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The flow of a gravity current of finite volume and density ρ1 released from rest from a 
rectangular lock (of height h0) into an ambient fluid of density ρ0 (<ρ1) in a system 
rotating with Ω about the vertical z is investigated by means of fully resolved direct 
numerical simulations (DNS) and a theoretical model (based on shallow-water and Ekman 
layer spin-up theories, including mixing). The motion of the dense fluid includes several 
stages: propagation in the x-direction accompanied by Coriolis acceleration/deflection in 
the −y-direction, which produces a quasi-steady wedge-shaped structure with significant 
anticyclonic velocity v, followed by a spin-up reduction of v accompanied by a slow x 
drift, and oscillation. The theoretical model aims to provide useful insights and 
approximations concerning the formation time and shape of wedge, and the subsequent 
spin-up effect. The main parameter is the Coriolis number, C = Ωh0/(g′h0)

1/2, where g′ = 
(ρ1/ρ0 − 1)g is the reduced gravity. The DNS results are focused on a range of relatively 
small Coriolis numbers, 0.1 6 C 6 0.25 (i.e. Rossby number Ro = 1/(2C) in the range 2 6 
Ro 6 5), and a large range of Schmidt numbers 1 6 Sc < ∞; the Reynolds number is large 
in all cases. The current spreads out in the x direction until it is arrested by the Coriolis 
effect (in ∼1/4 revolution of the system). A complex motion develops about this state. 
First, we record oscillations on the inertial time scale 1/Ω (which are a part of the 
geostrophic adjustment), accompanied by vortices at the interface. Second, we note the 
spread of the wedge on a significantly longer time scale; this is an indirect spin-up effect –
mixing and entrainment reduce the lateral (angular) velocity, which in turn decreases the 
Coriolis support to the ∂h/∂x slope of the wedge shape. Contrary to non-rotating gravity 
currents, the front does not remain sharp as it is subject to (i) local stretching along the 
streamwise direction and (ii) convective mixing due to Kelvin–Helmholtz vortices 
generated by shear along the spanwise direction and stemming from Coriolis effects. The 
theoretical model predicts that the length of the wedge scales as C−2/3
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(in contrast to the Rossby radius ∝1/C which is relevant for large C; and in contrast
to C−1/2 for the axisymmetric lens).

Key words: gravity currents, rotating flows

1. Introduction
Gravity currents are flows generated by horizontal pressure gradients, as a result

of gravity over fluids with different density. This driving effect is also referred to
as (horizontal) buoyancy. These flows manifest as a mostly horizontal current of
light fluid above a heavy fluid, or as a current of heavy fluid below light fluid.
Gravity currents are present in nature and the environment in many situations, such
as volcanic clouds, oil leaks in the sea, discharge of gases from exhaust devices, and
sand storms in the desert. These phenomena play an important role in the transport of
mass, momentum and energy. This was, for instance, recently confirmed in the case
of river discharges by Clarke (2016) who made detailed observations of field-scale
turbidity currents sloping off the mouth of the Squamish River (British Columbia,
Canada) that discharges more than 1 million cubic metres of sediment per year
(Hickin 1989). In particular, these gravity currents, composed of sediment transported
as a suspension, can be responsible for massive sediment deposits on the submarine
floor of up to few metres, as in the region close to the transition from Agadir Canyon
to Agadir Basin, for example (Cantero et al. 2012).

Allen (1971) and Simpson (1972) are seminal works that studied the three-
dimensional (3-D) structure and dynamics of the front of planar gravity currents
and in particular the processes at the origin of the formation of lobes and clefts.
The works of Fannelop & Waldman (1971), Hoult (1972) and Huppert & Simpson
(1980) characterized the dynamics of gravity currents by laboratory experiments
and theoretical models, where the different phases of spreading of gravity currents
were analysed and scaling laws for the slumping and self-similar regimes were
proposed. Mixing in gravity currents has been measured and modelled by Simpson
& Britter (1979), García & Parsons (1996) and Parsons & García (1998), while the
internal structure of gravity fronts has been studied through local measurements of
the velocity field by Alahyari & Longmire (1996) and Patterson et al. (2006). The
theoretical understanding, interpretation and approximate prediction of the the gravity
current phenomenon is by means of simplified theoretical models; see Ungarish
(2009). More recently, resolved 3D simulations of non-rotating gravity currents have
been performed, for example, by Härtel, Meiburg & Necker (2000) and Cantero
et al. (2007b, 2008). These works allowed a full characterization of the flow inside
a gravity current and in particular at the front, and an assessment of the relevance of
available models predicting the front velocity in all regimes.

At geophysical scales, gravity currents play an important role in river outflows, the
circulation of the atmosphere and hydrosphere, and hazards such as volcanic clouds
(Griffiths 1986). In these cases the rotation of the planet may affect the flow field. The
typical centrifugal acceleration Ω2L is insignificant compared to the acceleration due
to gravity g even for length scales L of the order of the Earth’s radius, but the Coriolis
acceleration may become the dominant balance of the driving buoyancy effect in a
sufficiently long process (typically, a quarter revolution of the system). It is therefore
of both theoretical and practical interest to investigate the influence of the Coriolis
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effect on gravity currents. The rotational effects are accounted for by the ratio between
the inertial time scale and the rotational time scale. This ratio is called the Coriolis
number C (defined in § 2) and can be also related to the Rossby number Ro ∼ 1/C.
Note that when density stratification and rotation are present in the system, as in the
present case, one can equivalently define a Burger number Bu which is related to the
Coriolis number Bu∼ 1/C2 (see Stegner, Bouruet-Aubertot & Pichon 2004). Given the
‘slow’ Ω ∼ 10−4 s−1 of the planet, gravity currents in nature are expected to display
small C. We shall subsequently consider flows with C < 1 (unless stated otherwise).

A great deal of attention has been focused on gravity currents of fixed volume
released from a cylinder lock whose axis z is parallel to the axis of rotation and
antiparallel to gravity (Verzicco, Lalli & Campana 1997; Hallworth, Huppert &
Ungarish 2001; Stegner et al. 2004; Stuart, Sundermeyer & Hebert 2011; Dai & Wu
2016, 2018). The current spreads out along the radius r in an axisymmetric pattern,
attains a maximum value rmax, then performs oscillations. This process, referred to
as geostrophic adjustment, occurs in about a quarter revolution of the system. The
dense fluid attains a quasi-steady motion with profile h∼ (r2

max − r2) and a significant
negative angular velocity parallel to the front (in the rotating system) referred to
as transverse anticyclonic velocity; this structure is called a ‘lens’ (see Ungarish
2009, chap. 8 and the references therein). It is worth noting that in most of the
above-mentioned works, the value of the Coriolis number is generally such that
C > 1.

In this work we address the counterpart Cartesian problem: the gravity current is
‘planar’ (not cylindrical), released from a rectangular lock, in a rotating system. The
motion is not restricted by geometrical obstacles in the forward (streamwise) and
lateral (sidewise) directions x and y, respectively. We thus expect a close (but not
perfect) counterpart to the axisymmetric current and lens. The Coriolis effects will
stop the x propagation at some xmax, while producing a significant anticyclonic (lateral)
velocity. Again, the geostrophic adjustment is expected to produce a quasi-steady
profile in the xz plane, supported by a sidewise velocity. This counterpart of the lens,
which we call a ‘wedge’ due to the shape, will be presented later. The objective
of this paper is to study this flow in some detail. To this end, we combine direct
numerical simulations (DNS) with a theoretical model. Choosing such a configuration,
in contrast to a cylindrical release, allows us to perform a parametric study in the
parameter space defined by C, Sc and the type of top–bottom boundary conditions. In
addition, we argue that the present planar configuration is a more relevant set-up for
geophysical situations. The typical current is released from a reservoir (lock) which
is far away from the axis of rotation. In these circumstances the curvature terms are
negligibly small. The planar set-up is not only a simplification, but also highlights
the difference between a situation influenced by curvature terms and one which is
not.

Firstly, we report on eight 3-D DNS of various boundary conditions (free-slip
and no-slip), Schmidt numbers and Coriolis numbers. For this we employ two
numerical approaches: a fully de-aliased pseudo-spectral method for simulations with
small Schmidt numbers (Canuto et al. 1988; Salinas, Cantero & Dari 2014); and
a finite-volume/volume-of-fluid method with no interface reconstruction for high
Schmidt numbers (Bonometti & Magnaudet 2007).

Secondly, the DNS results are compared to the predictions of a theoretical model.
In contrast to the high accuracy and detailed flow-field information supplied by the
DNS simulations, the theoretical model is concerned with the global behaviour of the
current: shape of the interface (assumed sharp), position of the nose-front, and the
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depth-averaged velocities. This provides insights and estimates concerning the time of
formation, spread-out, and magnitude of the anticyclonic velocity. In particular, we
show that this theoretical model sheds light on a topic of interest which received little
attention in previous investigation is: what happens after the adjustment stage? The
dense fluid of the lens, or wedge, is in differential rotation with respect to the ambient.
Assuming a stable situation, thin viscous Ekman layers will appear on the boundaries
of the dense fluid together with some mixing and entrainment in the interfacial region,
and attempt to cancel the lateral speed difference (the so-called spin-up effect). The
important by-product is a slow expansion (over many revolutions of the system) of
the quasi-steady wedge.

A forerunner to the present investigation was done by Hunt et al. (2005).
Briefly, these authors performed 2-D numerical simulations of the Euler equations
to investigate the effect of rotation on the dynamics of the front, up to a time
corresponding to the first oscillation of the front. They also performed a theoretical
analysis of the front shape and dynamics of gravity currents propagating on a
slope in a rotating system. Finally, they solved a system of 2-D shallow-water
equations, including bottom friction, in order to investigate the front dynamics (in the
horizontal case) during the oscillating regime. The model allowed them to observe
a slow expansion of the oscillating front, which they attribute to the presence of
bottom friction. Note that their work considered a range of Coriolis number of about
0.75 6 C 6 1.5.

The present work extends Hunt et al.’s (2005) results in many ways. Firstly, the
present 3-D DNS include viscous effects and thus fully capture the Ekman layers. In
addition, the present DNS are performed for much longer times than those reported
before. Secondly, we here consider a different range of Coriolis numbers and a large
range of Schmidt numbers and top–bottom boundary conditions. Finally, the present
theoretical model explicitly accounts for the influence of Ekman layers or mixing at
the interface between the current and the ambient and, inter alia, provides theoretical
predictions for the geostrophic structure and for the slow expansion of the oscillating
front which can be directly compared to the present DNS results.

The paper is structured as follows. We present in § 2 the set of equations and the
numerical set-ups used in the DNS. The theoretical model based on shallow-water and
Ekman layer spin-up theories is described in § 3. In § 4, we describe the dynamics
of rotating gravity currents (C < 1) obtained from DNS and the present theoretical
model. In particular, we follow the ‘chronology’ of the current’s front: early times
of propagation until the first arrest; oscillations; slow drift. For each sequence of the
dynamics, we present the influence of C, Sc and the type of top–bottom boundary
conditions. Concluding remarks are given in § 5.

2. Mathematical formulation and numerical set-up
2.1. Equations and assumptions

The system under consideration is depicted schematically in figure 1.
In the region 0 6 x 6 x0 the domain is filled with a fixed volume of heavy fluid of

density ρ1 and height h0 (shaded region in figure 1) which is released into an ambient
fluid initially of density ρ0 and height H.

We use a rectangular computational box of size L×W×H in rotation at an angular
velocity Ω about the vertical axis z anti-parallel to gravity.

The density difference between the current and the ambient is small enough that the
Boussinesq approximation is valid. In these circumstances the flow is governed by the
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FIGURE 1. (Colour online) Schematic of the configuration considered here. Computational
domain used in the present work for the spectral code. For computational reasons, periodic
boundary conditions are used along the x- and y-directions so the heavy fluid is mirrored
at the centre of the domain. The heavy fluid is initially located in a box of dimensions
x0 ×W ×H.

dimensionless equations

∂ũ
∂ t̃
+ ũ · ∇̃ũ=−∇̃p̃+

1
Re
∇̃

2ũ− ρ̃ ẑ− 2C(ũŷ− ṽx̂), (2.1)

∇̃ · ũ= 0, (2.2)
∂ρ̃

∂ t̃
+ ũ · ∇̃ρ̃ =

1
Re Sc

∇̃
2ρ̃. (2.3)

Here a tilde (∼) denotes a dimensionless quantity, ũ= {ũ, ṽ, w̃} is the velocity, p̃ the
pressure, and ρ̃ the density. The scales employed are the current height h0 as length
scale, U =

√
g′h0 as velocity scale with g′ = g(ρ1 − ρ0)/ρ0 being the reduced gravity,

ρ0U2 as pressure scale, and T = h0/U as time scale. The dimensionless density is
given by

ρ̃ =
ρ − ρ0

ρ1 − ρ0
. (2.4)

The dimensionless parameters in (2.1)–(2.3) are the Reynolds, Schmidt, and Coriolis
numbers defined as

Re=
Uh0

ν
, Sc=

ν

κ
, C =

Ωh0

U
, (2.5a−c)

where ν is the kinematic viscosity assumed identical for both the current and the
ambient, κ the mass diffusivity of the agent responsible for the density contrast, and
Ω ={0, 0,Ω} is the constant angular velocity of the rotating system. Two other useful
dimensionless numbers follow, namely, the Rossby number Ro= 1/2C, and the Ekman
number E= ν/(Ωh2

0)= (CRe)−1.
The initial conditions at t̃ = 0 are a release from rest (in the rotating system), in

particular ũ= ṽ = 0 for the dense fluid in the lock. Note that the subsequent motion
in the x̃> 0 and ỹ-direction is not restricted.

2.2. The two numerical approaches
In this work two different numerical techniques are used: a fully de-aliased pseudo-
spectral code (Canuto et al. 1988; Salinas et al. 2014) and a finite-volume/volume-of-
fluid method with no interface reconstruction (Bonometti & Magnaudet 2007). The
spectral code is used to simulate currents with moderate Schmidt numbers (16 Sc6 5)
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Case Reference Code C Ro Sc L Nx ×Ny ×Nz BC xmax t̃max Tp ωp/f

1 S1-C10-F PS 0.1 5 1 9 1536× 80× 180 FS 7.8 21.8 29.07 1.08
2 S1-C15-F PS 0.15 3.3 1 9 1536× 80× 180 FS 5.5 14.9 19.51 1.07
3 S1-C25-F PS 0.25 2 1 9 1536× 80× 180 FS 3.6 8.5 12.18 1.03
4 S1-C15-N PS 0.15 3.3 1 9 1536× 80× 180 NS 5.3 17.6 19.76 1.06
5 S5-C15-F PS 0.15 3.3 5 9 3072× 96× 240 FS 5.6 15.2 19.50 1.07
6 S5-C15-N PS 0.15 3.3 5 9 3072× 96× 240 NS 5.5 17.6 19.62 1.07
7 SI-C15-F FV 0.15 3.3 ∞ 10 606× 64× 126 FS 4.8 15.0 19.38 1.08
8 SI-C15-N FV 0.15 3.3 ∞ 10 606× 64× 126 NS 4.6 17.7 19.25 1.09

TABLE 1. Parameters used in the present direct numerical simulations. Each run is denoted
by an acronym suggesting the value of the Schmidt number Sc (S1, S5, SI for infinite
Schmidt), Coriolis number C (C10, C15, C25) and the type of top–bottom boundary
condition BC (N for no-slip, F for free-slip). Ro denotes the Rossby number Ro= 1/2C.
PS and FV refer to the pseudo-spectral code and the finite-volume code, respectively. Nx,
Ny and Nz are the total number of grid cells and grid points in each direction for the FV
and PS codes, respectively. The computational domain size is L×W ×H with W =H= 1
(recall that the domain length is 2L for the spectral code). FS and NS refer to free-slip
and no-slip, respectively. The table also shows the value of the first maximum distance
attained by the propagating front xmax and the corresponding time t̃max. T̃p is the period
of the subsequent front oscillations, ωp = 2π/Tp is the pulse frequency and f = 2C is the
Coriolis parameter of the inertial waves. In all cases, the Reynolds number is Re= 4000.

while the finite-volume code is used for high-Sc (Sc → ∞). This allows us to
investigate the possible effect of the Schmidt number on the results. In addition, the
Reynolds number is set here to 4000.

The computational domain is taken to be long enough along the streamwise
direction to allow free unhindered development of the current for a long time
according to analytical estimates. Periodic boundary conditions are employed along
the spanwise (ỹ)-directions, no-slip or free-slip boundary conditions for the velocity
and a zero normal gradient condition for the density are used along the vertical
(z̃)-direction, while a periodic and free-slip boundary condition is used along the
streamwise (x̃)-direction for the spectral and finite-volume codes, respectively.

The set of Navier–Stokes simulations performed in this work are presented in
table 1. Eight cases with different Coriolis numbers (0.1 6 C 6 0.25), Schmidt
numbers (1 6 Sc<∞), and boundary conditions at the top and bottom walls (no-slip
versus free-slip) are analysed.

2.2.1. Spectral code
Equations (2.1)–(2.3) are solved employing a fully de-aliased pseudo-spectral code

(Canuto et al. 1988; Salinas et al. 2014). The code uses Fourier expansions for the
flow variables along the horizontal directions (x̃ and ỹ), while a Chebyshev expansion
with Gauss–Lobatto quadrature points is used for the inhomogeneous vertical direction
(z̃). The flow field is time-advanced using a Crank–Nicolson scheme for the diffusive
terms. The advection terms are handled with the Arakawa method (Durran 1999) and
advanced with a third-order Runge–Kutta scheme. The buoyancy term is also advanced
with a third-order Runge–Kutta scheme.

Detailed implementation of the code can be found in Cantero et al. (2006), and
validation in the case of non-rotating cylindrical and planar configurations can
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be found in Cantero, Balachandar & García (2007a) and Cantero et al. (2007b),
respectively. In addition, the present pseudo-spectral code has been recently used to
simulate rotating gravity currents in a cylindrical configuration (Salinas et al. 2018).
In particular, a detailed comparison between the simulations and the experimental
results of Hallworth et al. (2001) was performed and shows reasonable agreement
(see Salinas et al. 2018, figures 3–5).

2.2.2. Finite-volume code
The second numerical technique is a finite-volume/volume-of-fluid method with

no interface reconstruction. Equations (2.1)–(2.3) are solved using the JADIM code
originally developed for two-phase flows with high density ratios (Bonometti &
Magnaudet 2007). In this approach, we assume the Péclet number (Pe= Re Sc) to be
infinite, that is, (2.3) is chosen to be hyperbolic as the right-hand side is zero. The
transport equation of the density is solved using a modified version of the transport
scheme proposed by Zalesak (1979). Although no physical diffusivity is introduced
in the advection of the density, the numerical thickness of the interface is not strictly
zero as it is typically resolved over three grid cells. An effective Péclet number can
be estimated, which depends on the degree of spatial resolution. The effective Péclet
number for the spatial resolution used here is estimated to be of O(105); see the
appendix of Bonometti & Balachandar (2008) for more details.

The overall algorithm is second-order accurate in both time and space. Details
on the algorithms as well as validation of the code may be found in Bonometti,
Balachandar & Magnaudet (2008). Note that the computational domain used with the
finite-volume code is only half that used for the spectral code (i.e. the domain length
is L).

A convergence study of the present finite-volume code can be found in Bonometti
& Balachandar (2008) in the case of non-rotating planar gravity currents (their
figures 2–4 and table 1). In addition, a comparison of the dynamics of high Reynolds
Boussinesq non-rotating planar gravity currents obtained with the present spectral and
finite-volume approaches has been done in this paper and shows that even though the
two methods are different, they give very similar results (see their figures 6a and 13
for a comparison of the instantaneous density distribution and time evolution of the
front velocity, respectively).

3. The global-flow theoretical model

For insights and comparison we use an approximate theory which we call the
shallow-water (SW) model. There is good evidence (see, for example, Ungarish 2009,
§ 8.1) that for the axisymmetric case the SW theory predicts well the propagation
and the formation of the quasi-steady lens structure. Here we extend the analysis to
the present geometry, which can be referred to as a 2.5-D approximation: the current
is represented by the h(x, t) profile, and the main propagation is given by u(x, t).
We assume that the flow is independent of the lateral direction y, while there is
significant lateral velocity v(x, t) (and angular velocity v(x, t)/x). This corresponds
to the h(r, t), u(r, t), v(r, t) description of the axisymmetric current, and the 2.5
dimensions express this similarity. The flow is not 2-D because the lateral momentum
balance must be taken into account, but is also is not fully 3-D since the value of the
y-coordinate does not influence the flow; and hence the 2.5-D designation is applied.
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3.1. The balance equations
The SW equations are an extension of those derived for the axisymmetric case
(Ungarish 2009, § 8.1). The main approximations are that the current is a thin
layer, the return flow in the ambient is negligible, Re is large, and there are no
mixing/entrainment effects. In the cases considered here these assumptions are
satisfied, at least during the formation motion. In this theoretical model we use the
z-averaged u, v. Note that for clarity, and from here on, we remove the tilde from
the dimensionless quantities. Because the current is a thin layer, the z-acceleration
terms are very small and the vertical momentum equations reduce to the hydrostatic
balance. Consequently, the pressure-driving (buoyancy) term is given by (∂h/∂x)x̂,
with x̂ the unit vector pointing in the x-direction. We recall that the variables do not
depend on y, therefore ∂/∂y= 0 and there is no lateral buoyancy-driving.

The equations of continuity, and momentum in the x- and y-directions, are

∂h
∂t
+ u

∂h
∂x
+ h

∂u
∂x

= 0, (3.1)

∂u
∂t
+
∂h
∂x
+ u

∂u
∂x
= 2Cv, (3.2)

∂v

∂t
+ u

∂v

∂x
=−2Cu. (3.3)

The terms 2Cv and −2Cu stem from the Coriolis force.
Manipulation of the system (3.1)–(3.3) produces the potential–vorticity conservation

equation
D
Dt

2C + ∂v/∂x
h

= 0, (3.4)

where D · /Dt= ∂ · /∂t+ u∂ · /∂x is the material derivative.
The initial conditions employed are a release from rest u = v = 0 from the lock

h= 1, 06 x6 x0. The boundary conditions are u= v= 0 at the wall x= 0, and at the
nose

uN = Fr
√

h, vN =−2C(xN − x0). (3.5a,b)

Equation (3.5) is the standard Benjamin-like propagation jump condition, and we
use the Huppert–Simpson Fr = 1.19 estimate. Equation (3.5) is angular momentum
conservation on the front. It can be obtained by the integration of (3.3) on the
characteristic from x= x0 where v = 0. An auxiliary condition is the conservation of
total volume (= x0 in dimensionless form). The system of equations is hyperbolic,
and can be solved numerically as explained in Ungarish (2009). A typical feature
of the solution, for all tested cases, is that the current attains a maximum spread,
xmax, in a fairly short time. In this situation, while u= 0 at the nose, a negative u is
present in the current, which indicates the beginning of a contraction.

3.2. Steady-state ‘wedge’ solutions
The SW system admits a steady-state solution with u = 0 and non-trivial h(x), v(x).
The conservation of the potential vorticity (3.4) using the initial condition h= 1 and
v = 0 at t= 0 gives

h= 1+
1

2C
∂v

∂x
. (3.6)
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Taking the x-derivative of (3.6) and substituting the result into (3.2) using u = 0
leads to

∂2v

∂x2
− 4C2v = 0. (3.7)

Equations (3.6) and (3.7) are subject to the boundary conditions for v, h and volume
conservation

v(0)= 0, h(xN)= 0, x0 =

∫ xN

0
h dx= xN +

1
2C
v(xN). (3.8a−c)

The solution is

v =−
sinh(2Cx)

cosh(2CxN)
, h= 1−

cosh(2Cx)
cosh(2CxN)

, (3.9a,b)

xN = x0 +
1

2C
tanh(2CxN). (3.10)

In general, the length xN of the steady structure (wedge) must be calculated
numerically from (3.10), which is a straightforward task; then v(x) and h(x) are
obtained. Useful approximations are as follows. For large C (in practice, greater than
0.5/x0), the hyperbolic sin(x), cos(x) functions behave like exp(x), and the dominant
terms yield

xN = x0 +
1

2C
, v =−exp[2C(x− xN)], h= 1− exp[2C(x− xN)]. (3.11a−c)

For small C (in practice, less than 0.25/x3
0), a Taylor expansion gives the leading

terms

xN =
(

3
4 x0
)1/3 C−2/3

; v =−2Cx; h= 2C2(x2
N − x2). (3.12a−c)

Recall that the Rossby radius is 1/(2C). We observe that this length reproduces the
propagation xN − x0 only when C is large. For small C circumstances, the distance of
propagation is significantly smaller than the Rossby radius estimate.

The shape of h(x) in both (3.11) and (3.12) is called a ‘wedge’. This is the
counterpart of the axisymmetric lens. The planar profile, and the angular velocity
v/x, are fairly similar. The wedge is uniform in the lateral direction, while the lens
is uniform in the azimuthal (angular) direction. For large C, the planar profiles of the
wedge and lens are identical (x0 is replaced by r0). However, for small C, the length
of the wedge is proportional to C−2/3 while for the lens we find it proportional to
C−1/2.

As expected, our tests detected a strong correlation between the maximum xN

attained by the time-dependent lock-released current, and the length of the steady-state
wedge. In general, xmax of the time-dependent current is 20–30 % larger than the
prediction (3.11)–(3.12). The interpretation is that after the spread to xmax the current
will contract to a shorter xN , tending to the steady-wedge pattern. As will be shown
later, these insights provided by the SW model are in agreement with the DNS.
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3.3. ‘Spin-up’ drift
3.3.1. Model without mixing

The counter-rotation (anticyclonic) of the wedge with respect to the ambient and
bottom is expected to generate Ekman layers of typical thickness δE = (ν/Ω)

1/2 at
the contact interfaces (see Greenspan 1968). This produces a friction torque M that
reduces the azimuthal motion and, consequently, the length xN increases with time.
We model this as follows. We consider small-C flows.

Introduce the dimensionless angular velocity ω = v∗/(Ωx∗) = v/(Cx), where the
asterisk denotes dimensional variables, and recall the Ekman number

E= ν/(Ωh2
0)= (Re C)−1. (3.13)

For simplicity, we assume that ω depends only on time t. In general, ω< 0, and a
plausible value at the beginning of the spin-up is −2; see (3.12).

The angular momentum balance is approximated by

dΓ
dt
=M =−kρνΩ

ω

δE

∫ xN

0
x dx, (3.14)

where the angular momentum of the wedge is

Γ = ρΩ(2+ω)
∫ xN

0
hx dx. (3.15)

In our theoretical model k represents the distribution of the Ekman-layer friction. At
the fluid–fluid interface, the Ekman layer friction is about half the value of a fluid–
solid no-slip friction. Thus, for a free-slip bottom case, since only the interfacial shear
drives the spin-up, we take k= 1/2 in (3.14). For a no-slip bottom case, we add to the
interfacial also the contribution of the Ekman layer at the bottom and we use k= 3/2
in (3.14). Note that here δE = E1/2.

The spin-up time scale is significantly longer than h0/U. Therefore the radial
balance is quasi-steady, ∂h/∂x= 2C2ωx, and hence

h=−C2ω(x2
N − x2), (3.16)

and volume conservation yields

xN(t)=
[

3
2 x0C−2

]1/3
(−ω)−1/3. (3.17)

We now scale time by 1/Ω and substitute (3.16) into (3.14)–(3.15) to obtain

d
dt
[(2+ω)ωx4

N] = 2kE1/2ωx2
N . (3.18)

Combining with (3.17) yields, after some algebra, for ω̂=−ω,

dω̂
dt
=−

[
2k
(

3
2

)1/3

x−2/3
0 C4/3E1/2

]
ω̂5/3

1+ ω̂
=−Ksu

ω̂5/3

1+ ω̂
. (3.19)

This is the spin-up equation. Typically Ksu� 1 because E, C are small.
The spin-up equation can be integrated analytically. The typical initial condition is

ω̂0 = 2 at t= 0. We obtain

tKsu = 3
(

1
2

1
ω̂2/3
− ω̂1/3

+
3
4

21/3

)
, (3.20)

which can be solved numerically to obtain the temporal evolution of ω̂ and
subsequently that of xN via (3.17).
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3.3.2. Model with turbulent mixing
In lock exchange flows, and more generally in stratified shear flows, mixing and

entrainment are non-negligible at high Reynolds numbers (Hacker, Linden & Dalziel
1996; Peltier & Caulfield 2003; Ivey, Winters & Koseff 2008). In particular, the
mixing efficiency, defined as the ratio between the increase in potential energy owing
to mixing and the total available potential energy, was observed to be in the range
0.1–0.125 in non-rotating exchange flows by Prastowo et al. (2008). The numerical
simulations of stratified shear flows (in a non-rotating situation) by Peltier & Caulfield
(2003) show that the efficiency with which the density field is mixed by turbulent
processes is in the range 0.15–0.2.

The effect of mixing and entrainment may be small but is accumulative. This means
that it becomes significant at larger times. In the present problem, the mixing may
reasonably be neglected during the adjustment stage (one-half rotation of the system).
However, during the long spin-up stage (many revolutions of the system), the mixing
may attain significant, even dominant, importance. This motivates the present estimate,
in contrast to the laminar (zero-mixing) approach of the previous section.

Here, we attempt to include mixing and entrainment in our spin-up drift model by
using the concept of eddy viscosity (Hogg, Ivey & Winters 2001). In the following,
we assume that the consequence of mixing and entrainment at the interface of the
current can be represented through an eddy viscosity νe. Following Prandtl’s mixing
length theory, we have νe = `

2
mS where `m is the corresponding mixing length and S

is the characteristic strain rate of the flow at the interface of the current. The strain
rate can here be approximated by S= 2U/h0 = 2

√
g′/h0. In the present problem, we

assume that the mixing length is a fraction α of h0, i.e. `m= αh0. In exchange flows,
the thickness of the interfacial layer created by turbulent mixing is in the range 0.2–
0.3 (Prastowo et al. 2008). In the following, and unless stated otherwise, we assume
α = 0.25.

The spin-up drift model including mixing and entrainment is as follows. The
molecular viscosity ν and the Ekman layer δE in the angular momentum balance
(3.14) are replaced by the eddy viscosity νe and the mixing length `m, respectively.
Noting that νe/ν= 2α2 Re and `m/δE=α Re1/2C1/2 and using (3.15)–(3.17), the spin-up
equation including turbulent mixing reads

dω̂
dt
=−

[
α1/2
√

2Re1/4C−1/4Ksu

] ω̂5/3

1+ ω̂
=−Km

su
ω̂5/3

1+ ω̂
, (3.21)

where Ksu is the spin-up constant of the model without mixing (see (3.19)) and Km
su

is that of the model with turbulent mixing.
It should be stressed that the present model (3.21) makes use of an idealized

approach, i.e. the concept of eddy viscosity and Prandtl mixing length, which is
not meant to accurately capture the complex processes responsible for mixing in
a stratified shear flow (Salehipour & Peltier 2015). Even though more advanced
parametrization of mixing and entrainment may be found in the literature (see
Hogg et al. 2001), the present model may be viewed as a first attempt to assess
the importance of such processes in the present problem of the slow drift of the
oscillating front of a rotating gravity current.

4. Results
In this section we compare results of fully resolved simulations with SW theoretical

modelling, at the early times of propagation until the first arrest of the front
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(3.1)–(3.3), during geostrophic adjustment (3.12) and the slow expansion of the
maximum location of the front ((3.17) and (3.20)). Therefore, it may worth recalling
the assumptions made in the SW theoretical model for a more relevant interpretation
of the possible discrepancies: the vertical velocity is neglected and the pressure
is hydrostatic; the effect of the ambient fluid is neglected, that is, we consider
the one-layer problem; there is neither mixing nor entrainment; and the fluids are
assumed inviscid except for the derivation of (3.20) where we assumed some friction
torque to be present due to Ekman layers at the ambient/current interface and at the
bottom wall. Note that the resolution of (3.1)–(3.3) is restricted to the first stage of
propagation until the front is arrested because the front condition (3.5) makes the
retraction of the front impossible in the present SW theoretical model.

4.1. Early times propagation until the first arrest of the front
4.1.1. Time evolution of the front displacement

As will be shown later, as soon as the current is influenced by the Coriolis force,
the front does not remain sharp as in the case of non-rotating currents (Cantero et al.
2007b). However, when employed with caution, the classical method to track the front
(Shin, Dalziel & Linden 2004; Marino, Thomas & Linden 2005) is still useful. We
thus define a span-averaged equivalent height h as

h(x, t)=
1

WH

∫ W

0

∫ H

0
ρ dz dy. (4.1)

A variable with an over-bar is to be understood as dimensionless span-averaged
quantity. At locations where the entire layer is occupied by the heavy fluid h = 1,
whereas at locations where the light fluid fills the entire layer h = 0. The front
displacement can be quantified by computing the location xF where the span-averaged
equivalent height, h, becomes smaller than a small threshold, δ (Cantero et al. 2007b).
Another method involves tracking some isocontours of the span-averaged density field
at the bottom of the channel. The comparison of the two methods is given in the
Appendix and will not be detailed here.

Figure 2 shows the front displacement for cases S1-C10-F, S1-C15-F and S1-C25-F
as a function of time. The front displacement is computed for different threshold
values δ ranging from 0.01 to 0.1. After release, the gravity current collapses as
a planar non-rotating current and accelerates at a rate independent of the Coriolis
number. However, contrary to non-rotating collapses, the rotating current is arrested
by the Coriolis force and then oscillates around a position which corresponds to
the well-known geostrophic adjustment (Greenspan 1968). In the present section we
only consider the early times of propagation until the first arrest of the front, i.e. we
restrict the analysis to times in the range 0 6 t̃ . 20 (the later times are discussed
in § 4.2).

In the SW theoretical model, the front is sharp and the propagation x̃N(t) may be
obtained from the time-dependent solution of the SW theoretical model (3.1)–(3.3).
The results are plotted in figure 2 as solid blue lines. In all cases tested, the current
reaches a maximum at about t̃ = 1.3/C (about a quarter revolution). In this position
ũN = h̃N = 0, while inside the current ũ is negative. The results of the SW theoretical
model and those of the fully resolved simulations are in qualitative agreement at early
times. In particular, the front velocity ũN at 0. t̃. 4 is about 0.5 and 0.6 in the DNS
and the SW model, respectively, for all the C considered in figure 2. The discrepancy
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FIGURE 2. (Colour online) Time evolution of the front displacement xF − x0 for (a) C =
0.1 (case S1-C10-F), (b) 0.15 (case S1-C15-F), (c) 0.25 (case S1-C25-F), where xF is
defined as the maximum location where h= δ, with δ ranging from 0.01 to 0.1 by steps
of 0.01. For comparison, the early time evolution solution x̃N − x0 of the SW equations
(3.1)–(3.3) is also plotted (solid blue line). The solid red line in (b) is rF − x0 of a fully
resolved simulation of a rotating cylindrical gravity current by Salinas et al. (2018) for
C = 0.15, Sc = 1, Re = 4000, and free-slip boundary conditions (δ = 0.01). q, p: SW
‘steady wedge’ solutions (3.10) and (3.12), respectively. (– – –, orange): SW ‘slow drift’
solution without mixing (3.17). (– – –, blue): SW ‘slow drift’ solution with mixing (3.21).
(– – –, red): best fit of xF − x0 for δ= 0.01 in the interval 100< t̃< 200. Movies of these
simulations (Movie 1 for a side view of all the cases and Movie 2 for a bottom view of
case S1-C15-F) are available at https://doi.org/10.1017/jfm.2019.152.
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FIGURE 3. xmax versus C: (black squares), present fully resolved simulations for
rotating planar gravity currents; (dashed line), asymptotic solution (3.12) of the SW
theoretical model for the length of the steady-state wedge, in the limit of small Coriolis
numbers; (other symbols), results obtained for rotating cylindrical gravity currents, either
experimentally (Hallworth et al. 2001) or numerically (Dai & Wu 2016; Salinas et al.
2018).

is about 15–20 %. Let us recall, however, that the Reynolds number of the present
simulations is 4000. Cantero et al. (2007b) showed in their lock-exchange simulations
of non-rotating gravity currents an increase of 10–15 % of uN from Re≈ 103 to 104

(see also Bonometti et al. 2008, table 1). Part of the present discrepancy may thus
be attributed to the somewhat moderate value of Re in the present DNS. Note also
that the maximum distance of propagation (considering δ = 0.01) is larger in the
DNS than in the SW results, up to 20 % in the case C = 0.1, this discrepancy being
reduced as C is increased. It must be recalled however, that the specific value of
the maximum distance attained by the current depends on the threshold δ used for
computing this value and hence caution must be exercised when interpreting the
discrepancies between DNS and SW theory in figure 2.

The first maximum distance attained by the propagating front, denoted by xmax,
is reported in table 1 (note that this quantity was obtained using xF with δ = 0.01).
xmax is observed to decrease with increasing C, whereas it is roughly independent
of Sc and the type of boundary conditions. Figure 3 presents xmax as a function
of C. For comparison, results for rotating cylindrical gravity currents from laboratory
experiments (Hallworth et al. 2001) and recent fully resolved numerical simulations
(Dai & Wu 2016; Salinas et al. 2018) are also plotted. The dashed line is the
asymptotic solution (3.12) of the SW theoretical model for the length of the
steady-state wedge, denoted by xN (in the limit of small Coriolis numbers). It can be
observed that xmax decreases with increasing C and that, for a given set of data, it
follows a power law C−n with 1/2 . n . 2/3, approximately.

A closer look at the results of the fully resolved simulations reveals that the
decrease in xmax when C increases is more pronounced for the planar rotating
currents than for the cylindrical ones (e.g. see the solid squares versus the solid
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circles/diamonds). Moreover, it is observed that the Rossby radius ∝1/C is not a
good estimate of the propagation. This is in line with the SW theoretical model
which predicts that, for small Coriolis numbers, the steady-state length of the lens of
a cylindrical current scales as C−1/2 (Ungarish 2009) while that of a planar current
scales as C−2/3 (see (3.12)). As for the experimental results of Hallworth et al. (2001),
the scatter of the data makes it difficult to precisely estimate the power law, but one
may reasonably say that it lies in the range 1/2 . n . 2/3.

It should be stressed that the first maximum distance attained by the propagating
front xmax and the length of the steady-state wedge of the SW theoretical model xN

are, strictly speaking, not the same physical quantities. This may explain why the data
is consistently larger than the theoretical prediction. Let us also recall that the specific
value of xmax is δ-dependent. In any case, the fact that xmax and xN are both controlled
by a balance between the Coriolis force and the pressure gradient supports the idea
that they follow the same scaling laws, as suggested by figure 3.

4.1.2. Span-averaged profiles at early times
Another typical result from the SW theoretical model is shown in figure 4(a,c,e)

for C = 0.15. The propagation after the release starts as in non-rotating 2-D current
with hN ≈ 0.5, uN ≈ 0.6, vN ≈ 0, but is subsequently strongly influenced by Coriolis
effects: hN , uN decrease to 0, and vN becomes negative. By t̃≈ 1.3/C ≈ 8.7 (about a
quarter revolution) the propagation stops. The current profile is roughly like a triangle-
wedge, with hN = 0. Note that at this position uN = 0, while inside the current u is
negative, which indicates a subsequent contraction motion. The uN condition for the
SW theoretical model used above is not valid for the contraction motion. There is a
significant anticyclonic velocity (negative v) in the wedge.

The above-mentioned features are also visible in the DNS results (figure 4b,d, f ).
The first difference is the presence of fluctuations in the height and velocity profiles.
These are attributed to some mixing and turbulence at the interface between the
current and the ambient which modulate the instantaneous span-averaged h and u
(see figure 5). Recall that the SW theory does not take mixing into account. Note that
there seems to be a slight delay between the SW profiles and those of the DNS. This
is in line with figure 2, which shows that the currents simulated with the DNS are
still propagating outward at time t̃ = 8.5 while those simulated with the SW theory
get arrested (solid blue lines in figure 2).

Note, however, that the maximum values of h, u, v and the location of the current’s
front are observed to be roughly the same between DNS and SW, within 25–30 %, for
most of the time instances considered here.

The second difference concerns the v(x)/(Cx) profiles. In the SW simulations, the
local angular velocity is roughly constant in the body of the current, while in the DNS
the local angular velocity (taken at z̃= 0.1) is somewhat constant for some distance
from the front of the current, then is subject to strong oscillations and possibly reaches
opposite values close to the left boundary. Here, the disagreement between SW and
DNS for v/(Cx) at small x is accentuated by the fact that (i) there are strong spatial
inhomogeneities in the DNS profiles due to the formation of 3-D vortices at small x
(figure 5c,d), (ii) the DNS profiles are extracted at a specific z-location and are not
depth-averaged, and (iii) the fluctuations in the DNS velocity profiles are amplified by
the factor 1/x at small x.
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FIGURE 4. (Colour online) Time-dependent solution of the SW theoretical model (a,c,e)
and the fully resolved simulation (b,d, f ) for C = 0.15 at various times during the early
times of propagation until the first arrest of the front (the larger xN corresponds to larger t):
(a) h(x), (b) h(x̃), (c) u(x), (d) u(x̃, z̃= 0.1), (e) v(x)/(Cx), ( f ) v(x̃, z̃= 0.1)/(Cx̃).

4.1.3. Three-dimensional structure of the current and thickening of the front region
In this section we analyse the 3-D structure of the flow for rotating gravity currents

and elaborate on the causes of the observed thickening of the front region observed
in figure 2.

The 3-D structure of the interface for case S5-C15-N can be seen in figure 5, where
isosurfaces of density ρ = 0.05 are shown for various time instances. At the first
stages of development of the flow (figure 5a), although the front is still mostly 2-D,
the effects of rotation can already be seen at the nose of the front, where some
vertical Kelvin–Helmholtz vortex cores modify the shape of the interface, which would
otherwise exhibit classical horizontal Kelvin–Helmholtz vortices on the interface along
the body of the current.

After t̃= 5, the flow is highly three-dimensional and strongly influenced by rotation
in the head, body and tail (figure 5c,d).
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FIGURE 5. (Colour online) Three-dimensional structure of the current during the initial
spreading (case S5-C15-N). The interface is visualized by the isosurface of density ρ =
0.05 at times (a) t̃ = 3.75, (b) 5, (c) 6.75, (d) 8.50. Also shown are isocontours of
density for ỹ = 1 (grey contours). A movie of this simulation (Movie 3) is available in
the supplementary materials.

This indicates that when Coriolis effects become significant, new Kelvin–Helmholtz
vortices appear. These vortices are produced by shear stress between the light and
heavy fluid in the spanwise direction. This can be seen in figure 6, where the local
density field is shown in various planes cutting the interface separating the current
from the ambient fluid. In particular, one can see some wall-normal vortices close the
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FIGURE 6. (Colour online) Three-dimensional structure of the interface of a rotating
gravity current (SI-C15-N, t̃ = 6.37). (a) Isosurface ρ̃ = 0.1 and 0.9 in blue and red,
respectively. The grey slices indicate the location of the planes used in (b–d). Density field
in plane (b) x̃ = 2.58, (c) ỹ= 0.5 and (d) z̃= 0.04, respectively. Note that here vortices
are formed at the interface along the x-, y- and z-directions.

bottom boundary within the front region (figure 6d) and vortical structures oriented
in the x-direction within the interfacial region in the body of the current (figure 6b).
These vortical structures are due to Coriolis effects and generate some mixing in the
front region, as clearly indicated in figure 6c. These may be thus a first contribution to
the thickening of the front region. Note that in the case of non-rotating gravity current,
such vortical structures and corresponding mixing are absent and thus the profile of
h is sharp in the front region (see Cantero et al. 2007b, figure 3).

A second process which may be responsible for the thickening of the front region
is illustrated in figure 7, which presents the local distribution of the instantaneous
streamwise velocity within the front region. One can observe that the local velocity
repeatedly changes sign along the x̃-direction close to the bottom wall. This suggests
some local stretching in this region, which may lead to the thickening of the front
region by smoothing the local density gradient.

In order to assess the effect of the type of bottom boundary condition and the
Schmidt number on the observed mixing at the interface, we compare in figure 8
the instantaneous contour maps of the span-averaged density field for C = 0.15 at a
time which is just before the first arrest of the front, for various boundary conditions
and Schmidt numbers. As an aside, figure 8 also presents the equivalent height h; the
location where h reaches a small value seems to be a good estimation of the position
of the front.

Figure 8(a,b) shows the shape of the current propagating on a free-slip and no-slip
bottom boundary, respectively. As expected, the location of the front in the former
case is slightly larger and the head of the current is more slender as in the latter one.
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FIGURE 7. Local distribution of the instantaneous streamwise velocity inside the density
current within the front region, in the vertical plane ỹ=0.1 at time t̃=10.5 when the front
starts to be the subject of thickening (see figures 2 and 9). The white colour indicates ũ6
−0.025 and the black colour ũ > 0.025. The regions where ũ sharply goes from negative
to positive values suggest local strain. The density current is visualized by the isocontour
ρ̃ = 0.1 (black line). (a) SI-C15-N; (b) SI-C15-F.

One can clearly observe, however, that the density gradient very close to the front is
not as large as those observed in non-rotating gravity currents (Cantero et al. 2007b).
For instance, in all the cases shown in figure 8, the density field ρ̃ in the front region
goes from 0.9 to 0.1 in a distance of about 0.5 unit length, which is larger than in
the case of non-rotating currents for which the transition region thickness is only a
fraction of a unit length (Cantero et al. 2007b).

Another interesting observation can be made by comparing figure 8(b–d) which
shows the shape of currents of increasing Schmidt number. While the ‘thickness’ of
the interface along the body of the current is observed to decrease as Sc is increased,
it appears that in the head of the current and especially in the front region the density
distribution is roughly similar. This supports the idea that the mixing observed in the
front region is mostly of convective nature (as opposed to diffusive) and is due to
local vortex structures and local stretching. To quantify the effect of Schmidt number
and boundary condition on mixing at the interface, we compute λ defined as

λ=

∫ L̃

0

∫ W̃

0

∫ H̃

0
4ρ̃(1− ρ̃) dx̃ dỹ dz̃, (4.2)

which may be viewed as a mixing coefficient. Indeed, λ = 0 when there is no
mixing and the interface between the current and the ambient is sharp, and λ = 1

https://doi.org/10.1017/jfm.2019.152
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


1.0

0.5

0 1 2 3

¡

4

-
z, 

h(
x)

5 6 7 8 9
1.0

0.5

¡
-

z, 
h(

x)

1.0

0.5

¡
-

z, 
h(

x)

1.0

0.5

0 1 2 3

¡

¡
4

-
z, 

h(
x)

5

x
6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0.25
0.10 ®- 1

0.50 0.75 0.90

(a)

(b)

(c)

(d)

FIGURE 8. Effect of the bottom boundary condition and Schmidt number on the shape of
the current just before the first arrest of the front (t̃= 10). Span-averaged density field ρ
and equivalent height h (white solid line), for various boundary conditions and Sc: (a) S1-
C15-F (free-slip); (b) S1-C15-N (no-slip); (c) S5-C15-N (no-slip); (d) SI-C15-N (no-slip).
A movie of cases S1-C15-F and S1-C15-N (Movie 4) is available in the supplementary
materials.

when the current is completely mixed (ρ = 0.5 in the entire domain). For the cases
presented in figure 8 at time t̃ = 10, λ= 0.125, λ= 0.133, λ= 0.090 and λ= 0.065,
for cases S1-C15-F, S1-C15-N, S5-C15-N and SI-C15-N, respectively. For the same
Schmidt number, mixing at the interface is larger for cases with no-slip boundary
conditions. Moreover, mixing decreases as Schmidt number increases.

4.2. Front oscillations and geostrophic adjustment
4.2.1. Time evolution of the front displacement

After the early stage of propagation, the front reaches a maximum location and
subsequently oscillates around a characteristic position at a constant frequency (see
figure 2). The mean pulse period Tp, here defined as the averaged time interval on
which the successive outward pulses reach the maximum location, is presented in
table 1 for all the cases considered here. These values exhibit a strong dependence
on C. More precisely, when free-slip boundary conditions are used, one roughly
recovers the relation ωp= f obtained for inviscid inertial waves, where ωp= 2π/Tp is
the pulse frequency and f is the Coriolis parameter (see the last column in table 1). In
particular, the discrepancy is within 8 %, 7 % and 3 % for cases S1-C10-F, S1-C15-F
and S1-C25-F, respectively. This was also observed in the experiments of Hallworth
et al. (2001) for axisymmetric rotating gravity currents.

From table 1, one may also assess the influence of the type of bottom boundary
condition and the Schmidt number on Tp. The present results suggest that the
influence of these parameters on the period of oscillation is weak, as the difference
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between all the Tp is less than 8 % for a fixed C (note that this is of the order of
the variation between single periods of oscillation, which is about 5 %).

Recall that we are considering planar rotating gravity currents. In order to show
how it modifies the dynamics as compared to cylindrical rotating gravity currents,
we also superimpose in figure 2(b) the time evolution of the front displacement of
a rotating cylindrical gravity current on that of the present planar gravity current for
the same dimensionless parameters (see the solid red line, extracted from Salinas et al.
2018). One can observe a similar behaviour of the front, although the amplitude of
the oscillations decreases faster in the cylindrical case. More precisely, the maximum
distance attained by the propagating front is rF = 5.7 and xF = 5.5, for the cylindrical
and planar gravity currents, respectively. In addition, the period of subsequent front
oscillations is T̃p = 21 and T̃p = 19.5 for the cylindrical and planar gravity currents,
respectively. This indicates that, even though curvature effects are neglected in the
present work, the global dynamics of a rotating planar and cylindrical gravity current
is similar, at least for the range of parameters investigated here.

Figure 9 presents the temporal evolution of the front displacement for a fixed
C= 0.15, two types of bottom boundary conditions (free-slip and no-slip) and various
Schmidt numbers (1 6 Sc <∞). For comparison, the SW ‘steady wedge’ solutions
(3.10) and (3.12) are also plotted (as symbols arbitrarily placed at t̃ = 200). Recall
that (3.12) is an approximation of (3.10) in the limit of small Coriolis numbers.
Note that these solutions are independent of the Schmidt number and the type of
top–bottom boundary conditions. More precisely, they were obtained in the case of
no mass diffusivity and no friction. Note also that a straightforward comparison is
somewhat delicate since it is clear from the present DNS results that there is no
rigorous steady state. In any cases, compared to the DNS using free-slip boundary
conditions, these solutions always fall within the range of the front region (here
defined as xF with 0.01 6 δ 6 0.1), while, compared to the no-slip case, (3.10) and
(3.12) seem to only provide a lower bound for the location of the wedge.

As already indicated in § 4.1.3 the thickening of the front region is observed in
all cases, in particular those at large Schmidt numbers. In order to show that this
observation is not an artefact of the computation of the front displacement, figure 10
presents the three-dimensional structure of the current during the initial spreading
and the first oscillation of a high-Sc case, namely SI-C15-N. More specifically,
the isosurfaces of density ρ̃ = 0.1 and 0.9 are displayed and allow for a clear-cut
observation of a possible thickening of the front region. In line with figure 9, the
two isosurfaces remain close to each other until time t̃ ≈ 10; however, later on and
as soon as the retraction process starts, the isosurfaces clearly move apart, especially
at the bottom wall where they separate up to a distance of 4–5H.

Hence, one may conclude that the ‘thickening’ of the front in figure 9 is not
an artefact of the computation of the front displacement. However, the role of the
Schmidt number in this ‘thickening’ remains unclear to the authors. In any case, it
has been shown in § 4.1.3 that convective mixing was present in the front region
(due to local Kelvin–Helmholtz vortices and local stretching along the streamwise
direction), thus corroborating the present observation.

Figure 9 shows that there is a slow ‘drift’ of the characteristic location around
which the front oscillates, and that the speed rate of the slow ‘drift’ is a function
of the Schmidt number and the type of bottom boundary condition. This will be
described and analysed in § 4.3.
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FIGURE 9. (Colour online) Effect of the Schmidt number (rows) and the type of bottom
boundary condition (columns) on the time evolution of the front displacement xF − x0.
The front displacement is computed as in figure 2. Also in this plot is the time evolution
of x̃N − x0 obtained from the SW theoretical model (solid blue line). q, p: SW ‘steady
wedge’ solutions (3.10) and (3.12), respectively. (– – –, orange): SW ‘slow drift’ solution
(3.17). (– – –, blue): SW ‘slow drift’ solution with mixing (3.21). (– – –, red): Best fit of
xF − x0 for δ = 0.01 in the interval 100< t̃< 200.

4.2.2. Span-averaged profiles during the oscillating front regime
Figures 11 and 12 present span-averaged velocity profiles along some specific

horizontal or vertical lines, during the first oscillation (t̃max 6 t̃ 6 t̃max + T̃p) for
case S1-C15-F and S1-C15-N, respectively. The oscillation phenomenon is noticeable
since all the velocities change sign from one instant to another.

We display in figure 11(a) the streamwise distribution of the streamwise velocity in
the current close to the bottom boundary (solid lines), and in the ambient close to the
top boundary (dash-dotted lines). At t̃= t̃max, the current is propagating inward and a
large part of the front region in the current 26 x̃6 x̃N is subject to stretching as ũ< 0
and ∂ ũ/∂ x̃ > 0. At t̃ = t̃max + T̃p/3, the current is propagating outward and the fluid
in the current 2.5 6 x̃ 6 x̃N is subject to compression as ũ > 0 and ∂ ũ/∂ x̃ < 0. The
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FIGURE 10. (Colour online) Same as figure 5 for a high-Sc current (case SI-C15-N) at
later times, including the initial spreading and the first oscillation. The current is visualized
by isosurfaces of density ρ= 0.1 and 0.9 for times t̃= 0, 5.30, 10.50, 16.45, 22.75, 29.00
from (a) to ( f ). Also shown are isocontours of density for ỹ= 1 (grey contours). Movies
of this simulation (Movies 5 and 6) are available in the supplementary materials.

situation is reversed at t̃= t̃max + 2T̃p/3 as the current is mostly stretched (note that a
small region close to the front is still in compression at this time). The distribution
of ũ at t̃ = t̃max + T̃p is roughly similar to that at t̃ = t̃max and one may expect the
above-mentioned observations to be similar for the next cycles. The description of the
flow in the ambient is analogous to that in the current since the velocity distributions
are observed to be, at first order, symmetrical.

The streamwise distribution of the anticyclonic (lateral) velocity is presented in
figure 11(b). Before describing this figure, it worth recalling that the SW theoretical
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FIGURE 11. (Colour online) Span-averaged velocity profiles at various moments during
the first oscillation (case S1-C15-F): (a) u(x̃) at z̃= 0.1 (solid) and 0.9 (dashed); (b) v(x̃)
at z̃= 0.1 (solid) and 0.9 (dashed); (c) u(x̃= 3, z̃); (d), v(x̃= 3, z̃). The symbols indicate
the location of the interface of the current, here defined as z̃= h (square) or x̃= xF using
δ = 0.01 (triangle). Here, t̃max = 14.9 and T̃p = 19.51.

model predicts that ṽ = −2Cx̃ (see (3.12)) as soon as the wedge is steady. Here,
one can see that this trend is barely observed in the present velocity profiles, except
maybe at t̃= t̃max+ 2T̃p/3 where a somewhat linear evolution of ṽ with x̃ may be seen.
Beside that, the anticyclonic velocity changes sign at several places in the current
and the local maximum values are an order of magnitude less than ṽ(x̃N) predicted
by the SW theoretical model (≈0.15 versus ≈1.3).

The vertical distribution of the streamwise and anticyclonic velocity displayed in
figures 11(c) and 11(d), respectively, clearly exhibits two regions of opposite sign. We
denote by z̃ũ=0 (z̃ṽ=0) the vertical location where ũ= 0 (ṽ = 0). In general, z̃ũ=0 and
z̃ṽ=0 are not identical. In addition, they are two to four times as large as z̃= h. It is
worth mentioning that at t̃ = t̃max + 2T̃p/3, the streamwise velocity ũ is zero at three
locations z̃ũ=0

≈ 1.5h, 2h and 3h.
The same observations can be made regarding the span-averaged velocity profiles

for the case S1-C15-N where no-slip boundary conditions are used at the bottom and
top walls (figure 12).

In figure 13 we present the span-averaged density field ρ and equivalent height h
at time t̃ = 200 when (quasi-)geostrophic adjustment is reached, for various types of
bottom boundary condition and Schmidt numbers. Contrary to the results of figure 8
(showing the same currents at an early time before the first arrest of the front),
the shape of the currents is here a strong function of the type of bottom boundary
condition and the Schmidt number. This is to be expected since at such a large time
(≈10T̃p) the current has reached a quasi-steady shape and can be considered, at first
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FIGURE 12. (Colour online) Same as figure 11 for case S1-C15-N. Here, t̃max = 17.6
and T̃p = 19.76.

order, at rest, notwithstanding the oscillations and the slow drift of the current, and
thus mass diffusion may play a role. Moreover, computing λ (see (4.2)) for the results
presented in figure 13 at time t̃= 200, one finds λ= 0.272, λ= 0.298, λ= 0.221 and
λ= 0.093, for cases S1-C15-F, S1-C15-N, S5-C15-N and SI-C15-N, respectively. As
seen in figure 8 for t̃ = 10, mixing at the interface is larger for cases with no-slip
boundary conditions, for the same Schmidt number. Moreover, mixing decreases as
Schmidt number increases. Note that reasonable agreement is observed between the
shape of the S1-C15-F current and the SW predictions (3.9) and (3.12).

4.3. Slow drift of the front (spin-up effect)
As mentioned at the end of § 4.2.1, figure 9, which presents the temporal evolution of
the front displacement for various bottom boundary conditions and Schmidt numbers,
shows a slow ‘drift’ of the front. This drift is observed to be significantly faster at
large Schmidt number and when a no-slip condition is used at the bottom wall.

We interpret this slow drift of the front displacement as a spin-up effect, using
the SW theoretical model described in § 3.3. The SW model (3.17) and (3.21) shows
that the rate of the drift (or spin-up effect) increases with increasing Coriolis number,
Ekman number and when using a no-slip boundary condition (via the coefficient k;
see (3.19)). Note, however, that the SW model is independent of the Schmidt number
and hence is not able to capture the increase in the drift with respect to Sc.

In order to quantify the effect of C, Sc and the type of top–bottom boundary
condition on the slow drift of the front, we present in table 2 the mean drift velocity
dxF/dt̃ obtained in the DNS and the SW model without mixing (3.17) and with
mixing (3.21). The mean drift velocity is computed from the DNS via the slope
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FIGURE 13. (Colour online) Effect of the bottom boundary condition and Schmidt number
on the shape of the wedge when (quasi-)geostrophic adjustment is reached (same as
figure 8 at time t̃= 200). The white solid line is the equivalent height h. (– · – · –, red) SW
‘steady wedge’ solution (3.9); (– · – · –, blue) SW ‘steady wedge’ solution (3.12). A movie
of cases S1-C15-N and S5-C15-N (Movie 7) is available in the supplementary materials.

of the best-fit lines of xF − x0 in figures 2 and 9, using δ = 0.01 in the interval
100< t̃< 200 (dashed red lines). Similarly for the SW, the mean drift velocity is the
slope of the blue and orange dashed lines in these figures (over the same interval).

One can clearly see in table 2 that the mean drift velocity in the DNS strongly
increases when Sc is increased. For instance, dxF/dt̃ is about nine times as large at
Sc =∞ than at Sc = 1 when free-slip boundary conditions are used (more than 20
times with no-slip boundary conditions). Again, the SW model cannot capture the
present observations.

Regarding boundary conditions, the mean drift velocity in the DNS increases by
a factor of about 4–20 when wall friction is present at the bottom wall (the factor
being a function of the Schmidt number). The SW model gives a similar trend, since
dxF/dt̃ is increased by a factor of 3 from a configuration where there is free slip at
the bottom wall (i.e. k= 1/2) to a configuration where there is no slip (k= 3/2). The
agreement between DNS and the SW without mixing, however, is only qualitative
since the specific value of the mean drift velocity predicted by the SW model is
in general an order of magnitude smaller than in the DNS. However, when mixing
is included in the SW model (3.21), the agreement is significantly improved. This
supports the idea that the turbulent mixing in the interfacial region between the current
and the ambient plays a significant role in reducing the angular velocity and hence is
a key process at play during the slow drift of the front.

The influence of the Coriolis number on the drift of the front is less pronounced,
as compared to the other parameters, at least for the present range 0.1 6 C 6 0.25.
Indeed, dxF/dt̃ varies by a factor of 2–3 depending on the approach (DNS or SW).
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Approach Reference C Sc BC dxF/dt̃

Increasing C DNS S1-C10-F 0.1 1 FS 1.6× 10−3

DNS S1-C15-F 0.15 1 FS 1.0× 10−3

DNS S1-C25-F 0.25 1 FS 7.0× 10−4

SW (no mixing) 0.1 FS 2.0× 10−4

SW (no mixing) 0.15 FS 3.2× 10−4

SW (no mixing) 0.25 FS 6.0× 10−4

SW (mixing) 0.1 FS 2.1× 10−3

SW (mixing) 0.15 FS 3.1× 10−3

SW (mixing) 0.25 FS 5.3× 10−3

Increasing Sc DNS S1-C15-F 0.15 1 FS 1.0× 10−3

(without wall friction) DNS S5-C15-F 0.15 5 FS 3.0× 10−3

DNS SI-C15-F 0.15 ∞ FS 9.3× 10−3

SW (no mixing) 0.15 FS 3.2× 10−4

SW (mixing) 0.15 FS 3.1× 10−3

Increasing Sc DNS S1-C15-N 0.15 1 NS 7.6× 10−3

(with wall friction) DNS S5-C15-N 0.15 5 NS 1.2× 10−2

DNS SI-C15-N 0.15 ∞ NS 1.7× 10−1

SW (no mixing) 0.15 NS 9.9× 10−4

SW (mixing) 0.15 NS 1.0× 10−2

TABLE 2. Mean ‘drift’ velocity dxF/dt̃ of the slow expanding front (computed for t̃> 100)
corresponding to the slope of the dashed lines in figures 2 and 9. DNS refers to the fully
resolved simulations (see table 1) and SW refers to the shallow-water theoretical model
without mixing (3.17) and with mixing (3.21). FS and NS refer to free slip and no slip
for DNS, and to k= 1/2 and 3/2 (see § 3.3 for definition) for SW, respectively.

As for the DNS, dxF/dt̃ is observed to decrease when C is increased, and vice versa
for SW. In order to verify that the present trend observed in the DNS is independent
of the way dxF/dt̃ is calculated, we also computed dxF/dt̃ using ρ̃ = 0.01 instead of
δ = 0.01. This is equivalent to calculating the slope of the best-fit line of xF − x0
in figure 15 using ρ̃ = 0.01 in the interval 100 < t̃ < 200. It turns out that such a
calculation gives dxF/dt̃= 2× 10−4, 6× 10−4 and 5× 10−4 for C= 0.1, 0.15 and 0.25,
respectively. Using this indicator for the DNS, one may be tempted to conclude that
the trend roughly follows that of the SW model. This shows that the DNS results
in the first three lines of table 2 are somewhat ambiguous and do not allow us to
conclude regarding the influence of the Coriolis number on the slow drift of the front.
One may need to cover a larger range of C than that presently covered, which must
be left for future work.

The spin-up effect is presented in figure 14 via the time evolution of the angular
velocity obtained from the SW model (3.21) and one DNS. As for the SW model
(dashed line), the decay of ω̂ = ṽ/(Cx̃) is initially quite fast, but after decay to 1 at
t≈ 1.3/Km

su (scaled with Ω), the process slows down significantly. Reduction to 25 %
of the initial value takes about 2.8(Km

suΩ)
−1 time or 0.45/Km

su revolutions. In any case,
the spin-up influence requires many revolutions of the system. Let us also keep in
mind that xN ∝ ω̃

−1/3, which means that a relatively small spread of the wedge, 26 %,
is expected while ω̃ decays from 2 to 1.
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FIGURE 14. Spin-up −ω =−ṽ/(Cx̃) as a function of Km
sut, t scaled with 1/Ω (here t=

C t̃): (dashed line) SW theoretical model with mixing, solution of (3.21); (solid line) DNS,
maximum angular velocity for case S1-C15-N.

For comparison, the time evolution of the maximum angular velocity obtained from
the DNS is also plotted in figure 14 (case S1-C15-N, solid line). The trend between
the SW theoretical model and the DNS is similar. Note that the observed oscillations
of ω̂ in the DNS are due to the oscillations of the front (figure 9b). When the latter is
arrested and goes backward, the Coriolis force sharply decreases (and changes sign),
as does the angular velocity. Recall also that for the DNS, we plot the maximum
angular velocity which is likely to be sensitive to the various changes in the dynamics.
The time scales between the SW model including mixing (3.21) and DNS are of the
same order of magnitude, even though not exactly the same. Note that this is not the
case for the SW model without mixing (3.17), which largely underestimates the rate
of decay of ω̂ (not shown).

5. Summary and discussions
In this work we have investigated the propagation of finite-volume planar rotating

gravity currents by means of fully resolved direct numerical simulations (DNS) and a
shallow-water theoretical model (SW). We have considered a range of relatively small
Coriolis numbers (0.16C60.25), a large range of Schmidt numbers (16Sc<∞) and
two types of top–bottom boundary conditions (free-slip and no-slip). The simulations
cover all the phases of propagation, including (i) the early times of spreading until
the first arrest of the front and the subsequent geostrophic adjustment characterized
by (ii) inertial oscillations of the front and (iii) a slow expansion of the maximum
location of the front due to the so-called spin-up effect.

(1) Early times of propagation until the first arrest of the front. DNS and SW are
in reasonable agreement. Both approaches confirm that the location of the first arrest
of the front is a decreasing function of C. DNS shows that this location is roughly
independent of Sc and the type of top–bottom boundary conditions (within 15 %).
Note that the SW model generally slightly overestimates the front speed (by 15–20 %)
and underestimates the time and location of the first arrest. This may be explained
by the fact that since the SW model neglects viscous effects, the local velocity is
generally larger, as is the Coriolis force. As a consequence, the front stops earlier at
a smaller location.
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The location of the first arrest of the front in the DNS has been compared to the
SW asymptotic solution (3.12) for the length of the steady-state wedge, in the limit
of small Coriolis numbers. In particular, (3.12) predicts that the length of the wedge
is ∝C−2/3. The DNS results, when compared to available data for rotating cylindrical
currents, seem to corroborate this scaling law. Note however, that more simulations
(or experiments) are needed to allow for a definite conclusion regarding the relevance
of (3.12).

(2) Geostrophic adjustment and inertial oscillations. When the front has reached
a maximum location, it subsequently oscillates around a characteristic position at a
constant pulse frequency. The pulse frequency found in the DNS is in agreement
(within 9 %) with that of inertial waves, i.e. ωp = 2C. In addition, the DNS results
show that ωp is independent of Sc and the type of top–bottom boundary conditions.

Another noticeable feature obtained from the DNS results during the inertial
oscillations at 0.1 6 C 6 0.25 is that the front of the current is much thicker than
in non-rotating configurations (C = 0). We explain this by the fact that the rotating
front is subject to (i) enhanced mixing stemming from Kelvin–Helmholtz instability
generated by the shear in the spanwise direction and (ii) local stretching in the front
region which smoothes the local density gradient.

(3) Slow ‘drift’ of the front. When turbulent mixing is included in the SW spin-
up model, DNS and SW are in reasonable agreement. DNS shows that the mean
‘drift’ velocity of the expanding front strongly increases with increasing Sc and with
the presence of wall friction (up to an order of magnitude). The SW model only
captures the trend with respect to wall friction since it is independent of the Schmidt
number. In any case, this supports the idea that friction, due to turbulent mixing in
the interfacial region, is (at least) one process responsible for the slow drift of the
front.

Overall, it must be emphasized that the present work has raised more questions
concerning the ‘drift’ stage than it has answered. In particular, it is the first time
that, to our best knowledge, such a significant effect of the Schmidt number has been
observed for the slow drift of the front of rotating gravity currents. The physical
processes responsible for such a behaviour are, to the authors, still an open question
which is left for future work. On the other hand, the results and insights concerning
the earlier stages of the motion are, in our opinion, reliable and can be used with
confidence for applications and further research. The laboratory-test confirmation is
still needed, and we hope that this paper will provide the guidelines and motivation
for such experimental studies.
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FIGURE 15. Time evolution of the front displacement xF − x0 for C = 0.1 (a), 0.15 (b),
0.25 (c), where xF is defined as the maximum location where the span-averaged density
field at the bottom wall is ρ = 0.01, 0.1, 0.2, 0.3, 0.4 and 0.5, respectively.

Appendix. On the computation of the front displacement

As mentioned in § 4.1, a method for measuring the displacement of the front is the
tracking of the density at the bottom of the channel. After the computation of the span-
averaged density function ρ, we track different values of ρ at z̃=0. The time evolution
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of the front displacement xF− x0 for C= 0.1 (a), 0.15 (b), 0.25 (c), using this method
is presented in figure 15 and may be compared to figure 2. Even if the precise position
or expansion of the front region is not strictly identical between the two methods,
the trend is similar. In particular, figure 15 confirms that the interface separating the
current and the ambient does not remain sharp in rotating gravity currents and that
the method used in this work to locate the front region is pertinent.
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