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A Wasserstein-type distance in the space of Gaussian Mixture Models∗1
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3

Abstract. In this paper we introduce a Wasserstein-type distance on the set of Gaussian mixture models. This4
distance is defined by restricting the set of possible coupling measures in the optimal transport5
problem to Gaussian mixture models. We derive a very simple discrete formulation for this distance,6
which makes it suitable for high dimensional problems. We also study the corresponding multi-7
marginal and barycenter formulations. We show some properties of this Wasserstein-type distance,8
and we illustrate its practical use with some examples in image processing.9
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1. Introduction. Nowadays, Gaussian Mixture Models (GMM) have become ubiquitous13

in statistics and machine learning. These models are especially useful in applied fields to rep-14

resent probability distributions of real datasets. Indeed, as linear combinations of Gaussian15

distributions, they are perfect to model complex multimodal densities and can approximate16

any continuous density when the numbers of components is chosen large enough. Their pa-17

rameters are also easy to infer with algorithms such as the Expectation-Maximization (EM)18

algorithm [11]. For instance, in image processing, a large body of works use GMM to represent19

patch distributions in images1, and use these distributions for various applications, such as20

image restoration [33, 25, 32, 29, 18, 10] or texture synthesis [14].21

The optimal transport theory provides mathematical tools to compare or interpolate be-22

tween probability distributions. For two probability distributions µ0 and µ1 on Rd and a23

positive cost function c on Rd × Rd, the goal is to solve the optimization problem24

(1.1) inf
Y0∼µ0;Y1∼µ1

E (c(Y0, Y1)) ,25

where the notation Y ∼ µ means that Y is a random variable with probability distribution µ.26

When c(x, y) = ‖x−y‖p for p ≥ 1, Equation (1.1) (to a power 1/p) defines a distance between27

probability distributions that have a moment of order p, called the Wasserstein distance Wp.28

While this subject has gathered a lot of theoretical work (see [27, 28, 24] for three refer-29

ence monographies on the topic), its success in applied fields was slowed down for many years30

by the computational complexity of numerical algorithms which were not always compatible31

with large amount of data. In recent years, the development of efficient numerical approaches32
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2 J. DELON AND A. DESOLNEUX

has been a game changer, widening the use of optimal transport to various applications no-33

tably in image processing, computer graphics and machine learning [20]. However, computing34

Wasserstein distances or optimal transport plans remains intractable when the dimension of35

the problem is too high.36

Optimal transport can be used to compute distances or geodesics between Gaussian mix-37

ture models, but optimal transport plans between GMM, seen as probability distributions38

on a higher dimensional space, are usually not Gaussian mixture models themselves, and the39

corresponding Wasserstein geodesics between GMM do not preserve the property of being a40

GMM. In order to keep the good properties of these models, we define in this paper a variant41

of the Wasserstein distance by restricting the set of possible coupling measures to Gaussian42

mixture models. The idea of restricting the set of possible coupling measures has already43

been explored for instance in [3], where the distance is defined on the set of the probability44

distributions of strong solutions to stochastic differential equations. The goal of the authors is45

to define a distance which keeps the good properties of W2 while being numerically tractable.46

In this paper, we show that restricting the set of possible coupling measures to Gaussian47

mixture models transforms the original infinitely dimensional optimization problem into a48

finite dimensional problem with a simple discrete formulation, depending only on the param-49

eters of the different Gaussian distributions in the mixture. When the ground cost is simply50

c(x, y) = ‖x − y‖2, this yields a geodesic distance, that we call MW2 (for Mixture Wasser-51

stein), which is obviously larger than W2, and is always upper bounded by W2 plus a term52

depending only on the trace of the covariance matrices of the Gaussian components in the53

mixture. The complexity of the corresponding discrete optimization problem does not depend54

on the space dimension, but only on the number of components in the different mixtures,55

which makes it particularly suitable in practice for high dimensional problems. Observe that56

this equivalent discrete formulation has been proposed twice very recently in the machine57

learning literature, by two independent teams [6, 7]. We also study the multi-marginal and58

barycenter formulations of the problem, and show the link between these formulations.59

The paper is organized as follows. Section 2 is a reminder on Wasserstein distances and60

barycenters between probability measures on Rd. We also recall the explicit formulation of61

W2 between Gaussian distributions. In Section 3, we recall some properties of Gaussian mix-62

ture models, focusing on an identifiabiliy property that will be necessary for the rest of the63

paper. We also show that optimal transport plans for W2 between GMM are generally not64

GMM themselves. Then, Section 4 introduces the MW2 distance and derives the correspond-65

ing discrete formulation. Section 5 compares MW2 with W2, and Section 6 focuses on the66

corresponding multi-marginal and barycenter formulations. We conclude in Section 8 with67

two applications of the distance MW2 to image processing. To help the reproducibility of68

the results we present in this paper, we have made our Python codes available on the Github69

website https://github.com/judelo/gmmot.70

Notations. We define in the following some of the notations that will be used in the paper.71

• The notation Y ∼ µ means that Y is a random variable with probability distribution72

µ.73

• If µ is a positive measure on a space X and T : X → Y is an application, T#µ stands74

for the push-forward measure of µ by T , i.e. the measure on Y such that ∀A ⊂ Y,75
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(T#µ)(A) = µ(T−1(A)).76

• The notation tr(M) denotes the trace of the matrix M .77

• The notation Id is the identity application.78

• 〈ξ, ξ′〉 denotes the Euclidean scalar product between ξ and ξ′ in Rd79

• Mn,m(R) is the set of real matrices with n lines and m columns, and we denote by80

Mn0,n1,...,nJ−1(R) the set of J dimensional tensors of size nk in dimension k.81

• 1n = (1, 1, . . . , 1)t denotes a column vector of ones of length n.82

• For a given vector m in Rd and a d× d covariance matrix Σ, gm,Σ denotes the density83

of the Gaussian (multivariate normal) distribution N (µ,Σ).84

• When ai is a finite sequence of K elements (real numbers, vectors or matrices), we85

denote its elements as a0
i , . . . , a

K−1
i .86

2. Background: Wasserstein distances and barycenters between probability measures87

on Rd. Let d ≥ 1 be an integer. We recall in this section the definition and some basic88

properties of the Wasserstein distances between probability measures on Rd. We write P(Rd)89

the set probability measures on Rd. For p ≥ 1, the Wasserstein space Pp(Rd) is defined as the90

set of probability measures µ with a finite moment of order p, i.e. such that91 ∫
Rd
‖x‖pdµ(x) < +∞,92

with ‖.‖ the Euclidean norm on Rd.
For t ∈ [0, 1], we define Pt : Rd × Rd → Rd by

∀x, y ∈ Rd, Pt(x, y) = (1− t)x+ ty ∈ Rd.

Observe that P0 and P1 are the projections from Rd×Rd onto Rd such that P0(x, y) = x and93

P1(x, y) = y.94

2.1. Wasserstein distances. Let p ≥ 1, and let µ0, µ1 be two probability measures in95

Pp(Rd). Define Π(µ0, µ1) ⊂ Pp(Rd×Rd) as being the subset of probability distributions γ on96

Rd × Rd with marginal distributions µ0 and µ1, i.e. such that P0#γ = µ0 and P1#γ = µ1.97

The p-Wasserstein distance Wp between µ0 and µ1 is defined as98

(2.1) W p
p (µ0, µ1) := inf

Y0∼µ0;Y1∼µ1
E (‖Y0 − Y1‖p) = inf

γ∈Π(µ0,µ1)

∫
Rd×Rd

‖y0 − y1‖pdγ(y0, y1).99

This formulation is a special case of (1.1) when c(x, y) = ‖x − y‖p. It can be shown (see100

for instance [28]) that there is always a couple (Y0, Y1) of random variables which attains the101

infimum (hence a minimum) in the previous energy. Such a couple is called an optimal coupling.102

The probability distribution γ of this couple is called an optimal transport plan between µ0103

and µ1. This plan distributes all the mass of the distribution µ0 onto the distribution µ1 with104

a minimal cost, and the quantity W p
p (µ0, µ1) is the corresponding total cost.105

As suggested by its name (p-Wasserstein distance), Wp defines a metric on Pp(Rd). It106

also metrizes the weak convergence2 in Pp(Rd) (see [28], chapter 6). It follows that Wp is107

continuous on Pp(Rd) for the topology of weak convergence.108

2A sequence (µk)k converges weakly to µ in Pp(Rd) if it converges to µ in the sense of distributions and if∫
‖y‖pdµk(y) converges to

∫
‖y‖pdµ(y).
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From now on, we will mainly focus on the case p = 2, since W2 has an explicit formulation109

if µ0 and µ1 are Gaussian measures.110

2.2. Transport map and transport plan. Assume that p = 2. When µ0 and µ1 are two111

probability distributions on Rd and assuming that µ0 is absolutely continuous, then it can be112

shown that the optimal transport plan γ for the problem (2.1) is unique and has the form113

(2.2) γ = (Id, T )#µ0,114

where T : Rd 7→ Rd is an application called optimal transport map and satisfying T#µ0 = µ1115

(see [28]). It means that for A,B Borel sets of Rd, if f0 denotes the probability density of µ0,116

we have117

γ(A×B) = µ0((Id, T )−1(A,B)) = µ0(A ∩ T−1(B))118

=

∫
A∩T−1(B)

f0(x) dx =

∫
A
f0(x)1T−1(B)(x) dx119

=

∫
A
f0(x)1B(T (x)) dx =

∫
A×B

f0(x) δy=T (x) dx dy.120

2.3. Displacement interpolation. If γ is an optimal transport plan for W2 between two
probability distributions µ0 and µ1, the path (µt)t∈[0,1] given by

∀t ∈ [0, 1], µt := Pt#γ

defines a constant speed geodesic in P2(Rd) (see for instance [24] Ch.5, Section 5.4).121

When there is an optimal transport map T between µ0 and µ1, then we have

µt = ((1− t)Id + tT )#µ0.

The path (µt)t∈[0,1] is the displacement interpolation between µ0 and µ1 and it satisfies122

the following properties:123

• For all t, s ∈ [0, 1], we have W2(µt, µs) = |t− s|W2(µ0, µ1).124

• The length of the path (µt)t∈[0,1] defined by

Len((µt)t∈[0,1]) = SupN ;0=t0≤t1...≤tN=1

N∑
i=1

W2(µti−1 , µti),

satisfies Len((µt)t∈[0,1]) = W2(µ0, µ1), making (P2(Rd),W2) a geodesic space.125

• For t ∈ (0, 1) we also have that µt is a weighted barycenter of µ0 and µ1, that is:126

(2.3) µt ∈ argminρ (1− t)W2(µ0, ρ)2 + tW2(µ1, ρ)2.127

This notion of barycenter, often called Wasserstein barycenter in the literature, can be128

easily extended to more than two probability distributions, as recalled in the next paragraphs.129
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2.4. Multi-marginal formulation and barycenters. For J ≥ 2, for a set of weights λ =130

(λ0, . . . , λJ−1) ∈ (R+)J such that λ1J = λ0 + . . . + λJ−1 = 1 and for x = (x0, . . . , xJ−1) ∈131

(Rd)J , we write132

(2.4) B(x) =
J−1∑
i=0

λixi = argminy∈Rd

J−1∑
i=0

λi‖xi − y‖2133

the barycenter of the xi with weights λi.134

For J probability distributions µ0, µ1 . . . , µJ−1 on Rd, we say that ν∗ is the barycenter of135

the µj with weights λj if ν∗ is solution of136

(2.5) inf
ν∈P2(Rd)

J−1∑
j=0

λjW
2
2 (µj , ν).137

Existence and unicity of barycenters for W2 has been studied in depth by Agueh and138

Carlier in [1]. They show in particular that if one of the µj has a density, this barycenter139

is unique. They also show that the solutions of the barycenter problem are related to the140

solutions of the multi-marginal transport problem (studied by Gangbo and Świéch in [15])141

MW2(µ0, . . . , µJ−1) := inf
Y0∼µ0, ..., YJ−1∼µJ−1

E

1

2

J−1∑
i,j=0

λiλj‖Yi − Yj‖2)

 ,142

= inf
γ∈Π(µ0,µ1,...,µJ−1)

∫
Rd×···×Rd

1

2

J−1∑
i,j=0

λiλj‖yi − yj‖2dγ(y0, y1, . . . , yJ−1),(2.6)143

where Π(µ0, µ1, . . . , µJ−1) is the set of probability measures on (Rd)J having µ0, µ1, . . . , µJ−1144

as marginals. More precisely, they show that if (2.6) has a solution γ∗, then ν∗ = B#γ∗ is a145

solution of (2.5), and the infimum of (2.6) and (2.5) are equal, i.e.146

(2.7) MW2(µ0, . . . , µJ−1) = inf
ν∈P2(Rd)

J−1∑
j=0

λjW
2
2 (µj , ν).147

2.5. Optimal transport between Gaussian distributions. Computing optimal transport148

plans between probability distributions is usually difficult. In some specific cases, an explicit149

solution is known. For instance, in the one dimensional (d = 1) case, when the cost c is a150

convex function of the Euclidean distance on the line, the optimal plan consists in a mono-151

tone rearrangement of the distribution µ0 into the distribution µ1 (the mass is transported152

monotonically from left to right, see for instance Ch.2, Section 2.2 of [27] for all the details).153

Another case where the solution is known for a quadratic cost is the Gaussian case in any154

dimension d ≥ 1.155

2.5.1. Distance W2 between Gaussian distributions. If µi = N (mi,Σi), i ∈ {0, 1} are156

two Gaussian distributions on Rd, the 2-Wasserstein distance W2 between µ0 and µ1 has a157
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closed-form expression, which can be written158

(2.8) W 2
2 (µ0, µ1) = ‖m0 −m1‖2 + tr

(
Σ0 + Σ1 − 2

(
Σ

1
2
0 Σ1Σ

1
2
0

) 1
2

)
,159

where, for every symmetric semi-definite positive matrix M , the matrix M
1
2 is its unique160

semi-definite positive square root.161

If Σ0 is non-singular, then the optimal map T between µ0 and µ1 turns out to be affine162

and is given by163

(2.9) ∀x ∈ Rd, T (x) = m1 +Σ
− 1

2
0

(
Σ

1
2
0 Σ1Σ

1
2
0

) 1
2

Σ
− 1

2
0 (x−m0) = m1 +Σ−1

0 (Σ0Σ1)
1
2 (x−m0),164

and the optimal plan γ is then a Gaussian distribution on Rd × Rd = R2d that is degenerate165

since it is supported by the affine line y = T (x). These results have been known since [12].166

Moreover, if Σ0 and Σ1 are non-degenerate, the geodesic path (µt), t ∈ (0, 1), between µ0167

and µ1 is given by µt = N (mt,Σt) with mt = (1− t)m0 + tm1 and168

Σt = ((1− t)Id + tC)Σ0((1− t)Id + tC),169

with Id the d× d identity matrix and C = Σ
1
2
1

(
Σ

1
2
1 Σ0Σ

1
2
1

)− 1
2

Σ
1
2
1 .170

This property still holds if the covariance matrices are not invertible, by replacing the171

inverse by the Moore-Penrose pseudo-inverse matrix, see Proposition 6.1 in [30]. The optimal172

map T is not generalized in this case since the optimal plan is usually not supported by the173

graph of a function.174

2.5.2. W2-Barycenters in the Gaussian case. For J ≥ 2, let λ = (λ0, . . . , λJ−1) ∈ (R+)J175

be a set of positive weights summing to 1 and let µ0, µ1 . . . , µJ−1 be J Gaussian probability176

distributions on Rd. For j = 0 . . . J − 1, we denote by mj and Σj the expectation and the177

covariance matrix of µj . Theorem 2.2 in [23] tells us that if the covariances Σj are all positive178

definite, then the solution of the multi-marginal problem (2.6) for the Gaussian distributions179

µ0, µ1 . . . , µJ−1 can be written180

(2.10) γ∗(x0, . . . , xJ−1) = gm0,Σ0(x0) δ(x1,...,xJ−1)=(S1S
−1
0 x0,...,SJ−1S

−1
0 x0)181

where Sj = Σ
1/2
j

(
Σ

1/2
j Σ∗Σ

1/2
j

)−1/2
Σ

1/2
j with Σ∗ a solution of the fixed-point problem182

(2.11)

J−1∑
j=0

λj

(
Σ

1/2
∗ ΣjΣ

1/2
∗

)1/2
= Σ∗.183

The barycenter ν∗ of all the µj with weights λj is the distribution N (m∗,Σ∗), with m∗ =184 ∑J−1
j=0 λjmj . Equation (2.11) provides a natural iterative algorithm (see [2]) to compute the185

fixed point Σ∗ from the set of covariances Σj , j ∈ {0, . . . , J − 1}.186
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3. Some properties of Gaussian Mixtures Models. The goal of this paper is to investigate187

how the optimisation problem (2.1) is transformed when the probability distributions µ0, µ1188

are finite Gaussian mixture models and the transport plan γ is forced to be a Gaussian mixture189

model. This will be the aim of Section 4. Before, we first need to recall a few basic properties190

on these mixture models, and especially a density property and an identifiability property.191

In the following, for N ≥ 1 integer, we define the simplex ΓN = {π ∈ RN+ ; π1N =192 ∑N
k=1 πk = 1}.193

Definition 1. Let K ≥ 1 be an integer. A (finite) Gaussian mixture model of size K on Rd194

is a probability distribution µ on Rd that can be written195

(3.1) µ =
K∑
k=1

πkµk where µk = N (mk,Σk) and π ∈ ΓK .196

We write GMMd(K) the subset of P(Rd) made of probability measures on Rd which can
be written as Gaussian mixtures with less than K components (such mixtures are obviously
also in Pp(Rd) for any p ≥ 1). For K < K ′, GMMd(K) ⊂ GMMd(K

′). The set of all finite
Gaussina mixture distributions is written

GMMd(∞) = ∪K≥0GMMd(K).

3.1. Density of GMMd(∞) in Pp(Rd). The following lemma states that any measure197

in Pp(Rd) can be approximated with any precision for the distance Wp by a finite convex198

combination of Dirac masses. This result will be useful in the rest of the paper.199

Lemma 3.1. The set200 {
N∑
k=1

πkδyk ; N ∈ N, (yk)k ∈ (Rd)N , (πk)k ∈ ΓN

}
201

is dense in Pp(Rd) for the metric Wp, for any p ≥ 1.202

Proof. The proof is adapted from the proof of Theorem 6.18 in [28] and given here for the203

sake of completeness.204

Let µ ∈ Pp(Rd). For each ε > 0, we can find r such that
∫
B(0,r)c ‖y‖

pdµ(x) ≤ εp, where205

B(0, r) ⊂ Rd is the ball of center 0 and radius r, and B(0, r)c denotes its complementary set206

in Rd. The ball B(0, r) can be covered by a finite number of balls B(yk, ε), 1 ≤ k ≤ N . Now,207

define Bk = B(yk, ε) \ ∪1≤j<kB(yj , ε), all these sets are disjoint and still cover B(0, r).208

Define φ : Rd → Rd on Rd such that209

∀k, ∀y ∈ Bk ∩B(0, r), φ(y) = yk and ∀y ∈ B(0, r)c, φ(y) = 0.210

Then,211

φ#µ =
N∑
k=1

µ(Bk ∩B(0, r))δyk + µ(B(0, r)c)δ0212
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8 J. DELON AND A. DESOLNEUX

and213

W p
p (φ#µ, µ) ≤

∫
Rd
‖y − φ(y)‖pdµ(y)214

≤ εp
∫
B(0,r)

dµ(y) +

∫
B(0,r)c

‖y‖pdµ(y) ≤ εp + εp = 2εp,215

which finishes the proof.216

Since Dirac masses can be seen as degenerate Gaussian distributions, a direct consequence217

of Lemma 3.1 is the following proposition.218

Proposition 1. GMMd(∞) is dense in Pp(Rd) for the metric Wp.219

3.2. Identifiability properties of Gaussian mixture models. It is clear that Gaussian220

mixture models are not stricto sensu identifiable, since reordering the indexes of a mixture221

changes its parametrization without changing the underlying probability distribution, or also222

because a component with mass 1 can be divided in two identical components with masses 1
2 ,223

for example. However, we can show that if we write mixtures in a “compact” way (forbidding224

two components of the same mixture to be identical), identifiability holds, up to a reordering225

of the indexes. This property will be useful in the rest of the paper.226

Proposition 2. The set of finite Gaussian mixtures is identifiable, in the sense that two227

mixtures µ0 =
∑K0

k=1 π
k
0µ

k
0 and µ1 =

∑K1
k=1 π

k
1µ

k
1, written such that all {µk0}k (resp. all {µj1}j)228

are pairwise distinct, are equal if and only if K0 = K1 and we can reorder the indexes such229

that for all k, πk0 = πk1 , mk
0 = mk

1 and Σk
0 = Σk

1.230

Proof. This proof is an adaptation and simplification of the proof of Proposition 2 in [31].231

First, assume that d = 1 and that two Gaussian mixtures are equal:232

(3.2)

K0∑
k=1

πk0µ
k
0 =

K1∑
j=1

πj1µ
j
1.233

We start by identifying the Dirac masses from both sums, so only non-degenerate Gaussian234

components remain. Writing µki = N (mk
i , (σ

k
i )2), it follows that235

K0∑
k=1

πk0
σk0
e
− (x−mk0)2

2(σk0 )2 =

K1∑
j=1

πj1
σj1
e
−

(x−mj1)
2

2(σ
j
1)

2
, ∀x ∈ R.236

Now, define k0 = argmaxkσ
k
0 and j0 = argmaxjσ

j
1. If the maximum is attained for several237

values of k (resp. j), we keep the one with the largest mean mk
0 (resp. mj

1). Then, when238

x→ +∞, we have the equivalences239

K0∑
k=1

πk0
σk0
e
− (x−mk0)2

2(σk0 )2 ∼
x→+∞

πk00

σk00

e
−

(x−mk00 )2

2(σ
k0
0 )2 and

K1∑
j=1

πj1
σj1
e
−

(x−mj1)
2

2(σ
j
1)

2 ∼
x→+∞

πj01

σj01

e
−

(x−mj01 )2

2(σ
j0
1 )2 .240
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Since the two sums are equal, these two terms must also be equivalent when x→ +∞, which241

implies necessarily that σk00 = σj01 , mk0
0 = mj0

1 and πk00 = πj01 . Now, we can remove these two242

components from the two sums and we obtain243

∑
k=1...K0, k 6=k0

πk0
σk0
e
− (x−mk0)2

2(σk0 )2 =
∑

j=1...K1, j 6=j0

πj1
σj1
e
−

(x−mj1)
2

2(σ
j
1)

2
, ∀x ∈ R.244

We can start over and show recursively that all components are equal.245

For d > 1, assume once again that two Gaussian mixtures µ0 and µ1 are equal, written as246

in Equation (3.2). The projection of this equality yields247

(3.3)

K0∑
k=1

πk0N (〈mk
0, ξ〉, ξtΣk

0ξ) =

K1∑
j=1

πj1N (〈mj
1, ξ〉, ξ

tΣj
1ξ), ∀ξ ∈ Rd.248

At this point, observe that for some values of ξ, some of these projected components may249

not be pairwise distinct anymore, so we cannot directly apply the result for d = 1 to such250

mixtures. However, since the pairs (mk
0,Σ

k
0) (resp. (mj

1,Σ
j
1)) are all distinct, then for i = 0, 1,251

the set252

Θi =
⋃

1≤k,k′≤Ki

{
ξ s.t. 〈mk

i −mk′
i , ξ〉 = 0 and ξt

(
Σk
i − Σk′

i

)
ξ = 0

}
253

is of Lebesgue measure 0 in Rd. For any ξ in Rd \Θ0∪Θ1, the pairs {(〈mk
0, ξ〉, ξtΣk

0ξ)}k (resp.254

{(〈mj
1, ξ〉, ξtΣ

j
1ξ)}j) are pairwise distinct. Consequently, using the first part of the proof (for255

d = 1), we can deduce that K0 = K1 and that256

(3.4) Rd \Θ0 ∪Θ1 ⊂
⋂
k

⋃
j

Ξk,j257

where258

Ξk,j =
{
ξ, s.t. πk0 = πj1, 〈m

k
0 −m

j
1, ξ〉 = 0 and ξt

(
Σk

0 − Σj
1

)
ξ = 0

}
.259

Now, assume that the two sets {(πk0 ,mk
0,Σ

k
0)}k and {(πj1,m

j
1,Σ

j
1)}j are different. Since each260

of these sets is composed of different triplets, it is equivalent to assume that there exists k in261

{1, . . .K0} such that (πk0 ,m
k
0,Σ

k
0) is different from all triplets (πj1,m

j
1,Σ

j
1). In this case, the262

sets Ξk,j for j = 1, . . .K0 are all of Lebesgue measure 0 in Rd, which contradicts (3.4). We263

conclude that the sets {(πk0 ,mk
0,Σ

k
0)}k and {(πj1,m

j
1,Σ

j
1)}j are equal.264

3.3. Optimal transport and Wasserstein barycenters between Gaussian Mixture Mod-265

els. We are now in a position to investigate optimal transport between Gaussian mixture266

models (GMM). A first important remark is that given two Gaussian mixtures µ0 and µ1 on267

Rd, optimal transport plans γ between µ0 and µ1 are usually not GMM.268

Proposition 3. Let µ0 ∈ GMMd(K0) and µ1 ∈ GMMd(K1) be two Gaussian mixtures such269

that µ1 cannot be written T#µ0 with T affine. Assume also that µ0 is absolutely continuous270

with respect to the Lebesgue measure. Let γ ∈ Π(µ0, µ1) be an optimal transport plan between271

µ0 and µ1. Then γ does not belongs to GMM2d(∞).272
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Proof. Since µ0 is absolutely continuous with respect to the Lebesgue measure, we know273

that the optimal transport plan is unique and is of the form γ = (Id, T )#µ0 for a measurable274

map T : Rd → Rd that satisfies T#µ0 = µ1. Thus, if γ belongs to GMM2d(∞), all of its275

components must be degenerate Gaussian distributions N (mk,Σk) such that276

∪k (mk + Span(Σk)) = graph(T ).277

It follows that T must be affine on Rd, which contradicts the hypotheses of the proposition.278

When µ0 is not absolutely continuous with respect to the Lebesgue measure (which means279

that one of its components is degenerate), we cannot write γ under the form (2.2), but we280

conjecture that the previous result usually still holds. A notable exception is the case where281

all Gaussian components of µ0 and µ1 are Dirac masses on Rd, in which case γ is also a GMM282

composed of Dirac masses on R2d.283

We conjecture that since optimal plans γ between two GMM are usually not GMM, the
barycenters (Pt)#γ between µ0 and µ1 are also usually not GMM either (with the exception
of t = 0, 1). Take the one dimensional example of µ0 = N (0, 1) and µ1 = 1

2(δ−1 + δ1). Clearly,
an optimal transport map between µ0 and µ1 is defined as T (x) = sign(x). For t ∈ (0, 1), if
we denote by µt the barycenter between µ0 with weight 1− t and µ1 with weight t, then it is
easy to show that µt has a density

ft(x) =
1

1− t

(
g

(
x+ t

1− t

)
1x<−t + g

(
x− t
1− t

)
1x>t

)
,

where g is the density of N (0, 1). The density ft is equal to 0 on the interval (−t, t) and284

therefore cannot be the density of a GMM.285

4. MW2: a distance between Gaussian Mixture Models. In this section, we define286

a Wasserstein-type distance between Gaussian mixtures ensuring that barycenters between287

Gaussian mixtures remain Gaussian mixtures. To this aim, we restrict the set of admissible288

transport plans to Gaussian mixtures and show that the problem is well defined. Thanks to289

the identifiability results proved in the previous section, we will show that the corresponding290

optimization problem boils down to a very simple discrete formulation.291

4.1. Definition of MW2.292

Definition 2. Let µ0 and µ1 be two Gaussian mixtures. We define293

(4.1) MW 2
2 (µ0, µ1) := inf

γ∈Π(µ0,µ1)∩GMM2d(∞)

∫
Rd×Rd

‖y0 − y1‖2dγ(y0, y1).294

First, observe that the problem is well defined since Π(µ0, µ1)∩GMM2d(∞) contains at least
the product measure µ0 ⊗ µ1. Notice also that from the definition we directly have that

MW2(µ0, µ1) ≥W2(µ0, µ1).
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4.2. An equivalent discrete formulation. Now, we can show that this optimisation prob-295

lem has a very simple discrete formulation. For π0 ∈ ΓK0 and π1 ∈ ΓK1 , we denote by296

Π(π0, π1) the subset of the simplex ΓK0×K1 with marginals π0 and π1, i.e.297

Π(π0, π1) = {w ∈MK0,K1(R+); w1K1 = π0; wt1K0 = π1}(4.2)298

= {w ∈MK0,K1(R+); ∀k,
∑
j

wkj = πk0 and ∀j,
∑
k

wkj = πj1 }.(4.3)299

300

Proposition 4. Let µ0 =
∑K0

k=1 π
k
0µ

k
0 and µ1 =

∑K1
k=1 π

k
1µ

k
1 be two Gaussian mixtures, then301

(4.4) MW 2
2 (µ0, µ1) = min

w∈Π(π0,π1)

∑
k,l

wklW
2
2 (µk0, µ

l
1).302

Moreover, if w∗ is a minimizer of (4.4), and if Tk,l is the W2-optimal map between µk0 and
µl1, then γ∗ defined as

γ∗(x, y) =
∑
k,l

w∗k,l gmk0 ,Σk0
(x) δy=Tk,l(x)

is a minimizer of (4.1).303

Proof. First, let w∗ be a solution of the discrete linear program304

(4.5) inf
w∈Π(π0,π1)

∑
k,l

wklW
2
2 (µk0, µ

l
1).305

For each pair (k, l), let306

γkl = argminγ∈Π(µk0 ,µ
l
1)

∫
Rd×Rd

‖y0 − y1‖2dγ(y0, y1)307

and308

γ∗ =
∑
k,l

w∗klγkl.309

Clearly, γ∗ ∈ Π(µ0, µ1) ∩GMM2d(K0K1). It follows that310 ∑
k,l

w∗klW
2
2 (µk0, µ

l
1) =

∫
Rd×Rd

‖y0 − y1‖2dγ∗(y0, y1)311

≥ min
γ∈Π(µ0,µ1)∩GMM2d(K0K1)

∫
Rd×Rd

‖y0 − y1‖2dγ(y0, y1)312

≥ min
γ∈Π(µ0,µ1)∩GMM2d(∞)

∫
Rd×Rd

‖y0 − y1‖2dγ(y0, y1),313

because GMM2d(K0K1) ⊂ GMM2d(∞).314

Now, let γ be any element of Π(µ0, µ1) ∩ GMM2d(∞). Since γ belongs to GMM2d(∞),315

there exists an integer K such that γ =
∑K

j=1wjγj . Since P0#γ = µ0, it follows that316

K∑
j=1

wjP0#γj =

K0∑
k=1

πk0µ
k
0.317
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12 J. DELON AND A. DESOLNEUX

Thanks to the identifiability property shown in the previous section, we know that these318

two Gaussian mixtures must have the same components, so for each j in {1, . . .K}, there319

is 1 ≤ k ≤ K0 such that P0#γj = µk0. In the same way, there is 1 ≤ l ≤ K1 such that320

P1#γj = µl1. It follows that γj belongs to Π(µk0, µ
l
1). We conclude that the mixture γ can321

be written as a mixture of Gaussian components γkl ∈ Π(µk0, µ
l
1), i.e γ =

∑K0
k=1

∑K1
l=1wklγkl.322

Since P0#γ = µ0 and P1#γ = µ1, we know that w ∈ Π(π0, π1). As a consequence,323 ∫
Rd×Rd

‖y0 − y1‖2dγ(y0, y1) ≥
K0∑
k=1

K1∑
l=1

wklW
2
2 (µk0, µ

l
1) ≥

K0∑
k=1

K1∑
l=1

w∗klW
2
2 (µk0, µ

l
1).324

This inequality holds for any γ in Π(µ0, µ1) ∩GMM2d(∞), which concludes the proof.325

The discrete form (4.4) has been recently proposed as an ingenious alternative to W2 in326

the machine learning literature [6, 7]. Under this form, however, it was not obvious that327

the definition was not ambiguous, in the sense that the value of the minimium is the same328

whatever the parametrization of the Gaussian mixtures µ0 and µ1. Definition (4.1) clarifies329

this question.330

Observe also that we do not use in the definition and in the proof the fact that the ground331

cost is quadratic. Definition 2 can easily be generalized to other cost functions c : R2d 7→ R.332

The reason why we focus on the quadratic cost is that optimal transport plans between Gauss-333

ian measures for W2 can be computed explicitely. It follows from the equivalence between334

the continuous and discrete forms of MW2 that the solution of (4.1) is very easy to compute335

in practice. Another consequence of this equivalence is that there exists at least one optimal336

plan γ∗ for (4.1) containing less than K0 +K1 − 1 Gaussian components.337

Corollary 1. Let µ0 =
∑K0

k=1 π
k
0µ

k
0 and µ1 =

∑K1
k=1 π

k
1µ

k
1 be two Gaussian mixtures on Rd,338

then the infimum in (4.1) is attained for a given γ∗ ∈ Π(µ0, µ1) ∩GMM2d(K0 +K1 − 1).339

Proof. This follows directly from the proof that there exists at least one optimal w∗340

for (4.1) containing less than K0 +K1 − 1 Gaussian components (see [20]).341

4.3. An example in one dimension. In order to illustrate the behavior of the optimal342

maps for MW2, we focus here on a very simple example in one dimension, where µ0 and µ1343

are the following mixtures of two Gaussian components344

µ0 = 0.3N (0.2, 0.03) + 0.7N (0.4, 0.04),345
346

µ1 = 0.6N (0.6, 0.06) + 0.4N (0.8, 0.07).347

Figure 1 shows the optimal transport plans between µ0 (in blue) and µ1 (in red), both for the348

Wasserstein distance W2 and for MW2. As we can observe, the optimal transport plan for349

MW2 (a probability measure on R×R) is a mixture of three degenerate Gaussians measures350

supported by 1D lines.351

4.4. Metric properties of MW2 and displacement interpolation.352

4.4.1. Metric properties of MW2.353

Proposition 5. MW2 defines a metric on GMMd(∞) and the space GMMd(∞) equipped354

with the distance MW2 is a geodesic space.355
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Figure 1. Transport plans between two mixtures of Gaussians µ0 (in blue) and µ1 (in red). Left, optimal
transport plan for W2. Right, optimal transport plan for MW2. These examples have been computed using the
Python Optimal Transport (POT) library [13].

This proposition can be proved very easily by making use of the discrete formulation (4.4) of356

the distance (see for instance [6]). For the sake of completeness, we provide in the following357

a proof of the proposition using only the continuous formulation of MW2.358

Proof. First, observe that MW2 is obviously symmetric and positive. It is also clear that359

for any Gaussian mixture µ, MW2(µ, µ) = 0. Conversely, assume that MW2(µ0, µ1) = 0, it360

implies that W2(µ0, µ1) = 0 and thus µ0 = µ1 since W2 is a distance.361

It remains to show that MW2 satisfies the triangle inequality. This is a classical conse-362

quence of the gluing lemma, but we must be careful to check that we the constructed measure363

remains a Gaussian mixture. Let µ0, µ1, µ2 be three Gaussian mixtures on Rd. Let γ01 and364

γ12 be optimal plans respectively for (µ0, µ1) and (µ1, µ2) for the problem MW2 (which means365

that γ01 and γ12 are both GMM on R2d). The classical gluing lemma consists in disintegrating366

γ01 and γ12 into367

dγ01(y0, y1) = dγ01(y0|y1)dµ1(y1) and dγ12(y1, y2) = dγ12(y2|y1)dµ1(y1),368

and to define369

dγ012(y0, y1, y2) = dγ01(y0|y1)dµ1(y1)dγ12(y2|y1),370

which boils down to assume independence conditionnally to the value of y1. Since γ01 and γ12371

are Gaussian mixtures on R2d, the conditional distributions dγ01(y0|y1) and dγ12(y2|y1) are372

also Gaussian mixtures for all y1 in the support of µ1 (recalling that µ1 is the marginal on y1373

of both γ01 and γ12). If we define a distribution γ02 by integrating γ012 over the variable y1,374

i.e.375

dγ02(y0, y2) =

∫
y1∈Rd

dγ012(y0, y1, y2) =

∫
y1∈Supp(µ1)

dγ01(y0|y1)dµ1(y1)dγ12(y2|y1)376

then γ02 is obviously also a Gaussian mixture on R2d with marginals µ0 and µ2. The rest of377
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14 J. DELON AND A. DESOLNEUX

the proof is classical. Indeed, we can write378

MW 2
2 (µ0, µ2) ≤

∫
Rd×Rd

‖y0 − y2‖2dγ02(y0, y2) =

∫
Rd×Rd×Rd

‖y0 − y2‖2dγ012(y0, y1, y2).379
380

Writing ‖y0 − y2‖2 = ‖y0 − y1‖2 + ‖y1 − y2‖2 + 2〈y0 − y1, y1 − y2〉 (with 〈 , 〉 the Euclidean381

scalar product on Rd), and using the Cauchy-Schwarz inequality, it follows that382

MW 2
2 (µ0, µ2) ≤

(√∫
R2d

‖y0 − y1‖2dγ01(y0, y1) +

√∫
R2d

‖y1 − y2‖2dγ12(y1, y2)

)2

.383

384

The triangle inequality follows by taking for γ01 (resp. γ12) the optimal plan for MW2 between385

µ0 and µ1 (resp. µ1 and µ2).386

Now, let us show that GMMd(∞) equipped with the distance MW2 is a geodesic space.
For a path ρ = (ρt)t∈[0,1] in GMMd(∞) (meaning that each ρt is a GMM on Rd), we can
define its length for MW2 by

LenMW2(ρ) = SupN ;0=t0≤t1...≤tN=1

N∑
i=1

MW2(ρti−1 , ρti) ∈ [0,+∞].

Let µ0 =
∑

k π
k
0µ

k
0 and µ1 =

∑
l π

l
1µ

l
1 be two GMM. Since MW2 satifies the triangle inequality,387

we always have that LenMW2(ρ) ≥ MW2(µ0, µ1) for all paths ρ such that ρ0 = µ0 and388

ρ1 = µ1. To prove that (GMMd(∞),MW2) is a geodesic space we just have to exhibit a path389

ρ connecting µ0 to µ1 and such that its length is equal to MW2(µ0, µ1).390

We write γ∗ the optimal transport plan between µ0 and µ1. For t ∈ (0, 1) we can define

µt = (Pt)#γ
∗.

Let t < s ∈ [0, 1] and define γ∗t,s = (Pt,Ps)#γ
∗. Then γ∗t,s ∈ Π(µt, µs) ∩ GMM2d(∞) and391

therefore392

MW2(µt, µs)
2 = min

γ̃∈Π(µt,µs)∩GMM2d(∞)

∫∫
‖y0 − y1‖2 dγ̃(y0, y1)393

≤
∫∫
‖y0 − y1‖2 dγ∗t,s(y0, y1) =

∫∫
‖Pt(y0, y1)− Ps(y0, y1)‖2 dγ∗(y0, y1)394

=

∫∫
‖(1− t)y0 + ty1 − (1− s)y0 − sy1‖2 dγ∗(y0, y1)395

= (s− t)2MW2(µ0, µ1)2.396397

Thus we have that MW2(µt, µs) ≤ (s− t)MW2(µ0, µ1) Now, by the triangle inequality,398

MW2(µ0, µ1) ≤MW2(µ0, µt) +MW2(µt, µs) +MW2(µs, µ1)399

≤ (t+ s− t+ 1− s)MW2(µ0, µ1).400401

Therefore all inequalities are equalities, and MW2(µt, µs) = (s − t)MW2(µ0, µ1) for all402

0 ≤ t ≤ s ≤ 1. This implies that the MW2 length of the path (µt)t is equal to MW2(µ0, µ1).403

It allows us to conclude that (GMMd(∞),MW2) is a geodesic space, and we have also given404

the explicit expression of the geodesic.405
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The following Corollary is a direct consequence of the previous results.406

Corollary 2. The barycenters between µ0 =
∑

k π
k
0µ

k
0 and µ1 =

∑
l π

l
1µ

l
1 all belong to

GMMd(∞) and can be written explicitely as

∀t ∈ [0, 1], µt = Pt#γ
∗ =

∑
k,l

w∗k,lµ
k,l
t ,

where w∗ is an optimal solution of (4.4), and µk,lt is the displacement interpolation between
µk0 and µl1. When Σk

0 is non-singular, it is given by

µk,lt = ((1− t)Id + tTk,l)#µ
k
0,

with Tk,l the affine transport map between µk0 and µl1 given by Equation (2.9). These barycen-407

ters have less than K0 +K1 − 1 components.408

4.4.2. 1D and 2D barycenter examples.409

Figure 2. Barycenters µt between two Gaussian mixtures µ0 (blue dotted curve) and µ1 (red dotted curve).
On the left, barycenters for the metric W2. On the right, barycenters for the metric MW2. The barycenters
are computed for t = 0.25, 0.5 and 0.75.

One dimensional case. Figure 2 shows barycenters µt for t = 0.25, 0.5 and 0.75 between410

the µ0 and µ1 defined in Section 4.3, for both the metric W2 and MW2. Observe that the411

barycenters computed for MW2 are a bit more regular (we know that they are mixtures of at412

most 3 Gaussian components) than those obtained for W2.413

Figure 3. Barycenters µt between two Gaussian mixtures µ0 (first column) and µ1 (last column). Top:
barycenters for the metric W2. Bottom: barycenters for the metric MW2. The barycenters are computed for
t = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0.

This manuscript is for review purposes only.



16 J. DELON AND A. DESOLNEUX

Two dimensional case. Figure 3 shows barycenters µt between the following two dimen-414

sional mixtures415

µ0 = 0.5N
((

0.3
0.3

)
, 0.01I2

)
+ 0.5N

((
0.7
0.4

)
, 0.01I2

)
,416

417

µ1 = 0.45N
((

0.5
0.6

)
, 0.01I2

)
+ 0.55N

((
0.4
0.25

)
, 0.01I2

)
,418

where I2 is the 2 × 2 identity matrix. Notice that the MW2 geodesic looks like a simple419

displacement of both Gaussians to new positions, even if some mass is transferred from one420

to the other since π0 6= π1. In the W2 geodesic, we clearly see that the mass of each Gaussian421

is splitted in two halves which are displaced to the two final Gaussian components.422

5. Comparison between MW2 and W2.423

Proposition 6. Let µ0 ∈ GMMd(K0) and µ1 ∈ GMMd(K1) be two Gaussian mixtures,424

written as in (3.1). Then,425

W2(µ0, µ1) ≤MW2(µ0, µ1) ≤W2(µ0, µ1) +
∑
i=0,1

(
2

Ki∑
k=1

πki trace(Σk
i )

) 1
2

.426

The left-hand side inequality is attained when for instance427

• µ0 and µ1 are both composed of only one Gaussian component,428

• µ0 and µ1 are finite linear combinations of Dirac masses,429

• µ1 is obtained from µ0 by an affine transformation.430

As we already noticed it, the first inequality is obvious and follows from the definition of431

MW2. It might not be completely intuitive that MW2 can indeed be strictly larger than W2432

because of the density property of GMMd(∞) in P2(Rd). This follows from the fact that our433

optimization problem has constraints γ ∈ Π(µ0, µ1). Even if any measure γ in Π(µ0, µ1) can434

be approximated by a sequence of Gaussian mixtures, this sequence of Gaussian mixtures will435

generally not belong to Π(µ0, µ1), hence explaining the difference between MW2 and W2.436

In order to show that MW2 is always smaller than the sum of W2 plus a term depending437

on the trace of the covariance matrices of the two Gaussian mixtures, we start with a lemma438

which makes more explicit the distance MW2 between a Gaussian mixture and a mixture of439

Dirac distributions.440

Lemma 5.1. Let µ0 =
∑K0

k=1 π
k
0µ

k
0 with µk0 = N (mk

0,Σ
k
0) and µ1 =

∑K1
k=1 π

k
1δmk1

. Let441

µ̃0 =
∑K0

k=1 π
k
0δmk0

(µ̃0 only retains the means of µ0). Then,442

MW 2
2 (µ0, µ1) = W 2

2 (µ̃0, µ1) +

K0∑
k=1

πk0 trace(Σk
0).443

This manuscript is for review purposes only.



A WASSERSTEIN-TYPE DISTANCE IN THE SPACE OF GMM 17

Proof.

MW 2
2 (µ0, µ1) = inf

w∈Π(π0,π1)

∑
k,l

wklW
2
2 (µk0, δmk1

) = inf
w∈Π(π0,π1)

∑
k,l

wkl

(
‖ml

1 −mk
0‖2 + trace(Σk

0)
)

444

= inf
w∈Π(π0,π1)

∑
k,l

wkl‖ml
1 −mk

0‖2 +
∑
k

πk0 trace(Σk
0) = W 2

2 (µ̃0, µ1) +

K0∑
k=1

πk0 trace(Σk
0).445

In other words, the squared distance MW 2
2 between µ0 and µ1 is the sum of the squared446

Wasserstein distance between µ̃0 and µ1 and a linear combination of the traces of the covari-447

ance matrices of the components of µ0. We are now in a position to show the other inequality448

between MW2 and W2.449

Proof of Proposition 6. Let (µn0 )n and (µn1 )n be two sequences of mixtures of Dirac masses450

respectively converging to µ0 and µ1 in P2(Rd). Since MW2 is a distance,451

MW2(µ0, µ1) ≤MW2(µn0 , µ
n
1 ) +MW2(µ0, µ

n
0 ) +MW2(µ1, µ

n
1 )452

= W2(µn0 , µ
n
1 ) +MW2(µ0, µ

n
0 ) +MW2(µ1, µ

n
1 ).453

We study in the following the limits of these three terms when n→ +∞.454

First, observe that MW2(µn0 , µ
n
1 ) = W2(µn0 , µ

n
1 ) −→n→∞ W2(µ0, µ1) since W2 is continuous455

on P2(Rd).456

Second, using Lemma 5.1, for i = 0, 1,

MW 2
2 (µi, µ

n
i ) = W 2

2 (µ̃i, µ
n
i ) +

Ki∑
k=1

πki trace(Σk
i ) −→n→∞ W 2

2 (µ̃i, µi) +

Ki∑
k=1

πki trace(Σk
i ).

Define the measure dγ(x, y) =
∑Ki

k=1 π
k
i δmki

(y)gmki ,Σki
(x)dx, with gmki ,Σki

the probability457

density function of the Gaussian distribution N (mk
i ,Σ

k
i ). The probability measure γ belongs458

to Π(µi, µ̃i), so459

W 2
2 (µi, µ̃i) ≤

∫
‖x− y‖2dγ(x, y) =

Ki∑
k=1

πki

∫
Rd
‖x−mk

i ‖2gmki ,Σki (x)dx460

=

Ki∑
k=1

πki trace(Σk
i ).461

We conclude that462

MW2(µ0, µ1) ≤ lim inf
n→∞

(W2(µn0 , µ
n
1 ) +MW2(µ0, µ

n
0 ) +MW2(µ1, µ

n
1 ))463

≤W2(µ0, µ1) +

(
W 2

2 (µ̃0, µ0) +

K0∑
k=1

πk0 trace(Σk
0)

) 1
2

+

(
W 2

2 (µ̃1, µ1) +

K1∑
k=1

πk1 trace(Σk
1)

) 1
2

464

≤W2(µ0, µ1) +

(
2

K0∑
k=1

πk0 trace(Σk
0)

) 1
2

+

(
2

K1∑
k=1

πk1 trace(Σk
1)

) 1
2

.465

This ends the proof of the proposition.466
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Observe that if µ is a Gaussian distribution N (m,Σ) and µn a distribution supported by
a finite number of points which converges to µ in P2(Rd), then

W 2
2 (µ, µn) −→n→∞ 0

and467

MW2(µ, µn) =
(
W 2

2 (µ̃, µn) + trace(Σ)
) 1

2 −→n→∞ (2trace(Σ))
1
2 6= 0.468

Let us also remark that if µ0 and µ1 are Gaussian mixtures such that maxk,i trace(Σk
i ) ≤ ε,469

then470

MW2(µ0, µ1) ≤W2(µ0, µ1) + 2
√

2ε.471

6. Multi-marginal formulation and barycenters.472

6.1. Multi-marginal formulation for MW2. Let µ0, µ1 . . . , µJ−1 be J Gaussian mixtures473

on Rd, and let λ0, . . . λJ−1 be J positive weights summing to 1. The multi-marginal version474

of our optimal transport problem restricted to Gaussian mixture models can be written475

(6.1)

MMW2(µ0, . . . , µJ−1) := inf
γ∈Π(µ0,...,µJ−1)∩GMMJd(∞)

∫
RdJ

c(x0, . . . , xJ−1)dγ(x0, . . . , xJ−1),476

where477

(6.2) c(x0, . . . , xJ−1) =
J−1∑
i=0

λi‖xi −B(x)‖2 =
1

2

J−1∑
i,j=0

λiλj‖xi − xj‖2478

and where Π(µ0, µ1, . . . , µJ−1) is the set of probability measures on (Rd)J having µ0, µ1, . . . ,479

µJ−1 as marginals.480

Writing for every j, µj =
∑Kj

k=1 π
k
j µ

k
j , and using exactly the same arguments as in Propo-481

sition 4, we can easily show the following result.482

Proposition 7. The optimisation problem (6.1) can be rewritten under the discrete form483

(6.3) MMW2(µ0, . . . , µJ−1) = min
w∈Π(π0,...,πJ−1)

K0,...,KJ−1∑
k0,...,kJ−1=1

wk0...kJ−1
MW 2

2 (µk00 , . . . , µ
kJ−1

J−1 ),484

where Π(π0, π1, . . . , πJ−1) is the subset of tensors w in MK0,K1,...,KJ−1
(R+) having π0, π1,485

. . . , πJ−1 as discrete marginals, i.e. such that486

(6.4) ∀j ∈ {0, . . . , J − 1}, ∀k ∈ {1, . . . ,Kj},
∑

1≤k0≤K0
...

1≤kj−1≤Kj−1

kj=k
1≤kj+1≤Kj+1

...
1≤kJ−1≤KJ−1

wk0k1...kJ−1
= πkj .487

This manuscript is for review purposes only.



A WASSERSTEIN-TYPE DISTANCE IN THE SPACE OF GMM 19

Moreover, the solution γ∗ of (6.1) can be written488

(6.5) γ∗ =
∑

1≤k0≤K0
...

1≤kJ−1≤KJ−1

w∗k0k1...kJ−1
γ∗k0k1...kJ−1

,489

where w∗ is solution of (6.3) and γ∗k0k1...kJ−1
is the optimal multi-marginal plan between the490

Gaussian measures µk00 , . . . , µ
kJ−1

J−1 (see Section 2.5.2).491

From Section 2.5.2, we know how to construct the optimal multi-marginal plans γ∗k0k1...kJ−1
,492

which means that computing a solution for (6.1) boils down to solve the linear program (6.3)493

in order to find w∗.494

6.2. Link with the MW2-barycenters. We will now show the link between the previous495

multi-marginal problem and the barycenters for MW2.496

Proposition 8. The barycenter problem497

(6.6) inf
ν∈GMMd(∞)

J−1∑
j=0

λjMW 2
2 (µj , ν),498

has a solution given by ν∗ = B#γ∗, where γ∗ is an optimal plan for the multi-marginal499

problem (6.1).500

Proof. For any γ ∈ Π(µ0, . . . , µJ−1)∩GMMJd(∞), we define γj = (Pj , B)#γ, with B the501

barycenter application defined in (2.4) and Pj : (Rd)J 7→ Rd such that P (x0, . . . , xJ−1) = xj .502

Observe that γj belongs to Π(µj , ν) with ν = B#γ. The probability measure γj also belongs503

to GMM2d(∞) since (Pj , B) is a linear application. It follows that504

∫
(Rd)J

J−1∑
j=0

λj‖xj −B(x)‖2dγ(x0, . . . , xJ−1) =

J−1∑
j=0

λj

∫
(Rd)J

‖xj −B(x)‖2dγ(x0, . . . , xJ−1)505

=
J−1∑
j=0

λj

∫
Rd×Rd

‖xj − y‖2dγj(xj , y)506

≥
J−1∑
j=0

λjMW 2
2 (µj , ν).507

508

This inequality holds for any arbitrary γ ∈ Π(µ0, . . . , µJ−1) ∩GMMJd(∞), thus509

MMW2(µ0, . . . , µJ−1) ≥ inf
ν∈GMMd(∞)

J−1∑
j=0

λjMW 2
2 (µj , ν).510

Conversely, for any ν in GMMd(∞), we can write ν =
∑L

l=1 π
l
νν

l, the νl being Gaussian511

probability measures. We also write µj =
∑Kj

k=1 π
k
j µ

k
j , and we call wj the optimal discrete512
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plan for MW2 between the mixtures µj and ν (see Equation (4.4)). Then,513

J−1∑
j=0

λjMW 2
2 (µj , ν) =

J−1∑
j=0

λj
∑
k,l

wjk,lW
2
2 (µkj , ν

l).514

515

Now, if we define a K0 × · · · ×KJ−1 × L tensor α and a K0 × · · · ×KJ−1 tensor α by516

αk0...kJ−1l =

∏J−1
j=0 w

j
kj ,l

(πlν)J−1
and αk0...kJ−1

=
L∑
l=1

αk0...kJ−1l,517

clearly α ∈ Π(π0, . . . , πJ−1, πν) and α ∈ Π(π0, . . . , πJ−1). Moreover,518

J−1∑
j=0

λjMW 2
2 (µj , ν) =

J−1∑
j=0

λj

Kj∑
kj=1

L∑
l=1

wjkj ,lW
2
2 (µ

kj
j , ν

l)519

=

J−1∑
j=0

λj
∑

k1,...,kJ−1,l

αk0...kJ−1lW
2
2 (µ

kj
j , ν

l)520

=
∑

k1,...,kJ−1,l

αk0...kJ−1l

J−1∑
j=0

λjW
2
2 (µ

kj
j , ν

l)521

≥
∑

k1,...,kJ−1,l

αk0...kJ−1lMW 2
2 (µk00 , . . . , µ

kJ−1

J−1 ) (see Equation (2.7))522

=
∑

k1,...,kJ−1

αk0...kJ−1
MW 2

2 (µk00 , . . . , µ
kJ−1

J−1 ) ≥MMW 2
2 (µ0, . . . , µJ−1),523

524

the last inequality being a consequence of Proposition 7. Since this holds for any arbitrary ν525

in GMMd(∞), this ends the proof.526

The following corollary gives a more explicit formulation for the barycenters for MW2,527

and shows that the number of Gaussian components in the mixture is much smaller than528 ∏J−1
j=0 Kj .529

Corollary 3. Let µ0, . . . , µJ−1 be J Gaussian mixtures such that all the involved covariance530

matrices are positive definite, then the solution of (6.8) can be written531

(6.7) ν =
∑

k0,...,kJ−1

w∗k0...kJ−1
νk0...kJ−1

532

where νk0...kJ−1
is the Gaussian barycenter for W2 between the components µk00 , . . . , µ

kJ−1

J−1 , and533

w∗ is the optimal solution of (6.3). Moreover, this barycenter has less than K0 + · · ·+KJ−1−534

J + 1 non-zero coefficients.535

Proof. This follows directly from the proof of the previous propositions. The linear pro-536

gram (6.3) has K0 + · · · + KJ−1 − J + 1 affine constraints, and thus must have at least a537

solution with less than K0 + · · ·+KJ−1 − J + 1 components.538
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To conclude this section, it is important to emphasize that the problem of barycenters for539

the distance MW2, as defined in (6.8), is completely different from540

(6.8) inf
ν∈GMMd(∞)

J−1∑
j=0

λjW
2
2 (µj , ν).541

Indeed, since GMMd(∞) is dense in P2(Rd) and the total cost on the right is continuous on542

P2(Rd), the infimum in (6.8) is exactly the same as the infimum over P2(Rd). Even if the543

barycenter for W2 is not a mixture itself, it can be approximated by a sequence of Gaussian544

mixtures with any desired precision. Of course, these mixtures might have a very high number545

of components in practice.546

6.3. Some examples. The previous propositions give us a very simple way to compute547

barycenters between Gaussian mixtures for the metric MW2. For given mixtures µ0, . . . , µJ−1,548

we first compute all the values MW2(µk00 , . . . , µ
kJ−1

J−1 ) between their components (and these val-549

ues can be computed iteratively, see Section 2.5.2) and the corresponding Gaussian barycenters550

νk0...kJ−1
. Then we solve the linear program (6.3) to find w∗.551

Figure 4 shows the barycenters between the following simple two dimensional mixtures552

µ0 =
1

3
N
((

0.5
0.75

)
, 0.025

(
0.1 0
0 0.05

))
+

1

3
N
((

0.5
0.25

)
, 0.025

(
0.1 0
0 0.05

))
553

+
1

3
N
((

0.5
0.5

)
, 0.025

(
0.06 0
0.05 0.05

))
,554

µ1 =
1

4
N
((

0.25
0.25

)
, 0.01I2

)
+

1

4
N
((

0.75
0.75

)
, 0.01I2

)
+

1

4
N
((

0.7
0.25

)
, 0.01I2

)
555

+
1

4
N
((

0.25
0.75

)
, 0.01I2

)
,556

µ2 =
1

4
N
((

0.5
0.75

)
, 0.025

(
1 0
0 0.05

))
+

1

4
N
((

0.5
0.25

)
, 0.025

(
1 0
0 0.05

))
557

+
1

4
N
((

0.25
0.5

)
, 0.025

(
0.05 0

0 1

))
+

1

4
N
((

0.75
0.5

)
, 0.025

(
0.05 0

0 1

))
,558

µ3 =
1

3
N
((

0.8
0.7

)
, 0.01

(
2 0
1 1

))
+

1

3
N
((

0.2
0.7

)
, 0.01

(
2 0
−1 1

))
559

+
1

3
N
((

0.5
0.3

)
, 0.01

(
6 0
0 1

))
,560

561

where I2 is the 2×2 identity matrix. Each barycenter is a mixture of at most K0 +K1 +K2 +562

K3 − 4 + 1 = 11 components. By thresholding the mixtures densities, this yields barycenters563

between 2-D shapes.564

To go further, Figure 5 shows barycenters where more involved shapes have been approxi-565

mated by mixtures of 12 Gaussian components each. Observe that, even if some of the original566

shapes (the star, the cross) have symmetries, these symmetries are not necessarily respected567

by the estimated GMM, and thus not preserved in the barycenters. This could be easily solved568

by imposing some symmetry in the GMM estimation for these shapes.569

7. Using MW2 in practice.570
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Figure 4. MW2-barycenters between 4 Gaussian mixtures µ0, µ1, µ2 and µ3. On the left, some level sets
of the distributions are displayed. On the right, densities thresholded at level 1 are displayed. We use bilinear
weights with respect to the four corners of the square.

7.1. Extension to probability distributions that are not GMM. Most applications of571

optimal transport involve data that do not follow a Gaussian mixture model and we can572

wonder how to make use of the distance MW2 and the corresponding transport plans in this573

case. A simple solution is to approach these data by convenient Gaussian mixture models and574

to use the transport plan γ (or one of the maps defined in the previous section) to displace575

the data.576

Given two probability measures ν0 and ν1, we can define a pseudo-distance MWK,2(ν0, ν1)
as the distance MW2(µ0, µ1), where each µi (i = 0, 1) is the Gaussian mixture model with K
components which minimizes an appropriate “similarity measure” to νi. For instance, if νi is
a discrete measure νi = 1

Ji

∑Ji
j=1 δxij

in Rd , this similarity can be chosen as the opposite of

the log-likelihood of the discrete set of points {xj}j=1,...,Ji and the parameters of the Gaussian
mixture can be infered thanks to the Expectation-Maximization algorithm. Observe that this
log-likelihood can also be written

Eνi [logµi].

If νi is absolutely continuous, we can instead choose µi which minimizes KL(νi, µi) among
GMM of order K. The discrete and continuous formulations coincide since

KL(νi, µi) = −H(νi)− Eνi [logµi],

where H(νi) is the differential entropy of νi.577

In both cases, the corresponding MWK,2 does not define a distance since two different578

distributions may have the same corresponding Gaussian mixture. However, for K large579

enough, their approximation by Gaussian mixtures will become different. The choice of K580

must be a compromise between the quality of the approximation given by Gaussian mixture581

models and the affordable computing time. In any case, the optimal transport plan γK582

involved in MW2(µ0, µ1) can be used to compute an approximate transport map between ν0583

and ν1.584
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Figure 5. Barycenters between four mixtures of 12 Gaussian components, µ0, µ1, µ2, µ3 for the metric
MW2. The weights are bilinear with respect to the four corners of the square.

In the experimental section, we will use this approximation for different data, generally585

with K = 10.586

7.2. From a GMM transport plan to a transport map. Usually, we need not only to
have an optimal transport plan and its corresponding cost, but also an assignment giving for
each x ∈ Rd a corresponding value T (x) ∈ Rd. Let µ0 and µ1 be two GMM. Then, the optimal
transport plan between µ0 and µ1 for MW2 is given by

γ(x, y) =
∑
k,l

w∗k,lgmk0 ,Σk0
(x)δy=Tk,l(x).

It is not of the form (Id, T )#µ0 (see also Figure 1 for an example), but we can however define
a unique assignement of each x, for instance by setting

Tmean(x) = Eγ(Y |X = x),
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where here (X,Y ) is distributed according to the probability distribution γ. Then, since the
distribution of Y |X = x is given by the discrete distribution∑

k,l

pk,l(x)δTk,l(x) with pk,l(x) =
w∗k,lgmk0 ,Σk0

(x)∑
j π

j
0gmj0,Σ

j
0
(x)

,

we get that

Tmean(x) =

∑
k,l w

∗
k,lgmk0 ,Σk0

(x)Tk,l(x)∑
k π

k
0gmk0 ,Σk0

(x)
.

Notice that the Tmean defined this way is an assignement that will not necessarily satisfy587

the properties of an optimal transport map. In particular, in dimension d = 1, the map Tmean588

may not be increasing: each Tk,l is increasing but because of the weights that depend on x,589

their weighted sum is not necessarily increasing. Another issue is that Tmean#µ0 may be “far”590

from the target distribution µ1. This happens for instance, in 1D, when µ0 = N (0, 1) and µ1591

is the mixture of N (−a, 1) and N (a, 1), each with weight 0.5. In this extreme case we even592

have that Tmean is the identity map, and thus Tmean#µ0 = µ0, that can be very far from µ1593

when a is large.594

Now, another way to define an assignment is to define it as a random assignment using
the optimal plan γ. More precisely we can define

Trand(x) = Tk,l(x) with probability pk,l(x) =
w∗k,lgmk0 ,Σk0

(x)∑
j π

j
0gmj0,Σ

j
0
(x)

.

Figure 6 illustrates these two possible assignments on a simple example. In this example,595

two discrete measures ν0 and ν1 are approximated by Gaussian mixtures µ0 and µ1 of order596

K, and we compute the transport maps Tmean and Trand for these two mixtures. These maps597

are used to displace the points of ν0. We show the result of these displacements for different598

values of K. We can see that depending on the configuration of points, the results provided599

by Tmean and Trand can be quite different. If the map Trand#ν0 looks more similar to ν1 than600

Tmean#ν1, the map Trand is also less regular (two close points can be easily displaced to two601

positions far from each other). This may not be desirable in some applications, for instance602

in color transfer as we will see in Figure 8 in the next section.603

8. Two applications in image processing. We have already illustrated the behaviour of604

the distance MW2 in small dimension. In the following, we investigate more involved examples605

in larger dimension. In the last ten years, optimal transport has been thoroughly used for606

various applications in image processing and computer vision, including color transfer, texture607

synthesis, shape matching. We focus here on two simple applications: on the one hand, color608

transfer, that involves to transport mass in dimension d = 3 since color histograms are 3D609

histograms, and on the other hand patch-based texture synthesis, that necessitates transport610

in dimension p2 for p× p patches. These two applications require to compute transport plans611

or barycenters between potentially millions of points. We will see that the use of MW2 makes612

these computations much easier and faster than the use of classical optimal transport, while613

yielding excellent visual results. The codes of the different experiments are available through614

Jupyter notebooks on https://github.com/judelo/gmmot.615
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Figure 6. Assignments between two point clouds ν0 (in blue) and ν1 (in yellow) composed of 40 points, for
different values of K. Green points represent T#ν0, where T = Trand on the first line and T = Tmean on the
second line. The four columns correspond respectively to K = 1, 5, 10, 40. Observe that for K = 1, only one
Gaussian is used for each set of points, and T#ν0 is quite far from ν1 (in this case, Trand and Tmean coincide).
When K increases, the discrete distribution T#ν0 becomes closer to ν1, especially for T = Trand. When K is
chosen equal to the number of points, we obtain the result of the W2-optimal transport between ν0 and ν1.

8.1. Color transfer. We start with the problem of color transfer. A discrete color image616

can be seen as a function u : Ω→ R3 where Ω = {0, . . . nr−1}×{0, . . . nc−1} is a discrete grid.617

The image size is nr × nc and for each i ∈ Ω, u(i) ∈ R3 is a set of three values corresponding618

to the intensities of red, green and blue in the color of the pixel. Given two images u0 and u1619

on grids Ω0 and Ω1, we define the discrete color distributions ηk = 1
|Ωk|

∑
i∈Ωk

δuk(i), k = 0, 1,620

and we approximate these two distributions by Gaussian mixtures µ0 and µ1 thanks to the621

Expectation-Maximization (EM) algorithm3. Keeping the notations used previously in the622

paper, we write Kk the number of Gaussian components in the mixture µk, for k = 0, 1. We623

compute the MW2 map between these two mixtures and the corresponding Tmean. We use624

it to compute Tmean(u0), an image with the same content as u0 but with colors much closer625

to those of u1. Figure 7 illustrates this process on two paintings by Renoir and Gauguin,626

respectively Le déjeuner des canotiers and Manhana no atua. For this experiment, we choose627

K0 = K1 = 10. The corresponding transport map for MW2 is relatively fast to compute (less628

than one minute with a non-optimized Python implementation, using the POT library [13]629

for computing the map between the discrete distributions of 10 masses). We also show on the630

same figure Trand(u0) and the result of the sliced optimal transport [22, 5], since the complete631

optimal transport on such huge discrete distributions (approximately 800000 Dirac masses for632

these 1024 × 768 images) is hardly tractable in practice. As could be expected, the image633

Trand(u0) is much noiser than the image Tmean(u0). We show on Figure 8 the discrete color634

distributions of these different images and the corresponding classes provided by EM (each635

3In practice, we use the scikit-learn implementation of EM with the kmeans initialization.

This manuscript is for review purposes only.



26 J. DELON AND A. DESOLNEUX

point is assigned to its most likely class).636

Figure 7. First line, images u0 and u1 (two paintings by Renoir and Gauguin). Second line, Tmean(u0)
and Trand(u0). Third line, color transfer with the sliced optimal transport [22, 5], that we denote by SOT (u0)
and result of MW2 transport with only 3 Gaussian components for each mixture.

We show on the last line of Figure 7 the color transfer result with only K0 = K1 = 3 classes637

in each mixture. As we can see, the color distribution of Tmean(u0) in this case is too far from638

the one of u1 and the approximation by the mixtures is probably too rough to represent the639

complexity of the color data properly. On the contrary, we have observed that increasing the640

number of components does not necessarily help since the corresponding transport map will641

loose regularity. For color transfer experiments, we found in practice that using around 10642

components yields the best results.643

Color transfer is very often used as a last step of texture synthesis experiments. In the644

recent neural network approach by Gatys et al. [16] for instance, this color transfer is applied645
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Figure 8. The images u0 and u1 are the ones of Figure 7. First line: color distribution of the image u0,
the 10 classes found by the EM algorithm, and color distribution of Tmean(u0). Second line: color distribution
of the image u1, the 10 classes found by the EM algorithm, and color distribution of Trand(u0).

separately on the three dimensions of the color distributions. Figure 9 shows the result of646

this separable optimal transport on a texture synthesis example. This solution, while not647

satisfying, is often used in the literature as a fast and simple way to transfer color between648

images. It often results in color artifacts which are not present in Tmean(u0).649

We end this section with a color manipulation experiment, shown on Figure 10. Four650

different images being given, we create barycenters for MW2 between their four color palettes651

(represented again by mixtures of 10 Gaussian components), and we modify the first of the652

four images so that its color palette spans this space of barycenters. For this experiment (and653

this experiment only), a spatial regularization step is applied in post-processing [21] to remove654

some artifacts created by these color transformations between highly different images.655

8.2. Texture synthesis. Given an exemplar texture image u : Ω→ R3, the goal of texture656

synthesis is to synthetize images with the same perceptual characteristics as u, while keeping657

some innovative content. The literature on texture synthesis is rich, and we will only focus here658

on a bilevel approach proposed recently in [14]. The method relies on the optimal transport659

between a continuous (Gaussian or Gaussian mixtures) distribution and a discrete distribution660

(distribution of the patches of the exemplar texture image). The first step of the method can661

be described as follows. For a given exemplar image u : Ω → R3, the authors compute the662

asymptotic discrete spot noise (ADSN) associated with u, which is the stationary Gaussian663
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Figure 9. First column: a texture u0 (top) and its corresponding synthesis u1 by the neural network
method [16]. Second column: the color palette of u1 is transferred so that it matches the one of u0. Top:
separable color transfer. Bottom: color transfer in 3D for MW2, each palette being represented by a mixture
of 10 Gaussians. Last column: zooms on the results of column 2. Observe the color artifacts created by the
separable optimal transport.

random field U : Z2 → R3 with same mean and covariance as u, i.e.664

∀x ∈ Z2, U(x) = ū+
∑
y∈Z2

tu(y)W (x− y), where

ū = 1
|Ω|
∑

x∈Ω u(x)

tu = 1√
|Ω|

(u− ū)1Ω,
665

with W a standard normal Gaussian white noise on Z2. Once the ADSN U is computed, they666

extract the set S of all p×p sub-images (also called patches) of u. They define η1 the empirical667

distribution of this set of patches (thus η1 is in dimension 3× p× p, i.e. 27 for p = 3) and η0668

the Gaussian distribution of patches of U , and compute the semi-discrete optimal transport669

map TSD from η0 to η1. This map TSD is then applied to each patch of a realization of670

U , and an ouput synthetized image v is obtained by averaging the transported patches at671

each pixel. Since the semi-discrete optimal transport step is numerically very expansive in672

such high dimension, we propose to make use of the MW2 distance instead. For that, we673

approximate the two discrete patch distributions of u and U by Gaussian Mixture models µ0674

and µ1, and we compute the optimal map Tmean for MW2 between them. The rest of the675

algorithm is similar to the one described in [14]. In practice, we use K0 = K1 = 10, as in color676

transfer, and 3× 3 color patches. Figure 11 shows the results for different choices of exemplar677

images u.678

9. Two possible generalizations.679

This manuscript is for review purposes only.



A WASSERSTEIN-TYPE DISTANCE IN THE SPACE OF GMM 29

Figure 10. In this experiment, the top left image is modified in such a way that its color palette goes through
the MW2-barycenters between the color palettes of the four corner images. Each color palette is represented as
a mixture of 10 Gaussian components. The weights used for the barycenters are bilinear with respect to the four
corners of the rectangle.

9.1. Generalization to other mixture models. A natural question is to know if the680

methodology we have developped here, and that restricts the set of possible coupling mea-681

sures to Gaussian mixtures, can be extended to other families of mixtures. Indeed, in the682

image processing litterature, as well as in many other fields, mixture models beyond Gauss-683

ian ones are widely used, such as Generalized Gaussian Mixture Models [9] or mixtures of684

T-distributions [26], for instance. Now, to extend our methodology to other mixtures, we685

need two main properties: (a) the identifiability property (that will ensure that there is a686

canonical way to write a distribution as a mixture); and (b) a marginal consistency property687

(we need all the marginal of an element of the family to remain in the same family). These688

two properties permit in particular to generalize the proof of Proposition 4. In order to make689

the discrete formulation convenient for numerical computations, we also need that the W2690

distance between any two elements of the family must be easy to compute.691

Starting from this last requirement, we can consider a family of elliptical distributions,
where the elements are of the form

∀x ∈ Rd, fm,Σ(x) = Ch,d,Σ h((x−m)tΣ−1(x−m)),

where m ∈ Rd, Σ is a positive definite symmetric matrix and h is a given function from [0,+∞)692

to [0,+∞). Gaussian distributions are an example, with h(t) = exp(−t/2). Generalized693
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Figure 11. Left, original texture u. Middle, ADSN U . Right, synthetized version.

Gaussian distributions are obtained with h(t) = exp(−tβ), with β not necessarily equal to694

1. T-distributions are also in this family, with h(t) = (1 + t/ν)−(ν+d)/2, etc. Thanks to695

their elliptical contoured property, the W2 distance between two elements in such a family696

(i.e. h fixed) can be explicitely computed (see Gelbrich [17]), and yields a formula that is the697

same as the one in the Gaussian case (Equation (2.8)). In such a family, the identifiability698

property can be checked, using the asymptotic behavior in all directions of Rd. Now, if we699

want the marginal consistency property to be also satisfied (which is necessary if we want the700

coupling restriction problem to be well-defined), the choice of h is very limited. Indeed, Kano701

in [19], proved that the only elliptical distributions with the marginal consistency property702

are the ones which are a scale mixture of normal distributions with a mixing variable that703

is unrelated to the dimension d. So, generalized Gaussian distributions don’t satisfy this704

marginal consistency property, but T-distributions do.705

9.2. A similarity measure mixing MW2 and KL. In Section 7, we have seen how to use706

our Wasserstein-type distance MW2 and its associated optimal transport plan on probability707

measures ν0 and ν1 that are not GMM. Instead of a two step formulation (first an approx-708
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imation by two GMM, and second the computation of MW2), we propose here a relaxed709

formulation combining directly MW2 with the Kullback-Leibler divergence.710

Let ν0 and ν1 be two probability measures on Rd, we define711

(9.1)

EK,λ(ν0, ν1) = min
γ∈GMM2d(K)

∫
Rd×Rd

‖y0 − y1‖2dγ(y0, y1)− λEν0 [logP0#γ]− λEν1 [logP1#γ],712

where λ > 0 is a parameter.713

In the case where ν0 and ν1 are absolutely continuous with respect to the Lebesgue mea-714

sure, we can write instead715

(9.2)

ẼK,λ(ν0, ν1) = min
γ∈GMM2d(K)

∫
Rd×Rd

‖y0 − y1‖2dγ(y0, y1) + λKL(ν0, P0#γ) + λKL(ν1, P1#γ)716

and ẼK,λ(ν0, ν1) = EK,λ(ν0, ν1)−λH(ν0)−λH(ν1). Note that this formulation does not define717

a distance in general.718

This formulation is close to the unbalanced formulation of optimal transport proposed by719

Chizat et al. in [8], with two differences: a) we constrain the solution γ to be a GMM; and720

b) we use KL(ν0, P0#γ) instead of KL(P0#γ, ν0). In their case, the support of Pi#γ must721

be contained in the support of νi. When νi has a bounded support, this constraint is quite722

strong and would not make sense for a GMM γ.723

For discrete measures ν0 and ν1, when λ goes to infinity, minimizing (9.1) becomes equiv-724

alent to approximate ν0 and ν1 by the EM algorithm and this only imposes the marginals of725

γ to be as close as possible to ν0 and ν1. When λ decreases, the first term favors solutions γ726

whose marginals become closer.727

Solving this problem (Equation (9.1)) leads to computations similar to those used in the
EM iterations [4]. By differentiating with respect to the weights, means and covariances of
γ, we obtain equations which are not in closed-form. For the sake of simplicity, we illustrate
here what happens in one dimension.
Let γ ∈ GMM2(K) be a Gaussian mixture in dimension 2d = 2 with K elements. We write

γ =

K∑
k=1

πkN
((

m0,k

m1,k

)
,

(
σ2

0,k ak
ak σ2

1,k

))
.

We have that the marginals are given by the 1d Gaussian mixtures

P0#γ =
K∑
k=1

πkN (m0,k, σ
2
0,k) and P1#γ =

K∑
k=1

πkN (m1,k, σ
2
1,k).

Then, to minimize, with respect to γ, the energy EK,λ(ν0, ν1) above, since the KL terms
are independent of the ak, we can directly take ak = σ0,kσ1,k, and the transport cost term
becomes ∫

Rd×Rd
‖y0 − y1‖2dγ(y0, y1) =

K∑
k=1

πk
[
(m0,k −m1,k)

2 + (σ0,k − σ1,k)
2
]
.

This manuscript is for review purposes only.



32 J. DELON AND A. DESOLNEUX

Therefore, we have to consider the problem of minimizing the following “energy”:728

F (γ) =
K∑
k=1

πk
[
(m0,k −m1,k)

2 + (σ0,k − σ1,k)
2
]

729

−λ
∫
R

log

(
K∑
k=1

πkgm0,k,σ
2
0,k

(x)

)
dν0(x)− λ

∫
R

log

(
K∑
k=1

πkgm1,k,σ
2
1,k

(x)

)
dν1(x).730

It can be optimized through a simple gradient descent on the parameters πk, mi,k, σi,k for
i = 0, 1 and k = 1, . . . ,K. Indeed a simple calculus shows that we can write

∂F (γ)

∂πk
=
[
(m0,k −m1,k)

2 + (σ0,k − σ1,k)
2
]
− λ

π̃0,k + π̃1,k

πk
,

∂F (γ)

∂mi,k
= 2πk(mi,k −mi,k)− λ

π̃i,k
σ2
i,k

(m̃i,k −mi,k),

and
∂F (γ)

∂σi,k
= 2πk(σi,k − σj,k)− λ

π̃i,k
σ3
i,k

(σ̃2
i,k − σ2

i,k),

where we have introduced some auxilary empirical estimates of the variables given, for i = 0, 1
and k = 1, . . . ,K, by

γi,k(x) =
πkgmi,k,σ2

i,k
(x)∑K

l=1 πlgmi,l,σ2
i,l

(x)
and π̃i,k =

∫
γi,k(x)dνi(x);

m̃i,k =
1

π̃i,k

∫
xγi,k(x)dνi(x) and σ̃2

i,k =
1

π̃i,k

∫
(x−mi,k)

2γi,k(x)dνi(x).

At each iteration of the gradient descent, we project on the constraints πk ≥ 0, σi,k ≥ 0731

and
∑

k πk = 1.732

On Figure 12, we illustrate this approach on a simple example. The distributions ν0 and733

ν1 are 1d discrete distributions, plotted as the red and blue histograms. On this example,734

we choose K = 3. The red and blue plain curves represent the final distributions P0#γ and735

P1#γ, for respectively λ = 1, λ = 0.2 and λ = 10−4. The behavior is as expected: when λ is736

large, the KL terms are dominating and the distribution γ tends to have its marginal fitting737

well the two distribution ν0 and ν1. Whereas, when λ is small, the Wasserstein transport term738

dominates and the two marginals of γ are almost equal.739

10. Discussion and conclusion. In this paper, we have defined a Wasserstein-type dis-740

tance on the set of Gaussian mixture models, by restricting the set of possible coupling mea-741

sures to Gaussian mixtures. We have shown that this distance, with an explicit discrete742

formulation, is easy to compute and suitable to compute transport plans or barycenters in743

high dimensional problems where the classical Wasserstein distance remains difficult to han-744

dle. We have also discussed the fact that the distance MW2 could be extended to other745

types of mixtures, as soon as we have a marginal consistency property and an identifiability746
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Figure 12. The distributions ν0 and ν1 are 1d discrete distributions, plotted as the red and blue histograms.
The red and blue plain curves represent the final distributions P0#γ and P1#γ, for respectively, from left to
right, λ = 1, λ = 0.2 and λ = 10−4. In this experiment, we use K = 3 Gaussian components for γ.

property similar to the one used in the proof of Proposition 4. In practice, Gaussian mixture747

models are versatile enough to represent large classes of concrete and applied problems. One748

important question raised by the introduced framework and its generalization in Section 9.2749

is how to estimate the mixtures for discrete data, since the obtained result will depend on the750

number K of Gaussian components in the mixtures and on the parameter λ that weights the751

data-fidelity terms. If the number of Gaussian components is chosen large enough, and covari-752

ances small enough, the transport plan for MW2 will look very similar to the one of W2, but753

at the price of a high computational cost. If, on the contrary, we choose a very small number754

of components (like in the color transfer experiments of Section 8.1), the resulting optimal755

transport map will be much simpler, which seems to be desirable for some applications.756
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