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Abstract—A lot of cloud systems are adopted in industry and
academia to face the explosion of the data volume and the arrival
of the big data era. Meanwhile, energy efficiency and energy
saving become major concerns for data centers where massive
cloud systems are deployed. However, energy waste is quite
common due to resource over-provisioning. In this paper, using
Dynamic Voltage and Frequency Scaling (DVFS), a frequency
selection approach is introduced to improve the energy efficiency
of cloud systems in terms of resource over-provisioning. In the
approach, two algorithms, Genetic Algorithm (GA) and Monte
Carlo Tree Search Algorithm (MCTS), are proposed. Cloud
database system is taken as an example to evaluate the approach.
The results of the experiments show that the algorithms have
great scalability which can be applied to a 120-nodes case with
high accuracy compared to optimal solutions (up to 99.9%
and 99.6% for GA and MCTS respectively). According to an
optimality bound analysis, 21% of energy can be saved at most
using our frequency selection approach.

Index Terms—Frequency Selection, Energy Efficiency, DVFS,
Cloud Database, Optimization

I. INTRODUCTION

To cope with challenges of Big Data, an increasing number
of data centers are constructed. Cloud systems are developed
to meet users’ rapidly growing data processing needs. With
the explosive growth of the data volume and the construction
of data centers, the problem of energy waste becomes more
serious. Energy bills for major cloud service providers are
typically the second largest item in their budgets [1].

Cloud database system is one of the typical cloud systems.
To cope with the huge data storage and query needs, massive
cloud databases are established, for example, HBase [2], Hive
[3] and Cassandra [4]. Typical cloud databases are wasting
energy. Since users’ activities are dynamic, the workloads of
the system vary with time: users’ activities are more intense
in daytime, whereas they do little at night. In this case, part
of the energy is wasted if the system’s configuration at night
remains the same as the one during daytime. The energy waste
comes from resource over-provisioning.

Dynamic Voltage and Frequency Scaling (DVES) [5] is
an efficient technology to control power consumption of
processors. By means of DVES, power control policies can
be made. In modern Linux operating systems, five different
power schemes (governors) are available to dynamically scale
CPU frequency according to CPU utilization. The dynamic
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tuning strategies use CPU’s running information to adjust its
frequency, which does not reflect the state of cloud databases’
workload lifecycle including memory and disk transfers. The
current power schemes do not exactly match their design
goal and may even become ineffective in improving energy
efficiency of cloud database systems [6]. Therefore, it makes
sense to control frequency in a fine-grained way.

To cope with the resource over-provisioning for cloud sys-
tems especially for cloud database systems, a frequency selec-
tion approach is introduced. In our approach, the frequencies
of a system are chosen according to the workload predictions.
Energy wasted by idle machines and violation of Service-Level
Agreement (SLA) due to overloaded machines are reduced,
which together improves the energy efficiency of the system.
The main challenge of the approach is its scalability. In a
small case with 30 nodes and 8 available frequency options,
there are 83Y frequency combinations. In our environment,
the optimal solution can be found by the entire searching
within 5 hours. However, a common case has hundred nodes
within the cluster. For example, the technical group from
instagram claimed that their biggest cluster contains 100 nodes
in Cassandra summit 2016 [7]. Therefore, searching of the
optimal solution is unrealistic and proposing an approach for
searching a suboptimal solution with high accuracy and good
performance is the goal in this paper.

The remainder of the paper is organized as follows: A
generic frequency selection model and a specialized model
for cloud databases are proposed in Section II. Section III
proposes two algorithms under the frequency selection model.
Section IV evaluates the proposed algorithms, and Section
V carries out some discussions. Section VI reviews related
works, while Section VII concludes the paper and points out
future research directions.

II. FREQUENCY SELECTION MODEL
A. Generic Model

A cluster C consists of n nodes. To simplify the description,
the nodes are considered homogeneous. The extension of the
model to heterogeneous nodes is discussed in Section V.

The total running time of a system is made up of time
windows. The length of a time window At is denoted as
|At]. In At, the state of the system, sa:(Fat, Way), is the



state where the nodes are assigned to a frequency vector Fa,
and a workload vector Wa,. Since the following discussion
is focusing on one time window, the notation At is omitted
to simplify the description. A frequency f;, (f; € F), is
assigned to a node ¢;. Similarly, a workload w;, (w; € W), is
assigned to ¢;. The amount of w; is denoted as |w;|. The
maximum amount of workload that can be handled by a
node under a frequency is defined as its capacity. Let the
capacity measurement function be z(c;, f;). When the current
workload exceeds the node’s capacity, the workload cannot
be completed, which causes SLA violation. In this paper, we
consider that SLA violation is not allowed, namely all requests
of a workload must be completed during the time window.

In order to avoid SLA violation, a migration process is
introduced. Let the workload migration function be m. The
migration process is considered as a state transformation pro-
cess, namely s(F, W) - s*(F, W*). The process is denoted
as 5. The workload for ¢; after the migration is denoted as w.
Energy used by the migration process is defined as migration
cost. The migration cost estimation function is denoted mc(s)
and the system power consumption estimation function is p(s).
The energy consumption e of the system in At is:

e =p(s*) x |At] + me(3) ()

Energy efficiency of a system is defined in Equation (2)
in which the energy efficiency in At is a ratio between the
amount of workload processed and the energy consumption in
At. Since the amount of workload is constant during a time
window, the objective is to minimize e to improve the energy
efficiency of the system.

ee = Xilwil/e 2)
For a given frequency vector, the power consumption and
the migration cost can be estimated by p(s) and mc(s)
respectively. Finding the most energy efficient configuration
is then to find the best frequency for each node: It is a search
problem within the frequency combinations space.
The conditions for applying the model are:

1) The running time of a system can be divided into time
windows. In a time window, the workload should be
stable hence the power consumption can be estimated.

2) The node’s capacity can be measured and part of the
workload can be migrated when the current workload
exceeds its capacity.

3) The workload of the next time window can be predicted
according to previous running information.

4) The power consumption and the migration cost can be
estimated according to the frequencies and the work-
loads.

B. Specialized Model for Energy Aware Cloud Database

In this section, the generic model is specialized for cloud
database systems. The workload w;, the capacity measure-
ment function z(¢;, f;), the migration function m, the power
consumption estimation function p(s) and the migration cost
estimation function mc(s) must therefore be identified.

In a cloud database system, the dataset D consists of h
data blocks, in which the size of block b, is denoted as |bg],
and the blocks are distributed within the cluster. In order to
meet data integrity and fault-tolerance requirements, cloud
databases use a replication factor to control the number of
replicas of the data blocks. The dataset with a replication factor
ris denoted as D" = {by1, b12..., b1,...bp1, bpa...bpy . in which
bgr € D",k < ris the kth replica of b,. In order to avoid the
effect of At’s duration, the workload w; of a cloud database
system is defined as data query throughput. The probability of
byi being accessed is denoted as ¢y, and the total throughput
of the system is denoted as [. ¢4 and [ are prediction values,
which can be given by data mining techniques and machine
learning techniques, such as time series data mining and linear
regression. For the corresponding techniques, we refer readers
to the literature [8]. Let the block set assigned to c; be
D] = {byx, | bgr, € D"and by, is assigned to ¢; }. The workload
w; is defined by:

wi= Y 1X g 3)
byr€DY

The capacity measurement function z(c;, f;) is a discrete
function. Using benchmarks, the maximum throughput of a
cloud database under each frequency can be obtained (see
Section IV-A).

The frequency option set is denoted as 7. A frequency
f is one of the available frequency options. Let the idle
power consumption and the maximum power consumption of
a node under a frequency f be ¢ and ¢f'** respectively. If
Vfp, fo € mand f, > fo, ¢ > ¢ and ¢por > cper,
With a higher frequency, the system provides more resources
to support workloads, but consumes more energy. If a fraction
¢ of CPU is used under the frequency f, the power consump-
tion estimation function is defined by Equation (4). In cloud
database systems, 1); is defined by Equation (5), in which w}
is the workload after the migration, hence ¢; < 1.

p(s) = 7 (' + v x (cper =) @
2 w:

i = e 1) ()
The migration process refers to the migration of data blocks.
According to the network topology, there are 3 types of
migration: 1) migration within a rack; 2) migration between
racks; 3) migration between data centers. In this work, we only
consider the first two types. Let M, and M,, denote the block
sets migrated within a rack and between racks, respectively.
Let e, and e, denote the energy costs of the migration within
a rack and between racks for one block unit, respectively,
which are obtained through the benchmark experiment. The

migration cost estimation function mc(s) is defined by:

Z [bgo ks | + €y X Z

by ke EMa bgy hy EMy

me(s) = ez X

(6)

{bgyky
9y

Since the migration function m is not a focus of this paper,
we do not introduce the details of the migration. m consists
of two phases, block selection and block migration. Using
approximation algorithms, a migration plan can be obtained
within polynomial time.



ITI. FREQUENCY SELECTION ALGORITHM

Two algorithms for frequency selection are introduced: Ge-
netic Algorithm (GA) and Monte Carlo Tree Search Algorithm
(MCTS). Both algorithms have their advantages and disadvan-
tages which are discussed in Section V. Before introducing the
algorithms, a model simplification is proposed.

A. Model Simplification

The power consumption and the migration cost can be
estimated by Equation (4) and (6). However, both values are
obtained after the migration. Using the approximation algo-
rithms, a migration plan can be obtained within polynomial
time. However, when the total amount of possible frequency
vectors increases, the evaluation time becomes unacceptable.
The model simplification obtains upper bounds of the power
consumption and the migration cost, which are used to eval-
uate the frequency vectors. When several candidates are ob-
tained, m is applied and the vector with the minimum energy
consumption is chosen. The idea of the model simplification is
to reduce costs for computing migration cost values given by
the migration cost estimation function mc using a relaxation
approach.

1) Power Consumption: According to Equation (4), power
consumption is related to node’s frequency and CPU usage.
Considering a block by is assigned to c;, the power con-
sumption of ¢; increases because of it, i.e. it increases with
the probability access ¢4 due to that block. The increment

is 29k x (e¢mer — cidle) in which the constant factor
Z(Clvf_z) fi fi
(Cn;ar C'}(Z,le)

ST e is defined as the power consumption contribu-
tion factor of ¢;. In order to achieve the maximum power
consumption, the blocks are assigned to the nodes with the
highest power consumption contribution as much as possible.

In order to simplify the assignment, a relaxation is in-
troduced, in which the blocks are continuous. By means of
the relaxation, one block can be split and put to multiple
nodes. Let the total ordered node set be C = (C,<), in
which if Vi, j (e m”*“}(,” )= 2(einfi) 2 ( mw:”}‘jl )/z(cj,fj), then
¢; < ¢j. If an index i of C satisfies 21:0 z(ei, fi) <1 <
ik
assigned to the nodes ¢; with i < ;—t 1.p is shown by
Equation (7). The nodes ¢; with ¢ < ¢ reach their maximum
power consumption, and the nodes ¢; with i > i -2 reach their
idle power consumption because there is no assigned block.
The power consumption of ¢; , is computed by Equation (4).

41 n
_ E w;
i

z(cj, f;), then index i is a pivot node: the blocks are
max

maxr

p = Z(C7+1’f2+1) Zz(ci,fi)
i
mazx _ _idle r (7)
Fia Fiia + ;gze C}rzaz_’_ Z Cldle

z (C7+17 1) imir2
2) Migration Cost: After the block selection phase, the
blocks to be migrated are selected. However, migration cost
is still unknown before the migration function m completes
because the migration cost within a rack and the migration
cost between racks are different. The upper bound of migration

TABLE I: Evaluation of Model Simplification

DataSet ~ With Migration Process With Model Simplification
d10 7.86s 0.18s
d20 16.01s 0.25s
d30 37.87s 0.34s

cost can be obtaine ing the relaxation that the blocks are
continuous as well. To compute the maximum migration cost,
two conditions are introduced:

1) For a rack +,, the selected block set is denoted as
M,,. The total ordered set of M, is denoted as 1\7[,) =
(M), <) = {b1,b2,...} in which the blocks are sorted
by the ratio between their throughputs and sizes, namely
Vbi,b; € My, if 58 > Z‘Xb—ﬁ then b; < b;.

2) The blocks with higher ratio values are kept within racks
and the other blocks are mlgrated to other racks. M
and Mp are partitions of Mp. Mp and Mp
following conditions:

o M, = {01, b b M) = {b1, bgias ..}

o Let the set of partial nodes in +, that have extra
capacity be C;,” = {cile; € vp and w; < z(cy, fi)}-
Then, the index ¢ of I\N/Ip satisfies ol X p; <
Zciecz;" (2(ci, fi) —wy) < Zqu X 99]

With above conditions, the maximum migration cost can
be obtained by Equation (8), in which w is the amount of
racks. Since the blocks with lower throughputs but larger sizes
are migrated to other racks, the migration cost is the highest

among all migration plans.
Y. bl ®

me™ = e, X E [be] + €y %
w
byeUM,
v

.
breUM,
v

satisfy the

Using the model simplification, the performance for evaluat-
ing frequency vectors is improved. To verify the improvement,
a frequency evaluation process with model simplification and
a frequency evaluation process with migration process are
applied to evaluate 1000 frequency vectors for dataset d10,
d20 and d30 (see Section IV-B) respectively and the execution
time for each case is shown in Table (I). The execution time of
evaluating frequency vectors for d10, d20 and d30 are reduced
97.7%, 98.4% and 99.1% respectively. In order to avoid the
impact of this simplification on the frequency selection al-
gorithms, the corresponding algorithms are executed multiple
times to obtain several frequency vector candidates, and the
one with the minimum energy consumption is chosen as the
final solution. An experiment is made to evaluate the influence
of number of candidates (see Section 1V-B3).

B. Genetic Algorithm

Genetic Algorithm (GA) is a type of algorithms for ran-
domly searching suboptimal solutions, which is guided by
evaluation and natural genetics [9]. Generally, GA includes
several phases in each iteration : 1, encoding; 2, generation
of initial population; 3, evaluation; 4 selection; 5 crossover; 6
mutation and 7 stopping criteria. In this section, the essential



Algorithm 1 Fitness Function of Genetic Algorithm

. function EVALUATE(chromosome)

F < DECODE(chromosome)

P4 —— MAXPOWERCONSUMPTION(F)

mcﬂla&t (7 0

for p < [1,...,u] do
M7, MY < SELECTMIGRATIONBLOCKS(7,)
mc™® < mc™ %+ MIGRATIONCOST(M;, MY)

end for

return p™* x |At]| 4+ mc™**

end function
Selection — — —+ Backpropagal

Tree ﬂrﬁh iy

R B A A R ol e

—
=4

Palicy Policy
v
A

Fig. 1: One iteration of the general MCTS approach

parts of GA—encoding and evaluation—are introduced. The
influence of parameters of GA is discussed in Section IV.

The objective of frequency selection is to generate the
frequency vector F for the cloud system, which minimizes
energy consumption within each time window. An encoded
frequency vector F is regarded as a chromosome. In the
encoding process, frequency f; € F is replaced by its index
within the frequency option set. Let the frequency option set
be 7 and function I,(f;) gives the corresponding index of
the frequency option f;. The chromosome is represented by

< Iﬂ(fl)a I7](f2)7 ey In(fn) >.

In the evaluation phase, a fitness function is required to
qualify chromosomes. The power consumption and the migra-
tion cost are estimated according to chromosomes. However,
as discussed above, the fitness function may become a bot-
tleneck and the model simplification approach is applied. The
pseudocode of the fitness function is shown in Algorithm 1.

The function gives a score for each chromosome. Firstly,
the chromosome is decoded (line 2). Secondly, the maximum
power consumption is obtained by Equation (7) (line 3).
Thirdly, the maximum migration cost is calculated within the
loop (line 4 to line 8). There are w racks, and the migration
blocks are selected for each rack (line 6), and the migration
cost for each rack is obtained by Equation (8). Finally, the
maximum energy consumption is returned as the score.

Since the power consumption and the migration cost are
replaced by their upper bound values, the solution of GA
may not be optimal. In order to improve the accuracy of the
algorithm, GA 1is applied multiple times to generate several
candidates. Afterwards, m is applied to all candidates and the
solution with the minimum energy consumption is chosen.

C. Monte Carlo Tree Search Algorithm

Monte Carlo Tree Search Algorithm (MCTS) is a method
for finding the suboptimal decision in a given domain by
taking random samples in the decision space and building a
search tree according to the results. Over the last few years,
MCTS has achieved great success with many games, complex
real-world planning, optimization and control problems [10].

MCTS is based on Monte-Carlo process model. The model
consists of a set of states, a set of actions, a transition model,
and a reward function. The decision is presented as a pair of a
state and an action, and the next state is chosen by a probability
distribution built up by the current state and available actions.
The link between state and actions is defined as policy and the
aim is to find the special policy™ generating highest reward.

Under the frequency selection approach, the set of states
are the frequency options. The action refers to choosing
a frequency option for the next node. Figure (2) shows a
structure of the frequency selection tree under a small case
with 3 nodes and 2 available frequency options. In each layer,
the frequency for the node is chosen. At beginning, f; has two
options. When f; is set to frequency 1, there are 2 actions: set
frequency 1 to f, and set frequency 2 to fo. Therefore there are
4 states in second layer. Since the frequency option for the next
node is not related to the current state, the frequency selection
tree is a complete |n|-ary tree. When the searching process
arrives at leaf nodes, the terminal condition is reached. A path
of the tree is denoted as a frequency vector. For example, in
Figure (2), < 1,2,2 > is one of the frequency vectors. The
task of MCTS is to find the frequency vector which produces
the minimum energy consumption.

Figure (1) from the survey [10] explains the general process
in MCTS including 4 phases in each iteration: selection,
expansion, simulation, and back propagation.

1) Selection: Starting at the root node, a child selection
policy is recursively applied to descend through the tree
until the most urgent expandable node is reached. A
node is expandable if it represents a non-terminal state
and has unvisited (i.e. unexpanded) children.

2) Expansion: One (or more) child nodes are added to
expand the tree, according to the available actions.

3) Simulation: A simulation is run from the new node(s)
according to the default policy to produce an outcome.

4) Back-propagation: The simulation result is backed up
through the selected nodes to update their statistics.

Basically, the process is controlled by two functions, a tree
policy and a default policy. A node on the search tree is
denoted as v and a child node of v is denoted as v’. Let
function N show how many times the node has been visited.
Let function @ give the score of v. The tree policy chooses the
node with maximum UCT value. The UCT function is shown
by Equation (9), in which C' is a constant factor. In UCT
function, the exploitation (visiting the expanded nodes) and
the exploration (visiting the unexpended nodes) are balanced.
If a node is not visited before, the tree policy chooses a node
randomly. In the default policy, one of the paths is evaluated



by a reward function R. Based on all nodes on the path, an
evaluation score is required and the score is back propagated
to all nodes on the path.

QM)
N(v')

2InN (v)
+C N )

UCT =

The base idea of the default policy in this work is the
same with the fitness function of GA that evaluates a current
solution and gives a score. Therefore, Algorithm (1) is used as
the reward function of the default policy. However, the input
parameter chromosome is replaced by the paths of the tree. In
the tree policy, a dedicated UC'T function, shown in Equation
(10), is adopted. The difference between Equation (9) and (10)
is the method for calculating scores. In MCTS, the value of
the node’s score is between 0 and 1, and the node with highest
UCT value is selected. In the default policy of this paper, the
maximum energy consumption is returned as score of a node.
By means of 1 — (Q(v")/e™"), the value is converted within
0 and 1. The highest value of 1 — (Q(v")/e™") indicates the
path with the minimum energy consumption.

1—(Qv")/emar) o 2InN (v)

Nwy O TN
In Equation (10), the value of e is required. Equation
(1) shows that the energy consumption consist of two parts,
namely the energy consumption of the running system and the
energy consumption of workload migration. In most of the
cases, the energy consumption of the running system is the
dominant part. In this case, the maximum energy consump-
tion scenario is that each node is assigned with its highest
frequency. By means of Equation (4) and (6), the maximum
energy consumption e”*** can be obtained. In contrast, when
migration cost is the dominant part, the frequency vector for
achieving e™“* cannot be constructed directly. In this case,
GA is applied to find e"**, which makes it meaningless
to apply MCTS since the frequency vector for achieving
€™ can be found by GA also. Therefore, MCTS may be
inapplicable for the cases in which the energy consumption
of the workload migration is the dominant part. Like the GA
approach, it should be noticed that the final solution of MCTS
may not be optimal. MCTS is applied multiple times to obtain
several solutions, and the solution with the minimum energy
consumption is chosen.

UCT = (10)

max

IV. EXPERIMENT

A. Maximum throughput benchmark

In this experiment, the maximum throughput under each
frequency of a cloud database system is measured. A Cas-
sandra system with one single node is established in Nancy
site of Grid5000 testbed [11]. The benchmark is Yahoo!
Cloud Serving Benchmark(YCSB) [12]. A couple of sample
workloads (95% read ratio and 5% update ratio) with different
workload sizes are executed on the system. In the experiment,
more and more requests are loaded onto the system to test the
maximum throughput of the node.

2000

1500

1000

Throughput(ops/sec)

3
500 —@— 133GHz —#— 2.13GHz
o] —¥— 1.73GHz ~ —&— 2.53GHz
0.0 2x10°  4x10°  6x10°  8x10°
<1.22>  <Rl> <212= Terminal Operation Count

Fig. 2: Frequency Selection Fig. 3: Relationship between

Tree Operation Count and
Throughput
TABLE II: Maximum Throughput

Frequency ~ Maximum Frequency ~ Maximum

Throughput Throughput
2.53GHz 2339 opt/sec 1.73GHz 1686 opt/sec
2.40GHz 2214 opt/sec 1.60GHz 1557 opt/sec
2.13GHz 2002 opt/sec 1.33GHz 1322 opt/sec
2.00GHz 1884 opt/sec 1.20GHz 1205 opt/sec

Figure (3) shows the relationship between throughputs and
operation counts. With the increment of operation counts, sys-
tem throughput increases rapidly at first and declines steadily
afterwards. More requests lead to higher request throughput.
When system throughput is lower than request throughput,
system throughput increases to meet requests. However, when
request throughput exceeds the capacity of the node, system
throughput declines due to resource limitation and operation
failure. Figure (3) shows that a maximum throughput value
exists under each frequency option. The maximum throughputs
for all frequency options are shown in Table (II).

B. Parameter Influence

In this section, the influence of parameters on the algorithms
is examined. The datasets are denoted as d{NodeAmount}.
For example, d10 represents a dataset consisting of 10 nodes.
As the number of blocks on each node does not impact the
performance of the frequency selection algorithm, the number
of blocks is set to 64 for each node, and the access probabilities
are generated by Zipf’s law (distribution factor is set to 2.5).

A test case is a combination of a dataset(d), a workload(l)
and an algorithm(a). For example (d10, 1800, GA) indicates
a test case, in which GA is applied to dataset d10 and the
workload is set to 1800 opt/sec for each node. The value
of throughput per node is a standard to simulate the total
workload for the cases, and the throughput for each node is
decided by ¢g4. The value of throughput per node is set to
1800 opt/sec by default if not otherwise specified, for example
case (d10,1800, GA) is denoted as (d10, GA)

In order to evaluate the accuracy of the algorithms, the
solutions for the cases (d10, Optimal), (d20, Optimal) and
(d30, Optimal) are obtained, in which Optimal indicates
the complete search where all possible frequency vectors are
evaluated. The energy consumption for a case is denoted as
E(case) and the corresponding execution time is denoted as
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T'(case). The accuracy of a case A(case) is defined by Equa-

tion (11) in which d € [d10,d20,d30] and a € [GA, MCTS].

(E(d,a) — E(d, Optimal)) (11
E(d, Optimal)

1) The influence of generation size on GA: The result is
shown in Figure (4). In each case, the population size is set to
100 and the amount of candidates is set to 10. In Figure (4),
T(d,GA) increases with the increment of generation size for
the reason that more generations lead to more iterations. With
the same population size, Vi > j T(di,GA) > T(dj, GA).
More nodes lead to longer chromosome in GA, because the
length of a chromosome is the number of nodes. In terms
of accuracy, the range of A(d,GA) is [0.994,0.999]. As
shown in Figure (4), A(d, GA) increases at beginning with
the increment of generation size. However, when generation
size exceeds some points (100 for d10, d20 and 150 for
d30), A(d, GA) does not increase significantly and sometimes
A(d,GA) even decreases a little. More generations lead to
more iterations of GA. At beginning, it leads to more evo-
lutions, which improves A(d, GA). However afterwards the
search process is close enough to an optimal point and the
iterations keep the solution around the optimal point.

2) The influence of population size on GA: The result is
shown in Figure (5). In each case, generation size is set to 150
and the amount of candidates is set to 10. In Figure (5), with
the same population size, Vi > j, T'(di, GA) > T(dj, GA),
because more chromosomes are evaluated in one iteration. In-
creasing population size improves A(d, GA) at the beginning.
However, at some points (80 for d10, 160 for d20 and 320 for
d30), the increment of population size does not improve the
accuracy any more.

3) The influence of number of candidates: GA and MCTS
cannot find the optimal solution because of the model sim-
plification approach. Therefore, both algorithms are executed

A(d,a) =1—
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Fig. 7: Scalability of the Fre-
quency Selection Algorithm

Fig. 8: Optimization Bound of
the Frequency Selection Algo-
rithm

multiple times to find several candidates, and the solution
with the minimum energy consumption is chosen. For GA,
generation size is set to 150 and population size is set to 100.
The result is shown in Figure (6). In Figure (6), T'(d, GA) and
T(d, MCTS) increase with the amount of candidates. With
the same amount of candidates, T'(d,GA) > T'(d, MCTS).
The reason is that GA is based on the evolutions while MCTS
is based on the tree searching technique. The computation cost
is higher for GA (see Section IV-C). In term of accuracy, the
increment of the amount of candidates improves A(d10, GA)
and A(d10, M CTS) significantly at beginning. A(d10,GA)
goes up and down when more candidates are involved because
in some cases, a close to optimal solution is found occasion-
ally. In other cases, the accuracy of both algorithms increases
slightly in general when more candidates are involved. Gener-
ally, A(d,GA) > A(d, MCTS). In MCTS, the search space
is organized by a tree structure. The leaf nodes are not ordered
and there is no tendency among all the solutions. Considering
Figure (2) and the maximum power consumption of terminal
nodes, we have p™**(< 1,2,2 >) > pm¥(< 2,1,1 >)
and p™*(< 1,2,2 >) = p™*(< 2,1,2 >). Therefore,
the random sampling method doesn’t perform well in this
situation, which impacts negatively the overall accuracy. The
maximum accuracy of MCTS is 99.6%.

C. Scalability Analysis

In this section, there are 12 datasets (d10 to d120) involved.
Only one candidate is required in each case. For GA, gen-
eration size is set to 150 and population size is set to 100.
The result is shown in Figure (7). Generally, T'(d,GA) >
T(d, MCTS). When the dataset is smaller, the difference is
more dramatic. For example, 7'(d10, GA) is nearly 19 times



T(d10, MCTS). However, the growth rate of the execution
time of GA is lower than MCTS. For example, T'(d120, GA)
is 6 times 7'(d10, GA) while T'(d120, MCTS) is 103 times
T(d10, MCTS). In GA, the increasing amount of nodes leads
to the longer length of chromosome. When generation size
and population size are constant, the length of chromosome
only influences the performance in each evaluation. It leads
to linear increment. However, in MCTS, when the amount of
node is increased by 1, the height of the tree is increased by
1 which leads to exponential growth of the leaf nodes. The
search of solutions is an exponential function, which makes
the execution time grows exponentially.

D. Optimization Boundary Analysis

In this section, optimization ratio is introduced to evaluate
how much energy can be saved using the frequency selection
approach. The optimization ratio is defined by Equation (12) in
which Per formance refers to the approach that all nodes are
set to the performance mode (i.e., the maximum frequency).
The optimization ratio indicates the ratio between the saved
energy by frequency selection approach and the energy con-
sumption under performance mode. In this section, each case is
solved by GA. In GA, generation size is set to 150, population
size is set to 100, and the amount of candidates is set to 10.
There are 12 datasets involves (d10 to d120), and the cases
are divided into 4 categories based on their throughputs per
each node. The throughputs for each node are 1200 opt/sec,
1400 opt/sec, 1600 opt/sec and 1800 opt/sec.

O(d,1, a) = E(d,l, Per formance) — E(d,l,a)
E(d,l, Per formance)

The result is shown in Figure (8). The optimization
ratio depends on the value of throughput per node. For
Vd € {d10,d20,...,d120} Vi; > Iy O(d,l;,GA) <
O(d,l2,GA). With the same value of throughput per node,
the optimization ratios are concentrated. With the incre-
ment of throughput per node, the optimization ratio in-
creases. The maximum optimization ratio is 21% for the
case (d80,1200,GA), and the minimum optimization ratio
is 10% for the case (d100,1800,GA). If the power con-
sumption is the only concern of the system’s administra-
tion, the maximum optimization ratio can be constructed
as follows. The node’s throughput is set to 1205 opt/sec

and the node is set to the performance mode. There-
_ p(<2.53Ghz,1205>)—p(<1.20Ghz,1205>) __
fore, O(s1,1205) = p(<2.53Chz,1205>) =
cidle 41205 5 (cmaz _cidle J—cmaz
2A03G5Ldzle 2339 120%03G?ﬂzaw 2.03G:;1,dzlg 1.20Ghz — 2289% HOW'
5 5GhT 3335 X (€5 85Gh. TCh 85Gns) R
ever, there exists block migrations in the real case, which
consume energy.

(12)

E. Comparison with Hot-N-Cold

Houssem-Eddine Chihoub er al. [13] proposed a reconfig-
uration approach called Hot-N-Cold for Cassandra System to
demonstrate the impact on energy consumption with strong
and eventual consistency, in which half of the nodes are set
to highest frequency and another half of nodes are set to
lowest frequency. The comparison between Hot-N-Cold, GA
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Fig. 9: Comparison with Hot-N-Cold

and MCTS is made. The dataset used in this section is d20.
For the cases, the throughput per node is set to 1200 opt/sec,
1400 opt/sec, 1600 opt/sec and 1800 opt/sec respectively.

The results are shown as Figure (9). The results given by
GA and MCTS are better than the corresponding results given
by Hot-N-Cold. The average improvement of GA compared
with Hot-N-Cold is 10.9%, and the average improvement of
MCTS is 9.8%. When the value of the throughput on each
node is set to 1800 opt/sec, Hot-N-Cold approach cannot pro-
duce a valid result. Theoretically, when Hot-N-Cold approach
applied, the system with 20 nodes can support any workloads
with throughput under 35440 opt/sec, however with the setting
1800 opt/sec for each node, the system does not have enough
resources to support it. Therefore the corresponding energy
consumption is recorded as 0. The main drawback of Hot-N-
Cold is its flexibility. GA and MCTS choose the frequency
vector according to the workload predictions, while Hot-N-
Cold sets the frequencies statically.

V. DISCUSSION

GA and MCTS have their advantages and disadvantages and
should be chosen according to the case.

1) With respect to accuracy, GA has higher accuracy up to
99.9% (only 99.6% for MCTS).

2) In term of scalability, both can be applied to a large
cluster which contains 120 nodes. The performance of
MCTS is better than GA, especially for the small cases.
For example, in the case with 10 nodes, MCTS is 19
times faster than GA.

3) The usage scenario of MCTS is limited under the
condition that the energy consumption of the running
system is the dominant part.

4) GA needs to be tuned with the parameters.

In Section (II-A), the nodes are considered homogeneous.
With the following extensions, the model can be applied to
heterogeneous cluster.

1) The nodes in an heterogeneous cluster can be catego-
rized according to their architectures. Otherwise, the
efforts for obtaining static parameters are unacceptable.

2) The capacity measurement function z(c¢;, f;) should be
specialized for different categories of nodes since the
frequency options may not be the same.

3) In the specialized model, the power consumption es-
timation function should be specialized for different
categories of nodes.



In general, the model’s static parameters which are related
to the node’s architecture should be obtained according to the
different architectures.

VI. RELATED WORK

A variety of the past researches have dealt with improving
the energy efficiency in cloud systems. Georges Da Costa et
al. [14] gave a lot of possible techniques of reducing energy
consumption in large scale distributed systems. Willis Lang
et al. [15] studied the interaction among energy management,
load balancing, and replication strategies for the data-intensive
cluster computing. Willis Lang ef al. [16] gave guiding prin-
ciples for building up the energy-efficient cloud DBMS with
query properties and scalability taken into account. Balaji
Subramaniam et al. [17] measured the power consumption and
the performance of a Cassandra cluster, and used power and re-
source provisioning techniques to improve the energy propor-
tionality. Daniel Schall er al. [18] designed and implemented
WattDB, which is a distributed DBMS that dynamically ad-
justs itself switching nodes on and off to the present workload
and reconfigures itself to satisfy the performance demands.
Prasad Saripalli er al. [19] studied the loading algorithm for
the cloud platform to support the sampling requirements, the
measurement and the characterization for the load prediction.
Houssem-Eddine Chihoub er al. [13] explored the tradeoff
between consistency and energy efficiency on the energy
consumption in Cassandra. Meanwhile a prototype model,
Hot-N-Cold, is introduced to reduce energy consumption in
Cassandra by means of setting the frequencies manually.

Compared with above literatures, we use DVFS technique
to cope with the resource over-provisioning problem for cloud
systems especially for cloud database systems by means of GA
and MCTS, and as a result the energy efficiency of the system
is improved as well. According to Section (IV-E), compared
with Hot-N-Cold approach [13], frequency selection approach
has a better performance (10.9% improvement from GA and
9.8% improvement from MCTS) and flexibility.

VII. CONCLUSION AND FUTURE WORK

In this paper, a frequency selection approach with the
corresponding model and algorithms is proposed to cope with
the resource over-provisioning problem by means of Genetic
algorithm and Monte Carlo Tree Search algorithm. The results
of the experiments show that the corresponding algorithms
have good scalability which can be applied to a 120-nodes
case with a reasonable accuracy (up to 99.9% and 99.6% for
GA and MCTS respectively).

In the future work, the first direction is to optimize the algo-
rithms to improve their scalability. Moreover, more interesting
findings can be found if the energy consumption in the whole
life-cycle is taken into account.
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