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h i g h l i g h t s

• The energy efficiency in cloud database systems is discussed.
• The resource-providing problem in cloud database systems is considered as two bounded problems which are studied in this work.
• Under Hot-N-Cold model, nonlinear programming algorithm and multiphase algorithm are proposed to solve the bounded problems.
• The simulation and real case experiments are designed and implemented to measure the proposed algorithms in aspect of performance and assurance.
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a b s t r a c t

A lot of cloud computing and cloud database techniques are adopted in industry and academia to face the explosion of the 
arrival of the big data era. Meanwhile, energy efficiency and energy saving become a major concern in data centers, which are 
in charge of large distributed systems and cloud databases. However, the phenomenon of energy wasting is related to 
resource provisioning. Hot-N-Cold model is introduced in this paper, which uses workload predictions and DVFS(Dynamic 
Voltage and Frequency Scaling) to cope with the resource provisioning problem within energy aware cloud database 
systems. In this model, the resource provisioning problem is considered as two bounded problems. A nonlinear programming 
algorithm and a multi-phase algorithm are proposed to solve them. The experimental results show that one of the 
proposed algorithms has great scalability which can be applied to a cloud database system deployed on 70 nodes. Using Hot-
N-Cold model can save up to 21.5% of the energy of the running time.

1. Introduction

In face of Big Data challenges, an increasing number of data
centers are constructed. Cloud database systems are developed to
meet the users rapidly growing data query needs, for example,
HBase [21], Hive [19], Cassandra [8] and MongoDB [2]. With the
explosive growth of data volume and construction of data centers,
the problem of energy wasting becomes more and more serious.
It becomes a major task to improve energy efficiency in cloud
systems. It is estimated in [25] that the cost of powering and cool-
ing accounts for 53% of the total operational expenditure of data
centers, and the energy bills for major cloud service providers are
typically the second largest item in their budgets [24]. However,
few researches focus on the problem of energy efficiency in cloud
database system.

Typical cloud databases waste energy. Workloads of a cloud
database system vary with time, because users’ activities are dy-
namic. For example users’ activities are more intense at day time,
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whereas they do little at night. In this situation, energy is wasted
if the configuration of the system at night remains the same as
the one during daytime. Sometimes workloads are unbalanced, in
which part of system is occupied, whereas the other part remains
idle. In this situation, energy is wasted because the workloads are
not well scheduled accordingly. The energy wasting mentioned
above comes from resource provisioning, namely there is a gap
between resource needed and resource provided.

In modern Linux operation systems, there are five different
power schemes (governors) available to dynamically scale CPU
frequency according to CPU utilization. However, dynamic tuning
strategies only use the system’s running information, which does
not reflect the state of the system lifecycle. Meanwhile the current
power schemes do not exactly match their design goal and may
even become ineffective at improving power consumption when
dealing with cloud databases [9]. Therefore, it makes sense to
control the frequency in a fine-grained way.

Energy efficiency in cloud database systems is a ratio between
workloads and energy consumption [17]. The workload in cloud
database systems refers to users requests. The resource provi-
sioning of energy aware cloud database systems mainly has two
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situations in termsof energy efficiency. (1)When the system is pro-
vided with more resources than needed, energy is wasted because
too much resources are provided but few used to response users’
requests, which leads to lower energy efficiency. (2) When the
system is assigned a heavyworkload, so that the amount of wasted
energy is reduced but a few is used to deal with the resource com-
petition, which causes lower energy efficiency as well. Bymeans of
a benchmark experiment, Section 4.1, two conclusions are learned
about the energy efficiency in cloud database systems. (1) Energy
efficiency of cloud database systems has positive relation with the
system throughput. When the system achieves a higher through-
put, it has better energy efficiency. (2) The cloud database system
has a throughput peak under a given frequency configuration.
Based on the conclusions, Hot-N-Cold model and corresponding
algorithms are proposed in this paper to solve the resource pro-
visioning problem within an energy aware cloud database system,
and meanwhile improve the energy efficiency of the system.

To avoid energy wasting, we propose Hot-N-Cold model in this
work, which takes advantage of DVFS technique to select suitable
frequencies to the system according to the workload predictions.
Meanwhile, when some nodes are overloaded amigration strategy
is introduced in the Hot-N-Cold model to balance the workloads
of the system. By means of frequency selection and workload
migration, the system’s energy efficiency is improved. In terms
of the migration, we only focus on the migration plan generation
process in this work. A migration plan defines which part of the
workloads should be migrated and where the workloads should
be migrated. Therefore, we do not focus on the technique detail of
migration execution.

The advantage of Hot-N-Cold model is that the model uses two
approaches, frequency selection and workload migration, to im-
prove the energy efficiency of the system. However, the challenge
of Hot-N-Cold model is the performance of the corresponding
algorithms. For example considering a cluster consists of n nodes
and every node has m frequency options. Then the total amount
of frequency combinations ismn. For each frequency combination,
the migration process should be applied to evaluate the frequency
selection result and the migration plan. In a small case, with 3
nodes and 2 frequency options, there are 8 frequency combinations
and correspondingly there are 8 migration plans, and the one
that most contributes to improve the system’s energy efficiency
can be obtained. However, in a real database system, the solution
space is much bigger. The huge solution space bring a performance
challenge to the corresponding algorithms.

The rest of this paper is organized as following. After this intro-
duction section, Section 2 introduces the Hot-N-Cold model, gives
themathematical definitions and proposes two bounded problems
under Hot-N-Cold model. Section 3 proposes 2 algorithms to solve
the bounded problems. Section 4 evaluates the proposed algo-
rithms and carries out some discussions. Section 5 reviews related
works. Section 6 gives some discussion about Hot-N-Cold model
and Section 7 concludes and points out future work directions.

2. Hot-N-Cold model

This section introduces themathematical definitions of theHot-
N-Cold model. Based on the model, the corresponding constraints
and objectives are given.

2.1. Model definition

Cluster and nodes. A cluster C is a set consisting of n nodes,
namely C = {c1, . . . , cn}, in which ci represents the node i. To
simplify the description, the nodes are taken homogeneous, in
which the nodes are regarded to have the same architecture and

hardware configuration. The extension of the model to heteroge-
neous nodes is discussed in Section 6.

There are m available frequency options for the CPU. The idle
power consumption and the maximum power consumption of the
node under a frequency f are denoted as c idlef and cmax

f respectively.
If a fractionω of the CPU is used under f , the power consumption pf
can be obtained by Eq. (1). The maximum throughput that can be
reached by node ci under a frequency f is defined as its capacity.
Let the capacity measurement function be z(ci, f ). Without loss
of generality, the following assumptions are made. With u, v ∈

[1,m], u > v then c idlefu
> c idlefu

and cmax
fv

> cmax
fv

. Meanwhile, with

i ∈ [1, n], z(ci, fu) > z(ci, fv). Since the nodes are homogeneous,
when two nodes are assigned with the same frequency f , their
capabilities are same, namely z(ci, f ) = z(cj, f ).

pf = c idlef + ω × (cmax
f − c idlef ) (1)

Timewindows. Cloud database systems can be treated as long-
term servicing systems for the reason that the system should be
available at all the time for users. To simplify the modeling, the
whole running time of a cloud database system is taken as window
series time. Let ∆t be the time interval. In practice, the size of the
time window should fit the users’ request activities. The principles
of dividing running time are:

• Within a time window, the users’ activities should be stable
and the frequency of accessing the cloud database should be
uniform.

• Between time windows, the frequency of the users’ activities
could be different.

Dataset. In a cloud database system, a dataset D is divided
into h data blocks, namely D = {b1, b2, . . . , bh}, in which the
size of block bg is denoted as

∣∣bg
∣∣. In order to meet data in-

tegrity and fault-tolerance requirements, the cloud database uses
a replication factor r to control the number of replicas of data
blocks. The dataset with replication factor r is denoted as Dr ={
b1,1, . . . , b1,r ...bh,1, . . . , bh,r

}
. At the beginning, Dr is evenly dis-

tributed. However, with the system running, the probability of
each data block being accessed is changing. ϕg,k is the predicted
probability of block bg,k being accessed in∆t .

Workload.Workload refers to user’s requests in cloud database
systems. Since the system’s whole running time is taken as the
time window series, the workload in this paper is defined by the
throughput of the system to avoid the question of the length of
the time window. Let the throughput of the system be l and the
workloads of ci be denoted as ψi, which is shown by Eq. (2). In the
equation, wi

g,k is a binary indicator, which equals 1 only when bg,k
is assigned to ci.

ψi =

h∑

g=1

r∑

k=1

(
wi

g,k × l× ϕg,k
)

wi
g,k =

{
1 If bg,k is assigned to ci
0 If bg,k is not assigned to ci

(2)

Energy yield. The energy efficiency of cloud data systems is
defined as the ratio between its requests and energy consump-
tion [17]. For the reason that energy consumption cannot be ob-
tained before the end of ∆t , energy yield is used to evaluate the
node’s energy efficiency. The energy yield of ci under a frequency
f is defined as 1 only when its throughput reaches its capacity.
Therefore, the energy yield value is the ratio between its workload
ψi and its capacity z(ci, f ). Energy yield yi of ci in ∆t is defined



by Eq. (3). In the equation, xiu is a binary indicator, which equals
1 only when fu is assigned to ci.

yi =
ψi∑m

u=1 x
i
u × z(ci, fu)

xiu =

{
1 If ci is assigned with fu
0 If ci is not assigned with fu

(3)

The range of yi is [0, 1]. yi = 0 indicates that there is no data
being accessed in ci during∆t , while yi = 1 indicates that the node
reaches its capacity. As already discussed, if the system is over-
loaded and attempts to exceed its capacity, the requestswould take
too much time due to resource competition. As a consequence, the
expected throughput is unreachable. Therefore, yi cannot exceed 1.

Power consumption. Power consumption pf for a node under
frequency f is defined by Eq. (1). However, the CPU utilization
parameter ω cannot be obtained before the end of ∆t . Therefore
the CPU usage is defined as 1 only when its energy yield equals 1.
Combined with Eq. (3), the power consumption of ci is denoted as
pi and given by Eq. (4). The system power consumption is denoted
as P , which is given by Eq. (5).

pi =

m∑

u=1

(
xiu × c idlefu

)
+ yi ×

m∑

u=1

(
xiu ×

(
cmax
fu
− c idlefu

))
(4)

P =

n∑

i=1

pi (5)

Migration cost. In order to achieve energy efficiency for each
node in ∆t , some data blocks need to be migrated from one node
to anotherwhen the nodes are overloaded. However, themigration
of data blocks costs energy. Let T denote the energy cost of datami-
gration. In the cloud environment, according to network topology,
there are mainly 3 types of migrations: migration within a rack,
migration between racks andmigration between data centers. This
paper only focuses on the first two types. Let MIn and MOut denote
the sets of blocks migrated within a rack and the set of blocks
migrated between racks, respectively. Let EIn and EOut denote the
energy costs permega byte ofmigrationwithin a rack and between
racks respectively. Then the migration cost is defined by Eq. (6).
In Eq. (6).

∑
bg,k∈MIn

∣∣bg,k
∣∣ and

∑
bg,k∈MOut

∣∣bg,k
∣∣ show the total of

data sizes migrated within a rack and between racks respectively.

T = EIn ×
∑

bg,k∈MIn

∣∣bg,k
∣∣+ EOut ×

∑

bg,k∈MOut

∣∣bg,k
∣∣ (6)

2.2. Notation summary

Hot-N-Cold model is defined in Section 2.1. Some notations are
used in themodel’s definition. Table 1 lists the specifications of the
symbols used in the equations, which is used in the rest of paper
as well.

2.3. Constraints

According to the descriptions in previous section, some con-
strains are shown as below:

∀g ∈ [1, h],∀k ∈ [1, r],∀i ∈ [1, n] wi
g,k ∈ {0, 1} (7)

∀g ∈ [1, h],∀k ∈ [1, r]
n∑

i=1

wi
g,k = 1 (8)

∀i ∈ [1, n],∀g ∈ [1, h]
r∑

k=1

wi
g,k ≤ 1 (9)

Table 1

Specifications of the symbols.

Symbol Comment

l The predicted system throughput in∆t

ϕg,k The predicted accessed probability of block bg,k
wi

g,k A binary indicator which equals 1 only when bg,k is assigned to node
ci

xiu A binary indicator, which equals 1 only when ci is configured with
frequency fu

ψi The workload (throughput) of node ci
MIn The set of blocks migrated within a rack
MOut The set of blocks migrated between racks
z(ci, f ) The capacity (maximum throughput) of ci under frequency f

∀i ∈ [1, n],∀u ∈ [1,m] xiu ∈ {0, 1} (10)

∀i ∈ [1, n]
m∑

u=1

xiu = 1 (11)

MIn ∩MOut = ∅
∑

bg,k∈MIn

∣∣bg,k
∣∣+

∑

bg,k∈MOut

∣∣bg,k
∣∣ ≤ B (12)

∀g ∈ [1, h],∀k ∈ [1, r] ϕg,k ∈ [0, 1],
h∑

g=1

r∑

k=1

ϕg,k = 1 (13)

∀i ∈ [1, n], yi <= 1 (14)

Constraints (7)–(9) show the rules of block assignment. Con-
straints (7) and (8) indicate that each data block should be assigned
to only one node. Constraint (9) means that if two data blocks are
replicas of the same block, they cannot be assigned to the same
node.

Constraints (10) and (11) show the rules of frequency selection
for each node. Constraint (10) indicates that every node should be
configured or not configured to a given frequency. Constraint (11)
shows that every node should be under only one frequency.

Constraint (12) shows that a block can only be migrated within
a rack or migrated between racks. B is the maximum data size not
causing network traffic congestion.

Constraint (13) shows that the sum of the probabilities of all
blocks being accessed should equal to 1, and meanwhile at least
one block is accessed during∆t .

Constraint (14) shows that the throughput cannot exceed the
capability of the node.

2.4. Objectives

This section focuses on the objectives of Hot-N-Cold model. At
first two basic objectives are proposed. Then by means of combi-
nation basic objectives, the bounded problems are proposed.

2.4.1. Basic objectives
The energy efficiency of cloud database systems is a ratio be-

tween the workloads and the energy consumption. Reducing en-
ergy consumption is a way to improve the energy yield when the
workloads are constant. As the workloads change, the nodes’ fre-
quencies are tuned correspondingly. In order to adapt to the new
configuration of frequencies, a migration process is introduced.
Therefore, there are two objectives in this paper. One is related to
the power consumption, and the other is related to the migration
cost.

The system’s power consumption is defined by Eq. (5). The
power consumption objective is shown by Eq. (15), in which P is
the maximum power consumption needed to satisfy the system’s
need. The objective is to minimize P.

P ≤ P (15)



The migration cost is defined by Eq. (6). Intuitively, Eq. (16) is
treated as the migration cost objective, in which T represents the
maximum energy needed to complete the migration process. The
objective is to minimize T.

T ≤ T (16)

2.4.2. Bounded problems

Bounded problems appear when users set constraints to objec-
tives. In general, there are 2 types of bounded problems in Hot-N-
Cold Model. One is the bounded power consumption problem, the
other one is the bounded migration cost problem.

The power consumption problem. The power consumption
constraintPb refers to the system’smaximumpower consumption.
With this constraint, the objective is simplified intominimizing the
migration cost which is denoted as Pb

T
min. In other words, Pb

T
min

represents the scenario that minimizes migration cost within a
system’s maximum power consumption.

The migration cost problem. The migration cost constraint
T
b refers to the maximum migration cost. With this constraint,

the objective is simplified into minimizing the system’s power
consumption which is denoted as T

b
P
min. In other words, Tb

P
min

represents the lowest achievable power consumption within the
migration cost requirement.

3. Algorithms

In this section, 2 algorithms are proposed to solve the bounded
problems under Hot-N-Cold model.

3.1. Nonlinear programming algorithm

The bounded problems can be treated as mixed integer non-
linear programming problems. Using linear programming solver,
Gurobi [12], the optimal solution can be obtained. Since the mixed
integer nonlinear programming problem is a NP-hard problem,
it cannot be solved in polynomial time. Therefore the nonlinear
programming algorithm can only be applied to small scale prob-
lems. As described above, there are 2 bounded problems, Pb

T
min

and T
b
P
min. For the nonlinear programming algorithm, there are

2 types of objective function (Pmin, Tmin) and 2 different types
of constraint functions, Pb, Tb. Due to Gurobi’s properties, the
objective functions need to be changedmathematically tomeet the
solver’s requirements.

Eq. (17) gives a method to compute the power consumption
P . Specially, the parameter xiu is moved from the denominator to
the numerator inside the fraction which is different from Eq. (3).
The reason for this movement is that Gurobi cannot manipulate
parameterswhich are denominators. However, from amathematic
point of view, it is possible. The binary indicator xiu is to determine

a frequency fu for ci. Therefore
∑m

u=1 x
i
u × z(ci, fu) is determined

and constant when a certain frequency fu is configured to ci. The
element ψi/z(ci,fu) describes the node’s energy yield under frequency
fu, otherwise both xiu and the energy yield are equal to 0.

st.P =

n∑

i=1

(
m∑

u=1

(
xiu × c idlefu

)
+

m∑

u=1

(
xiu ×

ψi ×
(
cmax
fu
− c idlefu

)

z(ci, fu)

))

(17)

Wg,k
−1 =

n∑

i=1

(
i× wi

g,k

−1
)

Wg,k =

n∑

i=1

(
i× wi

g,k

)

mg,k =

{
0 ifWg,k

−1 = Wg,k

1 ifWg,k
−1 6= Wg,k

mOut
g,k =

{
0 if

⌊
Wg,k

−1
/γ

⌋
= ⌊Wg,k/γ⌋

1 if
⌊
Wg,k

−1
/γ

⌋
6= ⌊Wg,k/γ⌋

st.T =

h∑

g=1

r∑

k=1

mg,k ×
(
mOut

g,k × EIn +
(
1−mOut

g,k

)
× EOut

)

×
∣∣bg,k

∣∣ (18)

To compute the migration cost, the comparison between two
data block layouts is needed. A data block layout refers to the
parameters wi

g,k. If block bg,k is placed on node ci, then wi
g,k = 1

otherwise wi
g,k = 0. Eq. (18) describes the method of comput-

ing the migration cost in the nonlinear programming algorithm.
In Eq. (18), some new parameters are introduced. wi

g,k

−1
denotes

previous data block layout. Wg,k indicates which node is assigned
with which block bg,k, and Wg,k

−1 indicates the location of the
block in previous timewindow.mg,k andmOut

g,k are binary indicators

as well. If block bg,k is moved,mg,k equals 1, otherwisemg,k equals

0. mOut
g,k indicates whether block bg,k is migrated between racks. If

block bg,k is moved between racks, mOut
g,k equals 1. In Eq. (18), the

amount of nodes for each rack is denoted as γ which is used to
compute mOut

g,k . If the amount of nodes for each rack is different,
some virtual nodes can be added to cope with this problem. The
corresponding constraints should be introduced to avoid the mi-
gration to the virtual nodes.

Eqs. (17) and (18) are added constraints to the constraints set
for applying the nonlinear programming algorithm. In this way,
the bounded problem P

b
T
min can be solved through adding the

constraint P ≤ P
b and using min T as the objective function. With

the same approach, the bounded problem T
b
P
min can be solved

through adding the constraint T ≤ T
b and using min P as the

objective function. By combining Eqs. (17) and (18), the bounded
problems can be solved by nonlinear programming algorithm.

3.2. Multi-phases algorithm

The nonlinear programming algorithm has an outstanding ad-
vantage to obtain the optimal solution for the bounded prob-
lems. Due to the complexity of the algorithm, the bottleneck is its
performance for large scale problems. In order to overcome this
bottleneck, a multi-phases algorithm is proposed. The algorithm
includes several phases shown as below.

1. Frequency Selection Phase
2. Frequency Assignment Phase
3. Block Selection Phase
4. Block Assignment Phase

The solution in the multi-phase algorithm includes a frequency
assignment (a frequency combination and its assignment), a mi-
gration plan (a migrated block set and its migration destina-
tion). When a solution is generated, it can be evaluated according
to Eqs. (5) and (6).

In first phase of the multi-phase algorithm, the frequency com-
binationswhich provided enough resources according to thework-
load predictions are selected. The following phases evaluate every
frequency combination. Finally, the best solution (combining 4
phases) is chosen according to the bounded problem at hand.



Fig. 1. Example of frequency selection plan.

This section includes 6 subsections. In first 4 subsections, each
phase of themulti-phases algorithm is introduced. In Section 3.2.5,
the method of computing the upper bounds of the power con-
sumption and the migration cost is proposed, which is used in
the multi-phases algorithm to solve the bounded problem. Section
3.2.6 analyses the complexity of the multi-phases algorithm.

3.2.1. Frequency selection phase
In this phase, valid frequency combinations which provide

enough resources to support workloads in ∆t are generated. Ac-
cording to the combination equation in mathematics, there are
Cn
m−1+n combinations, in which n is the amount of nodes and m

is the amount of available frequency options. To narrow down the
search space, the following constraints are introduced.

1. Frequency combinations are coded as m base digital num-
bers. For example if there are 11 available frequencies and
3 nodes, the minimum combination is 000. The maximum
combination is XXX in which X = 10.

2. For each coded frequency combination, a digit should not be
smaller than its following digits.

3. Frequency combinations that generated throughputs within
the range [l, l+ ǫ] are selected.

Constraint (1) defines a code method for frequency combi-
nations. Constraint (2) is used to eliminate redundancies within
the frequency combinations. For example, 001 and 010 are same
combinations because both of them select f1 to one node and
f0 to the other two nodes. Constraint (3) defines the range of
system throughputs provided by the valid frequency combinations
in which ǫ is a user defined threshold.

Fig. 1 gives a traversal example of all frequency combinations (3
nodes and 4 frequency options), which shows the intuition idea of
the frequency selection. The steps of the frequency selection phase
are shown as follows.

• The left boundary combinations (l_comb) which provide the
throughput closest but larger than l are located.

• The right boundary combinations (r_comb)which provide the
throughput closest but lower than l+ ǫ are located.

• Start to traverse combinations from each left boundary com-
bination and select frequency combinations (s_comb) until
the first combinationwith throughput larger than l+ǫ ismet.

• Start to reversely traverse combinations from each right
boundary combination and select frequency (s_comb) com-
binations until the first combination with throughput lower
than l is met.

• All the combinations (l_comb, r_comb and s_comb) are re-
turned

Thanks to the frequency selection phase, the frequency combi-
nations within the range [l, l+ ǫ] can be found. The key algorithm
is the boundary combinations location algorithm, which is shown
by Algorithm 1.

Algorithm 1 Locate Boundary Combinations Algorithm

1: function FindLocation(l, ǫ, digitNum, digitMax, lower)
2: result ← []

3: prefixs← []

4: for j ∈ [1, digitMax] do
5: prev← [j− 1] × digitNum
6: left ← [j] + [0] × (digitNum− 1)
7: right ← [j] × digitNum
8: result ← result ∪ ChooseComb(prev, left, l, ǫ, lower)
9: if left <= l <= right then

10: prefixs← prefixs ∪ [[j]]
11: end if

12: end for

13: for i ∈ [(digitNum− 1), ..., 2] do
14: tempPrefix← []

15: for prefix ∈ prefixs do
16: lastMax = prefix[−1]
17: for j ∈ [1, lastMax] do
18: prev← prefix+ [j− 1] × i
19: left ← prefix+ [j] + [0] × (i− 1)
20: right ← prefix+ [j] × i
21: result ← result ∪

ChooseComb(previous, left, l, ǫ, lower)
22: if left <= l <= right then
23: tempPrefix← tempPrefix ∪ (prefix+ [j])
24: end if

25: end for

26: end for

27: prefixs← tempPrefix
28: end for

29: for prefix ∈ prefixs do
30: lastMax = item[−1]
31: for j ∈ [1, lastMax] do
32: left ← prefix+ [j− 1]
33: right ← prefix+ [j]
34: result ← result ∪

ChooseComb(previous, left, l, ǫ, lower)
35: end for

36: end for

37: return result
38: end function

Algorithm 1 shows the core function FindLocation in this phase.
FindLocation locates the boundary frequency combination which
meets the requirement. Parameters of the function are l, ǫ,
digitNum, digitMax, lower . l indicates the total predictedworkloads
and the value should be l or l+ǫ. digitNum indicates the number of
digits in the combination and digitMax gives the maximum value
for each digit. Namely, digitNum and digitMax refer to the number
of the nodes and the number of the available frequency options
respectively. lower is a binary parameter, which is used to indicate
which boundary is required. If lower is True then the upper bound-
ary is searched, otherwise the lower boundary is searched. At the
end, FindLocation returns the boundary combinations according to
the parameters. The main idea for FindLocation is to narrow the
search space to find the boundaries for l. The idea is to locate
combination is that the provided resource are not linear with the
combination traversing order. However, in particular range, it has



a maximum of provided resources and a minimum of provided
resources. For example, in Fig. 1, within the range 200–222, the
combination which provided maximum throughput is 222 and
the combination which provided minimum throughput is 200.
The same situation occurs for the sub ranges also, for example
210–211, 221–222. However, between two ranges, there is no
clearly relationship. For example, 222 and 300 belong to 2 ranges,
200–222 and 300–333, respectively, but the provided throughputs
cannot be compared before the capacities are evaluated. Therefore,
a check between ranges and sub-ranges is needed. Therefore, the
l is tested for each range of the frequency traversing order, and
meanwhile, by means of narrowing down the range, the boundary
combination can be obtained.

In Algorithm 1, line 3 to line 12 check the basic ranges (only the
first digital number is checked). To be noticed, the checking starts
from 1 because the combination 000− 000 is not a range. In range
checking, if l is between the provided throughputs by theminimum
combination of the range and the maximum combination of the
range (line 9), then the range is stored (line 10) and awaits for fu-
ture narrow down. Meanwhile, in each loop, the combination from
the last previous range is computed (line 5) and compared with
the first combination in the current range (line 8) by a function
ChooseComb. If the l is between prev and left then the eligible one
is put to result set. Line 13 to line 26, the ranges are narrowed down
by each digit, and the possible ranges are selected. However, in
each process of the range narrowing down, the combination from
previous sub-range is computed (line 18) and compared within
first combination in the current sub-range (line 21). To be noticed,
the last digit in a combination is not checked (line 13), becausewith
the last digit, the provided throughputs are linear. For example, the
throughputs provided by 330, 331, 332, 333 are linear increasing.
Line 29 to line 36, the boundaries combinations are selected. The
boundary combinations are returned in the end (line 37).

3.2.2. Frequency assignment phase
In this phase, the frequencies in each frequency combination

are assigned to the nodes, namely the relationship between the
frequencies and the nodes are decided.

The objective of this phase is to generate a frequency assign-
ment which minimize the total amount of migrated workloads
and maximize the workloads migrated within racks. The reasons
for this objective are: (1) the migration cost cannot be obtained
before the whole migration process is done; (2) when a frequency
combination is assigned to the nodes, the migrated workloads are
determinedwhich is related to the selection ofmigrated blocks and
affects the migration cost.

The process of frequency assignment phase includes following
steps.

1 Sort the nodes by descending their predicted workloads
under the current block layout.

2 Assign the frequencies in the combination to the sorted
nodes. In the frequency combination, frequencies are sorted
by descending frequency value.

3 For two nodes which are from different racks, swap the
assignments if they satisfy the conditions below.

• The system throughputs are greater than the required
throughputs or the system throughputs are less than
the required throughputs for both nodes.

• The total amount of migrated workloads within racks
increases because of the swap.

Using step 1 and step 2, a frequency combination is assigned
to the nodes sorted by descending the predicted workloads under
current block layout, by which the total amount of migrated work-
loads is minimized (Proposition 1). Using step 3, the amount of
migrated workloads within a rack can be maximized (Corollary 1).

Proposition 1. When a frequency combination are assigned to the
nodes that are sorted by descending their predicted workloads under
current block layout, the total size of migrated workloads is minimum.

Proof. Without loss of generality, we say the node set C is sorted
by descending the predictedworkloads under current block layout,
namely by

∑h
g=1

∑r
k=1w

i
g,k × l × ϕg,k. The frequency assigned to

ci is denoted as fi. According to the assignment method, if i < j,
then fi > fj and ψi > ψj. Furthermore, z(ci, fi) > z(cj, fj). The total
amount of migrated workloads is denoted as WMigrated. WMigrated

can be obtained by Eq. (19) in which I is an index set indicating
the nodes whose predicted workloads exceed their capabilities.

I ={i | ψi > z(ci, fi) i ∈ [1, n] }

WMigrated =
∑

i∈I

ψi − z(ci, fi) (19)

In order to achieve an assignmentwhich gives less total amount
of migrated workloads, the frequencies are swapped between ci
and cj. Without loss of generality, we assume i < j. Basically there
are 4 scenarios.

Scenario 1 z(ci, fi) > ψi and z(cj, fj) > ψj

Scenario 2 z(ci, fi) < ψi and z(cj, fj) < ψj

Scenario 3 z(ci, fi) > ψi and z(cj, fj) < ψj

Scenario 4 z(ci, fi) < ψi and z(cj, fj) > ψj

Scenario 1 When fi and fj are swapped, z(cj, fi) > ψj can be
obtained because fi > fj and z(cj, fj) > ψj. Since the relationship
between z(ci, fj) and ψi is unknown, there are 2 sub scenarios.

Scenario 1.1: z(ci, fj) > ψi

According to Eq. (19), the increment of WMigrated under this
sub scenarios is 0.

Scenario 1.2: z(ci, fj) < ψi

According to Eq. (19), the increment of WMigrated is ψi −

z(ci, fj) > 0.

According to the above analysis, when the swapping happens
under Scenario 1, there is no chance for reducing the total amount
of migrated workloads.

Scenario 2When fi and fj are swapped, z(ci, fj) < ψi is obtained
because fi > fj and z(ci, fi) < ψi. Since the relationship between
z(cj, fi) and ψj is unknown, there are 2 sub scenarios.

Scenario 2.1: z(cj, fi) > ψj

According to Eq. (19), the increment of WMigrated under this
sub scenarios is

(
ψi − z(ci, fj)

)
−
(
ψi − z(ci, fi)+ ψj − z(cj, fj)

)

= z(ci, fi)− ψj = z(cj, fi)− ψj > 0 .
Scenario 2.2: z(cj, fi) < ψj

According to Eq. (19), the increment of WMigrated under this
sub scenarios is 0.

According to the above analysis, when the swapping happens
under Scenario 2, there is no chance for reducing the total amount
of migrated workloads.

Scenario 3 When fi and fj are swapped, z(cj, fi) > ψi > ψj >

z(ci, fj) is obtained. The increment of the total amount of migrated
workloads is

(
ψi − z(ci, fj)

)
−

(
ψj − z(cj, fj)

)
= ψi−ψj > 0. When

the swapping happens under Scenario 3, there is no chance for
reducing the total amount of migrated workloads.

Scenario 4 When fi and fj are swapped, ψi > z(cj, fi) >

z(ci, fj) > ψj can be obtained. The increment of the total amount of
migrated workloads is

(
ψi − z(ci, fj)

)
− (ψi − z(ci, fi)) = z(ci, fi)−

z(ci, fj) > 0. When the swapping happens under Scenario 4, there
is no chance for reducing the total amount of migrated workloads.

According to the discussion above, when a frequency combi-
nation is assigned to the nodes sorted by descending the pre-
dicted workloads, the total amount of migrated workloads cannot



Table 2

1-0 knapsack details in block selection phase.

Term Description

Item Block whose accessed possibility is greater than 0.
Knapsack For ci : z(ci, fi).
Weight Workloads of the blocks, ϕg,k × l.
Profit Block size |bg,k|.
Objective maximize the amount of the kept block sizes.

be minimized by means of swapping 2 assignments. Therefore,
the total amount of migrated workloads is minimum under this
assignment. �

Corollary 1. The swapping cannot reduce the total amount of

migrated workloads, but it can increase the amount of migrated

workloads within a rack in some cases.

Proof. In the proof of Proposition 1, two swapping scenario, Sce-
nario 1.1 and Scenario 2.2, do not increase the amount ofmigrated
workloads. However, in some situations, they increase the amount
of migrated workloads within racks.

We assume ci and cj are from different racks. Considering Sce-

nario 2.2, the migrated workloads from the nodes before the
swapping are ψi − z(ci, fi) and ψj − z(cj, fj) respectively. After the
swapping the migrated workloads from the nodes areψi − z(ci, fj)
andψj−z(cj, fi) respectively. According to the conditions of the sce-
nario, the relationships, ψi > ψj > z(ci, fi) = z(cj, fi) > z(cj, fj) =
z(ci, fj) can be obtained. Using the swapping, more workloads are
migrated from ci and correspondingly, lessworkloads aremigrated
from cj. If the rack of ci needs some workload to migrate inside
and the rack of cj needs some workload migrated outside, then
the amount of migrated workload within the rack of ci increases,
and correspondingly, the amount of migrated workload between
racks of rack cj decreases. For Scenario 1.1, the same case can be
constructed as well. Therefore, Corollary 1 is justified. �

3.2.3. Block selection phase

In this phase, a set of blocks for the migration are selected in
order to reduce the migration cost as much as possible.

The migration cost is determined by the total size of the mi-
gration blocks as well as the migration directions (within a rack
or between racks) according to Eq. (6). In this phase, attempts are
done to minimize the migration cost through reducing the total
size of the migrated blocks. It should be noticed here that the
method of changing the migration directions is not used to reduce
the migration cost in this phase.

When a frequency combination is assigned to the nodes, the
amount of migrated workloads is determined in Section 3.2.2. To
minimize the migration cost, the block selection problem can be
interpreted in another way: Which blocks should stay in place
to achieve the node’s capability while the total size of the blocks
is maximized? This problem can be treated as a 0/1 knapsack
problem. The items are blocks, and the weight and the profit of
these items are the workloads of the block and the block size re-
spectively. The volume of knapsack is the amount of theworkloads
reserved by the node. The detail of the knapsack problem is shown
by Table 2.

By means of dynamic programming method, the optimal kept
blocks can be found. However, because of total amount of blocks,
dynamic programming cannot solve this problem within accept-
able time. Therefore, a greedy algorithm is used to solve the prob-
lem, in which the items are sorted by their profit/weight ratio.

Table 3

Multiple knapsacks details in block migration phase.

Term Description

Item Migrated Blocks which are selected in Block Selection Phase.
Knapsack The nodes who has extra capability.

{ci|(z(ci, fi)− ψi) > 0 i ∈ [1, n]}. Knapsack size is z(ci, fi)− ψi .
Weight Workloads of the blocks, ϕg,k × l.
Profit Block size |bg,k|.
Objective maximize the amount of block sizes which are migrated within

the rack.

3.2.4. Block migration phase
In this section, the migrated blocks selected by Phase 3.2.3 are

redistributed. The goal of this phase is to generate a migration
plan which gives the destination for each migrated block. The
objective is to reduce the total migration cost. According to Eq. (6),
the migration cost is related to the migrated block sizes and their
destinations (i.e. within a rack or between racks). However, the
migrated blocks are determined by previous phase, which means
the block sizes are determined as well. Therefore, the objective of
this phase is to generate a migration plan which put the migrated
blocks in their own rack as much as possible. Therefore, the main
process of this phase is shown as follows.

1. Migrated blocks are migrated within their own racks first.
2. If some blocks cannot be migrated within their own racks,

then they are migrated within the whole cluster.

The migration problem can be interpreted in another way:
Which blocks should be kept within the rack in order to minimize
migration cost? Actually, the migration problem can be treated as
a constrained multiple knapsack problem. The multiple knapsacks
are the interspaces of the nodes whose predicted workload does
not exceed their capability. The item’sweight and profit are block’s
workload and block size respectively. The problem objective is to
maximize the block sizeswhich are keptwithin the rack. The detail
of the multiple knapsack problem is shown by Table 3.

In order to solve the multiple knapsack problem, a constrained
exchange algorithm is introduced which is denoted as CMTHM.
This algorithm is inspired by MTHM algorithm [11]. In MTHM
algorithm, there are 4 steps:

1. Choose the item using a greedy algorithm for each knapsack
(items are sorted by descending profit/weight and knap-
sacks are sorted by descending volumes).

2. Rearrange the selected items to make sure not all valuable
items are stored in the same knapsack.

3. Interchange assigned items and try to insert unassigned
items.

4. Exchange assigned items with unassigned items if the ex-
change can fit more unassigned items.

In CMTHM, the replicas of a block are regarded as conflict
with each other when items are moving. If a conflict occurs, the
exchange continues until the next exchange opportunity is found.

In the global migration, the remaining blocks are redistributed.
In this migration, CMTHM is applied. However, compared with the
migration within racks, the knapsacks are the nodes of the cluster
which do not reach their capabilities.

3.2.5. Upper bounds of power consumption and migration cost
In the multi-phase algorithm, the frequency combinations gen-

erated by frequency selection phase are evaluated by following
phases. If a frequency combination is obtained, the corresponding
migration plan can be generated, and meanwhile the power con-
sumption and themigration cost can be obtainedwhich are used to
evaluate the solution. However, if the migration plan is generated



for all the frequency combinations, the performance of the multi-
phase algorithm is unacceptable. In this section, the methods for
computing the upper bounds of power consumption andmigration
cost are proposed, which are used to improve the performance
of the multi-phase algorithm. The usage of the upper bounds is
discussed in Section 3.2.6.

Upper bound of power consumption. After the frequency
assignment phase, the upper bound of power consumption can
be obtained. According to Eq. (5), the power consumption P is
related to the frequencies and the yields. Considering a block bg,k
is assigned to ci, the power consumption of ci increases because of
it, i.e. it increases with the probability access ϕg,k due to that block.

The increment is
ϕg,k∑m

u=1 xiu×z(ci,fu)
×

∑m
u=1

(
xiu ×

(
cmax
fu
− c idlefu

))
. For a

given frequency combination, xiu are set.Without loss of generality,
we can say that node ci is assigned with frequency fi. Therefore

the increment can be rewritten as
ϕg,k

z(ci,fi)
×

(
cmax
fi
− c idlefi

)
. In this

scenario, the factor

(
cmax
f

−cidle
f

)

z(ci,fi)
is constant and it is defined as the

power consumption contribution factor of the node. In order to
achieve themaximumpower consumption, the blocks are assigned
to the nodes with the highest power consumption contribution as
much as possible. In order to simplify the assignment, a relaxation
is introduced, in which the nodes with free capacity in the same
rack are combined to form a big knapsackwith larger free capacity.
Because of the relaxation, one block can be split and put tomultiple
nodes. To compute the upper bound of the power consumption,
following conditions are introduced.

• Let the total ordered node set be C̃ = (C,≤). ∀i, j(
cmax
fi

−cidle
fi

)
/z(ci,fi) >

(
cmax
fj

−cidle
fj

)
/z(cj,fj), then ci 6 cj.

• If an index ĩ of C̃ satisfies
∑̃i

i=0 z(ci, fi) 6 l 6
∑̃i+1

j=0 z(cj, fj),
then index ĩ is a pivot node.

• The blocks are assigned to the nodes ci with i 6 ĩ+ 1.

With above conditions, themaximumpower consumption Pmax

is shown by Eq. (20). The nodes ci with i 6 ĩ reach their maximum
power consumption, and the nodes ci with i > ĩ+2 reach their idle
power consumption because there is no assigned block. The power
consumption of c̃i+1 is computed by Eq. (4).

Pmax =


z

(
c̃i+1, f̃i+1

)
−




ĩ+1∑

i

z (ci, fi)−

n∑

i

wi






×
cmax
f̃i+1
− c idlef̃i+1

z
(
c̃i+1, f̃i+1

) + c idlef̃i+1
+

ĩ∑

i=0

cmax
fi
+

n∑

i=̃i+2

c idlefi
(20)

Upper bound of migration cost. After the block selection
phase, the upper bound ofmigration cost can be obtained bymeans
of the same relaxation. To compute the maximum migration cost,
two conditions are introduced:

1. There are U racks. For a rack Γu, the selected block set is
denoted as Mu. The total ordered set of Mu is denoted as
M̃u = (Mu,6) = {b1, b2, . . .} in which the blocks are sorted
by the ratio between their workloads and sizes, namely
∀bi, bj ∈ M̃u, if

l×ϕi
|bi|

>
l×ϕj
|bj|

, then bi 6 bj.

2. The blocks with higher ratio values are kept within racks
and the other blocks are migrated to other racks. M̃In

u and
M̃Out

u are partitions of M̃u. M̃In
u and M̃Out

u satisfy the following
conditions:

• M̃In
u = {b1, . . . , bv}, M̃

Out
u = {bv+1, bv+2, . . .}.

Table 4

Complexity of the operations.

Phase Operation Complexity Auxiliary
operation

Complex-
ity

1
Combination
locating

O(nm2) Filter combi-
nations

O(κ)

Combination
traversing

O(κ) Sort combi-
nations

O(κ log κ)

2 Frequency
assignment

O(n2) Compute
upper bound

O(1)

3 Block
selection

O

(
n

max
i=1

(
|Dr

i |log|D
r
i |
))

4 Block
migration

O
(
max

(
maxUu=1(

|MIn
u |

3
)
, |
⋃U

u=1 M
Out|

3
))

• Let the partial set of the nodes in Γu that have extra
capacity be CIn

u = {ci|ci ∈ Γu and ψi < z(ci, fi)}. Then,

the index v of M̃u satisfies
∑v

j=0 l × ϕj 6
∑

ci∈C
In
u

(z(ci, fi)− ψi) <
∑v+1

j=0 l× ϕj.

With above conditions, the maximum migration cost Tmax can
be obtained by Eq. (21), in which U is the number of racks. Since
the blocks with lower workloads but larger sizes are migrated to
other racks, the migration cost is the highest among all migration
plans.

Tmax = EIn ×
∑

bi∈
⋃U

u=1 M̃In
u

|bi| + EOut ×
∑

bi∈
⋃U

u=1 M̃Out
u

|bi| (21)

3.2.6. Complexity analysis
In previous sections, the details of the multi-phase algorithm

are introduced. In this section, the multi-phase algorithm is intro-
duced in the view of bounded problems, and the complexity of the
algorithm is analyzed.

P
b
T
min defines the problem that minimizes the migration cost

fulfilling the basic requirement of the power consumption bound.
After frequency assignment phase, frequency combinations are
filtered according to P

b. For each frequency combination, if Pmax ≤

P
b, then the combination is kept otherwise the combination is

discarded. Due to the filter process, all the kept combinations can
satisfy P

b condition. Meanwhile the frequency combinations are
sorted by ascending Tmax after block selection phase. Therefore, in
block migration phase, only few solutions are evaluated and the
one with minimum migration cost is returned.

T
b
P
min defines the problem that minimizes the achievable

power consumption within the migration cost bound. In order
to solve the problem, after the frequency assignment phase, fre-
quency combinations are sorted by ascending Pmax. Meanwhile
after the block selection phase, the solutions are filtered by means
of Tb. For each solution, if Tmax ≤ T

b, then the solution is kept
otherwise the solution is discarded. Due to the filter process, all
the kept solutions can satisfy P

b condition. Therefore, in block
migration phase, only few solutions are evaluated and the onewith
minimum power consumption is returned.

The feasible solution is found by means of the multi-phase
algorithm. In each phase, a solution is optimized with different
aspects. In frequency selection phases, the power consumption of
the solution is optimized. Then, the migration cost is optimized
in frequency assignment phase, block selection phase and block
migration phase.

Multi-phase algorithm is combined by 4 phases and 3 auxiliary
operations (filtering, sorting and upper bound calculation). The
complexities of each operation in the phases are listed in Table 4.
In Table 4, n represents the amount of nodes and m represents



the amount of frequency options. κ represents the amount of fre-
quency combinations which are generated in frequency selection
phase. The amount of blocks for each node is denoted as |Dr

i | in
which ∀i ∈ [1, n] Dr

i = {bg,k|w
i
g,k == 1}. The amount of blocks

which are migrated within their rack is denoted as |MIn
u | ∀u ∈

[1,U] in which U is amount of racks. The amount of blocks which
are migrated between racks are denoted as

∑U
u=1 |M

Out
u |.

• Phase 1: The operation of locating combination checks the
frequency option for each node therefore the complexity
is O(nm2). In traversing combinations operation, each fre-
quency combination is checked to make sure it fits to the
boundaries. Therefore the complexity for traversing combi-
nations is O(κ).

• Phase 2: In order to assign the frequencies to the nodes,
frequencies are exchanged between nodes. The complexity of
assigning frequency is O(n2).

• Phase 3: In block selection operation, the complexity is O(
maxni=1

(
|Dr

i |log|D
r
i |
))

because quick sort is applied to
achieve greedy method. However, the amount of assigned
blocks for each node is different, the complexity depends on
the maximum amount of blocks within all the nodes.

• Phase 4: In block migration operation, the algorithm CMTHM
is adopted. The complexity of CMTHMdepends on the amount
of items because of exchange process. However CMTHM is
applied U + 1 times, since it is applied to every rack and
the whole system respectively. Therefore the complexity of
Phase 4 depends on themaximumamount ofmigrated blocks
within a rack and the amount of migrated blocks between
racks. Therefore, the complexity of CMTHM algorithm is

O
(
max

(
maxUu=1

(
|MIn

u |
3
)
, |

⋃U
u=1 M

Out|
3
))

.

Note that the complexities of the operations in phase 2 to phase
4 refer to the complexity of processing one frequency combination.
In worse case, the complexities of the operations in phase 2 to
phase 4 need to be multiplied by O(κ) if the all frequency combi-
nations are processed. However, for both bounded problem P

b
T
min

and T
b
P
min, the feasible solution can be obtained at the beginning

of the search, because of the sorting and filter process.

4. Evaluation

In this section, a series of experiments is designed and executed
to evaluate the model and corresponding algorithms. There are
3 parts in this section, Setup Benchmark, Simulation Experiment,
and Execution Experiment. Setup Benchmark gives the benchmark
experiments to obtain the parameters in Hot-N-Cold model. The
proposed algorithm are evaluated and compared in Simulation
Experiment. Finally, our approach is applied to a real environment
in Execution Experiment to evaluate the energy saving effect of
cloud database systems in running time.

4.1. Setup benchmark

In this experiment, two benchmarks are executed to obtain the
capacity measurement function z(ci, fi), and the energy costs per
mega byte of migration within a rack and between racks, namely
EIn and EOut.

4.1.1. Capacity benchmark
This benchmark is executed on Grid5000 [3] testbed. Grid5000

is designed to provide a scientific tool for computer scientists sim-
ilar to the large-scale instruments used by physicists, astronomers
and biologists. In the benchmark, a database system Cassandra [8]
with 10 nodes belonging to the Nancy site graphene cluster is
deployed. The core properties used in YCSB workload profile are

Table 5

Core properties of Cassandra.

Property Value

num_tokens 256
max_hints_file_size_in_mb 128
key_cache_size_in_mb 0
row_cache_size_in_mb 0
concurrent_reads 32
concurrent_writes 32

Table 6

Core properties of YCBS workload.

Property Value

Recordcount 3 000000
Fieldlength 1000
Readproportion 0.95
Updateproportion 0.05
Requestdistribution Uniform
Threadcount 500

Table 7

Node’s capability under each frequency option.

Frequency Capability Frequency Capability

2.53 GHz 5690 1.73 GHz 4768
2.40 GHz 5518 1.60 GHz 4440
2.13 GHz 5357 1.33 GHz 3822
2.00 GHz 5211 1.20 GHz 3520

shown in Table 5. To be noticed that, the cache related parameters
are set to 0 to avoid the influence of cache mechanism to the
experiment results.

The nodes are equipped with a 4 cores Intel Xeon X3440 and 16
GB of RAM. The energy consumption values are collected by Power
Distribution Units (PDU). There are 8 available frequency options:
2.53 GHz, 2.40 GHz, 2.13 GHz, 2.00 GHz, 1.73 GHz, 1.60 GHz,
1.33 GHz, 1.20 GHz. In this benchmark, themaximum throughputs
under each available frequency option are obtained.

To simulate the real workloads, Yahoo! Cloud Serving Bench-
mark(YCSB) framework [5] is selected as benchmark framework.
YCSB is an open-source specification and program suite for eval-
uating retrieval and maintenance capabilities of computer pro-
grams. The core properties used in YCSB workload profile are
shown in Table 6.

To obtain the maximum throughput of the system, more and
more requests are loaded into the system. There are 12 workloads
in total for each frequency option. The workload is denoted as
Qi i ∈ [1, 12]. For workload Qi, the total amount of requests is
4000× 2i−1. The result is shown by Fig. 2 and Table 7.

Fig. 2(a) shows the trends of throughput alongwith the increas-
ing requests for the system under frequency 2.53 GHz, 2.00 GHz,
1.60 GHz and 1.33 GHz. The trends have a same pattern. Along
with the increasing requests, the throughputs are increasing at
first and then decline. During the fluctuation, the throughputs
under different frequencies reach the highest point. At beginning,
the throughput is lower than the node’s capability. Therefore, the
throughput increases as well. However, after the highest point of
each line, the throughput tries to exceed the node’s capability,
but some requests cannot be finished because of the resource
competition. The result is that the throughput declines. For all the
frequencies, the capabilities are different. When the frequency is
higher, the capability is larger. The capabilities for all frequency
options are listed in Table 7. Note that, the capability is related to
the hardware and software configuration of the system. When the
configuration changes, the capability need to be reevaluated.

Fig. 2(b) shows the relationship between the energy efficiency
and the throughputs under different frequencies. Along with the



Fig. 2. Capability benchmark result of Cassandra system.

increasing of the throughputs, the energy efficiency increases as
well. To benoticed that each line has a fewcoincident parts because
when the throughput tries to exceeds the capability, the through-
put declines. Each frequency has its maximum energy efficiency
value and the energy efficiency value reaches its maximum value
at its maximum throughput. To be noticed that each line has a
few coincident parts becausewhen the throughput tries to exceeds
the capability, the throughput declines. Each frequency has its
maximum energy efficiency value and the energy efficiency value
reaches its maximum value at its maximum throughput.

Fig. 2(c) shows the energy consumption for each workloads.
Along with the increasing of the requests, the energy consumption
increases as well for each frequency configuration. However with
the same requests amount, the energy consumptions under differ-
ent frequency option do not have big diffidence. Since the maxi-
mum throughputs of the system are tested, a lot of requests are

Table 8

Migration cost for unit block.

Parameter Value

EIn 0.8 J/Mb
EOut 1.0 J/Mb

loaded into the system.With different frequency configuration, the
throughput of the system is different. For example with 2.53 GHz,
the average throughput is 5590 Opt/Sec and with 1.33 GHz, the
average throughput is 3822 Opt/Sec. Therefore with the same
request amount, the execution time under two frequency option
is quite different. For example, with Q12, t(2.53 GHz) = 1778 s and
t(1.33 GHz) = 2837 s. As a consequence, the energy consumptions
do not have big difference for both cases.

4.1.2. Migration cost benchmark
In Eq. (6), the migration cost is obtained by means of two static

parameters, the energy costs per mega byte of migration within a
rack andbetween racks, namely EIn and EOut. To obtain these values,
a benchmark is executed.

This benchmark is executed in Grid5000 platform at Nancy
site graphene cluster as well. However, the system is deployed
on 2 nodes. After the loading process, the system is waiting for
a few minuets (5 mins in the experiment) to obtain the energy
consumption in the idle status which is denoted as EIdle. Then,
a decommission process is executed on one of the nodes, which
causes all the blocks in the node is migrated to another one. The
energy consumption within the decommission process is denoted
as EMigration. By means of choosing different node combinations, EIn
and EOut can be obtained.

EIn|Out =
EMigration − EIdle ×

tMigration
tIdle∑

bg,k∈MIn|Out
|bg,k|

(22)

EIn and EOut are calculated by Eq. (22), in which tMigration and tIdle
indicate the execution time of the idle status and the execution
time of the decommission process respectively. The values of the
parameters are shown in Table 8.

4.2. Simulation experiment

In this section, proposed algorithms are evaluated using sim-
ulation experiment. Nonlinear programming algorithm can find
the optimal solution for both frequency selection and migration
process, however it cannot be applied to larger scale problems.
In contrast, multi-phases algorithm can find the sub-optimal solu-
tions and has good scalability. In this section, we mainly focus on
multi-phases algorithm. There are 4 experiments in total, which
are made to evaluate multi-phases algorithm in aspect frequency
selection, migrated block selection, migration plan generation and
its scalability. Meanwhile a comparison experiment is made to
compare nonlinear programming algorithm and multi-phases al-
gorithm in Section 4.2.4.

To conduct the simulation experiments, some simulation test
cases are generated. The method for generating test cases are
shown as below.

• System. A system is denoted as sn in which n is the amount of
nodes in the cluster.Meanwhile, it is assumed that there are 2
racks in total. For example s20present a database systemwith
20 nodes, and there are 2 racks in which each rack contains
10 nodes.

• Block and Block layout. The amount of block is set to 64
per node in the experiments and the replica factor is set to
3. Therefore in s10, there are 1920 blocks in total. The size



Fig. 3. Result of frequency selection comparison.

of blocks are randomly generated within 10Mb to 30Mb. For
the replicas, they have same block size. To be noticed this
method is used to give the amount of blocks. The blocks are
distributed by following rules: (1) the first replica is placed
on one of the nodes bymeans of round-robin strategy; (2) the
second replica is placed on another rack; (3) the third replica
is placed on the same rack of the second, but on a different
node chosen at random.

• Block accessed possibilities. The block accessed possibility
in Hot-N-Cold model refers to the parameter ϕg,k. In practice,
these are predicted values. In the simulation experiment,
possibilities are generated by Zipf distribution [22] and the
distribution factor is set to 2.5 in our experiment.

• Workload. Theworkload in this paper refers to the parameter
lwhich is the predicted required throughput. The value of l is
given by the throughput per node. For example, if we say the
workload of one test case is set to 3500 Opt/Sec to s10, then
for thewhole system, the throughput is set to 35 000 Opt/Sec.
However, thismethod is away to set the throughput value for
the whole system, the throughput for each node depends on
the assigned blocks and their accessed possibilities.

• Boundary. There are two problem types in this paper, Pb
T
min

and T
b
P
min. For both problems, the boundary value of Pb and

T
b should be provided. In the experiments, if not specified,

then the boundary value is obtained as follows. To obtain the
boundary value P

b, the corresponding test case is solved by
T
b
P
min in which T

b is set to infinite denoted as T
Inf . When

the value of Pmin is obtained, the boundary value is set to
1.1 × P

min. The boundary value T
b is obtained by the same

way.

A test case is a combination with a system, a workload and a
problem type, which is denoted as s < n > _ < workload > _ <
type >. For example s10_3500_Pb

T
min presents a test case inwhich

there are 10 nodes (5 for each rack), the workload throughput is
set to 3500 × 10 = 35000 Opt/Sec. In s10_3500_Pb

T
min, a power

consumption boundary value is provided and the objective is to
minimize migration cost.

4.2.1. Frequency selection comparison
In this comparison experiment, the frequency selection phase

from the multi-phase algorithm is compared with a method from
Houssem-Eddine Chihoub et al. [4]. Themethod is defined asHHHC
(Half Hot and Half Cold) in our experiment. In HHHC, half of the
nodes are set to the highest frequency(2.53 GHz) and another half
of the nodes are set to the lowest frequency (1.20 GHz). In multi-
phase algorithm, the frequencies are selected according to the
predicted workloads.

In this experiment, 4 test cases are involved, which are denoted
as s20_l_TInf

P
min l ∈ [5000, 4500, 4000, 3500]. Since there is no

boundary for migration cost, minimize power consumption is the
objective for both algorithms. All the cases are solved by multi-
phases algorithm and HHHC and the result is shown by Fig. 3.

Fig. 4. Result of migrated block comparison.

In Fig. 3, The power consumption given by multi-phase algo-
rithm are lower than the corresponding result given by HHHC. The
average improvement of multi-phases algorithm compared with
HHHC is 12.89%. When l is set to 5000 Opt/Sec, HHHC cannot
produce a valid solution. Theoretically, when HHHC applied, the
systemwith 20 nodes can support anyworkloads with throughput
under 92080 Opt/Sec, however with the setting 5000 Opt/Sec for
each node, the system does not have enough resources to support
it. Therefore the corresponding power consumption is recorded as
0. The main drawback of HHHC is its flexibility. HHHC sets the
frequencies statically, while the multi-phase algorithm chooses
frequencies according to the workload predictions.

4.2.2. Migrated block comparison
In the block selection phase of the multi-phases algorithm,

migrated blocks are selected by a greedy algorithm to reduce the
migration cost. In this section, the greedy selection is compared
with the random selection.

The test case used in this experiment is s20_4000_PInf
T
min. 5

frequency combinations are used in this experiment which are
selected and assigned by the multi-phases algorithm. For each
frequency combination, 1000 migrated block sets are generated
by the random selection and the migration process is applied. The
migration cost values are obtained using Eq. (6). The comparison
results are shown by Fig. 4.

In Fig. 4, the migration cost values obtained by the random
selected migrated blocks are shown in the form of box charts.
According to the experiment result, the migration costs obtained
by the greedy selected migrated blocks are much lower than the
random selected migrated blocks for each frequency combination.
Before the block selection phase, the total amount of migrated
workloads is determined. Therefore, the objective in the block mi-
gration phase is to generate amigrated block setwhich satisfies the
migrated workloads constraint and produces minimum migrated
block sizes. In the greedy selection algorithm, the blocks are sorted
by the ratio between its workload and block size, therefore the
migration cost is much lower.

4.2.3. Migration comparison
In block migration phase, the migrated blocks are redistributed

within the cluster. CMTHM is used to choose the destination for
eachmigrated block. In this experiment, CMTHM is comparedwith
the first fit algorithm. In the first fit algorithm, the nodeswith extra
capabilities are sorted by the descending available capability and
the migrated blocks are sorted by descending the ratio between
their block sizes and their workloads. In first fit, the blocks are
migrated within their own rack first. if there is no space for the
blocks, the remained blocks are redistributed to other racks.



Fig. 5. Result of migration comparison.

Table 9

Properties of the test cases for nonlinear programming algorithm.

Property Description

System The system includes 6 nodes denoted as s6.
Replica 2
Block amount 3 per node(36 blocks in total)

The test case used in this experiment is s20_4000_PInf
T
min.

1000 frequency combinations are used in this experiment which
are selected and assigned by multi-phases algorithm. For each
frequency combination, the migrated blocks are given by multi-
phases algorithm as well. Then, the blocks are migrated by both
CMTHM and First Fit. In the end of migration, the migration costs
are collected. The result is shown by Fig. 5.

According to Fig. 5, the results given by both algorithm do
not have big difference. The range of the migration cost given by
CMTHM is slight lower than the results given by First Fit. The
migration cost for migrating a block between racks is slight larger
than the migration cost for migration a block within its rack.
However, for both algorithm, they try to place the migrated blocks
in its own rack first. Therefore the results given by both algorithm
are similar.

Among all the results, 81.3% of results given by CMTHM are
lower than the results given by First Fit. In CMTHM, in order to
improve the profit, the items are rearranged and swapped after
the First Fit (first step of CMTHM). In most of the cases, these
operations improve the profit of kept items, however sometimes
they do not. But general, CMTHM is better than First Fit.

4.2.4. Scalability experiment
Scalability experiment includes two parts. At first a comparison

experiment between the nonlinear programming algorithm and
themulti-phases algorithm is executed. Then, the scalability of the
multi-phases algorithm is evaluated.

Since the nonlinear programming algorithm cannot be applied
to a large scale problem. Therefore, in this experiment, two special
test cases, denoted as s6_4000_Pb

T
min and s6_4000_Tb

P
min, are

introduced. The detail about the properties of these test cases are
listed in Table 9. Compared with the test case s20_4000_Pb

T
min,

s6_4000_Pb
T
min and s6_4000_Tb

P
min are smaller in terms of the

amount of nodes and the amount of blocks. However, in our
experiment, these are the biggest cases for the nonlinear program-
ming algorithm, otherwise the algorithm cannot produce a solu-
tion within acceptable time. The comparison result between the
nonlinear programming algorithm and themulti-phases algorithm
is shown by Fig. 6.

In Fig. 6(a), the execution time of multi-phases algorithm is
lower than the corresponding execution time of nonlinear pro-
gramming algorithm for both test cases. Fig. 6(b) shows the ob-
jective value given by both algorithm for the test cases. Generally,

Fig. 6. Compression between nonlinear programming andmulti-phases algorithm.

the objective values given by nonlinear programming algorithm
is lower than the corresponding objective values given by multi-
phases algorithm. The reason of this situation is that multi-phases
algorithm takes advantages of approximation algorithms in each
phase to obtain a feasible solution of the problem. In contrast,
nonlinear programming algorithm uses nonlinear optimization
method to solve the problem and obtain the global optimal solu-
tion. Therefore, the multi-phase algorithm is more efficient than
nonlinear programming algorithm in terms of performance.

After comparison of nonlinear programming algorithm and the
multi-phase algorithms. Another series tests are made to evaluate
the scalability of the multi-phases algorithm. In this experiment,
test cases sn_4000_Pb

T
min and sn_4000_Pb

T
min are used, in which

n ∈ [10, 20, 30, 40, 50, 60, 70]. The execution time for each case
is shown by Fig. 7.

In Fig. 7, the execution time of the multi-phases algorithm
increases with the increasing of the amount of nodes for both
problem type. When the amount of nodes increases, the total fre-
quency combinations increases as well. Therefore, the amount of
frequency combinations which are evaluated in the multi-phases
algorithm increases. Meanwhile, the amount of migrated blocks
increases as well since the workload increases along with the node
amount. Then, the execution time for both frequency selection and
workload migration increases. As a consequence, the execution
time of the multi-phases algorithm increases.

With the same node amount, the execution time for Pb
T
min is

shorter than the execution time for T
b
P
min especially for larger

problems (i.e. s60 and s70). For problem P
b
T
min, multi-phase al-

gorithm filters frequency combinations after the frequency as-
signment phase by Pmax, and sort frequency combinations after
the block selection phase by Tmax. However, For problem T

b
P
min,



Fig. 7. Result of scalability experiment.

themulti-phases algorithm sorts frequency combinations after the
frequency assignment phase by Pmax, and filters frequency com-
binations after the block selection phase by Tmax. When the same
amount of frequency combinations generated in the frequency se-
lection phase, the execution time for Pb

T
min is shorter because less

frequency combinations are evaluated in block selection phase.
When a frequency combination is filtered, then the combination is
discarded. In P

b
T
min, the filter operation happens before the block

selection phase which causes less execution time.

4.3. Execution experiment

The purpose of this experiment is to evaluate howmuch energy
can be saved bymeans of Hot-N-Coldmodel in running time. Com-
paredwith energy consumption of the running time, themigration
cost is quite small, therefore in this experiment, we only focus on
the energy consumption in the running time. In this experiment, a
series of well designed queries are executed in a Cassandra system
to simulate the workloads after the migration process. Meanwhile
the corresponding energy consumptions are collected by PDU. The
core configurations are shown as follows.

• System. The system used in this experiment is a Cassandra
system with 10 nodes belonging to the Nancy site graphene
cluster. The configuration of the hardware is the same with
Setup Experiment.

• Test Case There are 4 test cases used in the experiment.
s10_l_TInf

P
min in which l ∈ [3500, 4000, 4500, 5000].

• Frequency. There are 2 frequency situations in this experi-
ment.

1. The nodes are assigned with Performance mode which
is the default setting for the nodes

2. The frequencies generated by multi-phases algorithm.

• Query. Queries in this experiment refer to the requests
amount for each node. At first, the multi-phases algorithm
is applied to each case, and corresponding results (frequency
selection and migration plan) are obtained. Then, for node ci,
the throughputψi are calculated. Finally the requests amount
for node ci is set to ψi ×

2×106

5690 . The parameter, 2×106

5690 , is used
to make sure every node under its selected frequency option
can reach its capability, and meanwhile the workloads for
each node can be finished around same time. The parameter
is obtained by the results shown by Fig. 2. When the request
amount for a node reaches 2×106 Opts, it has highest energy
efficiency in our environment.

• Benchmark Framework. The benchmark framework is YCSB
and the core properties are the same with Table 6. In order
to simulate the real case, another property target is set to the
workload profile to make sure each workload for the node is
executed by a designed throughput ψi.

Fig. 8. Result of execution experiment.

For each test case s10_l_TInf
P
min in which l ∈ [3500, 4000, 4500,

5000], we simulate their migration result in the testbed under
two frequency configurations (Performance mode and Hot-N-Cold
mode), and the energy consumptions are collected shown by Fig. 8.

In Fig. 8, the energy consumptions given by Hot-N-Coldmode is
always lower than the energy consumptions given by Performance
mode. In Hot-N-Cold mode, the frequencies are selected according
to the predicted workloads, therefore there is no energy wasting
because of resource over-provisioning. However, when the system
is set to Performance mode, in some cases, there are nodes with
extra capabilities which cause energy wasting.

O(l) =
E(l, Performance)− E(l,H − N − C)

E(l, Performance)
(23)

For each test case, s10_l_TInf
P
min, the optimization ratio is de-

noted as Eq. (23) in which E(l, Performance) and E(l,H − N − C)
denote the energy consumption given by Performance mode and
Hot-N-Cold mode respectively. The optimization ratio depends on
the value of throughput per node. For ∀l1 < l2, O(l1) > O(l2).
With the increment of throughput per node, the optimization ratio
decreases. The maximum optimization ratio is 21.5% for the case
s10_3500_TInf

P
min, and the minimum optimization ratio is 7.2%

for the case s10_5000_TInf
P
min. With lower workload amount, the

energy wasting situation is more worse under Performance mode.
The optimization ratio is higher with lower amount workloads.

4.4. Conclusion

In the experiment section, there are 3 experiments, Setup Ex-
periment, Simulation Experiment and Execution Experiment.

In Setup Experiment, the node’s capacities under different fre-
quency options are obtained. Meanwhile, the energy costs per
mega byte of migration within a rack and between racks are ob-
tained. There are two conclusions that can be obtained: (1) With



higher throughput, the system achieves higher energy efficiency;
(2) The cloud database systemhas a throughput peak under a given
frequency configuration.

In Simulation Experiment, a set of simulation test cases are
executed. The results show following conclusions. (1) Compared
with HHHC, frequency combinations selected by multi-phases al-
gorithm can save more energy, meanwhile the frequency selec-
tion phase of multi-phases algorithm more flexible. (2) Compared
with random selection, the migrated block set generated by block
selection phase can achieve lower migration cost. (3) Compared
with nonlinear programming algorithm, multi-phases algorithm
can obtain feasible solution but has a great scalability.

In Execution Experiment, a few test cases are executed in a 10
nodes cluster testbed. The result shows that at maximum 21.5%
energy can be saved in running time by means of Hot-N-Cold
model.

5. Related work

In this work, we focus on the resource provisioning problem
within energy aware cloud database systems. Hot-N-Cold model
and corresponding algorithms are proposed which take advantage
of DVFS and workload predictions to improve energy efficiency of
clouddatabase systems. In this sectionweonly discuss thoseworks
that are related to energy efficiency of cloud database systems.We
refer the reader to [1] for an extensive literature review of resource
provisioning problem within cloud systems, and [6] for a list of
possible techniques for reducing energy in large scale distributed
systems.

In terms of energy efficiency in cloud database systems, there
are some literatures gave the definition and influence factors.
Tsirogiannis Dimitris et al. [20] analyzed the energy efficiency and
its influence factor within Database Server (RDBMS). They gave the
conclusion that within a single node intended for use in scale-out
(shared-nothing) architectures, the most energy-efficient configu-
ration is typically the highest performing one. Jie Song et al. [16,17]
gave the definition of the energy efficiency in cloud database
systems and a novel evaluation model to compute the energy effi-
ciency. In their model, the relationship between energy efficiency
and node’s CPU frequency and CPU usage is studied. Meanwhile,
they gave the conclusion that the maximum energy efficiency
of a system occurs when CPU frequency and usage are maxi-
mum. In our work, we use the same energy efficiency definition
of cloud database systems with Jie Song et al. Meanwhile, in the
experiment, we concluded that the maximum energy efficiency
occurs when the system has maximum throughput. Furthermore
the cloud database system has a throughput peak under a given
frequency configuration. This peak throughput is defined as node
capability in our work which is used as a standard for frequency
selection and workload migration.

There is a large literature on the topic of improving energy
efficiency in cloud database systems. Willis Lang et al. [10] studied
the trade-offs between the performance and the energy consump-
tion characteristics of analytical queries and gave guiding prin-
ciples for building energy-efficient cloud DBMS considering the
query properties and scalability. The basic idea behind this study
is to match the resource provided by the query engine and the
queries properties. In our work, we mainly focus on match CPU
resource with query throughput. Meanwhile a migration process
is proposed to further improve energy saving. Balaji Subramaniam
et al. [18] measured the power consumption and the performance
of a Cassandra cluster, and used power and resource provision-
ing techniques to improve the energy proportionality. However,
they manually reconfigured the cluster and resource providing
strategies. In our work, the optimization is done by the multi-
phases algorithm using the predicted workload information. Gae-
Won You et al. [23] propose system Ursa which scales to a large

number of storage nodes and objects and aims tominimize latency
and bandwidth costs during system reconfiguration. Ursa tries
to detect the hot spots in the system and re-balance these data
with minimized transformation cost. Daniel Schall et al. [13–15]
designed and implemented WattDB, which is a distributed DBMS
that dynamically adjusts itself switching nodes on and off to the
presentworkload and reconfigures itself to satisfy the performance
demands. Compared with our work, Ursa and WattDB try to opti-
mize database itself in the storage level and query engine level to
achieve energy saving. InHot-N-Cold, the energy saving is achieved
by solving resource provisioning problem and we do not optimize
the database itself. Therefore, the approach can be used in other
database as well. Houssem-Eddine Chihoub et al. [4] explored the
tradeoff between consistency and energy efficiency on the energy
consumption in Cassandra. Meanwhile a prototype model, Hot-N-
Cold, is introduced to reduce energy consumption in Cassandra
by means of setting the frequencies manually. In our work, we
extended this idea. The frequencies are set by means of frequency
selection.

InHot-N-Coldmodel,migration process is introduced to further
improve the energy efficiency of cloud database systems. However,
we only focus on the migration plan generation but the migration
process. We refer the reader to Sudipto Das et al.’s work [7], in
which they introduced a live database migration approach which
can be used to conduct the migration process.

6. Discussion

In Section 2, the nodes are considered homogeneous. With the
following extensions, themodel can be applied to a heterogeneous
cluster.

1. The nodes in a heterogeneous cluster can be categorized
according to their architectures. Otherwise, the efforts for
obtaining static parameters are unacceptable.

2. The capacity measurement function z(ci, f ) should be spe-
cialized for different categories of nodes since the frequency
options may not be the same.

3. The power consumption estimation function should be spe-
cialized for different categories of nodes.

4. When computing the migration cost, EIn and EOut should
consider the difference of node’s architecture.

In general, the model’s static parameters which are related
to the node’s architecture should be obtained according to the
different architectures.

7. Conclusion and future work

At first, the energy efficiency problem in cloud database system
is discussed in this work. The conclusion is that the key to improve
the energy efficiency of the system is to maintain the system at its
maximum throughput under a given frequency.

In order to improve the energy efficiency of the system, this pa-
per proposes Hot-N-Cold model and corresponding algorithms. In
Hot-N-Cold model, the nodes in the cluster are treated differently.
According to predictions of workloads in the next time window,
Hot-N-Cold model tries to assign a higher frequency to the nodes
with higher predicted throughput and assign a lower frequency
to the nodes with lower predicted throughput. If the workload
exceeds node’s capability (maximum throughput), a migration
process is considered. Therefore, there are two tasks in Hot-N-Cold
model: frequency selection and workload migration.

In Hot-N-Cold model, the resource-provisioning problem is
considered as two bounded problems: Pb

T
min and T

b
P
min. Non-

linear programming algorithm and multiphase algorithm are pro-
posed to solve them. Nonlinear programming algorithm can obtain



a global optimal solution but has a poor scalability to large scale
problems. In contrast, multiphase algorithm has a good scalability
for large scale problems by means of approximation method.
According to the experiment result in execution experiment, 21.5%
energy can be saved maximum by means of Hot-N-Cold model

In this work, we only considered the frequency selection and
the workload migration for one time window. However, we did
not consider the effect for multiple time windows. The optimiza-
tion within multiple time windows is one of our future research
direction. Meanwhile, we only considered using DVFS to solve the
resource provisioning for energy aware cloud database systems.
In the future work, the other resources can be considered, for
example I/O resource can be introduced to further improve the
energy efficiency of the system
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