N. Konstantinos, A. Plataniotis, and . Venetsanopoulos, Color image processing and applications, 2013.

H. Permuter, J. Francos, and I. Jermyn, A study of gaussian mixture models of color and texture features for image classification and segmentation, Pattern Recognition, vol.39, issue.4, pp.695-706, 2006.

D. Cremers, M. Rousson, and R. Deriche, A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape, International Journal of Computer Vision, vol.72, issue.2, pp.195-215, 2007.

M. Gouiffès and B. Zavidovique, Body color sets: A compact and reliable representation of images, Journal of Visual Communication and Image Representation, vol.22, issue.1, pp.48-60, 2011.

I. Omer and M. Werman, Color lines: Image specific color representation, Proceedings of the 2004 IEEE Computer Society Conference on, vol.2, pp.II-II, 2004.

Y. Aksoy, A. Tunç-ozan-ayd?n, M. Smoli?, and . Pollefeys, Unmixing-based soft color segmentation for image manipulation, ACM Trans. Graph, vol.36, issue.2, 2017.

J. Angulo, Morphological colour operators in totally ordered lattices based on distances: Application to image filtering, enhancement and analysis. Computer Vision and Image Understanding, vol.107, pp.56-73, 2007.

T. Nishikawa and Y. Tanaka, Dynamic color lines, 25th IEEE International Conference on Image Processing (ICIP), pp.2247-2251, 2018.

X. Yu, G. Li, Z. Ying, and X. Guo, A new shadow removal method using color-lines, pp.307-319, 2017.

R. Fattal, Dehazing using color-lines, vol.34, pp.1-14, 2014.

A. Buades, J. L. Lisani, and J. Morel, On the distribution of colors in natural images, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00453249

C. E. Thomas-h-cormen, R. L. Leiserson, C. Rivest, and . Stein, Introduction to algorithms, 2009.

C. A. Sreevani and . Murthy, On bandwidth selection using minimal spanning tree for kernel density estimation, Computational Statistics Data Analysis, vol.102, pp.67-84, 2016.

Z. Yu, C. Oscar, K. Au, C. Tang, and . Xu, Nonparametric density estimation on a graph: Learning framework, fast approximation and application in image segmentation, Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pp.2201-2208, 2011.

K. Kawaguchi, L. P. Kaelbling, and Y. Bengio, Generalization in deep learning, 2017.

F. Perazzi, J. Pont-tuset, B. Mcwilliams, L. Van-gool, M. Gross et al., A benchmark dataset and evaluation methodology for video object segmentation, Computer Vision and Pattern Recognition, 2016.