3D optical microscopy for quantifying T lymphocyte activation
Md Rasedujjaman, Guillaume Maire, Hugues Giovannini, Patrick Chaumet, Kamal Belkebir, Anne Sentenac, Philippe Robert

To cite this version:
Md Rasedujjaman, Guillaume Maire, Hugues Giovannini, Patrick Chaumet, Kamal Belkebir, et al.. 3D optical microscopy for quantifying T lymphocyte activation. Journées Des Doctorants de l’Institut Fresnel, Jun 2019, Marseille, France. hal-02181388

HAL Id: hal-02181388
https://hal.archives-ouvertes.fr/hal-02181388
Submitted on 12 Jul 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
3D optical microscopy for quantifying T lymphocyte activation
Md RASEDUJJAMAN*, Guillaume MAIRE, Hugues GIOVANNINI, Patrick C. CHAUMET
1. Aix-Marseille Université, Institut Fresnel, 13013 Marseille, France
2. Aix-Marseille Université, Adhesion & Inflammation Lab, 13005 Marseille, France

Abstract
The tomographic diffractive microscope (TDM) can be implemented in either transmission configuration or reflection configuration. TDM in reflection configuration has higher Fourier spatial frequency data along the optical-axis of the microscope in comparison to the transmission configuration and also reflective samples can be imaged. We have recently exploited the specific features of such a configuration. This optical tomographic microscope coupled to sophisticated inversion schemes could be a good candidate for detecting the immunological synapse of T lymphocyte activation. Presently, no technique permits to perform a fast detection of T lymphocyte activation at an early stage which is very promising in medical diagnosis applications. In doing so we have first considered polystyrene bead (comparable to the size of T-cell) in water medium and detected the interface. This same experiment could be used for detecting the immunological synapse.

Keywords: Reflection tomography, T lymphocyte, Immunological synapse

Experimental setup: reflection diffraction tomography

Theory of off-axis holography
The signal as reflected by the sample \(E_s \) and the reference wave \(E_{\text{ref}} \) interfere and the camera record the hologram.

\[
I(r) = |E_s|^2 + |E_{\text{ref}}|^2 + E_s^*E_{\text{ref}} + E_{\text{ref}}^*E_s
\]

The signal \(E_s \) (both phase and intensity) is then separated using 2D Fourier transform from the hologram in k-space.

Immunological synapse
To reconstruct a 3-D RI tomograms, multiple 2-D holograms of a cell are measured at various angles of illuminations using an interferometric microscope in transmission.

Ref : K. Murphy et al., Immuno Biology, 9th edition

First measurements on a polystyrene bead. (diameter 6µm)

Ref : T. Zhang et al., Optica, 3, 2016

Theory of off-axis holography
The signal as reflected by the sample \(E_s \) and the reference wave \(E_{\text{ref}} \) interfere and the camera record the hologram.

\[
I(r) = |E_s|^2 + |E_{\text{ref}}|^2 + E_s^*E_{\text{ref}} + E_{\text{ref}}^*E_s
\]

The signal \(E_s \) (both phase and intensity) is then separated using 2D Fourier transform from the hologram in k-space.

Improvement of resolution brought by diffraction tomography

Ref : T. Zhang et al., Optica, 3, 2016

Acknowledgment