
HAL Id: hal-02183037
https://hal.science/hal-02183037

Submitted on 14 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

HDDL -A Language to Describe Hierarchical Planning
Problems

D Höller, G Behnke, P Bercher, S Biundo, H Fiorino, Damien Pellier, R Alford

To cite this version:
D Höller, G Behnke, P Bercher, S Biundo, H Fiorino, et al.. HDDL -A Language to Describe Hierar-
chical Planning Problems. Workshop on HTN Planning (ICAPS), Jul 2019, Berkeley, United States.
�hal-02183037�

https://hal.science/hal-02183037
https://hal.archives-ouvertes.fr

HDDL – A Language to Describe Hierarchical Planning Problems

D. Höller∗, G. Behnke∗, P. Bercher∗, S. Biundo∗, H. Fiorino†, D. Pellier†, and R. Alford‡
∗Institute of Artificial Intelligence, Ulm University, 89081 Ulm, Germany
{daniel.hoeller, gregor.behnke, pascal.bercher, susanne.biundo}@uni-ulm.de

†University Grenoble Alpes, LIG, F-38000 Grenoble, France
{humbert.fiorino, damien.pellier}@imag.fr

‡The MITRE Corporation, McLean, Virginia, USA
ralford@mitre.org

Abstract

The research in hierarchical planning has made considerable
progress in the last few years. Many recent systems do not
rely on hand-tailored advice anymore to find solutions, but
are supposed to be domain-independent systems that come
with sophisticated solving techniques. In principle, this de-
velopment would make the comparison between systems eas-
ier (because the domains are not tailored to a single system
anymore) and – much more important – also the integration
into other systems, because the modeling process is less te-
dious (due to the lack of advice) and there is no (or less)
commitment to a certain planning system the model is cre-
ated for. However, these advantages are destroyed by the lack
of a common input language and feature set supported by
the different systems. In this paper, we propose an extension
to PDDL, the description language used in non-hierarchical
planning, to the needs of hierarchical planning systems. We
restrict our language to a basic feature set shared by many
recent systems, give an extension of PDDL’s EBNF syntax
definition, and discuss our extensions, especially with respect
to planner-specific input languages from related work.

1 Introduction
Much progress has been made recently in the field of hier-
archical planning. Novel systems based on the traditional,
search-based techniques have been introduced (Bit-Monnot,
Smith, and Do 2016; Shivashankar, Alford, and Aha 2017;
Bercher et al. 2017; Höller et al. 2018), but also new tech-
niques like the translation to STRIPS/ADL (Alford, Kuter,
and Nau 2009; Alford et al. 2016a), or revisited approaches
like the translation to propositional logic (Behnke, Höller,
and Biundo 2018a; 2018b; 2019a; 2019b; Schreiber et al.
2019). In contrast to earlier systems, such systems can be
considered to be domain-independent, i.e., they do not rely
on hand-tailored advice to solve planning problems, but only
on their solving techniques.

Even though the systems share the basic idea of being hi-
erarchical planning approaches, the feature set supported
by the different systems is manifold. Bit-Monnot, Smith,
and Do (2016) focus, e.g., on advanced support for tem-
poral planning, but lack the support for recursion; several
systems are restricted to models that do not include partial
ordering (Alford, Kuter, and Nau 2009; Behnke, Höller, and
Biundo 2018a; Schreiber et al. 2019); and some, like the one

by Shivashankar, Alford, and Aha (2017) even define an en-
tirely new type of hierarchical planning problems.

Even systems restricted to the maybe best-known and
most basic hierarchical formalism, called Hierarchical Task
Network (HTN) planning, do not share a common input lan-
guage, though the differences between the input languages
are sometimes rather subtle, e.g. between the formalisms
used by Alford et al. (2016a) and Bercher et al. (2017). To
the best of our knowledge, the hierarchical language intro-
duced for the first International Planning Competition (Mc-
Dermott et al. 1998) is not supported by any recent system.

The lack of a common language has several consequences
for the field. First, it makes the comparison between the sys-
tems tedious due to the translation process. Second – and
even more important – it makes the use of hierarchical plan-
ning from a practical perspective laborious, because it is not
possible to model a problem at hand and try which system
performs best on it. Selecting the system in beforehand (if
possible) requires much insights into the systems.

A common description language would make the compar-
ison of the systems easier, it could foster a common set of
supported features and result in a common benchmark set
the systems are evaluated on.

In this paper, we propose the Hierarchical Domain Defini-
tion Language (HDDL) as common input language for hier-
archical planning problems. It is widely based on the input
language of PANDA, the framework underlying the plan-
ning systems by Bercher et al. (2017), Höller et al. (2018;
2019), and Behnke, Höller, and Biundo (2018a; 2019a;
2019b). We define it as an extension of the STRIPS frag-
ment (language level 1) of the PDDL2.1 definition (Fox and
Long 2003). To concentrate on a set of features shared by
many systems, we restrict the language to basic HTN plan-
ning. However, we hope that the given definition is just the
starting point for further language extensions like the first
PDDL version in classical planning was.

We first introduce a lifted HTN formalism from the lit-
erature, before we define our language by example. We
go through new language elements, introduce their syntax
and meaning, discuss our design choices and differences
to approaches from the literature, namely PDDL1.2 (Mc-
Dermott et al. 1998), SHOP(2) (Nau et al. 2003),
ANML (Smith, Frank, and Cushing 2008), HPDDL (Al-
ford et al. 2016a), GTOHP (Ramoul et al. 2017), HTN-

PDDL (González-Ferrer, Fernández-Olivares, and Castillo
2009), and HATP (de Silva, Lallement, and Alami 2015).

We then give a full EBNF syntax definition1 based on
the definition of PDDL2.1 and discuss every extension and
change. We conclude with a short outlook.

2 Lifted HTN Planning
In this section we formally define the problem class HDDL
can describe, i.e., standard HTN planning in line with the
text book description by Ghallab, Nau, and Traverso (2004).
To define the formal framework we extend the formalization
of Alford, Bercher, and Aha (2015a; 2015b).

Our lifted formalism is based upon a quantifier-free first-
order predicate logic L = (P, T, V, C) with the following
elements. P is a finite set of predicate symbols, each having
a finite arity. The arity defines its number of parameter vari-
ables (taken from V), each having a certain type (defined in
T). Thus, T is a finite set of type symbols as is also known
from PDDL. V is a finite set of typed variable symbols to be
used by the parameters of the predicates in P . C is a finite
set of typed constants. They are the syntactic representation
of the objects in the real world. Please be aware that a sin-
gle constant can have several types, e.g. truck and vehicle to
support a type hierarchy.

The basic data structure in HTN planning is a task net-
work. Task networks are partially ordered multi-sets of tasks.

In contrast to classical (non-hierarchical) planning, there
are two kinds of tasks in HTN planning: primitive and com-
pound ones. Task networks can contain both primitive tasks
(also called actions) and compound tasks (also called ab-
stract). Each task (primitive or compound) is given by its
name, followed by a parameter sequence. For instance, a
(primitive) task for driving from a source location ?ls to
a destination location ?ld is given by the first-order atom
drive(?ls, ?ld). We do not differentiate between the expres-
sions task and task names – both are used synonymously.

Definition 1 (Task Network). A task network tn over a set
of task names X (first-order atoms) is a tuple (I,≺, α,VC)
with the following elements:
1. I is a finite (possibly empty) set of task identifiers.
2. ≺ is a strict partial order over I .
3. α : I → X maps task identifiers to task names.
4. VC is a set of variable constraints. Each constraint can

bind two task parameters to be (non-)equal and it can
constrain a task parameter to be (non-)equal to a con-
stant, or to (not) be of a certain type.

The task identifiers are arbitrary symbols which serve as
place holders (or labels) for the actual tasks they represent.
We need these identifiers because any task can occur multi-
ple times within the same task network, but the partial order
needs to be able to differentiate between them. We call a
task network ground if all task parameters are bound to (or
replaced by) constants from C.

Task networks can contain primitive and/or compound
tasks. Primitive tasks are identical to actions known from

1Syntax definitions for the ANTLR and Bison parser generators
can be found online at www.uni-ulm.de/en/in/ki/panda.

classical planning. An action a is a tuple (name, pre, eff)
with the following elements: name is its task name, i.e., a
first-order atom such as drive(?ls, ?ld) consisting of the (ac-
tual) name followed by a list of typed parameter variables.
pre is its precondition, a first-order formula over literals over
L’s predicates. eff is its effect, a conjunction of literals over
L’s predicates (that are often divided into the positive eff+
and the negative effects eff−). All variables used in pre and
eff are demanded to be parameters of name. We also write
name(a), pre(a), and eff(a) to refer to these elements. We
also require that for each task name name(a) there exists
only a single action using it as its name (this way, names
can be used as unique identifiers).

A compound task is simply a task name, i.e., an atom.
In contrast to primitive tasks its purpose is not to induce a
state transition, but to reference a pre-defined mapping to
one or more task networks by which that compound task can
be refined. They do thus not use preconditions or effects.
However, there are many hierarchical planning formalisms
that do also feature preconditions and/or effects for com-
pound tasks (Bercher et al. 2016), but they are not within
the scope of this paper. The before-mentioned mapping from
compound tasks to pre-defined task networks is given by a
set of decomposition methods M . A decomposition method
m ∈ M is a tuple (c, tn,VC) consisting of a compound
task name c, a task network tn, and a set of variable con-
straints VC . The variable constraints VC allow to specify
(co)designations between the parameters of c and those of
the task network tn.
Definition 2 (Planning Domain). A planning domain D is a
tuple (L, TP , TC ,M) defined as follows.
• L is the underlying predicate logic.
• TP and TC are finite sets of primitive and compound

tasks, respectively.
• M is a finite set of decomposition methods with compound

tasks from TC and task networks over the names TP ∪TC .
The domain implicitly defines the set of all states S, being

defined over all subsets of all ground predicates.
Definition 3 (Planning Problem). A planning problem P is
a tuple (D, sI , tnI , g), where:
• sI ∈ S is the initial state, a ground conjunction of posi-

tive literals over the predicates assuming the closed world
assumption.

• tnI is the initial task network that may not necessarily be
ground.

• g is the goal description, being a first-order formula over
the predicates (not necessarily ground).
HTN planning is not about finding courses of action

achieving a certain state-based goal definition, so it makes
perfect sense to specify no goal formula at all. We added
them anyway to be closer to the PDDL specification. Having
a goal formula in the input specification is more convenient
in case one actually wants to specify a goal, it has a clearly
defined semantics, and (since it can be compiled away (Geier
and Bercher 2011)) causes no problems to systems that do
not support it directly.

We still need to define the set of solutions for a given prob-
lem. Informally, solutions are executable, ground, primitive

task networks that can be obtained from the problem’s initial
task network via applying decomposition methods, adding
ordering constraints, and grounding.

Lifted problems are a compact representation of their
ground instantiations that are, as in classical planning, up
to exponentially smaller (Alford, Bercher, and Aha 2015a;
2015b). However, we define solutions based on their ground-
ing. The semantics of such a lifted problem is thus defined
in terms of the standard semantics of its ground instantia-
tion. We assume that the reader is familiar with the ground-
ing process and refer to the paper by Alford, Bercher, and
Aha (2015a) for details about it. To the best of our knowl-
edge there are currently only two publications devoted to
grounding in more detail – by Ramoul et al. (2017)2 and by
Behnke et al. (2019b). We now give the required definitions
based on a ground problem and domain. Note that we do not
need to represent variable constraints anymore since their
constraints are already represented within the groundings.

Given ground problems/models we can now define exe-
cutability of task networks. Let A be the set of ground ac-
tions obtained from TP . An action a ∈ A is called exe-
cutable in a state s ∈ S if and only if s |= pre(a). The
state transition function γ : S × A → S is defined as in
classical planning: If a is executable in s, then γ(s, a) =
(s\eff −(a))∪eff +(a), otherwise γ(s, a) is undefined. The
extension of γ to action sequences, γ∗ : S ×A∗ → S is de-
fined straightforwardly.

Definition 4 (Executability). A task network tn = (I,≺, α)
is called executable if and only if there is a lineariza-
tion of its task identifiers i1, . . . , in, n = |I|, such that
α(i1), . . . , α(in) is executable in sI .

The means of transforming one task network into another
to obtain executable task networks is decomposition.

Definition 5 (Decomposition). Let m = (c, (Im,≺m, αm))
be a decomposition method, tn1 = (I1,≺1, α1) a task net-
work, and Im∩I1 = ∅ (the latter can be achieved by renam-
ing). Then, m decomposes a task identifier i ∈ I1 into a task
network tn2 = (I2,≺2, α2) if and only if α1(i) = c and

I2 = (I1 \ {i}) ∪ Im
≺2 = (≺1 ∪ ≺m∪

{(i1, i2) ∈ I1 × Im | (i1, i) ∈ ≺1} ∪
{(i1, i2) ∈ Im × I1 | (i, i2) ∈ ≺1})
\ {(i′, i′′) ∈ I1 × I1 | i′ = i or i′′ = i}

α2 = (α1 ∪ αm) \ {(i, c)}

Now we can formally define the solution criteria.

Definition 6 (Solutions). Let P = (D, sI , tnI , g) be a
planning problem with D = (L, TP , TC ,M) and tnS =
(IS ,≺S , αS). tnS is a solution to an HTN planning prob-
lem P if and only if

• There is a sequence of decompositions from tnI to tn =
(I,≺, α), such that I = IS , ≺ ⊆ ≺S , and α = αS

2Their procedure allows to delete effectless actions (Ramoul
et al. 2017), which is not allowed in standard HTN planning and
would e.g. invalidate the compilation for goal descriptions.

deliver(?p, ?ld)

get-to(?lp) pickup(?lp, ?p) get-to(?ld) drop(?ld, ?p)

get-to(?ld)

get-to(?li) drive(?li, ?ld)

get-to(?ld)

drive(?ls, ?ld)

get-to(?l)

∅

Figure 1: The method set of a simple transport domain. Ac-
tions are given as boxed nodes, abstract tasks are unboxed.
All methods are totally ordered. There exists a smaller,
equivalent model. However, the model has been created this
way to illustrate the different language features.

• tnS is primitive and has an executable action lineariza-
tion leading to a state s |= g.

3 HDDL by Example
In this section we explain our extensions to the PDDL def-
inition based on a transport domain. To keep the example
simple, the domain includes only a single transporter that
has to deliver one or more packages. For each new language
element we introduce its syntax and meaning and discuss the
way it is modeled in other input languages.

The predicate and type definition is the same as in PDDL:

1 (define (domain transport)
2 (:types location package - object)
3 (:predicates
4 (road ?l1 ?l2 - location)
5 ...)

All other languages except for HATP (de Silva, Lalle-
ment, and Alami 2015) use the same theoretical model of
objects and predicates as PDDL. HATP models its objects in
an object-oriented way instead and further allows for SAS+
variables (Bäckström and Nebel 1995) in the input language.

The full method set of the domain is illustrated in Fig-
ure 1. Each method will be discussed in this section.

The domain contains two abstract tasks deliver and
get-to. We propose to include an explicit definition of
abstract tasks as it is the case for actions. HPDDL (Al-
ford et al. 2016a) also defines abstract tasks explicitly, al-
beit with a slightly different syntax. Both ANML (Smith,
Frank, and Cushing 2008) and HTN-PDDL (González-
Ferrer, Fernández-Olivares, and Castillo 2009) require an
explicit declaration of abstract tasks and their parameter
types as well, but here the declaration is not separated from
other elements of the domain as both declare methods to-
gether with their abstract tasks.

Some description languages for HTN problems define ab-
stract tasks only in an implicit way by their use in methods.
This includes the language used by SHOP and SHOP2 (Nau
et al. 2003), PDDL1.2 (McDermott et al. 1998), HATP, as
well as GTOHP (Ramoul et al. 2017). SHOP and GTOHP
assume that any task that is used in a method, but is not
declared to be an action is an abstract task. In contrast,

PDDL1.2 assumes that every task that has no methods is
primitive. This way of implicitly defining the set of com-
pound tasks has also been chosen in some formal defini-
tions of hierarchical problem classes (Alford, Bercher, and
Aha 2015a; 2015b). However, this can be very cumbersome
when debugging domains. If the modeler forgot to define a
specific primitive task, the domain will still be valid, as it
would be interpreted as an abstract task.

Another problem with such a definition is that the ar-
gument types are defined implicitly, namely as those with
which the task can be instantiated via any method. The lan-
guage of GTOHP further does not allow for using different
types (that share a common ancestor in the type hierarchy) to
be used for the same task. For example, there might be dif-
ferent methods for the deliver task, depending on the type
of transported package. deliver might have two methods,
one where the first argument is of type regularPackage and
one where it is of type valuablePackage , the latter requir-
ing an armored transporter. We assume that regularPackage
and valuablePackage are disjunct types, but have a com-
mon super-type package , which would be the correct pa-
rameter type for deliver ’s first argument. If its type is not
declared explicitly, the planner can either reject the domain,
as GTOHP does, or would have to infer the possible types of
the arguments of an abstract task.

Declaring abstract tasks and their parameter types explic-
itly is also in line with the design choices of PDDL. Similar
to abstract tasks, PDDL could omit the explicit definition of
predicates as their types could be inferred from their usages.
This is however discouraged from a modeling point-of-view.

Omitting the distinct definition of tasks and methods
would also mean a significant deviation from the contempo-
rary theoretical work on HTN planning. It could hinder fur-
ther language extensions like annotating abstract tasks with
constraints, e.g. preconditions and effects, as done by a cou-
ple of systems (see e.g. the survey by Bercher et al., 2016).

Here is the abstract task definition for the example:

6 (:task deliver :parameters (?p - package
?l - location))

7 (:task get-to :parameters (?l - location))

There is only a single method in the model to decompose
deliver tasks (given at the top of Figure 1). It decomposes
the task into four ordered sub-tasks: getting to the package,
picking it up, getting to its final position, and dropping the
package. The definition in HDDL could look like this:

8 (:method m-deliver
9 :parameters (?p - package

?lp ?ld - location)
10 :task (deliver ?p ?ld)
11 :ordered-subtasks (and
12 (get-to ?lp)
13 (pick-up ?ld ?p)
14 (get-to ?ld)
15 (drop ?ld ?p)))

The method definition starts with the name of the method
that can e.g. be used to describe the decompositions needed
to find a solution. We decided to give the method’s param-
eters explicitly (line 9). This allows e.g. to restrict the types

used in the subtasks and the decomposed task to subtypes
of the original task parameters. Similarly, we can restrict
the method to be applicable only to certain parameters of
the abstract task it decomposes. To be correctly defined, we
assume these parameters to be a superset of all parameters
used in the entire method definition. The parameter defini-
tion is followed by the specification of the abstract task de-
composed by the method as well as its parameters (line 10).

The same syntactical structure is used by HPDDL. In con-
trast, ANML, PDDL1.2, HATP and HTN-PDDL aggregate
all decomposition methods belonging to a single abstract
task, which have to be declared as part of the definition of
an abstract task. As such, the variables that are declared as
the arguments of an abstract task are automatically variables
in a methods’ task network. All of them type variables in
methods explicitly.

In GTOHP’s language, methods don’t have names, but are
identified via the abstract task they refine.

In SHOP, all variables inside a method are only defined
implicitly by their usage as parameters of tasks and pred-
icates inside the method. For example, the definition of a
SHOP method starts with :method followed by an ab-
stract task and its parameters – which if they are variables
are automatically declared as new (untyped) variables. The
same holds for variables that only occur as parameters of
a method’s subtasks. GTOHP and HTN-PDDL follow this
pattern, but enforce that the parameters of the abstract task
are typed, i.e., declared explicitly. Their languages however
do not allow to specify the types of variables that occur in the
method that are not parameters of the abstract task. Declar-
ing the variables is, again, in line with the PDDL standard
and e.g. done the same way in actions. We think it less error-
prone. When the modeler explicitly defines the variables and
their types, the system can check the compatibility of types
and warn the modeler when undeclared variables are used
(e.g. due to a spelling error).

The subtasks of the method are given afterwards (start-
ing in line 11). We decided to have two keywords to start
the definition :ordered-subtasks (as given here) and
:subtasks (which we will show in the next method).
When the :ordered-subtasks keyword is used, the
given list of subtasks is supposed to be totally ordered.
HPDDL uses the keyword :tasks, which might cause er-
rors if mixed up with the :task keyword. Since GTOHP
does only support totally-ordered HTN planning problems,
their language only allows for specifying sequences of ac-
tions with the keyword :expansion.

In the subtask section, all abstract tasks and actions de-
fined in the domain can be used as subtasks (and only these).
The variables defined in the method’s parameter section and
the constants defined in the domain may be used as parame-
ters (and only these).

The get-to task from our example domain is again ab-
stract and may be decomposed by using one of the three
methods given at the bottom of Figure 1. We start with the
left one that is used when there is no direct road connection.
Then the transporter needs to go to the final location ?ld
via some intermediate location ?li. Therefore the method
decomposes the task into another abstract get-to task, fol-

lowed by a drive action with the destination location ?ld.

16 (:method m-drive-to-via
17 :parameters (?li ?ld - location)
18 :task (get-to ?ld)
19 :subtasks (and
20 (t1 (get-to ?li))
21 (t2 (drive ?li ?ld)))
22 :ordering (and
23 (t1 < t2)))

Line 19 shows the aforementioned :subtask definition
that allows for partially ordered tasks. The task definition
contains IDs that can be used to define ordering constraints
(line 22). They consist of a list of individual ordering con-
straints between subtasks. However, in the given example
the resulting ordering is, again, a total order (and is just de-
fined that way to demonstrate this kind of definition).

HPDDL uses the same keyword, but with a slightly dif-
ferent syntax so specify ordering constraints. The format
omits the and and the < signs. We would argue that our
notation is better readable to humans. As stated above,
GTOHP cannot specify partial orders. ANML is primarily
designed for temporal domains and uses a temporal syntax,
e.g. end(t1) < start(t2). SHOP2 and HTN-PDDL
use a different approach to represent the task ordering. In-
stead of specifying individual ordering constraints, they re-
quire to specify the order as a single expression. This expres-
sion is a nested definition of the ordering, which can only
contain two constructors: ordered and unordered. In
SHOP2, e.g. ((:unordered (t1 t2) t3) t4) cor-
responds to the ordering constraints t1 < t2, t2 < t4,
and t3 < t4. Note that this construction cannot express all
possible partially-ordered sets of tasks. Consider an order-
ing over five task identifiers t1, . . . , t5, where t1 < t4,
t2 < t4, t2 < t5, and t3 < t5. This ordering cannot
be expressed with SHOP’s nested ordered/unordered con-
structs. PDDL1.2 also uses this mode as a default, but does
with an additional requirement also allow for an order spec-
ification as we and HPDDL do. Notably PDDL1.2 inter-
twines the definition of a method’s subtasks and the defi-
nition of their order. The syntax of PDDL1.2 to specify the
contents of methods and the order of tasks in them is some-
what convoluted and not easily readable. Thus, we have not
adapted their syntax.

HATP uses a programming-language-style syntax for the
encoding of methods. It further provides explicit means to
determine the order in which groundings of methods should
be explored during progression search. HATP’s syntax for
methods allows for specifying partial order, but its semantics
is different from standard HTN planning. A HATP method
containing partial order is interpreted as multiple totally-
ordered method, one for each linearization of the given par-
tial order. This allows for a more compact representation,
but prohibits task interleaving.

HDDL – as HPDDL, SHOP2, HTN-PDDL, and ANML
– only allow to specify a fixed set of ordering constraints.
Notably, the HTN planner UMCP (Erol, Hendler, and Nau
1994) allows for arbitrary formulae that specify these order-
ings. E.g. they allow to specify an ordering (t1 ≺ t2) =⇒
(t3 ≺ t4). We have not included such a generic means to for-

mulate ordering constraints into HDDL as they do not seem
to be used and supported by any current HTN planning sys-
tem. In principle however, HDDL could be extended to sup-
port such complex ordering constraints.

A common feature of many HTN planning systems is the
possibility of specifying state-based preconditions for meth-
ods as supported by the SHOP2 system. The feature is some-
what problematic. First, because it is (at least from our ex-
perience) usually used to guide the search and thus often
breaks with the philosophy of PDDL to specify a model that
does not include advice. The second problem is the way it
is usually realized in the HTN planning systems: The sys-
tems introduce a new primitive task that holds the method’s
preconditions. It is added to the method and placed before
all other tasks in the method’s subtask network. Consider a
totally ordered domain (i.e., the subtasks of all methods and
the initial task network are totally ordered): here, the action
is executed directly before the other subtasks of the method
and the position where the preconditions are checked is fine.
Now consider a partially ordered domain: here, the newly in-
troduced action is not necessarily placed directly before the
other subtasks, but we just know that it is placed somewhere
before, i.e., the condition did hold at some point before the
other tasks are executed, but may have changed meanwhile.
However, though we are aware of these problems, the fea-
ture is often used and thus we integrated it and assume the
standard semantics as given above.

The preconditions are defined as follows:

24 (:method m-already-there
25 :parameters (?l - location)
26 :task (get-to ?l)
27 :precondition (tAt ?l)
28 :subtasks ())

Here the method may be applied in a state where the trans-
porter is already located at its destination. The given method
has therefore no subtasks, but still has to assure that the
transporter is at its destination.

Method preconditions are typically featured in lan-
guages expressing HTNs. HPDDL uses the same syntax
we are proposing. GTOHP uses, as noted above, a separate
:constraints section, where the method precondition
has to be specified as a before constraint. This is (presum-
ably) to allow for other state constraints later on. PDDL1.2
also features method preconditions, but they are specified
as part of the task network. In ANML, there is no explicit
means for writing down method preconditions, but they can
be encoded into the state constraints allowed by ANML.

There is a strong contrast between what can be expressed
in SHOP3 and all other HTN formats. In SHOP, several
methods for the same abstract task can be arranged in a sin-
gle method declaration, each featuring its own method pre-
condition. For the ith method to be usable, it is not suffi-
cient that its precondition is satisfied. In addition, the pre-
conditions of all previous methods have to be not satisfied

3This potentially also applies to HTN-PDDL, as they use a sim-
ilar syntax. Their description is unfortunately not explicit on the
critical point in semantics (González-Ferrer, Fernández-Olivares,
and Castillo 2009).

as well. Thus SHOP’s method preconditions are in essence
a chain of if-else constructs. This structure can be compiled
into several individual methods with preconditions. In case
one of the preconditions contains an existential quantifier (or
in SHOP’s case a free variable) this leads to universal quan-
tified preconditions in the methods after it. Nevertheless we
propose to drop the ability to use such if-else chains, most
notably, since none of the newer languages supports it. Fur-
ther, this kind of if-else is essentially a means to guide a
depth-first search planner in an efficient way. Thus it does
not constitute physics of the domain, but advice to the plan-
ner, which should not be part of the domain description lan-
guage for a domain-independent planner.

In addition to method preconditions, HPDDL features
method effects, which are modeled after SHOP2’s assert and
retract functionality. Method effects are executed in the state
in which the method preconditions are evaluated. As far as
we know, their formal semantics is not defined in any publi-
cation. We propose to drop this feature (at least for the given
definition intended to be the core language). It is not com-
monly used and might be difficult to use for newcomers to
HTN planning. Note that even without method effects in the
description language, we can still simulate them with addi-
tional actions in the methods’ definitions.

Sometimes it might be useful to define constraints in a
method, e.g. on its variables or sorts. This is demonstrated
in the following example where the transporter’s source po-
sition must be different from its destination.

29 (:method m-direct
30 :parameters (?ls ?ld - location)
31 :task (get-to ?ld)
32 :constraints
33 (not (= ?li ?ld))
34 :subtasks (drive ?ls ?ld))

We are aware that PDDL allows for variable constraints in
the precondition of actions. Due to consistency we also ar-
gue to allow this when method preconditions are specified.
However, many HTN models are defined without methods
that have preconditions and we think it not intuitive to spec-
ify a precondition section solely to define variable con-
straints. Furthermore, we think that other constraints apart
from simple variable constraints might be added to the stan-
dard. These might, e.g., be constants that certain state fea-
tures must hold between two tasks, or directly before some
task. Therefore we integrated a constraint section to the
method definition (line 32f) though our current definition
only allows for equality and inequality constraints.

HPDDL places the variable constraints of a method
into the method’s preconditions. In addition to equal-
ity and inequality it features type constraints, where e.g.
(valuablePackage ?p) is the constraint that ?p be-
longs to the type valuablePackage. GTOHP allows
for equality and inequality constraints that are also within
the :constraints section, but are located in a separate
before block. In SHOP’s syntax, variable constraints have
to be compiled into method preconditions referring to pred-
icates for the individual types and an explicitly declared
equals predicate. ANML also allows for variable con-
straints that can be declared freely inside a method.

We left the action definition unchanged compared to the
PDDL standard we build on. Therefore we included only the
following action into our example.

35 (:action drive
36 :parameters (?l1 ?l2 - location)
37 :precondition (and
38 (tAt ?l1)
39 (road ?l1 ?l2))
40 :effect (and
41 (not (tAt ?l1))
42 (tAt ?l2)))
43 ...)

The problem file is slightly adapted to represent the addi-
tional elements necessary for HTN panning (line 6).

1 (define (problem p)
2 (:domain transport)
3 (:objects
4 city-loc-0 city-loc-1 city-loc-2 -

location
5 package-0 package-1 - package)
6 (:htn
7 :tasks (and
8 (deliver package-0 city-loc-0)
9 (deliver package-1 city-loc-2))

10 :ordering ()
11 :constraints ())
12 (:init
13 (road city-loc-0 city-loc-1)
14 (road city-loc-1 city-loc-0)
15 (road city-loc-1 city-loc-2)
16 (road city-loc-2 city-loc-1)
17 (at package-0 city-loc-1)
18 (at package-1 city-loc-1)))

The section starts with a keyword that specifies the prob-
lem class. In this example, it starts with :htn to define a
standard HTN planning problem. However, there are several
other problem classes in hierarchical planning. An example
for such a class is HTN planning with task insertion, where
the planner is allowed to insert tasks apart from the hier-
archy. An overview of hierarchical problem classes can be
found in the survey by Bercher, Alford, and Höller (2019).
Some of the described problem classes are even syntactically
equivalent to standard HTN planning problems and only dif-
fer in their solution criteria. By making the specification of
the problem class explicit, extensions to the language can
easily add new classes.

The definition of the initial task network is nested in this
section. It has the same form as the methods’ subtask net-
works. The other description languages for HTN planning
also allow for a similar definition of the initial plan. Again,
all of them use a slightly different syntax to describe them.

In the given example, the planning process is started with
two deliver tasks, one for each package. These initial tasks
are not ordered with respect to each other, i.e., their subtasks
may be executed interleaved.

In the original PDDL standard, the domain designer has
to specify a state-based goal. HTN planning problems do
not require such a goal and thus often do not specify one.
Therefore we made its definition optional.

4 Full Syntax Definition
We defined our syntax as close as possible to the STRIPS
part (i.e., language level 1) of the PDDL 2.1 language defi-
nition of Fox and Long (2003). Wide parts of the following
definition are identical to their definition. Changes and ex-
tensions are discussed in the following.

The domain definition has been extended by definitions
for compound tasks (line 6) and methods (line 7).

1 <domain> ::= (define (domain <name>)
2 [<require-def>]
3 [<types-def>]:typing

4 [<constants-def>]
5 [<predicates-def>]
6 <comp-task-def>*
7 <method-def>*
8 <action-def>*)

The definition of the basic elements is nearly unchanged.

9 <require-def> ::=
(:requirements <require-key>+)

10 <require-key> ::= ...
11 <types-def> ::= (:types <types>+)
12 <types> ::= <typed list (name)>

| <base-type>
13 <base-type> ::= <name>
14 <constants-def> ::=

(:constants <typed list (name)>)
15 <predicates-def> ::=

(:predicates <atomic-formula-skeleton>+)
16 <atomic-formula-skeleton> ::=

(<predicate> <typed list (variable)>)
17 <predicate> ::= <name>
18 <variable> ::= ?<name>
19 <typed list (x)> ::= x+ - <type>

[<typed list (x)>]
20 <primitive-type> ::= <name>
21 <type> ::= (either <primitive-type>+)
22 <type> ::= <primitive-type>

The only change concerns the definition of
<types-def> (lines 11 and 13) in combination with
the definition of <typed list (name)> (line 19). In
the PDDL2.1 standard, this can be realized by a list of
names, e.g. in an untyped way. Our intention was to enforce
a typed model and therefore allow for untyped elements
only in the type definition. There, it is necessary to define
the base type(s). In every other definition that includes
<typed list (name)> (e.g. parameter and constant
definitions), we wanted to enforce a typed list.

Abstract tasks are defined similar to actions.

23 <comp-task-def> ::= (:task <task-def>)
24 <task-def> ::= <task-symbol>

:parameters (<typed list (variable)>)
25 <task-symbol> ::= <name>

In a standard HTN setting, methods consist of a parame-
ter list (line 27), the abstract task they decompose (line 28),
and the resulting task network (line 30). The parameters of
a method are supposed to include all parameters of the ab-
stract task that it decomposes and those of the tasks in its
network of subtasks.

By setting the :htn-method-prec requirement, one
might use method preconditions (line 29).

26 <method-def> ::= (:method <name>
27 :parameters (<typed list (variable)>)
28 :task (<task-symbol> <term>*)
29 [:precondition <gd>]:htn−method−prec

30 <tasknetwork-def>)

The definition of task networks is used in method def-
initions as well as in the problem definition to define the
initial task network. It contains the definition of sub-tasks
(line 32), ordering constraints (line 33), and variable con-
straints (line 34) between any method parameters.

When the key :ordered-subtasks is used, the net-
work is regarded to be totally ordered. In the other cases,
ordering relations may be defined explicitly. This is done by
including ids into the task definition that can then be refer-
enced in the ordering definition.

31 <tasknetwork-def> ::=
32 [:[ordered-][sub]tasks

<subtask-defs>]
33 [:order[ing] <ordering-defs>]
34 [:constraints <constraint-defs>]

We use the same syntax definition for method subnetworks
and the initial task network. Here, the keyword subtasks
would seem odd. Therefore the syntax also allows for the
keys tasks and ordered-tasks (line 32) that are sup-
ported to be used in the initial task network.

The subtask definition may contain one or more subtasks.
A single task consists of a task symbol and a list of param-
eters. In case of a method’s subnetwork, these parameters
have to be included in the method’s parameters, in case of
the initial task network, they have to be defined as constants
in s0 or in a dedicated parameter list (see definition of the
initial task network, line 82). The tasks may start with an id
that can be used to define ordering constraints.

35 <subtask-defs> ::= () | <subtask-def>
| (and <subtask-def>+)

36 <subtask-def> ::= (<task-symbol> <term>*)
| (<subtask-id> (<task-symbol> <term>*))

37 <subtask-id> ::= <name>

The ordering constraints are defined via the task ids. They
have to induce a partial order.

38 <ordering-defs> ::= () | <ordering-def>
| (and <ordering-def>+)

39 <ordering-def> ::=
(<subtask-id> "<" <subtask-id>)

So far we only included variable constraints into the con-
stant section, but the definition might be extended in further
language levels, of course.

40 <constraint-defs> ::= () | <constraint-def>
| (and <constraint-def>+)

41 <constraint-def> ::= ()
| (not (= <term> <term>))
| (= <term> <term>)

The original action definition of PDDL has been split to
reuse its body in the task definition.

42 <action-def> ::= (:action <task-def>
43 [:precondition <gd>]
44 [:effects <effect>])

We restricted the definition of preconditions and effects to
level 1, i.e., the STRIPS part of the overall language.

45 <gd> ::= ()
46 <gd> ::= <atomic formula (term)>
47 <gd> ::=:negative-preconditions <literal (term)>
48 <gd> ::= (and <gd>*)
49 <gd> ::=:disjunctive-preconditions (or <gd>*)
50 <gd> ::=:disjunctive-preconditions (not <gd>)
51 <gd> ::=:disjunctive-preconditions (imply <gd> <gd>)
52 <gd> ::=:existential-preconditions

(exists (<typed list (variable)>*) <gd>)
53 <gd> ::=:universal-preconditions

(forall (<typed list (variable)>*) <gd>)
54 <gd> ::= (= <term> <term>)
55 <literal (t)> ::= <atomic formula(t)>
56 <literal (t)> ::= (not <atomic formula(t)>)
57 <atomic formula(t)> ::= (<predicate> t*)
58 <term> ::= <name>
59 <term> ::= <variable>
60 <effect> ::= ()
61 <effect> ::= (and <c-effect>*)
62 <effect> ::= <c-effect>
63 <c-effect> ::=:conditional-effects

(forall (<variable>*) <effect>)
64 <c-effect> ::=:conditional-effects

(when <gd> <cond-effect>)
65 <c-effect> ::= <p-effect>
66 <p-effect> ::= (not <atomic formula(term)>)
67 <p-effect> ::= <atomic formula(term)>
68 <cond-effect> ::= (and <p-effect>*)
69 <cond-effect> ::= <p-effect>

The problem definition includes as additional element the
initial task network (line 74). Since a state-based goal def-
inition is often not included in HTN planning, we made it
optional (line 76).

70 <problem> ::= (define (problem <name>)
71 (:domain <name>)
72 [<require-def>]
73 [<p-object-declaration>]
74 [<p-htn>]
75 <p-init>
76 [<p-goal>])
77 <p-object-declaration> ::=

(:objects <typed list (name)>)
78 <p-init> ::= (:init <init-el>*)
79 <init-el> ::= <literal (name)>
80 <p-goal> ::= (:goal <gd>)

The initial task network contains the definition of the
problem class (line 81). In this first definition we only in-
cluded standard HTN planning.

81 <p-htn> ::= (<p-class>
82 [:parameters (<typed list (variable)>)]
83 <tasknetwork-def>)
84 <p-class> ::= :htn

Our overall definition includes two new requirement flags:

• :htn requires the applied system needs to support HTN
planning at all, so this can be seen as the basic require-
ment for the language defined here.

• :htn-method-prec requires the applied system
needs to support method preconditions.

5 Discussion
We consider the language proposed in this paper as a first
step towards a standardized language for hierarchical plan-
ning problems and hope that it helps to find a minimal set of
features supported by the diverse systems. However, this ba-
sic feature set as well as many design options are still open
and have to be discussed in the research community.

First of all, we think it is important to remain as close as
possible to PDDL and to reuse its features to allow domain
modelers to create both hierarchical and non-hierarchical
problems with minimal learning effort. Then, we must de-
cide which features have to be at the core of the language,
and which ones are secondary and possibly could be ig-
nored. This is especially important to establish a competi-
tion to compare the performance of different systems (see
the proposal by Behnke et al. (2019a)).

A feature that was present in the early HTN formalisms
(see e.g. the formalism by Erol, Hendler, and Nau, (1994))
is the possibility to define more elaborated constraints in
task networks. Recent work in hierarchical planning was
not based on such a rich definition language, but on rather
minimalistic formalisms like the one introduced by Geier
and Bercher, (2011). In this first definition we only included
the very basic constraints: ordering constraints, variable con-
straints, and method preconditions. However, we think that
a constraint set as given in PDDL3 might be a nice extension
beneficial for domain designers. When the community wants
to foster application in real world domains, it may be neces-
sary to integrate support for numbers and time into the plan-
ning systems. Since our definition builds upon the PDDL2.1,
at least the extension of the syntax in that direction could
easily be done. Another possible extension is the support for
preconditions and effects in the definition of abstract tasks
(see Bercher et al. (2016) for an overview of that feature).

Beside new features, it might be interesting to include
new problem classes like HTN planning with task insertion,
decompositional planning, or HGN planning, which comes
with the ability to decompose not tasks, but also goals (Shiv-
ashankar et al. 2012) and that even has been combined with
task decomposition (Alford et al. 2016b).

6 Conclusion
We propose a common description language for hierarchical
planning problems. We argue that the core feature set under-
lying many hierarchical planners from the last years is that
of HTN planning and introduced its elements as an extension
of PDDL. We defined the language in a way that can easily
be extended by further features as has been done in PDDL.
We introduced our novel language elements “by example”
and discussed our design choices, the syntax used in related
work, and the proposed meaning. We gave a full syntax def-
inition afterwards and discussed the extensions and changes

to the PDDL standard. We hope that a common input lan-
guage may foster the cooperation between groups working
in hierarchical planning, the comparison of different hierar-
chical planning systems, and the application on real prob-
lems, because it enables an easy exchange of the planning
system used for a given problem.

Acknowledgements
This work was partly funded by the technology trans-
fer project “Do it yourself, but not alone: Companion-
Technology for DIY support” of the SFB/TRR 62 funded
by the German Research Foundation (DFG). The indus-
trial project partner is the Corporate Research Sector of the
Robert Bosch GmbH.

References
Alford, R.; Bercher, P.; and Aha, D. 2015a. Tight bounds
for HTN planning. In Proc. of the ICAPS.
Alford, R.; Bercher, P.; and Aha, D. 2015b. Tight bounds
for HTN planning with task insertion. In Proc. of the IJCAI.
Alford, R.; Behnke, G.; Höller, D.; Bercher, P.; Biundo, S.;
and Aha, D. W. 2016a. Bound to plan: Exploiting classical
heuristics via automatic translations of tail-recursive HTN
problems. In Proc. of the ICAPS.
Alford, R.; Shivashankar, V.; Roberts, M.; Frank, J.; and
Aha, D. W. 2016b. Hierarchical planning: Relating task
and goal decomposition with task sharing. In Proc. of the
IJCAI.
Alford, R.; Kuter, U.; and Nau, D. S. 2009. Translating
HTNs to PDDL: A small amount of domain knowledge can
go a long way. In Proc. of the IJCAI.
Bäckström, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Computational Intelligence 11(4):625–656.
Behnke, G.; Höller, D.; Bercher, P.; Biundo, S.; Fiorino, H.;
Pellier, D.; and Alford, R. 2019a. Hierarchical planning in
the IPC. In Proc. of the Workshop on the IPC (WIPC).
Behnke, G.; Höller, D.; Bercher, P.; and Biundo, S. 2019b.
More succinct grounding of HTN planning problems – Pre-
liminary results. In Proc. of the ICAPS Workshop on Hier-
archical Planning.
Behnke, G.; Höller, D.; and Biundo, S. 2018a. totSAT –
Totally-ordered hierarchical planning through SAT. In Proc.
of the AAAI.
Behnke, G.; Höller, D.; and Biundo, S. 2018b. Tracking
branches in trees – A propositional encoding for solving
partially-ordered HTN planning problems. In Proc. of the
ICTAI.
Behnke, G.; Höller, D.; and Biundo, S. 2019a. Bringing
order to chaos – A compact representation of partial order in
SAT-based HTN planning. In Proc. of the AAAI.
Behnke, G.; Höller, D.; and Biundo, S. 2019b. Finding op-
timal solutions in HTN planning – A SAT-based approach.
In Proc. of the IJCAI.
Bercher, P.; Alford, R.; and Höller, D. 2019. A survey on
hierarchical planning – One abstract idea, many concrete re-
alizations. In Proc. of the IJCAI.

Bercher, P.; Höller, D.; Behnke, G.; and Biundo, S. 2016.
More than a name? On implications of preconditions and
effects of compound HTN planning tasks. In Proc. of the
ECAI.
Bercher, P.; Behnke, G.; Höller, D.; and Biundo, S. 2017. An
admissible HTN planning heuristic. In Proc. of the IJCAI.
Bit-Monnot, A.; Smith, D. E.; and Do, M. 2016. Delete-free
reachability analysis for temporal and hierarchical planning.
In Proc. of the ECAI.
de Silva, L.; Lallement, R.; and Alami, R. 2015. The HATP
hierarchical planner: Formalisation and an initial study of its
usability and practicality. In Proc. of the IROS, 6465–6472.
Erol, K.; Hendler, J.; and Nau, D. 1994. UMCP: A sound
and complete procedure for hierarchical task-network plan-
ning. In Proc. of AIPS.
Fox, M., and Long, D. 2003. PDDL2.1: An extension
to PDDL for expressing temporal planning domains. JAIR
20:61–124.
Geier, T., and Bercher, P. 2011. On the decidability of HTN
planning with task insertion. In Proc. of the IJCAI.
Ghallab, M.; Nau, D. S.; and Traverso, P. 2004. Automated
Planning: Theory and Practice.
González-Ferrer, A.; Fernández-Olivares, J.; and Castillo, L.
2009. JABBAH: A java application framework for the trans-
lation between business process models and HTN. In Proc.
of the Int. Competition on Knowledge Engineering for Plan-
ning and Scheduling (ICKEPS).
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2018. A
generic method to guide HTN progression search with clas-
sical heuristics. In Proc. of the ICAPS.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2019.
On guiding search in HTN planning with classical planning
heuristics. In Proc. of the IJCAI.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL –
the planning domain definition language. Technical Report
CVC TR-98-003/DCS TR-1165, Yale Center for Computa-
tional Vision and Control.
Nau, D. S.; Au, T.; Ilghami, O.; Kuter, U.; Murdock, J. W.;
Wu, D.; and Yaman, F. 2003. SHOP2: An HTN planning
system. JAIR 20:379–404.
Ramoul, A.; Pellier, D.; Fiorino, H.; and Pesty, S. 2017.
Grounding of HTN planning domain. International Journal
on Artificial Intelligence Tools 26(5):1–24.
Schreiber, D.; Balyo, T.; Pellier, D.; and Fiorino, H. 2019.
Tree-REX: SAT-based tree exploration for efficient and
high-quality HTN planning. In Proc. of the ICAPS.
Shivashankar, V.; Alford, R.; and Aha, D. W. 2017. Incor-
porating domain-independent planning heuristics in hierar-
chical planning. In Proc. of the AAAI.
Shivashankar, V.; Kuter, U.; Nau, D. S.; and Alford, R.
2012. A hierarchical goal-based formalism and algorithm
for single-agent planning. In Proc. of the AAMAS.
Smith, D.; Frank, J.; and Cushing, W. 2008. The ANML
language. In Proc. of the Workshop on KEPS.

