Individual heterogeneity in life-history trade-offs with age at first reproduction in capital breeding elephant seals

W. Chris Oosthuizen, Martin Postma, Res Altwegg, Marie Nevoux, Roger Pradel, Marthan Bester, P Nico de Bruyn

To cite this version:

HAL Id: hal-02177472
https://hal.archives-ouvertes.fr/hal-02177472
Submitted on 9 Jul 2019
Dear Author,
During the preparation of your manuscript for publication, the questions listed below have arisen. Please attend to these matters and return this form with your proof.
Many thanks for your assistance.

<table>
<thead>
<tr>
<th>Query References</th>
<th>Query</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Please confirm that given names (blue) and surnames/family names (vermilion) have been identified and spelled correctly.</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Please spell out forename for authors “W. Chris Oosthuizen” and “P. J. Nico de Bruyn”.</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Please check if link to ORCID is correct.</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Please check that authors and their affiliations are correct.</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Please provide the “location of publisher” for reference Burnham & Anderson, 2002.</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Please provide the “location of publisher” for reference Caswell, 2001.</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Please provide the “location of publisher” for reference Choquet et al., 2009.</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Please provide the “location of publisher” for reference Ling & Bryden, 1981.</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Please provide the “volume number, page range” for reference Oosthuizen et al., 2019.</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Please provide the “volume number, page range” for reference Paterson et al., 2018.</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Please provide the “location of publisher” for reference Pradel, 2009.</td>
<td></td>
</tr>
</tbody>
</table>
Funding Info Query Form

Please confirm that the funding sponsor list below was correctly extracted from your article: that it includes all funders and that the text has been matched to the correct FundRef Registry organization names. If no FundRef Registry organization name has been identified, it may be that the funder was not found in the FundRef registry, or there are multiple funders matched in the FundRef registry. If a name was not found in the FundRef registry, it may not be the canonical name form, it may be a program name rather than an organization name, or it may be an organization not yet included in FundRef Registry. If you know of another name form or a parent organization name for a “not found” item on this list below, please share that information.

<table>
<thead>
<tr>
<th>Funding Agency</th>
<th>FundRef Organization Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Research Foundation</td>
<td>National Research Foundation</td>
</tr>
</tbody>
</table>
Individual heterogeneity in life-history trade-offs with age at first reproduction in capital breeding elephant seals

W. Chris Oosthuizen1,2, Martin Postma1, Res Altwegg2,3, Marie Nevoux1,4,5, Roger Pradel6, Marthán N. Bester1, P. J. Nico de Bruyn1

1Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
2Centre for Statistics in Ecology Environment and Conservation, Department of Statistical Sciences, University of Cape Town, Rondebosch, South Africa
3African Climate and Development Initiative, University of Cape Town, Rondebosch, South Africa
4INRA, UMR 0985 Ecology and Health of Ecosystems, Rennes, France
5Agrocampus Ouest, UMR 0985 Ecology and Health of Ecosystems, Rennes, France
6Biostatistics and Population Biology Group, CEFE, CNRS, University of Montpellier, Montpellier, France

Correspondence
W. Chris Oosthuizen, Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa.
Email: wcoosthuizen@zoology.up.ac.za

Funding information
National Research Foundation

Abstract
Recruitment age plays a key role in life-history evolution. Because individuals allocate limited resources among competing life-history functions, theory predicts trade-offs between current reproduction and future growth, survival and/or reproduction. Reproductive costs tend to vary with recruitment age, but may also be overridden by fixed individual differences leading to persistent demographic heterogeneity and positive covariation among demographic traits at the population level. We tested for evidence of intra- and inter-generational trade-offs and individual heterogeneity relating to age at first reproduction using three decades of detailed individual life-history data of 6,439 capital breeding female southern elephant seals. Contrary to the predictions from trade-off hypotheses, we found that recruitment at an early age was associated with higher population level survival and subsequent breeding probabilities. Nonetheless, a survival cost of first reproduction was evident at the population level, as first-time breeders always had lower survival probabilities than prebreeders and experienced breeders of the same age. However, models accounting for hidden persistent demographic heterogeneity revealed that the trade-off between first reproduction and survival was only expressed in “low quality” individuals, comprising 35% of the population. The short-term somatic costs associated with breeding at an early age had no effect on the ability of females to allocate resources to offspring in the next breeding season. Our results provide strong evidence for individual heterogeneity in the life-history trajectories of female elephant seals. By explicitly modeling hidden persistent demographic heterogeneity we show that individual heterogeneity governs the expression of trade-offs with first reproduction in elephant seals.

KEYWORDS
cost of reproduction, hidden heterogeneity, individual quality, mixture models, recruitment age

1 | INTRODUCTION
The principle of energy allocation posits that individuals allocate limited resources among competing life-history functions, and that energy allocation to one fitness component decreases the energy available to other fitness components (Van Noordwijk & de Jong, 1986; Williams, 1966). Trade-offs (negative covariations) are thus expected to occur among competing fitness-related traits such as growth, survival and reproduction (Stearns, 1989). Because
reproduction is energetically expensive, trade-offs between current reproduction and future growth, survival and/or reproduction are common across the slow-fast continuum of life histories (Hamel et al., 2010). Specifically, the costs of current reproduction are defined in terms of losses to an individual’s potential future reproductive success (Jönsson, 2000). Reproductive costs play a key role in the evolution of life histories (Stearns, 1989) and even moderate cost of reproduction trade-offs have significant effects on population dynamics (Proaktor, Coulson, & Milner-Gulland, 2008).

The reproductive trade-offs predicted by life-history theory may be less detectable when resources are plentiful (Ricklefs & Cadena, 2007), when a population is composed of “robust” and “frail” individuals (Vaupe1 & Yashin, 1985), or when there is variation in resource acquisition and allocation among individuals (Descamps, Gaillard, Hamel, & Yoccoz, 2016; Van Noordwijk & de Jong, 1986). For example, positive correlations among fitness components, rather than trade-offs, can emerge at the population level when the among-individual variation in resource acquisition exceeds the variation in resource allocation (Hamel et al., 2010; Van Noordwijk & de Jong, 1986). Variation in resource use may arise from numerous sources including heterogeneity in phenotypic quality (e.g., body size; MacNulty, Smith, Mech, & Eberly, 2009) and home range quality (McLoughlin et al., 2007). Variation in individual quality (i.e., “an axis of among-individual heterogeneity that is positively correlated with fitness”; Wilson & Nussey, 2010) resulting from uneven among-individual access to resources can therefore mask trade-offs measured at the population level (Hamel et al., 2010; Van Noordwijk & de Jong, 1986). While the covariance predictions of the trade-off (negative) and individual quality (positive) hypotheses are always opposed (Figure 1), these processes are not mutually exclusive and may operate simultaneously (Van Noordwijk & de Jong, 1986).

The age at which a female first reproduces (recruitment age) is a particularly important life-history trait that can vary substantially within wild populations (Caswell, 2001). In theory, recruitment at an early age benefits individuals by shortening generation time and increasing the number of possible breeding opportunities over a lifetime (McGraw & Caswell, 1996). In support of this prediction, numerous empirical studies indicate a fitness gain among individuals that recruit at an early age (Zhang, Vedder, Becker, & Bouwman, 2015; Fay, Barbraud, Delord, & Weimerskirch, 2016; Paterson, Rotella, Link, & Garrott, 2018). However, the advantages of early breeding are often counter-balanced by elevated reproductive costs among younger first-time breeders (Desprév et al., 2014; Millon, Petty, & Lambin, 2010). Young breeders have less time available to accumulate resources and experience prior to reproduction, and in species that can reproduce before completing body growth, young breeders compound the energetic demands of growth and reproduction. This energetically demanding undertaking may depress survival probability and erode the fitness benefits of early compared to delayed recruitment (Krüger, 2005; Taycchina, Pradel, Boy, Johnson, & Cézilly, 2001).

Current reproduction may not only have direct influence on survival and/or subsequent probability of reproduction, but potentially affects other traits that indirectly decrease an individual’s future performance. For example, current reproduction can reduce the residual reproductive value of an individual through its influence on the reproducing individual’s phenotype (Hamel et al., 2010). In species with determinate growth, trade-offs between current reproduction and growth are most common in young females that reproduce before reaching asymptotic body mass (Hamel & Côté, 2009; Stamps, Mangel, & Phillips, 1998). Although the somatic costs associated with early breeding do not always translate into lower future reproductive success (Hamel et al., 2010; Martin & Festa-Bianchet, 2012), such penalties are probable in capital breeders. Capital breeding females primarily depend on body reserves accumulated at an earlier time to sustain the energetic requirements of reproduction (Jönsson, 1997). Consequently current reproduction may reduce maternal body mass so much that it lowers future reproductive success or individual fitness components of subsequent offspring (Hamel et al., 2010). The costs of reproduction can therefore be expressed both within as well as between generations. Intergenerational costs are rarely investigated in long-lived species (Markussen et al., 2018; Moore, Wells, van Vuren, & Oli, 2016), even though this trade-off is as important to life-history evolution as within-generational trade-offs (Stearns, 1989). Mothers can transfer

![Figure 1](image-url) Variation in adult demographic performance (e.g., survival and breeding probability) as a function of age of first reproduction as predicted by the trade-off hypothesis and the individual quality hypothesis, respectively.
some reproductive costs to their offspring (Festa-Bianchet & Jorgenson, 1998; Martin & Festa-Bianchet, 2010) and inter-
genерational reproductive costs occur when the costs of reproduction are detectable in offspring, but not necessarily in maternal traits. For example, reduced phenotypic quality and lower survival of offspring born to young mothers may suggest that offspring pay a cost for mothers’ early age of first reproduction.

In this paper, we use 30 years of longitudinal data to assess life-history trade-offs with age at first reproduction in female southern elephant seals (Mirounga leonina; hereafter elephant seals). Because reproductive costs can be masked by phenotypic variations among individuals, we used finite mixture models (Pledger, Pollock, & Norris, 2003) to account for hidden individual heterogeneity related to age at first reproduction and its potential correlation with survival and subsequent breeding probabilities (e.g., Fay et al., 2016; Jenouvrier, Aubry, Barbraud, Weimerskirch, & Caswell, 2018). Mixture models identified clusters (classes) of individuals sharing values of latent traits, and allowed us to compare how demographic processes vary across clusters and relative to what we observe at the population level (Gimenez, Cam, & Gaillard, 2018; Hamel et al., 2018). The trade-off hypothesis (Figure 1) predicted that the costs of reproduction are highest in young female elephant seals breeding for the first time, as at Macquarie Island (Desprez et al., 2014). Elephant seals are extreme capital breeders and females do not feed at all during lactation (Jönsson, 1997). Resources are typically more limiting for young breeding females because of their smaller body size and lower blubber reserves relative to older females (Postma, Bester, & De Bruyn, 2013a). Young female elephant seals also reproduce before completing body growth (Bell, Burton, Lea, & Hindell, 2005), constraining the energy available for somatic maintenance and growth. According to this hypothesis young first-time breeders should have lower survival and subsequent breeding probabilities than those delaying reproduction to an older age because they are constrained by, for example, their smaller body size. Alternatively, the individual quality hypothesis (Figure 1) predicted positive covariance between early recruitment and adult performance. High-quality individuals should reproduce at an early age, survive better, and have a greater probability of breeding in subsequent years than low-quality individuals.

To complement our analyses of the direct survival and reproductive costs associated with first breeding, we investigated intergenerational costs by determining how mothers’ allocation decisions could potentially influence offspring’s fitness components. Specifically, we determined whether the somatic costs of breeding at the earliest possible age compromise females’ body mass and their ability to allocate resources to future offspring, if they survived and bred again in the following year. The short-term somatic costs of early reproduction are potentially important for allocation to offspring, as maternal body mass is the key determinant of weaning mass (Arnbom, Fedak, & Boyd, 1997; Fedak, Arnbom, & Boyd, 1996) and thus offspring fitness components (Oosthuizen, Altwegg, Nevoux, Bester, & De Bruyn, 2018) in elephant seals.

2 | METHODS

2.1 | Study species and capture-recapture methods

Southern elephant seals have a synchronous annual breeding season in the austral spring (September to November) (Supporting Information 1 in Data S1). Breeding females have high site fidelity and dispersal of experienced breeders to other islands is highly unusual (Oosthuizen et al., 2011). Females not present at their site of first reproduction are thus unlikely to be breeding elsewhere. Breeding females stay ashore continuously for the entire period of lactation (21–23 days) and nearly all females present at the breeding colony give birth to a single pup. Females that are not breeding (prebreeders and nonbreeders) are typically absent during the breeding season and probably mate at sea (de Bruyn et al., 2011). All elephant seals older than pups molt ashore annually for a month or more during summer (Kirkman et al., 2003). Thus, prebreeders and nonbreeders may be observed during the obligatory molt (November to February) and reproductive skipping does not necessarily constitute temporary emigration within annual capture histories. After the molt, adult seals return to and typically remain at sea to forage, up until the next breeding season. In contrast, prebreeders frequently haul out on land during the austral winter (March to August), often remaining ashore between 2 and 4 weeks (Kirkman et al., 2001). Seals do not consume prey while hauled on land and rely on catabolism of blubber lipids for metabolic energy during such periods.

From 1983 to 2009, 6,439 recently weaned female elephant seal pups born at Marion Island were uniquely marked with two hind-flipper tags (Pistorius, de Bruyn, & Bester, 2011). Tag loss are known to occur at a low rate (Oosthuizen, de Bruyn, Bester, & Girondot, 2010), and was integrated in analysis. In total, 65,602 resightings of marked female elephant seals were made between 1983 and 2014. Seals were resighted throughout all years on a weekly or 10-day cycle.

2.2 | Field estimation of adult female body mass and weighing of weaned pups

From 2007 to 2013, a cross-sectional sample of female elephant seals aged 3 or 4 years were photographed at the start
of the breeding season and at the beginning and end of the molt. Cross-sectional data were collected by means of random sampling; the molt arrival and departure body mass of 20 3-year-old females and the breeding season arrival body mass of 30 4-year-old females were estimated using three-dimensional photogrammetry (De Bruyn, Bester, Carlini, & Oosthuizen, 2009; Postma et al., 2013a; Postma, Bester, & De Bruyn, 2013b). The detection probability of breeding females was near perfect during these years (Results) and reproductive histories could therefore be assigned to individual females with confidence. To evaluate the somatic cost of early breeding we (1) compared the molt arrival and departure body mass of age 3 prebreeders to the molt arrival and departure body mass of age 3 first-time breeders; and (2) compared the breeding season arrival body mass of age 4 first-time and experienced breeders.

From 2006 to 2016, some of the pups born to age 3 first-time breeders and age 4 first-time- and experienced breeders were weighed at weaning (n = 108) (for mother-pup identification methods see De Bruyn, Tosh, Oosthuizen, Phalanndwa, & Bester, 2008). Pups were rolled into a net sling and weighed using a spring scale suspended from a pole resting on the shoulders of two fieldworkers (Oosthuizen, Bester, Altwegg, McIntyre, & De Bruyn, 2015). Estimates of maternal body mass and pup weaning mass are independent as pups weighed were not the offspring of females included in maternal body mass analysis.

2.3 General multievent model

Individual encounter histories were modeled using multievent models (Pradel, 2005). Our general model considered 11 different states underlying 15 possible field observations. In each year, a female could occupy one of the following reproductive states: (1) prebreeder (PB), has not previously pupped; (2) first-time breeder (FTB), pupped this year for the first time; (3) experienced breeder (EB), pupped previously and in this year; (4) nonbreeder (NB), pupped previously, but not in this year. All individuals entered the marked population as pups, mostly (98%) marked with two (PB2) but occasionally only one tag (PB1) at first release. Prebreeders could remain available for recapture (PB2, PB1), or temporarily emigrate from the study area (“alive elsewhere,” states PB2_AE, PB1_AE), based on the results of a goodness-of-fit test (see below). First-time breeders (FTB2, FTB1) that survived automatically transitioned to the experienced breeder (EB2, EB1) or nonbreeder (NB2, NB1) states in the next year. Lastly, an absorbing state (Dead) represents death and permanent emigration.

Encounter histories summarized multiple sightings of an individual from one breeding season to the next (September(t) to August(t + 1)) as a single event. The observation process combined robust design recapture data collected within each breeding season with auxiliary resightings containing state uncertainty that were made outside of the breeding season sampling period. The modeling framework is described in detail in Oosthuizen, Pradel, and Bruyn (2019), but we summarize the main elements here (also see Supporting Information 2 in Data S1). In brief, we aggregated alternating secondary surveys (n = 8 weekly surveys) within each breeding season (primary period) to generate two distinct capture periods (κ) per breeding season. Surveys conducted during “uneven” survey weeks of the breeding season collapsed to generate capture period U (κU), whereas surveys conducted during “even” weeks collapsed to capture period E (κE). Within each breeding season, a breeding female could (1) be encountered during both capture periods U and E (UE); (2) only be encountered in κU (U); (3) only be encountered in κE (E); (4) not be encountered in either capture period (NS). All recaptures made outside of the breeding season (whether during the molt, winter or both these nonbreeding periods) were summarized as a single observation and assigned to capture period M (κM). By pooling observations over a longer period during the interval between occasion t and t + 1 we underestimate recapture probability outside of the breeding season, as individuals that have died since breeding are considered alive and missed (whereas they are dead) (Oosthuizen et al., 2019). The net consequence of violating the instantaneous sampling assumption is minimal, however, given that breeding season recapture probabilities are high. In total, we defined 15 composite events (Supporting Information 2 in Data S1) by integrating resighting data collected for every individual during all three capture periods, and by partitioning observations according to the number of flipper tags an individual was marked with.

The encounter history matrix thus simply encoded the particular combination of field observations that was made, and not the underlying state of the individual at that moment (Oosthuizen et al., 2019).

Goodness-of-fit testing (Pradel, Wintrebert, & Gimenez, 2003) suggested that the encounter histories of both prebreeders and breeders deviated systematically from the homogeneity assumptions of the Jolly-MoVe multistate model (Supporting Information 3 in Data S1). We accounted for Markovian temporary emigration among prebreeders by specifying our capture-recapture model with “observable” and “unobservable” states between which prebreeders were allowed to move (Gimenez, Schmidt, & Pradel, 2004). Although adult capture histories revealed similar trends, model violations were smaller in magnitude and a variance inflation factor (c = χ^2/df; c = 1.25) was used in the model selection procedure to account for the remaining capture heterogeneity.
2.4 | Estimation of demographic parameters

Transitions between states were modeled in five steps, with each step conditioning on preceding transitions: (1) probability to lose the first tag; (2) probability to lose the second tag; (3) apparent survival probability (hereafter survival); (4) breeding probability; and (5) temporary emigration. The observation process, which conditions on the underlying states, was described via the product of three matrices, highlighting the successive processes of detection outside of the breeding season \(k^M \), and within the capture periods \(k^U \) and \(k^b \) of the breeding season, respectively (Supporting Information 4 in Data S1). Models were fitted using E-SURGE 2.1.2 (Choquet, Rouan, & Pradel, 2009).

Various models with different plausible constraints on recapture, tag loss and migration parameters were considered (Supporting Information 5 in Data S1). Our interest was centered on life-history trade-offs with age at first reproduction, and our model set and parameter constraints reflected this aim. Survival probability (\(\varphi \)) was initially modeled as being dependent on reproductive state and age. We considered seven age classes for prebreeders (0, 1, 2, 3, 4, 5, \(\geq 6 \)), four age classes for first-time breeders (3, 4, 5, \(\geq 6 \)) and three age classes for experienced- and non-breeders (4, 5, \(\geq 6 \)). The survival cost of first reproduction was estimated by comparing the survival probability of first-time breeders to that of prebreeders and experienced breeders of the same age. The transition \(\psi_i^{k-k'} \) is the conditional probability that an individual \(i \) makes a transition between states \(k \) and \(k' \) (\(k = \text{PB, FTB, EB, NB} \)) between occasion \(t \) and \(t + 1 \). Elephant seals give birth from 3 years of age, and in our dataset, it was unusual to observe prebreeders older than age 5 (\(n = 35 \)). The transition probability from prebreeder to first-time breeder was fixed to zero at age \(\leq 2 \), and first-time breeders could only transition to experienced- or non-breeders. Experienced- and non-breeders could not return to the prebreeder or first-time breeder states, but could move between these two states. We included age dependence in the transitions of prebreeders up to age class \(\geq 6 \) and in first-time-, experienced- and non-breeders, up to age class \(\geq 7 \). Transition into the nonbreeder state denotes probabilities of skipping reproduction; higher transition probabilities to the nonbreeder state at \(t + 1 \) for individuals breeding at \(t \) relative to those that did not reproduce at \(t \) corresponds to a cost of reproduction. To prevent over-parameterization of models, we did not investigate temporal variation in survival and breeding probabilities.

2.5 | Modeling individual heterogeneity

We used finite mixture models (Gimenez et al., 2018; Pledger et al., 2003) with two hidden classes of individuals to investigate individual heterogeneity and covariation between recruitment probability and adult demographic traits. Mixture models assume that populations comprise a mixture of several types of individuals, and that the demographic parameters can be described with two or more discrete distributions (Pledger & Schwarz, 2002). Mixture models with two classes are generally sufficient to account for hidden between-individual heterogeneity (Pledger & Schwarz, 2002). Transitions between classes were not considered, and thus each heterogeneity class represents fixed or hidden persistent demographic heterogeneity (\(\varphi, \psi \)). Among both prebreeders and first-time breeders, individuals that breed at recruitment age and experience an increase in demographic parameters were captured with two discrete classes of individuals (Authier, Aubry, & Cam, 2017; Cam, Aubry, & Authier, 2016). Each state of the general model was duplicated (e.g., FTB2A, FTB2B, FTB1A, FTB1B for first-time breeders) to create two heterogeneity states (A, B) which may assume state-specific survival, breeding transition and recapture probabilities (Supporting Information 6 in Data S1). Individuals were not assigned a priori to a particular class; instead, the proportion of individuals in heterogeneity classes A and B was estimated by the model according to their pattern of state transition. The initial state parameter \(\pi \) (respectively \(1 - \pi \)) defined the proportion of individuals in class A (respectively class B). Modeling individual heterogeneity as a latent effect allowed us to detect positive or negative covariation between survival and breeding processes at the individual level.

The most parsimonious model with no heterogeneity served as a benchmark for modeling hidden persistent demographic heterogeneity. We considered heterogeneity in survival, breeding probability and recapture probabilities in the most general heterogeneity model. We modeled both adult survival (\(\varphi_{\text{PB, FTB}, \text{EB}, \text{NB}} \)) and breeding probabilities (\(\psi_{\text{PB, FTB}, \text{EB}, \text{NB}} \)) with interactive age (\(a \)) and heterogeneity (\(h \)) effects. We assumed that each individual had an intrinsically high or low recapture probability and therefore modeled time-variation in recapture probabilities with an additive effect (on the logit scale) between the two mixture classes. Recapture probabilities of the two heterogeneity classes thus fluctuated over time in parallel.

2.6 | Model selection

Model selection was based on quasi-likelihood Akaike’s Information Criterion (QAIC). Akaike weights (\(w_i \)) were used to scale models and relative model support was based on differences in QAIC values (\(\Delta \text{QAIC} \)). Models with \(\Delta \text{QAIC} < 2 \) received approximately equivalent support from the data, but all models with \(\Delta \text{QAIC} < 7 \) have some support as plausible hypotheses (Burnham & Anderson, 2002). To ensure that models converged to the lowest deviance, we
used the Expectation Maximization (EM) algorithm combined with Quasi-Newton minimization methods implemented in E-SURGE (Choquet et al., 2009), and ran the same models multiple times using different randomly chosen starting values. Numerical methods implemented in E-SURGE indicated that models were not parameter redundant, and therefore at least locally identifiable (Choquet & Cole, 2012). Because of the large number of parameters involved, model selection was structured into successive steps, with each parameter initially included in the model as generally as possible. An appropriate model structure for recapture probabilities was selected first, keeping all other parameters fixed at high dimensionality. The next two steps involved modeling tag loss probabilities (r^{21} and r^{10}), followed by temporary emigration, survival and finally breeding probabilities, at every step retaining the most parsimonious structure for the parameter evaluated. Finally, by adding discrete classes of heterogeneity to the most parsimonious population level model selected we tested for individual heterogeneity in adult survival, breeding transitions and recapture probabilities.

2.7 | Analysis of adult female body mass and pup weaning mass

We quantified somatic costs of early reproduction in three ways. First, we compared the body mass of early breeders (age 3) to prebreeders of the same age during the molt haul out that follows first reproduction. Second, we compared the breeding season body mass of early breeders breeding for the second time at age 4, to same age first-time breeders. If significant somatic costs of early reproduction were carried over to the next breeding season, we expect early breeding females to have lower body mass at age 4 compared to females that were first-time breeders at age 4. Finally, we directly quantified the potential costs of early reproduction on subsequent offspring phenotype by comparing the weaning mass of offspring born to early breeders (at age 3 and 4, i.e., at their first and second breeding attempts) to the weaning mass of offspring born to first-time breeders at age 4. Again, if early breeding had carry-over effects to the next year, we expected offspring born to age 4 first-time breeders to be heavier than those born to age 4 females that also reproduced at age 3. We tested for differences in the mean body mass of females and the weaning mass of pups as a function of female reproductive state using two-sample t-tests and analysis of variance (ANOVA) in R 3.0.2 (R Core Team, 2013). Mean body mass ± one SD is given.

2.8 | Ethical approval

All applicable institutional and/or national guidelines for the care and use of animals were followed. All protocols were approved by the Animal Ethics Committee of the Faculty of Veterinary Science, University of Pretoria, South Africa.

3 | RESULTS

3.1 | Population level demographic performance

Female elephant seal recruitment and the subsequent breeding probabilities of first-time breeders varied by age (Table 1). Overall, recruitment probability averaged 32% (95% CI: 30–34%) at age 3 and 67% (95% CI: 63–71%) at age 4 (model 10, Table 1). Few individuals delayed first reproduction to after age 4 and, at older ages, prebreeders had lower probabilities to start breeding (Figure 2). First-time breeders had lower population level survival than prebreeders, experienced breeders and nonbreeders at all ages, indicating a direct short-term survival cost associated with breeding for the first time (Figure 3). Unexpectedly, first-time breeder survival was highest for young first-time breeders (age 3) and progressively declined with every year that recruitment was delayed (Figure 3). First-time breeders that survived to the next breeding season, in contrast, did not incur an immediate cost to future reproduction. Instead, these females were more likely to breed again than prebreeders of similar age. For example, age 3 first-time breeders that were alive at age 4 had a more than 10% higher probability to reproduce (at age 4) compared to females that were prebreeders at age 3 (Figure 2). Breeding probabilities in adulthood also did not point to short-term costs of current reproduction as experienced breeders (0.86 [95% CI: 0.84–0.88]) had distinctly higher subsequent breeding probabilities than nonbreeders (0.66 [95% CI: 0.61–0.71]). The complete model selection results and estimates of recapture, tag loss and migration probabilities are provided online (Supporting Information 7 in Data S1).

3.2 | Hidden persistent demographic heterogeneity

Finite mixture models provided strong evidence of individual heterogeneity in survival and reproduction that was not explained by models including only age effects and Markovian state transition probabilities (Table 2, Figure 4, Figure 5). Adding heterogeneity classes to survival and breeding parameters decreased QAIC values considerably, confirming the presence of demographic heterogeneity, provided that heterogeneity in recapture probability were also accounted for in the model (Table 2). We found positive covariation between early recruitment probabilities and adult fitness components. On average, 35% (95% CI: 32–38%) of females belonged to mixture class A. Individuals from this
class had low recruitment and subsequent breeding probabilities, associated with low survival probability as first-time breeders in particular. In contrast, individuals from mixture class B had high recruitment and subsequent breeding probabilities, and high survival probability, particularly as first-time breeders. Individuals from class A thus exhibited demographic rates indicative of “low quality individuals” whereas the demographic performance of individuals from class B suggested that they perform well in terms of both survival and reproduction (i.e., “high quality individuals”). An immediate survival cost of first reproduction was present.

TABLE 1 Candidate models representing hypotheses of the costs of first reproduction in southern elephant seals at Marion Island

<table>
<thead>
<tr>
<th>Model</th>
<th>Assumption of model</th>
<th>np</th>
<th>Deviance</th>
<th>Δ QAICc</th>
<th>wi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survival (ψ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>$\psi_{PB,FTB,EB,NB}$</td>
<td>187</td>
<td>59,653.81</td>
<td>8.37</td>
<td>0.01</td>
</tr>
<tr>
<td>2</td>
<td>$\psi_{PB,FTB} = EB, NB$</td>
<td>184</td>
<td>59,706.98</td>
<td>44.90</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>$\psi_{PB,FTB} = EB = NB$</td>
<td>181</td>
<td>59,711.67</td>
<td>42.66</td>
<td>0.00</td>
</tr>
<tr>
<td>4</td>
<td>$\psi_{PB,FTB,B}$</td>
<td>183</td>
<td>59,659.95</td>
<td>5.28</td>
<td>0.06</td>
</tr>
<tr>
<td>5</td>
<td>$\psi_{PB} = a \psi_{FTB,EB,NB}$</td>
<td>180</td>
<td>59,691.05</td>
<td>24.16</td>
<td>0.00</td>
</tr>
<tr>
<td>6</td>
<td>$\psi_{PB} = a \psi_{FTB} = EB = NB$</td>
<td>178</td>
<td>59,713.03</td>
<td>37.74</td>
<td>0.00</td>
</tr>
<tr>
<td>7</td>
<td>φ, a</td>
<td>177</td>
<td>59,723.38</td>
<td>44.03</td>
<td>0.00</td>
</tr>
<tr>
<td>Transition between reproductive states ($\psi^{a,k}$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>$\psi_{PB,FTB} = a \psi_{FTB,EB} = a \psi_{EB,EB,EB}$</td>
<td>180</td>
<td>59,673.19</td>
<td>9.88</td>
<td>0.01</td>
</tr>
<tr>
<td>9</td>
<td>$\psi_{PB,FTB} = a \psi_{FTB,EB} = a \psi_{EB,EB,EB}$</td>
<td>180</td>
<td>59,690.06</td>
<td>6.57</td>
<td>0.03</td>
</tr>
<tr>
<td>10</td>
<td>$\psi_{PB,FTB} = a \psi_{FTB,EB,EB,EB}$</td>
<td>179</td>
<td>59,663.35</td>
<td>0.00</td>
<td>0.87</td>
</tr>
<tr>
<td>11</td>
<td>$\psi_{PB,FTB} = a \psi_{FTB,EB,EB,EB}$</td>
<td>177</td>
<td>59,918.34</td>
<td>199.99</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Note: The parameters of the model are tag loss ($\tau^{1,2}$), survival (φ), breeding (φ), migration ($\psi^{OU, UO}$) and recapture ($p_{v,1}$ and $p_{v,2,3}$). The effects of time (t), age (a), position of flipper tag (φ) and reproductive state (PB, FTB, EB, NB) were considered. Numerical superscripts indicate variation in specific age classes. The structure of the umbrella model (model 1) was: $\tau^{1,2} \varphi \psi^{1,2,3} \psi^{a,k}$. The number of parameters (np), model deviance, Δ QAICc and the QAICc weight (w_i; the relative support by the data of a model, in relation to the other models), are given. Models in bold font were selected.

FIGURE 2 Age- and state-specific probability of breeding in year $t+1$ given that an individual was a prebreeder (PB), first-time breeder (FTB), experienced breeder (EB) or nonbreeder (NB) in year t for southern elephant seals at Marion Island (1986–2013). Black squares represent breeding probabilities (the probability to breed for the first time). Population level mean estimates and 95% confidence intervals were derived from model 10 (Table 1). Parameters are indexed based on the age a ($a = 0, 1, 2, \ldots, 6$) of individuals at time t.

FIGURE 3 Age- and state-specific survival probabilities ($\varphi_{t,t+1}$) and 95% confidence intervals of prebreeder (PB), first-time breeder (FTB), experienced breeder (EB) and nonbreeder (NB) female southern elephant seals at Marion Island (1984–2013). Population level mean estimates and 95% confidence intervals were derived from model 10 (Table 1). Parameters are indexed based on the age a ($a = 0, 1, 2, \ldots, 6$) of individuals at time t.
among “low quality individuals” only, with the majority (65%) of females in the population having high survival probability after breeding for the first time (Figure 5). Recapture probabilities during the breeding season were high for all individuals. In contrast, individuals from class A had lower recapture probabilities outside of the breeding season than those from class B (Supporting Information 8 in Data S1).

3.3 Adult female body mass and offspring weaning mass

Females that deferred breeding at age 3 (i.e., prebreeders) were heavier at the start of the molt (424.07 ± 44.07 kg) than age 3 females that produced their first offspring in the preceding breeding season (379.09 ± 25.38 kg) (Welch's t-test, t(14.38) = −2.80, p < .02). But, age 3 molting prebreeders commonly remained longer ashore (33.3 ± 13.4 days) than molting females that bred at age 3 (26.4 ± 9.8 days) and the mean postmolt departure mass of age 3 prebreeders and first-time breeders did not differ (t(17.93) = −0.58, p = .57; Figure 6). Likewise, the breeding season arrival mass of age 4 experienced breeders was comparable to that of age 4 first-time breeders (t(26) = −0.57, p = .58; Figure 6). A somatic cost associated with early reproduction was therefore detected at the start of the molt, but not at its end, and meaningfully, not in the subsequent breeding season.

Weaning mass differed significantly (F(2,105) = 18.17, p < .001) as a function of maternal age, but not according to reproductive experience. Post hoc Tukey’s HSD tests showed that the mean weaning mass of pups born to age 3 females (91.77 ± 14.77 kg) was significantly lower than those born to age 4 females (Figure 7). The weaning mass of pups born to experienced breeders at age 4 (109.65 ± 17.21 kg) were similar to those born to age 4 first-time breeders (108.75 ± 13.73 kg) (Figure 7).

4 DISCUSSION

Our results provide strong evidence for individual heterogeneity in the life-history trajectories of female elephant seals after accounting for age effects and Markovian state dependence. Life-history trajectories quantified at the population and individual level suggested that early recruitment is associated with superior demographic traits, which may correlate with individual quality. A survival cost of first reproduction was evident at the population level, as elephant seal females breeding for the first time always had lower survival probabilities than prebreeders and experienced breeders of the same age. However, by modeling hidden persistent demographic heterogeneity with finite mixture models, we were
able to statistically partition individual life-history trajectories into two classes that differ from the mean trajectory of the population (Authier et al., 2017; Hamel et al., 2018). This partitioning enabled us to show that individual heterogeneity governs the expression of trade-offs with first reproduction in elephant seals, with an immediate survival cost of first reproduction present among "low quality" individuals only, comprising 35% of the population (class A). The life-history trajectories of the majority (65%) of females in the population were instead characterized by a high probability of recruitment, and high survival and breeding probabilities after reproducing for the first time. This structured life-history differences among-individual females from the same population would have gone undetected had we not accounted for hidden demographic heterogeneity in our analyses. Although correlative in nature, the positive covariation (instead of trade-offs) we observed between survival and breeding at the individual level in models accounting for unobserved heterogeneity is best explained by the individual quality hypothesis. Our population-level analyses, which indicated a deterioration in survival and future breeding probabilities with increasing recruitment age also fits the predictions of the individual quality hypothesis. Younger first-time breeders had the highest population level postbreeding survival rates, with progressively lower survival probability after first reproduction for females that delayed breeding. Breeding probabilities measured at the population level also indicated that

FIGURE 5 Mean estimates and 95% confidence intervals of survival probabilities ($\phi_{t,t+1}$) for female southern elephant seals at Marion Island (1984–2013) in relation to age, reproductive state, and the two heterogeneity groups selected by mixture model analyses (model H8, Table 2). Each heterogeneity group is represented by a different color; as in Figure 4, individuals included in mixture A are represented by black points, those in mixture B by gray points. Prebreeder survival did not include heterogeneity.

FIGURE 6 Variation in body mass as a function of reproductive state for female southern elephant seals at Marion Island. (a) The molt arrival and departure body mass of age 3 females that were first-time breeders (FTB) in the preceding breeding season is compared to the body mass of prebreeders (PB) (i.e., individuals that deferred breeding at age 3). (b) The breeding season arrival body mass of age 4 experienced breeders (EB, that is, females that were FTB at age 3) relative to age 4 females with no previous breeding experience (FTB). Horizontal boxplot lines show the median mass and boxes represent the 25th and 75th percentiles, respectively. Individual observations (×) are superimposed on boxplots.

FIGURE 7 Southern elephant seal offspring weaning mass as a function of maternal age and reproductive state. All females breeding at age 3 are first-time breeders (FTB). Weaning mass did not differ between females that were experienced breeders at age 4 (EB) and those that were first-time breeders at age 4 (FTB). Individual observations (×) are superimposed on boxplots.
younger breeders were less likely to skip reproduction in the subsequent breeding season than females that delayed breeding. Furthermore, independent measures of indirect or inter-generational costs of reproduction (adult female body mass and offspring weaning mass) suggested that breeding at an early age did not compromise the ability of females to allocate resources to offspring in the next breeding season. Individuals that begin to reproduce earlier in life are seemingly of higher inherent quality, perhaps due to genetic or ontogenetic factors such as conditions experienced during early development (Oosthuizen et al., 2018).

4.1 Recruitment age and resource acquisition

Contrary to the predictions from the trade-off hypothesis, we found that recruitment at an early age was associated with higher population level survival and subsequent breeding probabilities. An immediate survival cost of first reproduction was detected among “low quality” individuals, but the majority of the population had positive covariation among life-history traits at the individual level. Positive correlations among fitness components, rather than trade-offs, can emerge because of within-cohort selection (Cam, Hines, Monnat, Nichols, & Danchin, 1998; Cam, Link, Cooch, Monnat, & Danchin, 2002; Sanz-Aguilar, Tavecchia, Pradel, Mínguez, & Oro, 2008; Vaupel, Manton, & Stallard, 1979) or due to individual variation in resource acquisition and/or utilization (Van Noordwijk & de Jong, 1986). Female elephant seals recruiting at a young age are not a random subgroup of the population. Age-specific recruitment probabilities are strongly affected by weaning mass, with females heavier as weaned pups more likely to start breeding at an earlier age (Oosthuizen et al., 2018). Variation in weaning mass does not translate to permanent survival differences among individuals during adulthood, but it leads to positive covariation between juvenile survival probability and breeding in early life (Oosthuizen et al., 2018). Here, we show that breeding in early life also correlates with higher first-time breeder survival and higher subsequent breeding performance compared to those that delay reproduction to older ages. Conditions that individuals experience during ontogeny may therefore contribute strongly to variation in individual quality, where individual quality represents the underlying characteristics and prospect of an individual to contribute to the evolutionary trajectory of the population (Bergeron, Baeta, Pelletier, Réale, & Garant, 2011).

Besides the nutritional conditions that individuals experience during ontogeny, variation in individual quality may also result from variation in foraging behavior and uneven among-individual access to resources subsequent to weaning (Van Noordwijk & de Jong, 1986). Individual fidelity to foraging strategies, but variation across individuals, has been observed in both northern and southern elephant seals (Bradshaw, Hindell, Sumner, & Michael, 2004; Robinson et al., 2012). For example, adult female southern elephant seals from the Western Antarctica Peninsula are specialized foragers (as inferred from stable isotope variability), with a rather limited individual niche width relative to the total available niche (Hückstädt et al., 2012). This suggests that individuals were exploiting different habitats and prey resources. Substantial individual variation in body condition has also been observed throughout foraging migrations of Marion Island southern elephant seals, suggesting individual heterogeneity in foraging success and energy assimilation (McIntyre, Donaldson, & Bester, 2015). Similarly, Robinson et al. (2012) found that the mass gain of female northern elephant seals during postbreeding foraging migrations showed little annual variation but wide interindividual variation. Such interindividual differences in foraging behavior may lead to variation in resource acquisition and allocation among individuals.

4.2 Variation in the cost of first reproduction

Life-history trade-offs with age at first reproduction are especially important in long-lived iteroparous species at the late-maturing and slow-reproducing end of the slow-fast continuum of life histories (Fay et al., 2016). These species have high residual reproductive value at the onset of adulthood, meaning that reproductive costs leading to the death of first-time breeders are especially detrimental to fitness. This may explain why delaying reproduction beyond the age of sexual maturity is commonly observed in long-lived iteroparous species (Curio, 1983; Forslund & Pärt, 1995).

Costs of reproduction are often more pronounced when environmental conditions deteriorate, such as when food resources are limited (Barbraud & Weimerskirch, 2005), under high density (Festa-Bianchet, Gaillard, & Jorgenson, 1998), harsh weather (Tavecchia et al., 2005) or in the presence of disease (Descamps, Gilchrist, Béty, Butler, & Forbes, 2009). For elephant seals at Marion Island, population level survival costs associated with first reproduction are significantly less than that at Macquarie Island, where first-time breeders have survival probabilities that are 31, 19, and 17% lower than that of prebreeders at age 3+, 4+, and 5, respectively (Desprez et al., 2014). The difference in reproductive costs between the Marion- and Macquarie Island populations is most pronounced among young breeders. At Macquarie Island, few females recruit at age 3 (ψ_{PB-FTB} = 0.1) and those that do, face large survival costs (Desprez et al., 2014). At Marion Island, recruitment probability is three times higher at age 3 (ψ_{PB-FTB} = 0.34) and breeding costs are low for young compared to old first-time breeders. This suggests comparatively favorable conditions for reproduction at
Marion Island, perhaps related to per capita food availability in their marine habitat or because of the small population (and low density) of elephant seals that haul out to breed here. Declines of elephant seals at both Marion Island (in the south Indian Ocean) and Macquarie Island (in the south Pacific Ocean) have been attributed to decreases in food availability (McMahon, Bester, Burton, Hindell, & Bradshaw, 2005), but while time-series data suggest continued decreases at Macquarie Island (Van den Hoff et al., 2014), seal numbers have increased in recent years at Marion Island (Pistorius et al., 2011). Temporal and spatial variation in food availability is difficult to quantify for each of these populations (Oosthuizen et al., 2015), but population sizes undoubtedly differ, with the Macquarie Island elephant seal population (~20,000 breeding females) many times larger than the Marion Island population (~550 breeding females).

An earlier study of female elephant seals at Marion Island advocated no reduced survival following breeding at any age (Pistorius et al., 2004); however, their analysis did test for reduced survival following first breeding specifically. Pistorius, Bester, Hofmeyr, Kirkman, and Taylor (2008) indicated that first-time breeders had lower postbreeding survival than experienced breeders. However, Pistorius et al. (2008) ignored age effects and unobserved individual heterogeneity, and did not compare individuals that reproduced (first-time- or experienced breeders), to those that faced no costs (prebreeders). Our results provide strong evidence of age-specific survival of first-time breeders estimated at the population level. Additionally, our analysis accounting for hidden persistent demographic heterogeneity revealed that the trade-off between first reproduction and survival was only expressed in the part of the population (35%) with demographic rates indicative of “low quality” individuals.

4.3 Heterogeneity modeling choices and limitations

We chose finite mixture models to cluster individuals into discrete heterogeneity classes with life-history trajectories that differ from each other and the mean trajectory of the population (Authier et al., 2017; Hamel et al., 2018). We found strong model support for individual heterogeneity in demographic parameters over homogeneity (i.e., a single cluster, the population level) when heterogeneity in recapture probability were also accounted for in the model. A limitation of our modeling approach is that heterogeneity in demographic parameters, when included in the model, was linked with heterogeneity in recapture probability (i.e., individuals in mixture class A had to be in that class for the survival, breeding and recapture probability parameters). Separating heterogeneity (allowing individuals to be in mixture class A for demographic parameters and mixture class B for recapture probability, for example) would have required four hidden groups and such models are likely to present identifiability problems (Lindberg, Sedinger, & Lebreton, 2013). We also chose not to allow individuals to transition from one heterogeneity class to another (e.g., Pradel, 2009). This is a common assumption when modeling heterogeneity with mixture models with a specific interpretation: each heterogeneity class represents fixed or hidden persistent demographic heterogeneity (Authier et al., 2017; Cam et al., 2016). Though individual improvement is not permitted in such models by allowing transition from a “low quality” to a “high quality” mixture class, improvements (or deterioration) with age is allowed within a mixture class. Our results should, however, not be interpreted as evidence of the existence of two explicit classes of individuals (Pledger et al., 2003). Rather, individual heterogeneity is a continuous latent variable that we partly captured in our model through two classes. Two heterogeneity classes are generally considered sufficient to capture hidden heterogeneity (Desprez, Gimenez, McMahon, Hindell, & Harcourt, 2018; Fay et al., 2016; Guéry et al., 2017; Lindberg et al., 2013; Péron et al., 2010; Pledger et al., 2003), but more flexible mixture structures can also be modeled, and selected (e.g., three classes; Jenouvrier et al., 2018). Here, we chose to limit our investigation of individual heterogeneity to two mixtures, but acknowledge that we could also have modeled a larger (but finite) number of classes of heterogeneity, or alternatively have accounted for heterogeneity through fitting individual random effect models that consider individual heterogeneity (e.g., “frailty” in survival) as a random variable with a continuous distribution (Cam et al., 2002; Gimenez et al., 2018).

4.4 Somatic and intergenerational costs of early breeding

Mass loss during the breeding season is inherent to extreme capital breeders like elephant seals and, when taking the underlying breeding tactic into consideration, mass loss alone should not immediately be interpreted as evidence of a cost of reproduction (Moreno, 1989). Rather, to be costly, mass loss associated with reproduction must have detrimental consequences on the residual reproductive value of an individual. In breeding female elephant seals, the energetic demands of lactation are compounded by a 4 weeks fast. Prebreeders, in contrast, do not allocate energy to offspring and forage uninterrupted during the breeding season to increase their blubber reserves. Breeding females only have a relatively short (eight to 10 weeks) postbreeding pelagic foraging trip to rebuild their fat reserves, prior to the molt. It is therefore unsurprising that females that bred at age 3 had
lower body mass than same-aged prebreeders when they returned to land to molt.

In the molt, elephant seals remain ashore without feeding. Although the shedding and replacement of hair and the top layers of the epidermis takes about 4 weeks to complete, some individuals stay ashore several weeks after completing the molt (Ling & Bryden, 1981). The ability to fast is determined by a seal’s available energy stores, which is directly related to total body fat. The duration of the adult female (breeder) molt haul out is the shortest of any age/sex class (Ling & Bryden, 1981), reflecting the limited ability of breeding females to rebuild energetic reserves during the relatively short foraging phase between breeding and molting.

At Marion Island, molting 3-year-old prebreeders typically remain ashore 1 week longer than same aged females that bred in the preceding breeding season (MRI unpublished data, 1986–2013). The longer molt haul out of prebreeders reflects their larger energy stores at the start of the molt, and contributes to the similarity of departure body mass of prebreeders and first-time breeders at the end of the molt. Molting females therefore appear to remain ashore until they reach an energetic or body mass “threshold”, at which point they return to sea.

Age 4 experienced breeders had comparable body mass to age 4 first-time breeders at the start of a breeding season, despite the major somatic cost incurred by the former when breeding at age 3. Thus, while females breeding at age 3 were not able to acquire sufficient energy resources prior to the molt to fully recover body mass from the breeding effort, we detected no carry-over effect on body mass of females that survived to the subsequent breeding season. This is important, given that most of the variation in weaning mass of elephant seal pups derives directly from variation in maternal body mass (Arnbom et al., 1997; Fedak et al., 1996; Postma et al., 2013a) and because weaning mass significantly correlates with juvenile survival and female recruitment age in elephant seals (McMahon, Burton, & Bester, 2000; Oosthuizen et al., 2018). Our sample size for female body mass was small, but the larger sample of offspring weaning mass independently confirmed that early reproduction did not affect the ability of females to allocate resources to offspring in the next year.

Although we detected no difference in the breeding season arrival body mass of age 4 experienced breeders compared to age 4 first-time breeders, these comparisons strictly refer to surviving females, and do not necessarily mean that somatic costs play no role in reproductive costs of elephant seals. Young females in particular are energy-deprived when their pups are weaned (Fedak et al., 1996; Postma et al., 2013a). Mortality risk during the postbreeding foraging migration exceeds that of the postmolt foraging migration (Pistorius et al., 2008), and part of this mortality may be linked to the extreme reduction in body mass during the breeding season. Survival costs associated with reproduction may thus be partially attributed to a failure to recuperate depleted energy reserves. The risks associated with body mass loss are not restricted to mortality. In mammals, conception is generally dependent on body condition (e.g., Cameron, Smith, Fancy, Gerhart, & White, 1993). The occurrence of pregnancy in pinniped capital breeders is especially sensitive to body reserves (Boyd, 2000) and the somatic cost of current reproduction could therefore contribute to lower breeding probabilities at $t + 1$. We did not find any evidence for such a reduction in breeding probabilities of either first-time breeders or experienced breeders.

5 | CONCLUSION

We tested for evidence of intra- and inter-generational trade-offs and individual heterogeneity relating to age at first reproduction using multidecadal data on individually marked female southern elephant seals. Our rigorous multimodel approach allowed us to directly compare models that included age effects, Markovian state dependence and persistent demographic heterogeneity in survival and reproduction to those that did not. We found that individual heterogeneity governs the expression of trade-offs with first reproduction in elephant seals, with an immediate survival cost of first reproduction present among “low quality” individuals only. Although we cannot exclude long-term costs of early reproduction, our study suggests that fixed individual differences may be an important factor explaining variations in recruitment age and positive covariation among demographic traits subsequent to first reproduction. Elephant seals at Marion Island display comparatively limited flexibility in age at first reproduction, with recruitment essentially occurring between the ages of 3–6 in this population. This narrow window contrasts strongly with flexibility (age 4–16 years) in the age at first reproduction in another large phocid, the Weddell seal (Leptonychotes weddellii) (Paterson et al., 2018). Nonetheless, plasticity in age at first reproduction permits individuals of long-lived species to delay reproduction until sufficient somatic development allows them to at least partially mitigate costs of reproduction (Descamps, Boutin, Berteaux, & Gaillard, 2006; Paterson et al., 2018). Female elephant seals recruiting at a young age are not a random subgroup of the population, but mostly those that experienced favorable conditions during early development (Oosthuizen et al., 2018). Our finding that individuals that recruit earlier in life survive and reproduce better than delayed breeders supports the hypothesis that recruitment age is an indicator or proxy of individual quality (Fay et al., 2016; Paterson et al., 2018).
ACKNOWLEDGMENTS
We thank all the field workers who collected demographic data on seals at Marion Island over the past four decades. The research benefited from logistical support provided by the South African Department of Environmental Affairs within the South African National Antarctic Programme. The South African Department of Science and Technology provided funding through the National Research Foundation (NRF). Opinions expressed and conclusions arrived at, are those of the authors and are not necessarily to be attributed to the NRF.

CONFLICT OF INTEREST
The authors declare no potential conflict of interest.

AUTHOR CONTRIBUTIONS
W.C.O. originally formulated the idea with input from R.A., M.N., M.N.B., and P.J.N.d.B. W.C.O. analyzed the data with input from RP and wrote the manuscript. M.P. conducted photogrammetric estimation. All authors provided intellectual and editorial advice.

ORCID
W. Chris Oosthuizen https://orcid.org/0000-0003-2905-6297

REFERENCES

Supporting Information

Additional supporting information may be found online in the Supporting Information section at the end of this article.
We tested for evidence of intra- and inter-generational trade-offs and individual heterogeneity relating to age at first reproduction in elephant seals. Models accounting for demographic heterogeneity revealed that the trade-off between first reproduction and survival was only expressed in “low quality” individuals. Our results provide strong evidence that individual heterogeneity governs the expression of trade-offs with first reproduction in elephant seals.