SEmantic Networks of Data: Utility and Privacy
Cédric Eichler, Pascal Berthomé, Jacques Chabin, Rachid Echahed, Mirian Ferrari, Benjamin Nguyen, Frederic Prost

To cite this version:
Cédric Eichler, Pascal Berthomé, Jacques Chabin, Rachid Echahed, Mirian Ferrari, et al.. SEmantic Networks of Data: Utility and Privacy. Atelier sur la Protection de la Vie Privée (APVP’19), Jul 2019, Cap Hornu, France. hal-02182524

HAL Id: hal-02182524
https://hal.archives-ouvertes.fr/hal-02182524
Submitted on 12 Jul 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The amount of data produced by individuals and corporations has dramatically increased during the last decades. This generalized gathering of data brings opportunities but also new privacy challenges. Nowadays, data are often organized as graphs with an underlying semantic to allow efficient querying and support inference engines. Such is the case in, for example, linked data and semantic web typically relying on RDF.

The SEmantic Networks of Data: Utility and Privacy (SEND UP) project focuses on such databases and will follow two main goals: (1) prevent illegitimate use of private data while querying semantic data graphs and (2) publish useful sensitive semantic data graphs while preserving privacy.

Project

SEmantic Networks of Data: Utility and Privacy

Laboratoire d'Informatique Fondamentale d’Orléans, Laboratoire d’Informatique de Grenoble

Coordinator contact: cedric.eichler@insa-cvl.fr

Abstract

More and more private information collected: threatening privacy yet useful => needs for privacy guarantees and utility preservation.

Two main scenarios:
- Publishing a useful anonymised data-base
- Accurately answering queries without jeopardizing privacy

Target data-base = graph data-base with an underlying semantic
- used in linked data, semantic web...
- e.g. RDF

Graph & privacy

Multiple established models on "classical" data-bases
- *k*-anonymity, *l*-diversity,...
- differential privacy

Some "recent" extensions to graphs
- Mostly homogeneous nodes with no semantic (e.g., OSN [1])
- Usually aims to protect topology

Graph privacy techniques
- Differential privacy: how to qualify "neighbouring" data-set?
 - Usually edge-DP
 - Rarely node-DP (e.g. [2] regarding degrees)
 - **Target privacy technique**: More than node-DP, person-node-DP
- *k*-anonymity: *k* what?
 - Usually *k*-degree anonymity (e.g. [3])
 - **Target privacy technique**: *k*-pattern anonymity
- Issue: semantic and inter-dependant data

Evaluating utility

Usually:
- Related to topology preservation (e.g. diameter, degree distribution)
- Minimal transformation
- Issue: still semantic and inter-relations!
- Possibility: ad-hoc or user defined metrics (e.g. [5])

Target utility metrics: Knowledge and usage-based

Updating semantic data graphs

Anonymizing a graph => graph instance updates. Not that easy!
- Incomplete information?
- Structuring (e.g. RDF/S, ShEx) and integrity constraints:
 - Forbidding updates?
 - **Target constraints management**: Triggereing instance side-effects [4]
 - Non-determinism
 - Impact of the initial update on the utility?
 - Should allow schema/constraints updates?

Targeted software and scenarios

Sanitization of query on undisclosed data:
A. A user queries the data-base.
B. The "Sanitization" module (M1) gets the result.
C. M1 perturbs the results according to the "Privacy and utility metrics" module (M2), with constraints provided by a dedicated module (M4).
D. The user gets a curated answer.

Publishing anonymised graph data-bases:
I. M1 updates the database to meet privacy guarantees provided by M2 (e.g. delete `c` and transform `d` into `b`)
II. Driven by M4, M3 infers possible side-effects (e.g. delete `b` or delete edge `b→b`)
III. The set of side effects with the best utility/privacy trade-off as evaluated by M3 is picked (e.g. delete `edge b→b`)
IV. A graph transformation module (M5) applies the selected modifications and the anonymised data-base is published.

Project information

- Partners and expertise:
 - LIFO, INSA Centre Val de Loire → privacy
 - LIFO, Université d'Orléans → updates on RDF databases
 - LIG, Université Rhône Alpes → graph rewriting and transformation
- Start/end date: Nov. 2018/2022
- Funding: ANR JCJC