E. S. Rountree, B. D. Mccarthy, T. T. Eisenhart, and J. L. Dempsey, Evaluation of Homogeneous Electrocatalysts by Cyclic Voltammetry, Inorg. Chem, vol.53, issue.19, pp.9983-10002, 2014.

K. J. Lee, N. Elgrishi, B. Kandemir, J. L. Dempsey, S. Electrochemical et al., , vol.29, p.33

, Author's final version of

, Evaluating Molecular Electrocatalysts, Nature Reviews Chemistry, vol.2017, issue.5, p.39

C. Costentin and J. Savéant, Homogeneous Molecular Catalysis of Electrochemical Reactions. Scaling Relations, Intrinsic and Operational Factors, J. Am. Chem. Soc, 2018.

A. Dutta, A. M. Appel, and W. J. Shaw, Designing Electrochemically Reversible H 2 Oxidation and Production Catalysts, Nat Rev Chem, vol.2018, issue.9, pp.244-252

F. A. Armstrong and J. Hirst, Reversibility and Efficiency in Electrocatalytic Energy Conversion and Lessons from Enzymes, Proc. Natl. Acad. Sci. U. S. A, vol.108, issue.34, pp.14049-14054, 2011.

C. Léger and P. Bertrand, Direct Electrochemistry of Redox Enzymes as a Tool for Mechanistic Studies, Chem. Rev, vol.108, issue.7, pp.2379-2438, 2008.

A. Abou-hamdan, S. Dementin, P. Liebgott, O. Gutierrez-sanz, P. Richaud et al., Understanding and Tuning the Catalytic Bias of Hydrogenase, J. Am. Chem. Soc, vol.2012, issue.20, pp.8368-8371
URL : https://hal.archives-ouvertes.fr/hal-01977597

G. Caserta, C. Papini, A. Adamska-venkatesh, L. Pecqueur, C. Sommer et al., Engineering an [FeFe]-Hydrogenase: Do Accessory Clusters Influence O2 Resistance and Catalytic Bias?, J. Am. Chem. Soc, vol.140, issue.16, pp.5516-5526, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01759288

C. L. Mcintosh, F. Germer, R. Schulz, J. Appel, A. K. Jones et al., PCC 6803 Works Bidirectionally with a Bias to H2 Production, Hydrogenase of the Cyanobacterium Synechocystis Sp, vol.133, pp.11308-11319, 2011.

O. Lampret, A. Adamska-venkatesh, H. Konegger, F. Wittkamp, U. Apfel et al., Interplay between CN Ligands and the Secondary Coordination Sphere of the H-Cluster in [FeFe]-Hydrogenases, J. Am. Chem. Soc, vol.139, issue.50, 2017.

H. Adamson, M. Robinson, J. J. Wright, L. A. Flanagan, J. Walton et al., Retuning the Catalytic Bias and Overpotential of a [NiFe]-Hydrogenase via a Single Amino Acid Exchange at the Electron Entry/Exit Site, J. Am. Chem. Soc, vol.2017, issue.31, pp.10677-10686

P. Rodríguez-maciá, L. Kertess, J. Burnik, J. A. Birrell, E. Hofmann et al., His-Ligation to the [4Fe-4S] Sub-Cluster Tunes the Catalytic Bias of, FeFe] Hydrogenase. J. Am. Chem

. Soc, , vol.141, pp.472-481, 2019.

J. B. Therien, J. H. Artz, S. Poudel, T. L. Hamilton, Z. Liu et al., The Physiological Functions and Structural Determinants of Catalytic Bias in the [FeFe]-Hydrogenases CpI and CpII of Strain W5, Front. Microbiol, vol.8, p.1305, 2017.

B. J. Murphy, F. Sargent, and F. A. Armstrong, Transforming an Oxygen-Tolerant [NiFe] Uptake Hydrogenase into a Proficient, Reversible Hydrogen Producer, Energy Environ. Sci, vol.2014, issue.4, pp.1426-1433

L. Kertess, A. Adamska-venkatesh, P. Rodríguez-maciá, O. Rüdiger, W. Lubitz et al., Influence of the [4Fe-4S] Cluster Coordinating Cysteines on Active Site Maturation and Catalytic Properties of [FeFe]-Hydrogenase, Chem. Sci, vol.2017, issue.12, pp.8127-8137

H. R. Pershad, J. L. Duff, H. A. Heering, E. C. Duin, S. P. Albracht et al., Catalytic Electron Transport in Chromatium Vinosum [NiFe]-Hydrogenase: Application of Voltammetry in Detecting Redox-Active Centers and Establishing That Hydrogen Oxidation Is Very Fast Even at Potentials close to the Reversible H + /H 2 Value, Biochemistry, vol.38, issue.28, pp.8992-8999, 1999.

C. Léger, K. Heffron, H. R. Pershad, E. Maklashina, C. Luna-chavez et al., Enzyme Electrokinetics: Energetics of Succinate Oxidation by Fumarate Reductase and Succinate Dehydrogenase ?, Biochemistry, vol.40, issue.37, pp.11234-11245, 2001.

V. C. Wang, M. .-c.;-can, E. Pierce, S. W. Ragsdale, and F. A. Armstrong, Unified Electrocatalytic Description of the Action of Inhibitors of Nickel Carbon Monoxide Dehydrogenase, J. Am. Chem. Soc, vol.135, issue.6, pp.2198-2206, 2013.

A. Bassegoda, C. Madden, D. W. Wakerley, E. Reisner, and J. Hirst, Reversible Interconversion of CO 2 and Formate by a Molybdenum-Containing Formate Dehydrogenase, J. Am. Chem. Soc, vol.136, issue.44, pp.15473-15476, 2014.

Y. Zu, R. J. Shannon, J. Hirst, and . Reversible, Electrochemical Interconversion of NADH and NAD+ by the Catalytic (Iambda) Subcomplex of Mitochondrial NADH:ubiquinone Oxidoreductase (complex I), J. Am. Chem. Soc, vol.125, issue.20, pp.6020-6021, 2003.

J. M. Kurth, C. Dahl, and J. N. Butt, Catalytic Protein Film Electrochemistry Provides a Direct Measure of the Tetrathionate/Thiosulfate Reduction Potential, J. Am. Chem. Soc, vol.137, issue.41, pp.13232-13235, 2015.

A. Fersht, University Alan Fersht. Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding

W. H. Freeman, , 1999.

A. Cornish-bowden, Fundamentals of Enzyme Kinetics, 2012.

A. Maurin and M. Robert, Noncovalent Immobilization of a Molecular Iron-Based Electrocatalyst on Carbon Electrodes for Selective, Efficient CO 2 -to-CO Conversion in Water, J. Am. Chem. Soc, vol.138, issue.8, pp.2492-2495, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01480750

P. Rodríguez-maciá, N. Priyadarshani, A. Dutta, C. Weidenthaler, W. Lubitz et al., Covalent Attachment of the Water-Insoluble Ni(PCy 2 NPhe 2 ) 2 Electrocatalyst to Electrodes Showing Reversible Catalysis in Aqueous Solution, Electroanalysis, vol.28, issue.10, pp.2452-2458, 2016.

S. Gentil, N. Lalaoui, A. Dutta, Y. Nedellec, S. Cosnier et al., Carbon-Nanotube-Supported Bio-Inspired Nickel Catalyst and Its Integration in Hybrid Hydrogen/Air Fuel Cells, Angew. Chem. Int. Ed Engl, vol.2017, issue.7, pp.1845-1849
URL : https://hal.archives-ouvertes.fr/hal-01446868

P. Rodriguez-maciá, A. Dutta, W. Lubitz, W. J. Shaw, and O. Rüdiger, Direct Comparison of the Performance of a Bio-Inspired Synthetic Nickel Catalyst and a, Hydrogenase, Both Covalently Attached to Electrodes, vol.54, pp.12303-12307, 2015.

J. Savéant, Molecular Catalysis of Electrochemical Reactions. Cyclic Voltammetry of Systems Approaching Reversibility, ACS Catal, vol.8, issue.8, pp.7608-7611, 2018.

S. V. Hexter, F. Grey, T. Happe, V. Climent, and F. A. Armstrong, Electrocatalytic Mechanism of Reversible Hydrogen Cycling by Enzymes and Distinctions between the Major Classes of Hydrogenases, Proc. Natl

. Acad and . U. Sci, , vol.109, pp.11516-11521, 2012.

C. Costentin, J. Savéant, and . Multielectron, Multistep Molecular Catalysis of Electrochemical Reactions: Benchmarking of Homogeneous Catalysts, ChemElectroChem, vol.2014, issue.7, pp.1226-1236

V. Artero and J. Saveant, Toward the Rational Benchmarking of Homogeneous H 2 -Evolving Catalysts, Energy Environ. Sci, vol.2014, issue.11, pp.3808-3814
URL : https://hal.archives-ouvertes.fr/hal-01069183

V. Fourmond, C. Baffert, K. Sybirna, T. Lautier, A. Abou-hamdan et al., Steady-State Catalytic Wave-Shapes for 2-Electron Reversible Electrocatalysts and Enzymes, J. Am. Chem. Soc, vol.135, issue.10, pp.3926-3938, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01268145

C. Costentin, S. Drouet, M. Robert, and J. Savéant, Turnover Numbers, Turnover Frequencies, and Overpotential in Molecular Catalysis of Electrochemical Reactions. Cyclic Voltammetry and Preparative-Scale Electrolysis, J. Am. Chem. Soc, vol.2012, issue.27, pp.11235-11242

D. J. Wasylenko, C. Rodríguez, M. L. Pegis, and J. M. Mayer, Direct Comparison of Electrochemical and Spectrochemical Kinetics for Catalytic Oxygen Reduction, J. Am. Chem. Soc, vol.136, issue.36, pp.12544-12547, 2014.

, For unidirectional catalysis and on condition that all chemical steps are irreversible, analyzing the foot of the wave by mistakenly assuming that the catalytic potential is the potential of the catalyst returns the rate of the chemical step that immediately follows the redox step

P. Bertrand, B. Frangioni, S. Dementin, M. Sabaty, P. Arnoux et al., Effects of Slow Substrate Binding and Release in Redox Enzymes: Theory and Application to Periplasmic Nitrate Reductase, J. Phys. Chem. B, issue.34, pp.10300-10311, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00336030

B. Frangioni, P. Arnoux, M. Sabaty, D. Pignol, P. Bertrand et al., Rhodobacter Sphaeroides Respiratory Nitrate Reductase, the Kinetics of Substrate Binding Favors Intramolecular Electron Transfer, J. Am. Chem. Soc, vol.126, issue.5, pp.1328-1329, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00338609

M. Ho, R. Rousseau, J. A. Roberts, E. S. Wiedner, M. Dupuis et al., Ab Initio-Based Kinetic Modeling for the Design of Molecular Catalysts: The Case of H 2 Production Electrocatalysts, ACS Catal, vol.2015, issue.9, pp.5436-5452

E. S. Rountree and J. L. Dempsey, Potential-Dependent Electrocatalytic Pathways: Controlling Reactivity with pKa for Mechanistic Investigation of a Nickel-Based Hydrogen Evolution Catalyst, J. Am. Chem. Soc, vol.137, issue.41, 2015.

A. M. Appel, D. H. Pool, M. O'hagan, W. J. Shaw, J. Y. Yang et al.,

, 2+ as an Electrocatalyst for H 2 Production: Dependence on Acid Strength and Isomer Distribution, vol.2011, pp.777-785

S. Horvath, L. E. Fernandez, and A. M. Appel, Hammes-Schiffer, S. pH-Dependent Reduction Potentials and Proton-Coupled Electron Transfer Mechanisms in Hydrogen-Producing Nickel Molecular Electrocatalysts, Inorg. Chem, issue.7, pp.3643-3652, 2013.

S. Lense, A. Dutta, J. A. Roberts, and W. J. Shaw, A Proton Channel Allows a Hydrogen Oxidation Catalyst to Operate at a Moderate Overpotential with Water Acting as a Base, Chem. Commun, vol.50, issue.7, pp.792-795, 2014.

P. Das, M. Ho, M. O'hagan, W. J. Shaw, R. M. Bullock et al., Controlling Proton Movement: Electrocatalytic Oxidation of Hydrogen by a nickel(II) Complex Containing Proton Relays in the Second and Outer Coordination Spheres, Dalton Trans, vol.43, issue.7, pp.2744-2754, 2014.

J. Y. Yang, S. E. Smith, T. Liu, W. G. Dougherty, W. A. Hoffert et al., Two Pathways for Electrocatalytic Oxidation of Hydrogen by a Nickel Bis(diphosphine) Complex with Pendant Amines in the Second Coordination Sphere, J. Am. Chem. Soc, vol.135, issue.26, p.33, 2013.

S. Canaguier, V. Fourmond, C. U. Perotto, J. Fize, J. Pécaut et al., Catalytic Hydrogen Production by a Ni-Ru Mimic of NiFe Hydrogenases Involves a Proton-Coupled Electron Transfer Step, Chem. Commun, issue.44, pp.5004-5006, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01069157

C. Baffert, V. Artero, and M. Fontecave, Cobaloximes as Functional Models for Hydrogenases. 2. Proton Electroreduction Catalyzed by difluoroborylbis(dimethylglyoximato)cobalt(II) Complexes in Organic Media, Inorg. Chem, vol.46, issue.5, pp.1817-1824, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00374537

V. Fourmond and C. Léger, Modelling the Voltammetry of Adsorbed Enzymes and Molecular Catalysts, Curr. Op. Electrochem, vol.2017, issue.1
URL : https://hal.archives-ouvertes.fr/hal-01440516

K. M. Kadish, M. Sweetland, and J. S. Cheng, Electron-Transfer Kinetics of Chlorotetrakis(p-chlorophenyl)porphinatomanganese(III) in Dimethyl Sulfoxide-Imidazole Mixtures, Inorg. Chem, vol.17, issue.10, pp.2795-2797, 1978.

X. H. Mu and F. A. Schultz, Correlation of Heterogeneous Electron-Transfer Rate with Electron-Transfer Site in Metalloporphyrins, Inorg. Chem, issue.16, pp.2877-2879, 1990.

C. Hureau, E. Anxolabéhère-mallart, M. Nierlich, F. Gonnet, and E. Rivière, Geneviève Blondin. Synthesis, Structure and Characterisation of New Phenolato-Bridged Manganese Complexes [L2Mn2]2+ ? Formation by Ligand Oxidation in LaH, EurJIC, issue.10, pp.2710-2719, 2002.

I. Hu, D. H. Karweik, and T. Kuwana, Activation and Deactivation of Glassy Carbon Electrodes, J. Electroanal. Chem. Interfacial Electrochem, vol.188, issue.1-2, pp.59-72, 1985.

R. J. Rice, N. M. Pontikos, and R. L. Mccreery, Quantitative Correlations of Heterogeneous Electron-Transfer Kinetics with Surface Properties of Glassy Carbon Electrodes, J. Am. Chem. Soc, vol.112, issue.12, pp.4617-4622, 1990.

C. Léger, A. K. Jones, W. Roseboom, S. P. Albracht, and F. A. Armstrong, Enzyme Electrokinetics: Hydrogen Evolution and Oxidation by Allochromatium Vinosum, pp.15736-15746, 2002.

M. Sensi, M. Del-barrio, C. Baffert, V. Fourmond, and C. Léger, New Perspectives in Hydrogenase Direct Electrochemistry. Current Opinion in Electrochemistry, vol.5, pp.135-145, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01614142

J. K. Nørskov, T. Bligaard, B. Hvolbaek, F. Abild-pedersen, I. Chorkendorff et al., The Nature of the Active Site in Heterogeneous Metal Catalysis, Chem. Soc. Rev, vol.37, issue.10, pp.2163-2171, 2008.

M. T. Koper, Theory of Multiple Proton-electron Transfer Reactions and Its Implications for Electrocatalysis, Chem. Sci, vol.2013, issue.4, p.2710

M. T. Koper and E. Bouwman, Electrochemical Hydrogen Production: Bridging Homogeneous and Heterogeneous Catalysis, Angew. Chem. Int. Ed Engl, vol.2010, issue.22, pp.3723-3725

C. Costentin and J. Savéant, Towards an Intelligent Design of Molecular Electrocatalysts, Nat. rev. chem, vol.2017, issue.11, p.87

G. A. Felton, R. S. Glass, D. L. Lichtenberger, and D. H. Evans, Iron-Only Hydrogenase Mimics. Thermodynamic Aspects of the Use of Electrochemistry to Evaluate Catalytic Efficiency for Hydrogen Generation, Inorg. Chem, issue.23, pp.9181-9184, 2006.

V. Fourmond, P. Jacques, M. Fontecave, and V. Artero, H2 Evolution and Molecular Electrocatalysts: Determination of Overpotentials and Effect of Homoconjugation, Inorg. Chem, issue.22, pp.10338-10347, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01069160

A. M. Appel and M. L. Helm, Determining the Overpotential for a Molecular Electrocatalyst, ACS Catal, vol.2014, issue.2, pp.630-633

A. D. Wilson, R. H. Newell, M. J. Mcnevin, J. T. Muckerman, M. Dubois et al., Hydrogen Oxidation and Production Using Nickel-Based Molecular Catalysts with Positioned Proton Relays, J. Am. Chem. Soc, vol.128, issue.1, pp.358-366, 2006.

D. L. Dubois, Development of Molecular Electrocatalysts for Energy Storage, Inorg. Chem, issue.8, pp.3935-3960, 2014.

W. J. Shaw, M. L. Helm, D. L. Dubois, and . Modular, Energy-Based Approach to the Development of Nickel Containing Molecular Electrocatalysts for Hydrogen Production and Oxidation, Biochim. Biophys. Acta, issue.8-9, pp.1123-1139, 2013.

N. A. Eberhardt and H. Guan, Nickel Hydride Complexes, Chem. Rev, vol.116, issue.15, pp.8373-8426, 2016.

N. Priyadarshani, A. Dutta, B. Ginovska, G. W. Buchko, M. O'hagan et al., Achieving Reversible H 2 /H + Interconversion at Room Temperature with Enzyme-Inspired Molecular Complexes: A Mechanistic Study, ACS Catal, vol.6, issue.9, pp.6037-6049, 2016.

S. E. Smith, J. Y. Yang, D. L. Dubois, and R. M. Bullock, Reversible Electrocatalytic Production and Oxidation of Hydrogen at Low Overpotentials by a Functional Hydrogenase Mimic, Angew. Chem. Int. Ed Engl, vol.2012, issue.13, pp.3152-3155

A. Dutta, D. L. Dubois, J. A. Roberts, and W. J. Shaw, Amino Acid Modified Ni Catalyst Exhibits Reversible H2 Oxidation/production over a Broad pH Range at Elevated Temperatures, Proc. Natl. Acad. Sci. U. S. A, vol.111, issue.46, pp.16286-16291, 2014.

A. Dutta, S. Lense, J. A. Roberts, M. L. Helm, and W. J. Shaw, The Role of Solvent and the Outer Fourmond, vol.32, p.33

, Author's final version of

, Coordination Sphere on H 2 Oxidation Using [Ni(PCy 2 NPyz 2 )2] 2+ : The Role of Solvent and the Outer Coordination Sphere on H 2 Oxidation, Eur. J. Inorg. Chem, issue.31, pp.5218-5225, 2015.

K. Heffron, C. Léger, R. A. Rothery, J. H. Weiner, and F. A. Armstrong, Determination of an Optimal Potential Window for Catalysis by E. Coli Dimethyl Sulfoxide Reductase and Hypothesis on the Role of Mo(V) in the Reaction Pathway, Biochemistry, vol.40, issue.10, pp.3117-3126, 2001.

E. S. Wiedner, H. J. Brown, and M. L. Helm, Kinetic Analysis of Competi t ive Electrocatalytic Pathways: New Insights into Hydrogen Production with Nickel Electrocatalysts, J. Am. Chem. Soc, vol.138, issue.2, pp.604-616, 2016.

R. M. Stolley, J. M. Darmon, and M. L. Helm, Solvent and Electrolyte Effects on Ni(PR 2 NR? 2 ) 2 -Catalyzed Electrochemical Oxidation of Hydrogen, Chem. Commun, vol.50, issue.28, pp.3681-3684, 2014.

D. Barrio, M. Sensi, M. Orain, C. Baffert, C. Dementin et al., Electrochemical Investigations of Hydrogenases and Other Enzymes That Produce and Use Solar Fuels, Acc. Chem. Res, vol.51, issue.3, pp.769-777, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01745738

V. Hajj, C. Baffert, K. Sybirna, I. Meynial-salles, P. Soucaille et al., FeFe Hydrogenase Reductive Inactivation and Implication for Catalysis, Energy Environ. Sci, vol.7, issue.2, pp.715-719, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01481475

D. Barrio, M. Sensi, M. Fradale, L. Bruschi, M. Greco et al., Interaction of the H-Cluster of FeFe Hydrogenase with Halides, J. Am. Chem. Soc, vol.140, issue.16, pp.5485-5492, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01759718

A. K. Jones, S. E. Lamle, H. R. Pershad, K. A. Vincent, S. P. Albracht et al., Enzyme Electrokinetics: Electrochemical Studies of the Anaerobic Interconversions between Active and Inactive States of Allochromatium Vinosum, vol.125, pp.8505-8514, 2003.

A. Abou-hamdan, P. Liebgott, V. Fourmond, O. Gutiérrez-sanz, A. L. De-lacey et al., Relation between Anaerobic Inactivation and Oxygen Tolerance in a Large Series of NiFe Hydrogenase Mutants, Proc. Natl. Acad. Sci. U. S. A, vol.2012, issue.49, pp.19916-19921
URL : https://hal.archives-ouvertes.fr/hal-01825482

A. Volbeda, M. H. Charon, C. Piras, E. C. Hatchikian, M. Frey et al., Crystal Structure of the Nickel-Iron Hydrogenase from Desulfovibrio Gigas, Nature, vol.373, issue.6515, pp.580-587, 1995.

C. C. Page, C. C. Moser, X. Chen, and P. L. Dutton, Natural Engineering Principles of Electron Tunnelling in Biological Oxidation-Reduction, Nature, vol.402, issue.6757, pp.47-52, 1999.

S. Dementin, V. Belle, P. Bertrand, B. Guigliarelli, G. Adryanczyk-perrier et al., Changing the Ligation of the Distal [4Fe4S] Cluster in NiFe Hydrogenase Impairs Inter-and Intramolecular Electron Transfers, J. Am. Chem. Soc, vol.128, issue.15, pp.5209-5218, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00335157

T. Zeng, S. Leimkühler, U. Wollenberger, and V. Fourmond, Transient Catalytic Voltammetry of Sulfite Oxidase Reveals Rate Limiting Conformational Changes, J. Am. Chem. Soc, vol.2017, issue.33, pp.11559-11567
URL : https://hal.archives-ouvertes.fr/hal-01614177

A. J. Cardenas, B. Ginovska, N. Kumar, J. Hou, S. Raugei et al., Controlling Proton Delivery through Catalyst Structural Dynamics, Angew. Chem. Int. Ed Engl, vol.55, issue.43, pp.13509-13513, 2016.

C. M. Klug, A. J. Cardenas, R. M. Bullock, M. O'hagan, and E. S. Wiedner, Reversing the Tradeoff between Rate and Overpotential in Molecular Electrocatalysts for H 2 Production, ACS Catal, vol.8, issue.4, pp.3286-3296, 2018.

I. Azcarate, C. Costentin, M. Robert, and J. Savéant, Through-Space Charge Interaction Substituent Effects in Molecular Catalysis Leading to the Design of the Most Efficient Catalyst of CO 2 -to-CO Electrochemical Conversion, J. Am. Chem. Soc, vol.138, issue.51, pp.16639-16644, 2016.

A. Dutta, S. Lense, J. Hou, M. H. Engelhard, J. A. Roberts et al., Minimal Proton Channel Enables H 2 Oxidation and Production with a Water-Soluble Nickel-Based Catalyst, J. Am. Chem. Soc, vol.135, issue.49, pp.18490-18496, 2013.

N. P. Boralugodage, R. J. Arachchige, A. Dutta, G. W. Buchko, and W. J. Shaw, Evaluating the Role of Acidic, Basic, and Polar Amino Acids and Dipeptides on a Molecular Electrocatalyst for H 2 Oxidation

, Catal. Sci. Technol, vol.7, issue.5, pp.1108-1121, 2017.