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1 Laboratoire d’Astrophysique, Observatoire Midi-Pyrénées, 14 avenue É. Belin, 31400 Toulouse, France
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Abstract. Using a numerical simulation of compressible convection with radiative transfer mimicking the solar
photosphere, we compare the velocity field derived from granule motions to the actual velocity field of the plasma.
We thus test the idea that granules may be used to trace large-scale velocity fields at the sun’s surface. Our results
show that this is indeed the case provided the scale separation is sufficient. We thus estimate that neither velocity
fields at scales less than 2500 km nor time evolution at scales shorter than 0.5 hr can be faithfully described by
granules. At larger scales the granular motions correlate linearly with the underlying fluid motions with a slope
of .2 reaching correlation coefficients up to ∼0.9.
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1. Introduction

Since the work of November & Simon (1988) granules
have been used to trace horizontal flows at the surface
of the Sun, namely mesoscale flows and supergranula-
tion (November 1989; Strous 1995a,b; Roudier et al. 1999;
Rieutord et al. 2000). However, assuming that granules
behave like passive scalars is a rather strong assump-
tion regarding the nature of the granules: these are dy-
namical structures which are far from being passive.
Unfortunately, the validity of this assumption has never
been assessed and one relies on the hope that advection
of granules (as intensity structures) is statistically domi-
nant compared to noise processes like the diffusion of tem-
perature fluctuations and small-scale motions induced by
granules.

To make further progress on this issue, we used a
simulation of convection at the sun’s surface to test the
tracking properties of granules. The simulation provides
an observable – a time series of two dimensional images
of the emergent intensity – together with the underlying
three dimensional velocity and temperature fields. This al-
lows to test and compare horizontal velocities as measured
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by different granule tracking techniques against the ac-
tual flow velocities. The tracking techniques are presently
two, namely LCT, for Local Correlation Tracking, and
CST for Coherent Structures Tracking. LCT has been de-
veloped by November and collaborators (see November
& Simon 1988) and determines the flows from an opti-
mization of the correlation between two subimages be-
longing to successive images. CST was first proposed
by Strous (1995a,b) and recently developed by Roudier
et al. (1999) and Rieutord et al. (2001); it decomposes each
image of the solar surface into a set of granules whose tra-
jectories are used to derive the velocity fields. Both meth-
ods have shortcomings whose effects can be quantified by
the above comparison.

The simulation used in this letter has been performed
using a compressible convection code coupling fluid mo-
tion and radiative transfer originally developed by two of
the authors (for a description see Stein & Nordlund 1998).
For this particular run, which aims at simulating super-
granulation, certain trade-offs have been made between
physical realism and computational demands: the radia-
tive transfer was treated in grey approximation (with
frequency independent opacity, with a dependence on tem-
perature and pressure similar to that of the solar contin-
uum opacity) and the horizontal resolution was chosen to
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Fig. 1. Correlations between the velocity field obtained from granule tracking and the actual velocity field as a function of depth
and time-window; both methods (LCT and CST) give very similar results. A layer 78 km thick has been used.

Fig. 2. Optimal depth for different thicknesses (line type) of
the contributing layer as a function of the time-window. We
see that the depth at which correlation is maximum, remains
around 250 ± 30 km.

be a rather coarse 95 km. The restrictions made it afford-
able to study a large volume (30× 30 Mm2 wide and 3 Mm
deep represented by 315 × 315 × 82 grid points) which
contained several hundred granules at any given instant
in time.

In Sect. 2 of this letter we shall present a
global view of the velocity field, following Euler’s
viewpoint while in Sect. 3 we try to characterize the gran-
ules in their ability at tracing the flow field, thus adopting

Lagrange’s viewpoint. Our conclusion is that granules are
able to trace statistically the large-scale flows but lead to
a systematic underestimation of the actual velocities.

2. Euler’s view

As granules are extended test particles, the measured ve-
locity fields are much less resolved than the one issued
from the simulation. Typically, our granule tracking tech-
nique yields a velocity field on a 45×45 grid, i.e. seven
times coarser than the original 315×315 pixels. Hence, for
comparison, simulated velocity fields are rebinned (aver-
aged) to this coarser resolution. Granules also decrease
the time resolution and velocity fields issued from granule
tracking are usually averaged over a time window longer
than 5 min; here, we shall consider three time-windows
with durations of 1000 s, 1 h, and 2 h.

But granules are also three-dimensional structures and
therefore they “feel” the large-scale velocity fields aver-
aged over some range of depths. The approximate depth
and thickness of the contributing layer need to be deter-
mined.

Using the three above mentioned time-windows, we
plotted in Fig. 1 the linear correlation between veloc-
ity fields issued from granule tracking u (for a descrip-
tion of how this field is derived, see Roudier et al. 1999
or Rieutord et al. 2001) and the “original” ones v as a
function of depth; this correlation is defined by Cv =
〈u · v〉/

√
〈u2〉 〈v2〉. This figure clearly shows that the cor-

relation increases with the length of the time window
hence showing that granules are best for tracing large-
scale flows which evolve on long time scales. It also shows
that the correlation is best at a depth below the τ = 1
surface (here z = 0); this is clearly emphasized by Fig. 2
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Fig. 3. Dependence of the correlations with the spatial scale
for the three time averages; the depth used is the optimal depth
and the thickness is 78 km. The 20 scale corresponds to a reso-
lution of 7×7 pixels or 667×667 km2; we understand the satu-
ration of the 23 scale as a consequence of the very few resolution
elements left for this scale (∼5×5). Line type have the same
meaning as in Fig. 1.

where we see that the optimal depth (where the correla-
tion is maximum) is between 200 km and 300 km.

We also tested the dependence of correlations with re-
spect to the thickness of the layer and found that it is
weak: variations of correlations are of 2 or 3% when the
thickness of the layer is varied between 40 and 900 km.

The foregoing results show that granules do trace long
time-averaged flows, thus we should observe a better cor-
relation when small spatial scales are filtered out. This is
indeed the case, as shown by Fig. 3. Using the decompo-
sition of the velocity field onto the different scales yielded
by a MultiResolution Analysis with Daubechies’ wavelets,
using the scaling function φ4 (Daubechies 1992), we show
that the correlation reaches ∼0.9 at the largest scale avail-
able.

In Fig. 4, we plotted the actual velocity as a function
of the measured velocity for various length scales. The
clouds of points clearly show that granules motions sta-
tistically underestimate the actual plasma velocity by a
factor which (likely) tends to unity as the scale increases.
When no filtering is made, measured velocities miss “real”
velocities by roughly a factor 2. This quantitative dis-
agreement is of course even more pronounced in derivative
quantities (divergence or vorticity).

This behaviour is of course no surprise because gran-
ules are far from being passive lagrangian tracers: on the
contrary they are active vortical structures which can
move in the background fluid thanks to their own vor-
ticity or the one of their neighbours. Their motion may be
compared (but just qualitatively) to the random motion of
molecules in a gas: only long time averages or large-scale
averages are able to raise the signal of the mean motion
above the noise of random motions.

Finally, let us mention that we have done these tests
using the two presently known methods of granule track-
ing, namely LCT and CST. As illustrated in Fig. 1, both
methods give remarkably close results (within a few per-
cent in correlation), a fact which gives confidence in the

robustness of the results. CST, however, offers additional
informations on the way individual granules follow the
background flow; namely, we can appreciate which gran-
ules are the most faithful tracers and characterize them by
some property (size or lifetime for instance). We discuss
this issue in the next section.

To see which granules are good or bad lagrangian trac-
ers we computed the correlation between the mean veloc-
ity of individual granules (i.e. the velocities issued from
granule tracking which yield the 45×45 dataset) and the
actual velocity at the place of the granule. We did this
computation for different granular sizes (Fig. 5) and life-
times (Fig. 6).

Figure 5 clearly shows that the size is a poor criterion
for selecting granules whose motions represent the plasma
flow. This figure, however, shows that large granules are
sensitive to “deep” undercurrents. The depth for optimal
correlation increases with the size of the granules.

On the other hand, the life-time is a good criterion for
sampling the plasma velocity field. The motion of long-
lived granules can reach 0.9 correlation with the actual
flow field as shown in Fig. 6. Besides, the layer sampled by
these granules is not precisely defined and oscillate around
the τ = 1 level.

3. Conclusions

We have used a simulation of compressible convection with
radiative transfer in grey approximation to test the ability
of granules at tracing the actual plasma flow. The box used
for this simulation is 30×30 Mm2 wide and 3 Mm deep,
resolved by a 315×315×82 grid. The results of these tests
show that

– Granules tend to be Lagrangian tracers when the time
and length scales of the flow tend to infinity: it shows
that scale separation is a necessary condition for using
granules at representing plasma flows. Quantitatively,
we find that the length scale needs to be larger than
2.5 Mm and the time scale longer than 1h for the cor-
relation to be higher than 0.9.

– They underestimate the velocity field, all the more that
scale separation is weak.

– Statistically, they probe a layer 300–400 km beneath
the τ = 1 surface.

– Long-lived granules are good tracers.

Hence, we see that granules can be used as tracers to reveal
flows at meso- and supergranular scale. At smaller scales
their own velocity field has a too strong interaction with
the background velocity field. However, it may well be that
velocity fields associated with exploding granules or with
“strong positive divergences” (see Rieutord et al. 2000),
which are near the lowest (allowed) scale, are correctly rep-
resented by granules motions, at least qualitatively, since
they are strong advective motions in nature.

Finally, let us note that the situation in the real sun
may not be better than that of the simulation for the
Reynolds number is much higher: nonlinear interactions
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Fig. 4. For three length scales (20, 21, 22), we represent the actual velocity (v which is either vx or vy) as a function of the
measured velocity u for a two-hours average. The clouds represent the 452 grid points. The best fits (dashed line) show that
granules underestimate actual velocities by a factor which varies from 2.1 at small scales (20) to 1.6 at large scales (22).

Fig. 5. Maximum correlation (solid line) between the actual
velocity field and the granule displacement at the place of the
granule versus the surface area of the granule. Large granules
are only slightly more correlated than smaller ones. The dashed
line indicates the depth at which correlation is optimum.

are indeed stronger and thus real granules are less pas-
sive. On the other hand, the drift of the thermal structure
with respect to pure advection, which is another pitfall
of granule tracking, is likely correctly represented by the
simulation since it depends on the Péclet number which
is modeled accurately by the simulation in the layers of
interest.
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Fig. 6. Maximum correlation (solid line) between the actual
velocity field and the granule displacement at the place of the
granule versus the lifetime of the granule. The dashed line in-
dicates the depth at which correlation is optimum.
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