B. J. Skinner, R. C. Erd, and F. S. Grimaldi, Greigite, the thio-spinel of iron; a new mineral, Am Mineral, vol.49, pp.543-555, 1964.

J. Just, N. R. Nowaczyk, L. Sagnotti, A. Francke, H. Vogel et al., Environmental control on the occurrence of high-coercivity magnetic minerals and formation of iron sulfides in a 640 ka sediment sequence from Lake Ohrid (Balkans), Biogeosciences, vol.13, pp.2093-2109, 2016.

M. J. Russell, R. M. Daniel, A. J. Hall, and J. A. Sherringham, A hydrothermally precipitated catalytic iron sulphide membrane as a first step toward life, J mol Evol, vol.39, pp.231-243, 2004.

S. Hunger and L. G. Benning, Greigite: a true intermediate on the polysulfide pathway to pyrite, Geochem Trans, vol.8, p.17376247, 2007.

M. Y. Lin, Y. H. Chen, J. J. Lee, and H. S. Sheu, Reaction pathways of iron-sulfide mineral formation: an in situ Xray diffraction study, European Journal of Mineralogy, vol.30, pp.77-84, 2017.

R. M. Haymon, Growth history of hydrothermal black smoker chimneys, Nature, vol.301, pp.695-698, 1983.

R. E. Mielke, K. J. Robinson, L. M. White, S. E. Mcglynn, K. Mceachem et al., Iron-sulfide-bearing chimneys as potential catalytic energy traps at life's emergence, Astrobiology, vol.11, p.22111762, 2011.

A. Roldan, N. Hollingsworth, A. Roffey, H. U. Islam, J. B. Godall et al., Bio-inspired CO2 conversion by iron-sulfide catalysts under sustainable conditions, Chem Commun, vol.51, pp.7501-7504, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01572799

M. J. Russell and W. Martin, The rocky roots of the acetyl-CoA pathway, Trends Biochem Sci, vol.29, p.15236743, 2004.

G. Wächtershäuser, Evolution of the first metabolic cycles, Proc Natl Acad Sci USA, vol.87, p.2296579, 1990.

M. Feng, Y. Lu, Y. Yang, M. Zhang, Y. J. Xu et al., Bioinspired greigite magnetic nanocrystals: chemical synthesis and biomedicine applications, Sci Rep, vol.3, p.24141204, 2013.

Z. J. Zhang and X. Y. Chen, Magnetics greigite (Fe 3 S 4 ) nanomaterials: Shape-controlled solvothermal synthesis and their calcination conversion into hematite (?-Fe 2 O 3 ) nanomaterials, J Alloys Compd, vol.488, pp.339-345, 2009.

S. Mann, N. Sparks, R. B. Frankel, D. A. Bazylinski, and H. W. Jannasch, Biomineralization of ferrimagnetic greigite (Fe 3 S 4 ) and iron pyrite (FeS 2 ) in a magnetotactic bacterium, Nature, vol.343, pp.258-261, 1990.

K. O. Konhauser, Diversity of bacterial iron mineralization, Earth Science Rev, vol.43, pp.91-121, 1998.

J. Miot, K. Benzerara, M. Obst, A. Kappler, F. Hegler et al., Extracellular iron biomineralization by photoautotrophic iron-oxidizing bacteria, Appl Environ Microbiol, vol.75, pp.5586-5595, 2009.
URL : https://hal.archives-ouvertes.fr/insu-01516127

D. Bertel, J. Peck, T. J. Quick, and J. M. Senko, Iron transformations induced by an acid-tolerant Desulfosporosinus species, Appl Environ Microbiol, vol.78, p.22038606, 2012.

A. Picard, A. Gartman, D. R. Clarke, and P. R. Girguis, Sulfate-reducing bacteria influence the nucleation and growth of mackinawite and greigite, Geoch Cosmochim acta, vol.220, pp.367-384, 2018.

J. F. Banfield, J. W. Moreau, C. S. Chan, S. A. Welch, and B. Little, Mineralogical biosignatures and the search for life on Mars, Astrobiology, vol.1, p.12448978, 2001.

C. S. Chan, S. C. Fakra, D. Emerson, E. J. Fleming, and K. J. Edwards, Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation, ISME J, vol.5, p.21107443, 2011.

D. Prieur, Hydrothermal Vents: Prokaryotes in Deep-Sea Hydrothermal Vents, pp.1617-1628, 2002.

K. G. Taylor and K. O. Konhauser, Iron in earth surface systems: a major player in chemical and biological processes, Elements, vol.7, pp.83-88, 2011.

A. Gorlas, E. Marguet, S. Gill, C. Geslin, J. M. Guigner et al., Sulfur vesicles from Thermococcales: A possible role in sulfur detoxifying mechanisms, Biochimie, vol.118, p.26234734, 2015.

M. J. Russell and A. J. Hall, The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front, J Geol Soc London, vol.154, p.11541234, 1997.

J. Van-der-lee and L. D. Windt, CHESS Tutorial and Cookbook, Version 3.0, 2002.

M. Posfai, P. R. Buseck, D. A. Bazylinski, and R. B. Frankel, Reaction sequence of iron sulfide minerals in bacteria and their use as biomarkers, Science, vol.280, p.9572727, 1998.

T. J. Beveridge and W. S. Fyfe, Metal fixation by bacterial cell walls, Can J of Earth Sciences, vol.22, pp.1893-1898, 1985.

U. B. Sleytr, B. Schuster, E. M. Egelseer, and D. Pum, S-layers: principles and applications, FEMS microbiol Rev, vol.38, p.24483139, 2014.

A. Kish, J. Miot, C. Lombard, J. M. Guigner, S. Bernard et al., Preservation of archaeal surface layer structure during mineralization, Sci Rep, vol.6, p.27221593, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01334148

K. O. Konhauser, W. S. Fyfe, S. Schultze-lam, F. G. Ferris, and T. J. Beveridge, Iron phosphate precipitation by epilithic microbial films in Arctic Canada, Can J of Earth Sciences, vol.31, pp.1320-1324, 1994.

L. E. Macaskie, R. M. Empson, A. K. Cheetham, C. P. Grey, and A. J. Skamulis, Uranium bioaccumulation by a Citrobacter sp. as a result of enzymatically mediated growth of polycrystalline HUO2PO4, Science, vol.257, p.1496397, 1992.

N. Soler, E. Marguet, J. M. Verbavatz, and P. Forterre, Virus-like vesicles and extracellular DNA produced by hyperthermophilic archaea of the order Thermococcales, Res Microbiol, vol.159, p.18625304, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00356456

D. Rickard and G. W. Luther, Chemistry of Iron Sulfides, Chem Rev, vol.107, p.17261073, 2007.

K. Igarashi, Y. Yamamura, and T. Kuwabara, Natural synthesis of bioactive greigite by solid-gas reactions, Geoch Cosmochim acta, vol.191, pp.47-57, 2016.

A. Roberts and R. Weaver, Multiple mechanisms of remagnetization involving sedimentary greigite (Fe 3 S 4 ), Earth Planet Sci Lett, vol.231, pp.263-277, 2005.

S. J. Kao, C. S. Horng, A. P. Roberts, and K. K. Liu, Carbon-sulfur-iron relationships in sedimentary rocks from southwestern Taiwan: influence of geochemical environment on greigite and pyrrhotite formation, Chem Geol, vol.203, pp.153-168, 2004.

V. R. Phoenix and K. O. Konhauser, Benefits of bacterial biomineralization, Geobiology, vol.6, p.18498529, 2008.

S. K. Juniper and Y. Fouquet, Filamentous iron-silica deposits from modern and ancient hydrothermal sites, Can Mineral, vol.26, pp.859-869, 1988.

D. Emerson and C. L. Moyer, Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi Seamount hydrothermal vents and play a major role in Fe oxide deposition, Appl Environ Microbiol, vol.68, p.12039770, 2002.

M. S. Dodd, D. Papineau, T. Grenne, J. F. Slack, M. Rittner et al., Evidence for early life in Earth's oldest hydrothermal vent precipitates, Nature, vol.543, p.28252057, 2017.