
Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling (ICAPS 2019)

Tree-REX: SAT-Based Tree Exploration
for Efficient and High-Quality HTN Planning

Dominik Schreiber,1 Damien Pellier,2 Humbert Fiorino,2 Tomáš Balyo1

1Karlsruhe Institute of Technology, Germany
2Université Grenoble-Alpes, France

{dominik.schreiber,tomas.balyo}@kit.edu, {damien.pellier,humbert.fiorino}@imag.fr

Abstract

In this paper, we propose a novel SAT-based planning ap-
proach to solve totally ordered hierarchical planning prob-
lems. Our approach called “Tree-like Reduction Exploration”
(Tree-REX) makes two contributions: (1) it allows to rapidly
solve hierarchical planning problems by making effective use
of incremental SAT solving, and (2) it implements an anytime
approach that gradually improves plan quality (makespan) as
time resources are allotted. Incremental SAT solving is im-
portant as it reduces the encoding volume of planning prob-
lems, it builds on information obtained from previous search
iterations and speeds up the search for plans. We show that
Tree-REX outperforms state-of-the-art SAT-based HTN plan-
ning with respect to run times and plan quality on most of the
considered IPC domains.

Introduction
HTN (Hierarchical Task Network) planning (Erol, Hendler,
and Nau 1994) is one of the most efficient and widely
used planning techniques. Being based on expressive lan-
guages, it allows to specify complex expert knowledge for
real world domains. Unlike classical planning (Fikes and
Nilsson 1971), the objective in HTN planning is expressed
as a set of tasks to achieve. The search for a solution consists
of reducing the initial tasks into subtasks satisfying sets of
constraints until a set of primitive subtasks is found, which
can be executed as classical planning actions. The recursive
reduction of tasks into subtasks is performed by applying
hierarchical planning operators named methods. Methods in
HTN planning provide much more information about the
problem to solve than in classical planning which only fea-
tures primitive actions. The search space is usually signifi-
cantly smaller in HTN planning, making the solving process
faster and less resource-demanding.

On the other side, SAT solving is a generic problem res-
olution method which has already been successfully ap-
plied to classical planning before, e.g., (Kautz, McAllester,
and Selman 1996). Given a propositional logic formula F ,
the objective of SAT solving is to find an assignment to
all occurring Boolean variables such that F evaluates to

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

true, or to report unsatisfiability if no such assignment ex-
ists. The general approach of applying SAT solving to plan-
ning problems has four steps: (1) enumerating and instanti-
ating all the possible actions, (2) encoding the instantiated
planning problem into propositional logic, (3) finding a so-
lution with a SAT solver, e.g., (Eén and Sörensson 2003;
Audemard and Simon 2009; Biere 2013), and (4) decod-
ing the found variable assignment back to a valid plan. In
conventional SAT planning (Kautz, McAllester, and Selman
1996), each fact and each action at each step is commonly
represented by a Boolean variable. As the number of neces-
sary actions is generally unknown in advance, the planning
problem is iteratively re-encoded for a growing amount of
steps, until a solution is found or the computation is can-
celled. Recently, incremental SAT solving has been shown
to improve the efficiency of classical SAT planning (Gocht
and Balyo 2017). In incremental SAT solving, one single
formula is maintained and extended over the whole iterative
solving procedure, avoiding a complete re-encoding of the
problem at each iteration and also letting the solver remem-
ber conflicts from past solving attempts.

In contrast to SAT-based classical planning, research on
SAT-based HTN planning lay idle for nearly two decades
after its initial proposal (Mali and Kambhampati 1998). Re-
cently, the topic was revisited by (Behnke, Höller, and Bi-
undo 2018a) and (Schreiber et al. 2019) who each proposed
new, modern SAT encodings for HTN problems with totally
ordered subtasks. However, these approaches do not fully
exploit the potential of modern SAT solving yet, and they
produce plans of improvable quality.

In this paper, we propose a new encoding called
Tree-REX (Tree-like Reduction Exploration) which takes
advantage of incremental SAT solving in order to rapidly
explore a problem’s hierarchy until an initial plan is found.
Moreover, unlike the existing approaches, Tree-REX imple-
ments an anytime search that improves plan quality: when a
solution is found and time can still be allocated, Tree-REX
can continue its search to find shorter plans.

First, we introduce the concepts of HTN planning. Then,
we present the Tree-REX encoding, compare it to previous
encodings, and describe the integrated plan length optimiza-
tion process. We then provide some relevant implementation

382

details and optimizations. A thorough evaluation of the fea-
tures of our approach follows. Finally, related work is dis-
cussed and a conclusion is provided.

HTN Planning
This section introduces the foundations of HTN planning.

Operators, Methods and Tasks
A fact is an atomic logical proposition. A state s is a con-
sistent set of positive facts. An operator o is a tuple o =
(name(o), pre(o), eff (o)) where name(o) is an expression
featuring a set of parameters scoped over pre(o) and eff (o).
pre(o) defines the preconditions that must hold to apply the
operator and eff (o) defines the effects that hold in the state
after the application of o.

An action is a ground operator, i.e. it has no free param-
eters. Action a is applicable to a state s if pre(a) ⊆ s. The
resulting state s′ of the application of a in a state s is de-
fined as follows: s′ = γ(s, a) = (s \ eff−(a)) ∪ eff+(a),
where eff+ (eff−) represent the positive (negative) facts
in eff. The application of a sequence of actions is recur-
sively defined by γ(s, 〈〉) = s and γ(s, 〈a0, a1, . . . , an〉) =
γ(γ(s, a0), 〈a1, . . . , an〉).

A method m = (name(m), pre(m), subtasks(m)) is a tu-
ple where name(m) features a set of parameters scoped over
pre(m) and subtasks(m). pre(m) defines preconditions, i.e.,
facts that must hold to apply m, and subtasks(m) is the se-
quence of subtasks that must be executed in order to apply
m. A reduction is a ground method. A reduction r is appli-
cable in a state s if pre(r) ⊆ s.

A task t is a syntactic expression of the form
t(x1, . . . , xn) where t is the task symbol and x1, . . . , xn its
parameters. A task is primitive if t is the name of an opera-
tor; otherwise the task is non-primitive.

An action a accomplishes a primitive task t in a state s
if name(a) = t and a is applicable in s. Similarly, a re-
duction r accomplishes a non-primitive task t in a state s if
name(r) = t and r is applicable in s. We write R(t) for the
set of possible reductions of a non-primitive task t.

HTN Problems and Solutions
An HTN planning problem is a 5-tupleP = (s0, g, T,O,M)
where s0 and g are respectively the initial state and the goal
defined by logical propositions, T is an ordered list of tasks
〈t0, . . . , tk−1〉, O is a set of operators, and M is a set of
methods defining the possible reductions of a task.

A solution plan for a planning problem P =
(s0, g, T,O,M) is a sequence of actions π = 〈a0, . . . , an〉
such that g ⊆ γ(s0, π). Intuitively, a solution plan means
that there is a reduction of T into π such that π is executable
from s0 and each reduction is applicable in the appropriate
state of the world. The recursive formal definition has three
cases. Let P = (s0, g, T,O,M) be an HTN planning prob-
lem. A plan π = 〈a0, . . . , an〉 is a solution for P iff:
Case 1. T is an empty sequence of tasks. Then the empty

plan π = 〈〉 is the solution for P if g ⊆ s0.
Case 2. The first task t0 of T is primitive. Then π is a so-

lution for P if there is an action a0 obtained by grounding

3
0

1
3

1
4

1
5

2
6

1
8

1
9

2
0

4
2

1
6

 . . .

0 1 2 3 4 5 6 7 8 9
0

1

2

i

l

e(l,i)
next(l,i)

Figure 1: A sequence of hierarchical layers with e(l, i) and
next(l, i) values, connected by fact transitions (dashed ar-
rows) and action/reduction transitions (continuous arrows).

an operator o ∈ O such that (1) a0 accomplishes t0, (2) a0
is applicable in s0 and (3) π = 〈a1, . . . , an〉 is a solution
plan for the HTN planning problem:

P ′ = (γ(s0, a0), g, 〈t1, . . . , tk−1〉, O,M)

Case 3. The first task t0 of T is non-primitive. Then π is
a solution if there is a reduction r obtained by grounding
a method m ∈ M such that (1) r accomplishes t0, (2)
r is applicable in s0 and (3) π is a solution for the HTN
planning problem:

P ′ = (s0, g, 〈subtasks(r), t1, . . . , tk−1〉, O,M)

Tree-REX Encoding
The Tree-REX encoding is based on the idea of a breadth-
first search over all possible reductions which can be chosen,
beginning from the provided initial tasks as root nodes. Each
reduction itself has a number of children each of which can
either be a reduction or an action. When traversing the hi-
erarchy layer from layer, we encode an abstract plan which
gets more and more concrete until an actual plan (only con-
taining actions) is reached. In the following, we define the
used structures in such a way that the translation into propo-
sitional logic will be as direct and natural as possible.

Problem Hierarchies
A hierarchical layer is an array L[0...n − 1] which at each
position contains a set of elements. An element is a fact, re-
duction or action. The hierarchy of an HTN planning prob-
lem P is a sequence of hierarchical layers 〈L0, . . . , Lm〉
which is computed incrementally, beginning with an ini-
tial layer that directly follows from the problem definition.
A graphical representation of such a hierarchy is given in
Fig. 1. When proceeding from one layer to another, some
of the previous elements need to be propagated to the next
layer. However, a single reduction at layer l can induce an
entire sequence of elements at layer l + 1, pushing all sub-
sequent elements at layer l + 1 further to the right. We de-
fine e(l, i) as the maximum amount of subsequent positions
which can be allocated by any element at (l, i) when propa-
gating it to layer l+1. We can directly compute e(l, i) when

383

we know the contents of position (l, i). Now, we can define
next(l, i) for any position i at layer l as the first position in
layer l+1 where the elements at (l, i) will be propagated to:

1. next(l, 0) = 0.
2. next(l, i+ 1) = next(l, i) + e(l, i).
We recursively define the hierarchical layers of the problem:
• L0 is an array of size k + 1. The i-th position of the ar-

ray contains all the possible reductions of the initial task
ti and all of their preconditions. Additionally, position 0
contains all the facts in s0, and position k contains all the
facts in g.

• Assume that layer Ll is already defined. Then layer Ll+1

is defined as follows:
– For each fact p at (l, i), Ll+1 contains p at position

next(l, i).
– For each action a at (l, i), Ll+1 contains a and pre(a)

at position next(l, i) and eff(a) at position next(l, i)+1.
– For each reduction r at (l, i), let tj be the j-th subtask

of r. If tj is primitive and accomplished by an action
a, then Ll+1 contains a at position next(l, i) + j. Else,
Ll+1 contains the reductions R(tj) and each of their
preconditions at position next(l, i) + j.

The size of layer Ll+1 is defined as the highest position
for which Ll+1 contains an element.
The definition of hierarchical layers now includes all el-

ements which may occur at the respective place. The actual
reasoning of which combination of elements occurs at each
place will be done by a SAT solver, after the hierarchical lay-
ers are encoded into propositional logic. Note that depending
on the choice of which element occurs at a given place, some
positions at the next hierarchical layer may also be empty in
practice. For instance, suppose that an action and a reduc-
tion with three subtasks are possible at (l, i). If the action is
selected to occur there, then the two places next(l, i)+1 and
next(l, i) + 2 will remain empty. For this reason, a virtual
action named blank will be incorporated into the encoding
to enforce that such places remain effectively empty.

Simultaneously to picking consistent actions and reduc-
tions out of the possible sets of elements, the SAT solver also
needs to find consistent assignments to all the present facts
such that all the preconditions and effects of the occurring
actions and reductions hold and that a fact only changes its
logical value if an action or a reduction supports this change.
In the following, we provide the encoding incorporating all
such constraints.

Rules of Encoding
The initial state holds at the initial layer 0 at position 0:∧

p∈s0

holds(p, 0, 0) ∧
∧
p/∈s0

¬holds(p, 0, 0) (1)

At each position j of the initial layer, the respective initial
task reductions are possible. Let T = 〈t0, . . . , tj , . . . , tk−1〉:

k−1∧
j=0

∨
r∈R(tj)

element(r, 0, j) (2)

The last position of the initial layer contains a blank element:

element(blank, 0, k) (3)

At the last position of the initial layer, all goal facts hold:∧
p∈g

holds(p, 0, k) (4)

The presence of an action at some position i implies its pre-
conditions at position i and its effects at position i+ 1:

element(a, l, i)⇒
∧

p∈pre(a)

holds(p, l, i) (5)

element(a, l, i)⇒
∧

p∈eff+(a)

holds(p, l, i+ 1)

element(a, l, i)⇒
∧

p∈eff−(a)

¬holds(p, l, i+ 1)

A reduction at some position i implies its preconditions at
that position:

element(r, l, i)⇒
∧

p∈pre(r)

holds(p, l, i) (6)

Each action is primitive, and each reduction is non-primitive.
The following rules eliminate the possibility of an action and
a reduction to co-occur:

element(a, l, i)⇒ primitive(l, i) (7)
element(r, l, i)⇒ ¬primitive(l, i)

If a fact changes, then either this position does not contain
an action yet or it contains an action which supports this fact
change. Such constraints are also called “frame axioms”.

holds(p, l, i) ∧ ¬holds(p, l, i+ 1)⇒

⇒ ¬primitive(l, i) ∨
∨

p∈eff−(a)

element(a, l, i) (8)

¬holds(p, l, i) ∧ holds(p, l, i+ 1)⇒

⇒ ¬primitive(l, i) ∨
∨

p∈eff+(a)

element(a, l, i)

At each position, all possibly occurring actions are mutu-
ally exclusive. (Note that this also includes the blank action
variable.) For each pair of actions a1, a2, we have:

¬element(a1, l, i) ∨ ¬element(a2, l, i) (9)

A fact p holds at some position i if and only if it also holds
at its first child position at the next hierarchical layer.

holds(p, l, i)⇔ holds(p, l + 1, next(l, i)) (10)

If an action occurs at some position i, then it will also occur
at its first child position at the next hierarchical layer.

element(a, l, i)⇒ element(a, l + 1, next(l, i)) (11)

If an action occurs at some position i, then all further child
positions at the next layer will contain a blank element.∧

0<j<e(l,i)

element(a, l, i)⇒

⇒ element(blank, l + 1, next(l, i) + j) (12)

384

If a reduction occurs at some position i, then it implies
some valid combination of its subtasks at the next layer. Let
subtasks(r) = 〈t0, . . . , tk−1〉 and 0 ≤ j < k. If tj is primi-
tive and accomplished by an action a:

element(r, l, i)⇒ element(a, l + 1, next(l, i) + j) (13)

If tj is non-primitive and R(tj) are its possible reductions:

element(r, l, i)⇒
∨

r′∈R(tj)

element(r′, l + 1, next(l, i) + j)

(14)

Any positions j at the next layer which remain undefined by
an occurring reduction are filled with blank symbols.∧

k≤j<e(l,i)

element(r, l, i)⇒ element(blank, l + 1, i+ j)

(15)

To find a plan after n layers, we must ensure that all the po-
sitions of the last (i.e. the current) hierarchical layer n must
be primitive. Let sn be the size of the array at layer n:∧

0≤i<sn

primitive(n, i) (16)

The provided rules are instantiated and added incremen-
tally to a solving procedure. At the beginning, the formula
only consists of rules 1-4. Then, setting l := 0, rules 5-9 are
instantiated and added to the problem, and rule 16 is added
as an assumption, i.e. it is only part of the formula for one
single solving attempt. The SAT solver is now executed on
the formula for the first time. When the formula is not sat-
isfiable, l is increased by one, rules 5-15 are added and rule
16 is assumed for the respective value of l. This procedure
is repeated until a solution is found.

Comparison to Previous Encodings
The Tree-REX encoding lends itself to a comparison with
the state-of-the-art approach totSAT (Behnke, Höller, and
Biundo 2018a) because both approaches ultimately lead to
an exploration of the problem’s hierarchy by successively
extending the SAT encoding along the hierarchy’s depth.
In particular, the hierarchical layers 1,. . . ,n in our approach
correspond to a Path Decomposition Tree (PDT) of depth n
in totSAT. The propagation mechanism of actions from one
layer to another as described in rules 11–12 resembles the
inheritPrimitive clauses in totSAT. Similarly, the propaga-
tion of reductions from one layer to another (rules 13–15) is
realized in totSAT with the clauses applyMethod and select-
Method. However, one significant difference is that totSAT
features Boolean variables for possible tasks and for pos-
sible reductions (methods) at each position, whereas Tree-
REX only encodes actions and reductions without any ex-
plicit notion of tasks.

Both approaches encode a problem’s classical planning
constraints based on the well-known encoding originally
proposed by (Kautz, McAllester, and Selman 1996). How-
ever, totSAT enforces these constraints, FE(P), only at the
final depth, while Tree-REX features a generalization to ac-
tions and reductions (rules 5-6 and 8-9) at every hierarchical

layer, and propagates the truth values of facts from layer to
layer (rule 10). This allows our approach to enforce the con-
sistency of any partial plan at a non-final layer with some
non-primitive parts still remaining. In contrast, totSAT does
not consider the problem’s facts before the final layer: Prim-
itive tasks are propagated to the final depth and only then
seen as actions, and reduction preconditions are translated
into virtual actions to be handled at the final depth as well.

To conclude, the two independently developed ap-
proaches share interesting structural similarities, but still dif-
fer by a significant margin regarding how logical constraints
of the problem at hand are incorporated into the encoding.

Plan Length Optimization
When using the presented Tree-REX encoding in an incre-
mental manner until a solution is found, it results in a solu-
tion to the planning problem at the first possible hierarchi-
cal layer. This implies an upper bound on the plan length
equal to the maximum size of the final layer. However, in
many cases, significantly shorter plans can exist, either on
the same hierarchical layer with more empty spaces, or even
on some later hierarchical layer which has not been com-
puted yet. An HTN problem can, and often will, contain no-
operation actions, which should not be taken into account re-
garding the plan length. The resulting hierarchy then essen-
tially corresponds to a non-shortening grammar for which it
can be difficult to find the overall shortest word. As a conse-
quence, our planner will not try to find better plans by indef-
initely increasing the amount of hierarchical layers, but in-
stead by optimizing the plan length at the hierarchical layer
where it was first found.

The procedure of the plan optimization is as follows:
When the SAT solver reports satisfiability for the first time,
a plan is extracted from the variable values and output as
an initial solution. Then, the goal literals which previously
were assumptions are added as permanent unit clauses. Af-
terwards, new clauses are added which provide a way to
count the plan length using additional variables, similar to
the Sequential Counter proposed in (Sinz 2005). The vari-
able planAtLeast(i, x) has the meaning: “At the final layer,
the array read from position 0 up to position i contains at
least x proper actions.” We enforce the plan length to be at
least zero at position 0, and that the plan length will never
decrease when advancing to the next position:

planAtLeast(0, 0) (17)
planAtLeast(i, x)⇒ planAtLeast(i+ 1, x) (18)

When a “proper” action a is at position i, then the plan
length is increased by one:

planAtLeast(i, x) ∧ ¬element(nop, l, i)∧
∧¬element(blank, l, i)⇒ planAtLeast(i+ 1, x+ 1) (19)

With these clauses, an assumption can now be added to pro-
hibit any total plan length greater than some number x̂:

¬planAtLeast(sn, x̂) (20)

With this mechanism, we are able to define a simple itera-
tive optimization: When a SAT solver on the solved problem

385

supplemented by assumption 20 reports satisfiability, then a
better plan of shorter length has been found. The optimiza-
tion can then proceed with an assumption enforcing an even
lower plan length. In contrast, when the solver reports un-
satisfiability, this means that no plan of such length or any
shorter length exists on the considered hierarchical layer.
The optimization can then terminate with the last found plan.

The proposed plan optimization is an anytime algorithm:
As soon as an initial solution has been found, the optimiza-
tion can proceed until some limit on the computational re-
sources is met or the plan cannot be optimized any further.

Complexity

In the following, we assess the complexity of the Tree-REX
encoding in terms of clauses and variables.

Consider a problem for which after n hierarchical layers,
each layer i with an array size of si, a plan π of length
|π| ≤ sn is found. Each action a ∈ A is encoded at most
C :=

∑n
i=1 si times (once for each position at each layer).

Similarly, each fact p and each task reduction r ∈ R has
been encoded at most C times. The at-most-one constraints
from rule 9 can be realized with a binary encoding (Sinz
2005) to avoid a clause complexity quadratic in the amount
of actions. This technique adds at most C · log(A) helper
variables to the problem. Combined with exactlyC variables
of type primitive(l, i), this leads to a total variable complex-
ity ofO

(
C(A+F +R)

)
, where F is the amount of facts in

the problem.
Next, we analyze the amount of needed clauses for find-

ing the mentioned plan: LetE := max{ |subtasks(r)|
∣∣ r ∈

R } be the maximum e(l, i) which can occur in the prob-
lem. Then we require O(

∑n−1
i=1 si · (R + A) · E) clauses

for reductions and the introduction of new blank symbols.
Preconditions and effects add up to O(C(R + A)) clauses.
The definition of variables of type primitive(l, i) is included
by this complexity measure as well. O(C · F) clauses for
frame axioms (rule 8) and at most C · A log(A) clauses for
the mentioned binary encoding of at-most-one constraints
are needed. This leads to a total of O

(∑n−1
i=1 si · (R + A) ·

E + C(R+A log(A) + F)
)

clauses.
Note that these complexity measures assume that at each

position and at each layer, all the actions and all the reduc-
tions can occur, which is highly unlikely in practice.

For all HTN planning instances we considered, E is a
small constant (E ≤ 9 in all cases). Consequently, the de-
termined complexities show that the size of the resulting en-
coding will be linear with respect to the problem size multi-
plied by the total amount of positions in the hierarchy.

This measure is similar to the clause complexity of the tot-
SAT approach, where clauses are also added for each possi-
ble fact, task, and reduction at each potential step of the plan.
However, note that our approach avoids to re-encode the en-
tire problem at every iteration and instead adds new clauses
to an already existing formula.

The amount of clauses and variables which are added for
the means of optimizing the plan length is quadratic in sn.

Implementation
In practice, our approach is designed as follows:

• The input instance, provided as PDDL files, is parsed and
grounded into a compact representation of flat actions, re-
ductions, and facts as proposed by (Ramoul et al. 2017).

• The application proceeds to encode the propositional
logic rules in an abstract notation conceptually based on
the separated DIMACS format (Gocht and Balyo 2017).
Each constraint is encoded only once for each action and
each reduction in the problem, and constraints which can
be inferred from the sets of occurring elements are not in-
cluded at all. This abstract encoding is then handed to a
separate interpreter application.

• The interpreter application parses the abstract rules and
assembles the initial hierarchical layer and transfers the
resulting clauses to an incremental SAT solver. As long
as the SAT solver reports unsatisfiability, the interpreter
proceeds to calculate an additional hierarchical layer and
add additional clauses, again calling the SAT solver after-
wards.

• When the SAT solver finds a solution, it is transferred
back from the interpreter to the main application, where
the variable values are decoded into the original problem
domain and returned to the user as a readable plan.

Optimizations
The presented encoding approach is designed to encode as
few elements as possible in order to reduce the volume and
complexity of the formulae. In the following, we briefly
present the different improvements which we incorporated
into Tree-REX to optimize the approach.

Sparse at-most-one constraints. At-most-one constraints
as proposed in rule 9 make sure that only one action at a
time is occurring at each given place. However, we have con-
sciously refrained from encoding at-most-one constraints for
pairs of reductions. It is true that it does not make sense for
multiple reductions to co-occur at the same place. But when
a SAT solver makes such a decision to switch two or more
reduction variables to true, this will almost always lead to
a logical conflict. The only exception is if all of these reduc-
tions result in the exact same sequence of actions, in which
case the co-occurrence has no effect on the solution.

At-most-one constraints are quite expensive in a logi-
cal encoding. Common variants range from O(n2) clauses
without any additional variables (“pairwise encoding“) over
O(n) clauses andO(n) additional variables (“ladder encod-
ing”) up until O(n log n) clauses and O(log n) additional
variables (“binary encoding”) (Sinz 2005). In all cases, too
many at-most-one constraints will slow down the solving
procedure, either because of the large number of clauses or
because the propagation of a variable assignment through
the at-most-one constraint takes significant time. For this
reason, we noticed that it is beneficial to instead allow mul-
tiple reductions at the same place and let the solver quickly
find a conflict in such cases.

386

Re-usage of variables representing a fact. When a fact at
some place (l, i) is assigned a truth value by the solver, then
its corresponding value needs to be propagated to next(l, i),
and to next(l + 1, next(l, i)), and so on. Instead, we can just
use one single Boolean variable for the fact at each of these
layers. This way, we do not need any clauses propagating
the changes, and the total amount of needed variables is re-
duced.

Backwards propagation clauses. As the successors of re-
ductions and the propagation of actions have been specified
as logical clauses, the “forward” conditions for elements at
the next position are fully defined. It can also help the solv-
ing process to consider the propagation in the other way, and
to add the necessary conditions for an element to be at a
certain position at the next layer. Intuitively, any action at
the next layer either has already been at the corresponding
parent position at the previous layer before, or it has been
created by expanding an appropriate reduction at the parent
position. Likewise, any reduction at the next layer must have
been created by some appropriate reduction before.

Optimization and Parameter Tuning
In order to test whether the presented optimizations actually
merit the total run times of the planning system compared
to a more naı̈ve approach, the tuning framework ParamILS
(Hutter et al. 2009) has been employed. Given a program
binary and a set of possible arguments for the program,
ParamILS executes the problem on several sets of param-
eters and on different benchmarks in order to approximate
an optimal set of parameters for which the program empiri-
cally performs best. The framework is popular especially in
the field of SAT solving (Hutter et al. 2007) and automated
planning (Alhossaini and Beck 2012).

For the purpose of tuning Tree-REX, each of the consid-
ered optimizations can be switched on and off separately by
a parameter provided to the program. We avoided overfit-
ting to the benchmarks of our main evaluation by only us-
ing a subset of those domains and by mixing them with
domains from other benchmarks. Each execution of Tree-
REX has been cut off after 3 minutes of execution time. The
Tree-REX parameter tuning has been performed on a server
with 24 cores of Intel Xeon CPU E5-2630 clocked at 2.30
GHz and with 264 GB of RAM, running Ubuntu 14.04.

In the best set of parameters to which ParamILS con-
verged after over 24h of total run times, the previously pro-
posed backwards propagation clauses are included as well as
the sparse at-most-one constraints and the re-usage of vari-
ables representing facts, all of which helped speeding up the
solving process.

Evaluation
In the following, we compare Tree-REX with the state-of-
the-art SAT-based HTN planner totSAT (Behnke, Höller,
and Biundo 2018a). The main evaluations have been con-
ducted on a AMD Ryzen 7 1800X Eight-Core CPU with
64GB of RAM running Ubuntu 18.04.1 LTS. Each instance
is cut off at five minutes of CPU time and 16GB of RAM

usage. The developed software, all benchmark instances and
the gathered experimental data are available online1.

Problem Benchmarks
We have used a set of problem benchmarks with a wide
range of difficulty for comparing Tree-REX with totSAT.
One general problem of HTN planning is that there is no
standardized HTN extension for PDDL, so different plan-
ners are using varying PDDL adaptations. In our case, a
translation between our benchmarks and the benchmarks
used by (Behnke, Höller, and Biundo 2018a) is difficult due
to various differences in the problem modelings: While our
modeling features (:method) constructs with overloaded
signatures and implicit parameters to account for multiple
methods of a task, the totSAT modeling separates task def-
initions from methods, both with unique signatures. More-
over, the two modelings differ in which subset of advanced
PDDL features they support. However, two domains pre-
viously exclusive to totSAT were successfully translated,
namely Entertainment and Transport. Two further domains,
Rover, and Satellite, are featured in both planners’ bench-
mark sets. In addition, we have included six further domains
from our benchmarks (Barman, Blocksworld, Childsnack,
Depots, Gripper, Hiking) and translated them into the for-
mat used by totSAT.

SAT Solvers
As a backend, the totSAT configuration from AAAI
2018 (Behnke, Höller, and Biundo 2018a) uses the solver
MiniSAT (Eén and Sörensson 2003). To keep the results
comparable, we compiled our interpreter application with
MiniSAT as well. Note that our application can be effort-
lessly linked with any SAT solver implementing a common
and simplistic interface for incremental SAT solving called
IPASIR (Balyo et al. 2016). As such, we have successfully
plugged various solvers like PicoSAT (Biere 2008), Glucose
(Audemard and Simon 2009), Lingeling (Biere 2013) and
CryptoMiniSat (Soos 2016) into our planning system.

Results
Out of a total of 202 benchmark instances, totSAT was
able to solve 164 instances while Tree-REX solved 198 in-
stances. In particular, totSAT failed to solve the more diffi-
cult instances of Childsnack (12/20 instances solved), Hik-
ing (11/20), Rover (8/20), Satellite (12/20) and Transport
(29/30). Tree-REX only failed to find a plan for four in-
stances, and it did not finish the plan length optimization
in seven more cases. All these instances are from the Satel-
lite and Rover domains which both feature complex coordi-
nation tasks and make heavy use of no-operations in some
method subtasks. For all other instances, the plan length op-
timization terminated within the given computational con-
straints, reporting the shortest possible plan at the consid-
ered hierarchical layer.

An overview over all benchmarks is provided in Fig. 3.
The label “Tree-REX-o” refers to our planning approach
including the proposed plan length optimization, while the

1https://gitlab.com/domschrei/htn-sat

387

0 3 6 9 12 15 18 21
0

20

40

60
Ti

m
e

lim
it

/s

Barman

Tree-REX
Tree-REX-o
totSAT

0 3 6 9 12 15 18 21
0

25

50

75

Blocksworld

0 3 6 9 12 15 18 21
0

25

50

75

Childsnack

0 3 6 9 12 15 18 21
0

10

20

Depots

0 2 4 6 8 10 12
0

10

20

Entertainment

0 3 6 9 12 15 18 21

Solved instances

0

2

4

Ti
m

e
lim

it
/s

Gripper

0 3 6 9 12 15 18 21

Solved instances

0

20

40

60

Hiking

0 3 6 9 12 15 18 21

Solved instances

0

100

200

300

Rover

0 2 4 6 8 10 12 14 16

Solved instances

0

100

200

300

Satellite

0 4 8 12 16 20 24 28

Solved instances

0

100

200

Transport

Figure 2: Cactus plots of run times for each considered benchmark domain.

0 25 50 75 100 125 150 175 200

Number of solved instances

100

101

102

Ti
m

e
lim

it
/s

Tree-REX
Tree-REX-o
totSAT

0 25 50 75 100 125 150 175 200

Number of solved instances

0

100

200

300

400

500

600

Pl
an

le
ng

th

Tree-REX
Tree-REX-o
totSAT

Figure 3: Run times (top, logarithmic scale) and found plan
lengths (bottom, linear scale) over all benchmarks.

label “Tree-REX” refers to the same approach without any
plan length optimization.

It can be seen that totSAT has higher run times in gen-
eral. As expected, Tree-REX-o produces smaller plans than
both totSAT and the non-optimizing Tree-REX variant. The
search for better plans consequently leads to higher run
times for some domains. This general picture is confirmed
by Tables 1 and 2 showing that Tree-REX dominates the
ICAPS scores regarding run times while Tree-REX-o dom-
inates the scores regarding found plan lengths. Scores are
calculated by adding a value ofC∗/C to each competitor for

Domain totSAT Tree-REX Tree-REX-o
Barman 5.00 20.00 9.19
Blocksworld 4.02 20.00 19.22
Childsnack 0.91 20.00 19.99
Depots 7.81 19.36 18.95
Entertainment 6.73 9.25 8.94
Gripper 2.92 20.00 19.85
Hiking 0.93 20.00 17.93
Rover 0.87 20.00 10.12
Satellite 1.23 16.00 8.62
Transport 3.77 30.00 21.51

Table 1: Run time scores per domain

each solved instance, where C is the run time (plan length)
of that competitor and C∗ is the minimum run time (plan
length) among all competitors for this instance.

More detailed cactus plots for each domain are provided
in Fig. 2 for run times and in Fig. 4 for plan lengths. Compar-
ing Tree-REX to totSAT on a per-domain level, “Entertain-
ment” is the only domain where totSAT clearly outperforms
the Tree-REX variants. The problem instances of this do-
main lead to a heavily combinatorial amount of reductions
to consider during grounding, which favors the preprocess-
ing done inside totSAT in this case. On all other domains,
totSAT performs comparably or worse than Tree-REX.

One noteworthy result is that on the domains where no
plan optimization is possible at all, the optimization proce-
dure recognizes this immediately and no additional time is
wasted. In particular, the Childsnack and Gripper domains
both feature a rigid hierarchical structure which enforces a
fixed plan length for any valid solution. For these domains,
both run times and reported plan lengths are virtually identi-
cal between Tree-REX and Tree-REX-o. In other cases such
as the Rover and Satellite domains, the plan optimization
procedure can take a considerable amount of time, but will
also lead to significant improvements, even if the computa-
tion is cut off prematurely.

Overall, the experiments show that Tree-REX performs
well on all considered benchmarks. Using the proposed plan

388

0 3 6 9 12 15 18 21
0

100

200
Pl

an
le

ng
th

Barman

Tree-REX
Tree-REX-o
totSAT

0 3 6 9 12 15 18 21
0

100

200
Blocksworld

0 3 6 9 12 15 18 21
0

50

100

Childsnack

0 3 6 9 12 15 18 21
0

25

50

75

Depots

0 2 4 6 8 10 12
0

5

10

Entertainment

0 3 6 9 12 15 18 21

Solved instances

0

50

100

Pl
an

le
ng

th

Gripper

0 3 6 9 12 15 18 21

Solved instances

0

50

100
Hiking

0 3 6 9 12 15 18 21

Solved instances

0

200

400

600

Rover

0 2 4 6 8 10 12 14 16

Solved instances

0

200

400

600

Satellite

0 4 8 12 16 20 24 28

Solved instances

0

100

200

Transport

Figure 4: Cactus plots of found plan lengths for each considered benchmark domain.

Domain totSAT Tree-REX Tree-REX-o
Barman 19.67 18.67 20.00
Blocksworld 18.36 19.68 19.68
Childsnack 12.00 20.00 20.00
Depots 18.59 19.74 19.93
Entertainment 11.92 11.79 12.00
Gripper 20.00 20.00 20.00
Hiking 11.00 20.00 20.00
Rover 4.83 13.08 20.00
Satellite 9.80 9.66 16.00
Transport 23.71 26.04 30.00

Table 2: Plan length scores per domain

optimization, our approach lead to better plans the more time
was allotted, and almost always found the shortest possible
plan at the final considered layer within the time limit.

Related Work
The idea to enrich a planning problem with additional
knowledge of how certain tasks are realized ranges back to
(Sacerdoti 1975), where a structure called procedural nets
has been proposed. Since then, automated planning using
Hierarchical Task Networks advanced with a range of pro-
posed planning systems such as Nonlin (Tate 1976), O-Plan
(Currie and Tate 1991) or SIPE (Wilkins 1984), with UMCP
(Erol, Hendler, and Nau 1994) being the first proposed solv-
ing procedure which has been proven to be sound and com-
plete. All of these algorithms have the common point of op-
erating in a state-less manner; they do not maintain a set of
facts at each planning step, instead they search the general
space of possible plans in a unified manner.

The planner SHOP (Nau et al. 1999) and its enhancement
SHOP2 (Nau et al. 2003) are among the most popular HTN
planners used today (Nau et al. 2005). In contrast to previous
approaches, SHOP and its enhancements are state-based and
primitive actions are visited exactly in the order which they
will have in the final plan. This leads to an easy identification
of the applicability of reductions at some given point of the
planning process. HTN planning is used in practice in vari-

ous application domains such as web service compositions
(Sirin et al. 2004), robot planning (Weser, Off, and Zhang
2010), and drone coordination (Bevacqua et al. 2015).

HTN planning with SAT techniques has been introduced
in 1998 by (Mali and Kambhampati 1998). Their encodings
share a clause and variable complexity cubic in the amount
of tasks, rendering it not viable for today’s HTN planning
problems of non-trivial size. Current works on SAT-based
totally ordered HTN planning include totSAT (Behnke,
Höller, and Biundo 2018a) as well as the encodings pro-
posed in (Schreiber et al. 2019) which introduced incremen-
tal SAT solving to hierarchical planning and served as a basis
for the work at hand. A detailed comparison of Tree-REX
to the latter can be found in (Schreiber 2018). Recently,
novel SAT encodings for partially ordered HTN planning
have been proposed (Behnke, Höller, and Biundo 2018b;
2019), expanding further on the potential use cases of SAT
solving in modern planning.

Conclusion
In this paper, we presented a novel SAT-based approach for
high quality HTN planning. We proposed an encoding of to-
tally ordered HTN planning problems into SAT called Tree-
like Reduction Exploration (Tree-REX). The approach re-
sults in a rapid breadth-first exploration of the problem’s hi-
erarchy by making use of incremental SAT solving, which
allows to optimize the general performance and to reduce
the volume of the resulting encodings. Furthermore, we pre-
sented an anytime plan length optimization stage within our
approach; this is the first SAT-based hierarchical planner fea-
turing such a technique. We have evaluated our approach and
compared it against the state-of-the-art in SAT-based HTN
planning, showing that Tree-REX outperforms it on most
domains regarding both run times and plan lengths.

As for future work, we want to explore whether a SAT-
based HTN planner could directly operate on a lifted (un-
instantiated) problem and thus achieve better performance.

Acknowledgements
We would like to thank the reviewers for their detailed feed-
back. We also thank Gregor Behnke for his helpful coop-

389

eration regarding the comparison with totSAT, and Arnaud
Lequen for preparing various HTN benchmark domains.

References
Alhossaini, M., and Beck, J. C. 2012. Macro learning in
planning as parameter configuration. In Proceedings of the
Canadian Conference on Artificial Intelligence, 13–24.
Audemard, G., and Simon, L. 2009. Predicting learnt
clauses quality in modern SAT solvers. In Proceedings of
the International Joint Conference on Artificial Intelligence, 399–
404.
Balyo, T.; Biere, A.; Iser, M.; and Sinz, C. 2016. SAT race
2015. Artificial Intelligence 241:45–65.
Behnke, G.; Höller, D.; and Biundo, S. 2018a. totSAT–
totally-ordered hierarchical planning through SAT. In Pro-
ceedings of the 32th AAAI Conference on AI (AAAI 2018), 6110–
6118.
Behnke, G.; Höller, D.; and Biundo, S. 2018b. Track-
ing branches in trees–a propositional encoding for solving
partially-ordered HTN planning problems. Hierarchical Plan-
ning 2018 40.
Behnke, G.; Höller, D.; and Biundo, S. 2019. Bringing order
to chaos–a compact representation of partial order in SAT-
based HTN planning. In Proceedings of the 33rd AAAI Confer-
ence on AI (AAAI 2019), AAAI Press.
Bevacqua, G.; Cacace, J.; Finzi, A.; and Lippiello, V. 2015.
Mixed-initiative planning and execution for multiple drones
in search and rescue missions. In Proceeding of the Interna-
tional Conference on Automated Planning and Scheduling, 315–
323.
Biere, A. 2008. Picosat essentials. Journal on Satisfiability,
Boolean Modeling and Computation 4:75–97.
Biere, A. 2013. Lingeling, plingeling and treengeling enter-
ing the SAT competition 2013. In Proceedings of SAT compe-
tition, 51.
Currie, K., and Tate, A. 1991. O-Plan: the open planning
architecture. Artifical Intelligence 52(1):49–86.
Eén, N., and Sörensson, N. 2003. An extensible SAT-solver.
In Proceedings of the International conference on theory and ap-
plications of satisfiability testing, 502–518.
Erol, K.; Hendler, J.; and Nau, D. 1994. UMCP: A sound
and complete procedure for hierarchical task-network plan-
ning. In Proceedings of the Artificial Intelligence Planning Sys-
tems, volume 94, 249–254.
Fikes, R., and Nilsson, N. 1971. STRIPS: A new approach
to the application of theorem proving to problem solving.
Artificial Intelligence 2(3-4):189–208.
Gocht, S., and Balyo, T. 2017. Accelerating SAT based
planning with incremental SAT solving. In Proceedings of the
International Conference on Automated Planning and Scheduling,
135–139.
Hutter, F.; Babic, D.; Hoos, H. H.; and Hu, A. 2007. Boost-
ing verification by automatic tuning of decision procedures.
In Proceeding of the conference on Formal Methods in Computer
Aided Design, 27–34.

Hutter, F.; Hoos, H.; Leyton-Brown, K.; and Stützle, T.
2009. ParamILS: an automatic algorithm configuration
framework. Journal of Artificial Intelligence Research 36:267–
306.
Kautz, H.; McAllester, D.; and Selman, B. 1996. Encoding
Plans in Propositional Logic. In Proceedings of the Interna-
tional Conference on Knowledge Representation and Reasoning,
374–384.
Mali, A., and Kambhampati, S. 1998. Encoding HTN plan-
ning in propositional logic. In Proceedings International Con-
ference on Artificial Intelligence Planning and Scheduling, 190–
198.
Nau, D.; Cao, Y.; Lotem, A.; and Munoz-Avila, H. 1999.
SHOP: Simple hierarchical ordered planner. In Proceed-
ings of the international joint conference on Artificial intelligence,
968–973.
Nau, D. S.; Au, T.; Ilghami, O.; Kuter, U.; Murdock, J. M.;
Wu, D.; and Yaman, F. 2003. SHOP2: An HTN planning
system. Journal of Artificial Intelligence Research 20:379–404.
Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Wu, D.; Yaman,
F.; Munoz-Avila, H.; and Murdock, J. W. 2005. Applications
of SHOP and SHOP2. IEEE Intelligent Systems 20(2):34–41.
Ramoul, A.; Pellier, D.; Fiorino, H.; and Pesty, S. 2017.
Grounding of HTN planning domain. International Journal
on Artificial Intelligence Tools 26(5):1–24.
Sacerdoti, E. 1975. A structure for plans and behavior. Tech-
nical report, DTIC Document.
Schreiber, D.; Balyo, T.; Pellier, D.; and Fiorino, H. 2019.
Efficient SAT encodings for hierarchical planning. In Pro-
ceedings of the 11th International Conference on Agents and Arti-
ficial Intelligence, ICAART 2019, volume 2, 531–538.
Schreiber, D. 2018. Hierarchical task network planning us-
ing SAT techniques. Master’s thesis, Grenoble Institut Na-
tional Polytechnique, Karlsruhe Institute of Technology.
Sinz, C. 2005. Towards an optimal CNF encoding of
boolean cardinality constraints. In Proceedings of the Inter-
national conference on principles and practice of constraint pro-
gramming, 827–831.
Sirin, E.; Parsia, B.; Wu, D.; Hendler, J.; and Nau, D. 2004.
HTN planning for web service composition using SHOP2.
Web Semantics: Science, Services and Agents on the World Wide
Web 1(4):377–396.
Soos, M. 2016. The CryptoMiniSat 5 set of solvers at SAT
Competition 2016. In Proceedings of SAT Competition, volume
2016, 28.
Tate, A. 1976. Project planning using a hierarchic non-linear
planner. Department of Artificial Intelligence, University of
Edinburgh.
Weser, M.; Off, D.; and Zhang, J. 2010. HTN robot planning
in partially observable dynamic environments. In Proceed-
ings of the International Conference on Robotics and Automation,
1505–1510. IEEE.
Wilkins, D. 1984. Domain-independent planning represen-
tation and plan generation. Artifical Intelligence 22(3):269–
301.

390

