIII, vol.721, pp.240-249, 1979.

A. Nikeghbali, An essay on the general theory of stochastic processes, pp.345-412, 2006.

A. Nikeghbali and M. Yor, A definition and some characteristic properties of pseudo-stopping times, Ann. Prob, vol.33, pp.1804-1824, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00013053

A. Nikeghbali and M. Yor, Doob's maximal identity, multiplicative decompositions and enlargements of filtrations, Illinois J. Math, vol.50, pp.791-814, 2006.

C. Profeta, B. Roynette, Y. , and M. , Option prices as probabilities: A new look at Generalized Black-Scholes Formulae, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00462386

S. Song, -model with jumps, Working Paper, 2013.

S. Song, Dynamic One-default Model, Arbitrage, Credit and Informational Risks, Peking University Series in Mathematics, World Scientific, vol.6, pp.123-148, 2014.

S. Song, Random Time with Differentiable Conditional Distribution Function, Theory Probab. Appl, vol.60, p.647669, 2016.

C. Yoeurp and P. A. Meyer, Sur la décomposition multiplicative des sousmartingales positives. Séminaire de Probabilités X, Lecture Notes in Mathematics, vol.511, pp.501-504, 1976.