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1 FOREWORD 

The sun produces a vast amount of energy. The energy emitted by the sun is called solar energy or solar 

radiation. Despite the considerable distance between the sun and the earth, the amount of solar energy reaching 

the earth is substantial. At any one time, the earth intercepts approximately 180 10
6
 GW. Solar radiation is the 

earth primary natural source of energy and by a long way. Other sources are: the geothermal heat flux generated 

by the earth interior, natural terrestrial radioactivity, and cosmic radiation, which are all negligible relative to 

solar radiation. 

As a consequence, the solar radiation influences many aspects of the earth, including weather and climate, ocean, 

life on earth, agronomy and horticulture, forestry, ecology, oenology, energy, architecture and building 

engineering, or materials weathering.  

These lecture notes intend to present the fundamentals in solar radiation at earth surface to a wide community. Its 

content originates from lectures given to students of master degree level or higher, engineers and researchers in 

climate, geophysics and environment sciences, life sciences, or energy. This document should be valuable to any 

engineer, scientist and practitioner. 

The first edition was published on 2018-01-03. This edition is a revision achieved on 2019-07-06. There is 

nothing new; a few small mistakes have been corrected. 

The solar radiation received at a given geographical site varies in time: between day-night due to the earth 

rotation and between seasons because of the earth orbit. At a given time it also varies in space, because of the 

changes in the obliquity of the solar rays with longitude and latitude. Notwithstanding the effects of the clouds 

and other atmospheric constituents, the solar radiation received at a given location and time depends upon the 

relative position of the sun and the earth. This is why both sun-earth geometry and time play an important role in 

the amount of solar radiation received at earth surface. A major part of this textbook is devoted to this matter. 

The geometry of the earth relative to the sun is described as well as its variation throughout the year. The 

concept of time is very important in solar radiation. It is detailed here and the notions of mean solar time and true 

solar time are dealt with. The apparent course of the sun in the sky is described; the solar zenithal, elevation and 

azimuthal angles are defined. These angles are identical at top of the atmosphere and earth surface; no change is 

introduced by the atmosphere. Equations are given in this part that can be easily introduced in e.g., a spreadsheet 

or a computer routine, to compute all quantities and reproduce the figures. Both horizontal and inclined surfaces 

are dealt with. 

The amount of solar radiation that is intercepted by the earth varies because of variations in sun-earth distance 

and as far as the spectral distribution is concerned by day-to-day variations due to solar activity. The closer to the 

sun the earth, the greater the solar irradiance impinging on a plane normal to the sun rays and located at the top 

of the atmosphere. The total solar irradiance, often abbreviated in TSI, is the yearly average of this irradiance 

during a year integrated over the whole spectrum. The variations within a year amount to ± 3 % of the TSI. The 

spectral distribution of the extra-terrestrial radiation is such that about half of it lies in the visible part of the 

electromagnetic spectrum. It produces daylight and is well perceived by the human vision system. Other parts of 

it are in the near-infrared and ultraviolet ranges. A series of equations is offered to compute the extra-terrestrial 

total radiation for any instant and for any inclined surface. 

During its path downwards to the earth surface, the constituents of the atmosphere deplete the incident solar 

radiation. On average, less than half of extra-terrestrial radiation reaches ground level. A good knowledge of the 

optical properties of the atmosphere is necessary to understand and model the depletion of the radiation. The 

description and modelling of the optical processes affecting the solar radiation within the atmosphere is called 

radiative transfer. The phenomena of scattering and absorption are presented and the effects of molecules, 

aerosols, gases and clouds on radiation are discussed. Several examples are given that illustrate atmospheric 

effects as a function of the solar zenithal angle and atmospheric optical properties. 

Even when the sky is very clear with no clouds, approximately 20 % to 30 % of extra-terrestrial radiation is lost 

during the downwelling path by scattering and absorption phenomena by aerosols and molecules. The role of the 

clouds is of paramount importance: optically thin clouds allow a small proportion of radiation to reach the 

ground while optically thick clouds create obscurity by stopping the radiation downwards. The magnitude of the 

depletion of the radiation varies with wavelength and the spectral distribution of the solar radiation is modified 

as the radiation makes its path downwards. The spectral distribution is discussed for several different conditions. 
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The direct, diffuse and reflected components of the solar radiation at earth surface are defined. How to compute 

them on an inclined surface is briefly discussed and equations are provided.  

The direct radiation is the radiation coming from the direction of the sun. Only direct radiation is present at the 

top of the atmosphere. On the contrary, the radiation at surface comprises a direct and a diffuse components, the 

sum being called the global radiation. If a tilted surface is under concern, then it may also receive a reflected 

component that is a part of the radiation reflected by the surrounding landscape. How to compute each 

component on an inclined surface is briefly discussed. 

A last word. Readers may regret the lack of colours in graphs. It is true that colours greatly improve the legibility 

of graphs. The author knows from his experience that this document will be printed, and in part in places where 

colour printers are a luxury that not everyone may afford. Hence, it is his choice to avoid colours in this text. 

 



2 GLOSSARY 

2.1 ANGLES 

Solar declination: The angle formed by the direction to the centre of the sun and the terrestrial equatorial plane. 

Solar zenithal angle: The angle formed by the direction of the sun and the local vertical. 

Solar elevation angle: The angle formed by the direction of the sun and the horizon. 

Solar azimuthal angle, solar azimuth: The angle formed by the projection of the direction of the sun on the 

horizontal plane and the north. 

2.2 RADIATION – GENERAL DEFINITIONS 

Broadband irradiance: The irradiance integrated over a large spectrum. It is not well defined and is used as a 

current term to denote that the radiation is integrated over a certain range of wavelength. It may be 

used to denote the solar radiation measured by pyranometers, e.g. from 300 nm to 2200 nm. One may 

find broadband UV that opposes to spectral UV. 

Irradiance: The power received per area; unit is W m
-2

.  

Irradiation: The energy received per area; unit is J m
-2

. The unit Wh m
-2

 is commonly used in commercial 

metering of electrical energy but should be avoided. 

Radiant energy: The amount of energy that is transferred by radiation. It is expressed in J (Joule). 

Radiant flux: The time rate of flow of the radiant energy. It is expressed in W (Watt). 

Radiance: The radiant flux per unit solid angle per unit area. Unit is W m
-2

 sr
-1

. 

Spectral distribution of the irradiance: The distribution of the irradiance as a function of the wavelength. 

Total irradiance, irradiation: The irradiance, irradiation, integrated over the whole spectrum. 

2.3 RADIATION AT THE TOP OF THE ATMOSPHERE 

Extra-terrestrial radiation, irradiance or irradiation: the total radiation, irradiance and irradiation originating 

from the sun impinging on a horizontal surface located at the top of the atmosphere. 

Total solar irradiance: The yearly average of the solar irradiance impinging on a plane normal to the sun rays 

and located at the top of the atmosphere. It is often abbreviated as TSI. 

2.4 RADIATION AT GROUND LEVEL 

Diffuse irradiation, irradiance: The downward scattered shortwave irradiation, irradiance, coming from the 

whole hemisphere, with the exception of the solid angle of the sun disc. This does not usually include 

the part of the irradiation reflected by the ground in the case of an inclined receiving plane. 

Direct irradiation, irradiance: The shortwave irradiation, irradiance, coming from the solid angle of the sun 

disc. 

Global irradiation, irradiance: The shortwave irradiation, irradiance, received at ground level; it is the sum of 

the direct, diffuse and reflected irradiations. 

Reflected irradiation, irradiance: The irradiation, irradiance, reflected by the ground and impinging on an 

inclined receiving plane. 

2.5 TIME AND TIME SYSTEMS 

Summarization: The time interval during which a measurement is performed. 



8 BASICS IN SOLAR RADIATION AT EARTH SURFACE 

 

Time – legal time, local time, standard time, civil time, local clock time: The time used legally in a given 

country. 

Time – mean solar time: The time determined locally by dividing the average duration of a rotation by 24 h. 

The mean solar time is equal to 12 h when the sun is at its highest, i.e. at zenith, as an annual average. 

Time – true solar time: The time for which the sun is actually at its highest when it is 12 h. It depends on the 

day of the year and longitude of the site. 

Time – Universal Time (UT): The mean solar time for the longitude 0°. 

2.6 MISCELLANEOUS 

Clearness index: Ratio of irradiation, irradiance, at ground level to extra-terrestrial irradiation, irradiance.  

Linke turbidity factor: A quantity that conveniently describes atmospheric absorption and scattering of the 

incident light by the clear sky. 

Optical depth: A measure of the extinction of the radiation during its vertical travel through a layer of 

molecules or particles or clouds, with a solar zenithal angle equal to 0. 

Turbidity: The optical effects of the aerosols that attenuate the incident light. 

 

 



3 THE SUN AS SEEN BY AN OBSERVER AT THE SURFACE OF THE EARTH 

In summary 

The earth describes an elliptical orbit, quasi-circular, counterclockwise, around the sun. The duration of an orbit 

is approximately 365.25 days, one day being 24 h, i.e. 86 400 s. 

The distance between the earth and the sun varies around the year by ±1.7 % around a mean value equal to 1 

astronomical unit (1 au = 1.496 10
8
 km). The distance is the greatest between the 2 and 5 January (=1.017 au), 

and reaches its minimum between the 3 and 5 July (=1.017 au). The exact dates vary slightly depending on the 

year. 

Because of the large distance between the sun and the earth, the sun appears as a small spot to an observer on the 

earth. Its apparent diameter is approximately 32 ±0.5’ of arc angle, i.e. about half a degree. As a consequence, 

the sunrays can be considered as parallel as they hit the top of the earth atmosphere. 

The equatorial plane of the earth inclines on the plane containing the orbit of the earth. The solar declination is 

the angle made by the line joining the sun to the earth and the equatorial plane. It varies with time from -23.45° 

to +23.45°. The solstices of December and June respectively are the two points in the earth orbit where these 

extreme values are attained. The equinoxes of March and September are the two points where the solar 

declination is null. 

The solstices define the beginning of two seasons, respectively the astronomical winter which begins around 20-

22 December depending on the year, and the astronomical summer which begins around 20-22 June. The 

astronomical spring begins around 19-21 March and the astronomical autumn around 21-24 September. Each 

astronomical season lasts three months, with a variable number of days.  

The solar zenithal angle is the angle formed by the direction of the sun and the local vertical (zenith). The 

azimuth of the sun, or solar azimuthal angle, is defined as the angle between the projection of the direction of the 

sun on the horizontal plane and the north, and increasing clockwise.  

 

The solar radiation received at a given geographical site varies in time: between day-night due to the earth 

rotation and between seasons because of the earth orbit. At a given time it also varies in space, because of the 

changes in the obliquity of the solar rays with longitude and latitude. It is governed by the specific astronomical 

situation of the earth on its orbit around the sun, its rotation around its polar axis and the location of this point on 

the earth. This is why both sun-earth geometry and time play an important role in the amount of solar radiation 

received at earth surface.  

3.1 THE SUN-EARTH ASTRONOMY IN BRIEF 

The earth describes an elliptical orbit with the sun at one of the foci (Figure 3.1). In this figure, the ellipse is 

exaggerated because in fact, the eccentricity of the orbit is small (0.01675), which means that the orbit is almost 

circular. The orbit is flat, and this plane is called the plane of the ecliptic. The sun is located at one of the centers 

of the ellipse, not at its center, which causes variations in the distance between the sun and the earth during a 

revolution. For the reader with knowledge in astronomy, I specify that for reasons of simplicity in the 

presentation, I confused in this figure, the solstices and the moments when the distance sun-earth reaches its 

extrema. 

The direction of rotation is counterclockwise, or trigonometric, or direct. The duration of an orbit varies over 

time over long periods of time, and this variation can be neglected on the scale of a few centuries. The orbit is 

traveled in one year. The definition of the year is not unique: sidereal year, Julian, tropical ... but overall, it is 

about 365.25 days, each day having 86 400 s, i.e. 24 h of 3600 s each. There is therefore a gap between this 

duration and a regular year of 365 days, used in the Gregorian calendar, the one of every day in most countries in 

the world. The gap is overtaken every 4 years by adding one day (February 29th). This is called a leap year, 

which includes 366 days. Of course, when it comes to calendar and time, things are not so simple, and years are 

leap years only if the year is divisible by 4 and not divisible by 100, or if it is divisible by 400. Note that in 

climatology, we do not keep February 29 in the time series to have the same number of days for each year. 



10 BASICS IN SOLAR RADIATION AT EARTH SURFACE 

 

The earth rotates on itself. This rotation induces the notion of a mean solar day divided into 24 h of 60 min each, 

i.e. 86 400 s. More exactly, the earth turns on itself in 23 h 56 min and 4 s. During this time, the earth has also 

progressed in its revolution around the sun, and it takes an average of 3 min and 56 s to find the sun at the same 

point on the sky, a total of 24 hours. The time variables: year, day, and hour, are essential in order to compute the 

apparent position of the sun in the sky and, accordingly, the radiation at ground level that may be exploited. 

 

Figure 3.1. Schematic view of the earth orbit around the sun. The angle  is the solar declination. Adapted from 

Perrin de Brichambaut and Vauge (1982)1.  

The speed of rotation of the earth on itself tends to slow down because of the movements of the tides in 

particular. This variation affects the duration of the solar day, which currently exceeds 86 400 s by fractions of a 

second. In the course of a year, one adds regularly, one second to the universal time, and therefore to the civil 

time used every day, in order to keep the duration the day of 24 hours in general. 

The mean distance between the sun and the earth is approximately equal to 1.496 10
8
 km, exactly 

149 597 870 700 m according to the decision of the International Astronomical Union in 2012. This distance is 

called 1 astronomical unit. Its unit is ua or au, the latter being the recommendation made in 2012 by the 

International Astronomical Union. The distance between the sun and the earth varies within a year (Figure 3.1), 

from a minimum of 0.983 au reached approximately on 2-5 January to a maximum of 1.017 au reached 

approximately on 2-5 July. The exact dates depend on the year. 

A consequence of the large distance between the sun and the earth is that despite its formidable size, the sun 

appears as a small spot to an observer on the earth. The solid angle under which the sun appears is equal to 

0.68 10
-4

 sr. Differently written, the apparent diameter of the sun is approximately 32 ± 0.5’ of arc angle, i.e. half 

a degree.The sunrays can be considered as parallel as they hit the top of the earth atmosphere. 

Figure 3.1 shows that the equatorial plane of the earth inclines by 0.4093 rad (23.45°) on the plane containing the 

earth orbit. In other words, the axis of the earth daily rotation passing by the two poles is inclined by this angle 

with respect to the orbit plane. This angle is also called the obliquity of the ecliptic. 

Because of this inclination, the northern hemisphere is farther from the sun than is the southern hemisphere in 

December. Conversely, the northern hemisphere is closer to the sun than is the southern hemisphere in July. 

As it can be seen in Figure 3.1, the direction of the solar rays is not always parallel to the equatorial plane. The 

angle composed by the direction to the sun and the equatorial plane is called the solar declination, represented by 

 in Figure 3.1. The winter and summer solstices are defined as the two points in the earth orbit of the maximum 

solar declination in absolute value. The solstices define the beginning of two seasons, respectively the 

                                                           

1 Perrin de Brichambaut Ch., Vauge Ch., 1982. Le Gisement Solaire. Published by Technique et Documentation (Lavoisier), 

Paris, France, 222 pp. [This book in French offers a practical description of solar radiation for solar engineering purposes]. 
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astronomical winter which begins on 20-22 December and the astronomical summer which begins on 20-22 

June. 

The beginnings of the two other astronomical seasons are determined by the equinoxes that are the two points in 

earth orbit where  is equal to 0. The astronomical spring begins about 19-21 March and the astronomical 

autumn about 21-24 September. Each astronomical season lasts three months, with a variable number of days. 

On earth, these astronomical seasons have different names for each hemisphere: the boreal (north hemisphere) 

and austral (south hemisphere) seasons. For example, the astronomical summer corresponds to the boreal 

summer in the northern hemisphere, and to the austral winter in the southern hemisphere. See Table 3.1 for 

correspondence. These seasons differ from the meteorological seasons. 

 
Astronomical season Period (approximate) Season in the northern 

hemisphere 

Season in the southern 

hemisphere 

Spring 20 Mar – 21 Jun Boreal spring Austral autumn 

Summer 21 Jun – 23 Sep Boreal summer Austral winter 

Autumn 23 Sep – 21 Dec Boreal autumn Austral spring 

Winter 21 Dec – 20 Mar Boreal winter Austral summer 

Table 3.1. Correspondence between astronomical, boreal and austral seasons 

3.1.1 THE SUN-EARTH DISTANCE 

The mean distance between the earth and the sun, r0, is 1 au (Figure 3.1). This value is reached for spring and 

autumn equinoxes. The actual distance varies during the year. A number of mathematical expressions of this 

distance are available; they are usually expressed in terms of Fourier series type of expansion. In the following 

expression adopted from the European Solar Radiation Atlas2, the actual distance r is a function of the number of 

the day in the year, d. d ranges from 1 (1
st
 January) to 365, or 366 in case of a leap year. It is convenient to 

define the day angle j: 

j = d 2  / 365.2422  (3-1) 

j is expressed in rad. It is almost null on 1st January (0.0172), and is equal to  (180°) on 1st July and 2 (360°) 

on 31
st
 December. 

The ratio (r0/r) is equal to: 

𝑟0/𝑟 =   √(1 + 𝜀)  (3-2) 

where  is given by: 

 ≈ 0.03344 cos(j - 0.049)  (3-3) 

with an accuracy sufficient for many applications.  varies between 0.97 et 1.03. Figure 3.2 exhibits the sun-

earth distance as a function of the day in the year. The maximum is 1.017 au and is reached between 3-5 July. 

This moment is called aphelion. The smallest distance is 0.983 au and is reached between 2-5 January 

(perihelion). The exact dates vary slightly depending on the year. The variation of distance exhibits relative 

amplitude of 3.4 %. This seems weak, but it should not be neglected because the radiation received by the earth 

varies with the square of the sun-earth distance. 

                                                           

2 Greif, J. J., Scharmer, K., Aguiar, R., Albuisson, M., Beyer, H.-G., Borisenkov, E. P., Bourges, B., Czeplak, G., Lund, H., 

Joukoff, A., Page, J. K., Terzenbach, U. and Wald, L., 2000. European Solar Radiation Atlas. Vol. 2: Database and 

Exploitation Software. Published for the Commission of the European Communities by Les Presses de l'Ecole, Ecole des 

Mines de Paris, France, 290 pp. [This book contains equations describing the sun position with respect to an observer can be 

found. Several models for converting global horizontal irradiance into diffuse and direct irradiances on an inclined plane 

surface are described. Equations in C are available at www.oie.mines-paristech.fr/Valorisation/Outils/Solar-Geometry/]  
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Figure 3.2. Sun-earth distance in au as a function of the day in the year 

 

3.1.2 SOLAR DECLINATION 

As already written, the solar declination  is the angle made by the line joining the sun to the earth and the 

equatorial plane (Figure 3.1). The convention for counting the solar declination  is the same as that for latitudes. 

Here the ISO 19115 convention is adopted3. Latitudes  are counted positive in the northern hemisphere and 

negative in the southern hemisphere. Longitudes are counted positive east of the meridian 0° and negative west 

of this meridian. Latitudes and longitudes are angles; they are usually expressed in degrees. 

 is the greatest for the summer solstice and is equal to +0.4093 rad (23.45°). It reaches its minimum for the 

winter solstice and is equal to -0.4093 rad (-23.45°). By definition,  is equal to 0 for the equinoxes.  is a 

function of the longitude . A mean daily value is accurate enough for many applications. The European Solar 

Radiation Atlas proposes a series of equations for computing the sun-earth geometry and the angles depicting the 

course of the sun in the sky as seen by an observer at earth surface. Accuracy in time is of order of a few minutes 

and these equations are suitable if one is focusing on hourly or daily sums of solar radiation. For a greater 

accuracy, other works should be preferred4 5. 

Using the European Solar Radiation Atlas equations,  can be computed from d,  and the year y. Let n0 

represent the spring-equinox time expressed in days from the beginning of the year, i.e. the time in decimal day 

that elapses from 0.0 h on 1st January to the spring equinox at longitude 0° in the year y. Let tday represent the 

                                                           

3 ISO 19115-1:2014. Geographic information -- Metadata -- Part 1: Fundamentals, 167 pp, International Standards 

Organization, Geneva, Switzerland, 2014. 

4 Reda, I., Andreas, A., 2004. Solar position algorithm for solar radiation applications: Solar Energy, 76(5), 577–589. 

Corrigendum, 81, 838-838, 2007. [It describes solar position algorithm, called SPA. The uncertainty, in terms of standard 

deviation of solar azimuth and zenithal angles is stated to be within 5 µrad (0.0003 °, or 1'') for a very large period 

from -2000 to 6000. Libraries in C, Matlab and Python that implement the SPA algorithm are available (respectively at: 

rredc.nrel.gov/solar/codesandalgorithms/spa, www.mathworks.com/matlabcentral/fileexchange/4605 and www.pysolar.org).]  

5 Blanc P., Wald L., 2012. The SG2 algorithm for a fast and accurate computation of the position of the Sun. Solar Energy, 

86, 3072-3083. [This algorithm SG2 is very fast. Maximum error is of order of 10'', for a multi-decadal time period. 

Equations in C and Matlab are available at http://www.oie.mines-paristech.fr/Valorisation/Outils/Solar-Geometry/] 
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time, in days, from the spring equinox and day the day angle counted from the spring equinox. If INT denotes 

the integer part of an expression, i.e., the left part before the decimal, these quantities are given by: 

n0 = 78.8946 + 0.2422 (y - 1957) - INT[(y - 1957)/4] (3-4) 

tday = -0.5 -  / (2 ) - n0  (3-5) 

day = (2  / 365.2422) (d + tday)  (3-6) 

The declination is then given by: 

b1 + b2 sin(day) + b3 sin(2day) + b4 sin(3day) + b5 cos(day) + b6 cos(2day) + b7 cos(3day) (3-7) 

where: 

b1 = 0.0064979, b2 = 0.4059059, b3 = 0.0020054, b4 = −0.0029880 

b5 = −0.0132296, b6 = 0.0063809, b7 = 0.0003508 

Figure 3.3 displays the variation of the solar declination as a function of the number of the day in the year for 

longitude 0° and for the year 2006. The declination is 0 rad for days 80 (21 March) and 266 (22 September), 

minimum (-0.4093 rad, -23.45°) for day 356 (22 December) and maximum (+0.4093 rad, +23.45°) for day 172 

(21 June). 

 

Figure 3.3. Solar declination (in rad) and its variation throughout the year. The year is 2006. Longitude is 0°. 

Neglecting the longitude, i.e., making the calculations by setting  to 0° in Eq. 3-5, induces an error in the solar 

declination that is less than 0.001 rad in absolute value. Such an error is acceptable in solar engineering 

calculations; the influence of the longitude can be neglected.   

3.1.3 GEOCENTRIC AND GEOGRAPHIC COORDINATES 

The equations are given here with the geocentric coordinates, i.e., by considering the earth as a perfect sphere. 

These geocentric coordinates are the latitude c and the longitude . The earth is not a perfect sphere and is 

slightly elongated in the equatorial plane. The radius to the poles Rpole is equal to 6 356.752 km, and is slightly 

less than the radius at Equator Requator which is 6 378.137 km. 

Accordingly, there is a difference between the geocentric latitude c and the actual geographic latitude . The 

relationship between both is: 
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tanc = (Rpole / Requator)² tan  (3-8) 

Because (Rpole / Requator) is less than 1, tanc is less than tan; c is closer to the equator than is the actual 

latitude . The difference between these angles is null at the poles and the equator and maximum at geographic 

mid-latitudes /4 (45°) and -/4 (-45°), where it reaches 0.0033 rad (0.19°). 

As a first approximation, the perimeter of the earth P along a longitude is  

P = 2  [(Rpole + Requator)/2]  (3-9) 

The mean distance on the earth surface corresponding to 1° in latitude is equal to P/360°, i.e. 111 km. Hence, the 

maximum error of 0.19° corresponds to an error in the north-south distance of approximately 21 km 

( 0.19*111 km). If this effect is to be taken into account, the geographic latitude  should be replaced in all 

equations by the geocentric latitude c. 

3.2 THE SUN GEOMETRY PERCEIVED BY AN OBSERVER 

From the point of view of an observer at ground level, the relative movements of the sun and earth are not 

perceived as described above. For this observer, the sun describes a course in the sky from east to west. The 

exact course depends upon the season and may be described by two angles: the solar zenithal angle and the solar 

azimuthal angle, or azimuth (Figure 3.4).  

 

Figure 3.4. The various angles describing the position of the sun in the sky viewed from an observer OS is the 

solar zenithal angle, S is the solar elevation angle and S is the azimuth. N, E, S, and W denote respectively the 

north, east, south and west. 

It should be noted that the atmosphere does not affect the perceived direction of the sun, except when the sun is 

very low on or below the horizon. Hence, the solar zenithal angle and the azimuth are the same at earth surface 

or at the top of the atmosphere and more generally for any altitude. 

The solar zenithal angle S is the angle formed by the direction of the sun and the local vertical (zenith). The 

solar elevation angle S is the angle formed by the direction of the sun and the horizon. One is the 

complementary of the other, that is: 

 = SS   (3-10) 

In the following, the angle S is mostly used in equations. To replace S by S, the following relationships may be 

used: 
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cosSsinS   (3-11) 

sinScosS   (3-12) 

During daytime, the solar elevation angle S varies from 0 when the sun is at the horizon to  when the sun is at 

its highest, i.e. at zenith. For more accuracy when the sun is low, i.e., when S is less than 10°, one should take 

into account the atmospheric refraction of the solar rays. The angular difference between the geometric elevation 

and the apparent elevation is 0.01454 rad (0.8333°, i.e. 50’); the sun appears lower than its actual position. This 

effect may be neglected for most cases, except for high latitudes. 

It is very convenient to define the hour angle  of the sun to describe its apparent movement. This angle is the 

arc angle comprised between the longitudinal plane of the point of interest O and the instantaneous position of 

the sun (Figure 3.5). In other words, it is the arc of trajectory of the sun counted from noon.  is 0 when the sun 

is at its highest.  is counted negative in the morning and positive in the afternoon. 

 

Figure 3.5. Scheme showing the hour angle  of the sun for the observer O. ss is the hour angle for sunset, sr 

is that of sunrise (ss = -sr). Adapted from Perrin de Brichambaut and Vauge (1982, op. cited). 

The true solar time (TST) is defined by the fact that it is 12:00 when the sun is at its highest for the day under 

concern, i.e. for =0. This highest position is called solar noon. Since the apparent trajectory of the sun during a 

day, from - to +, i.e.  is uniformly described by  in 24 h,  is related to the true solar time tTST (expressed 

in h) by: 

 = (2  / 24) (tTST - 12) = ( / 12) (tTST - 12) (3-13) 

since the sun path of 2 is uniformly described in 24 h. Reciprocally, given , tTST is given (in h) by: 

tTST = 12 (1 +  / )  (3-14) 

The solar zenithal angle S for a given tTST is obtained by: 

cosS = sinsin coscos cos  (3-15) 

where  is given by Eq. 3-13,  is the latitude and  the solar declination. 

The azimuth of the sun S, or solar azimuthal angle, is defined as the angle between the projection of the 

direction of the sun on the horizontal plane and a reference direction (Figure 3.4). There are several conventions 

for measuring S. The simplest is to count S clockwise from north where its value is 0. Thus, it is /2 (90°) for 

east,  (180°) for south and 3/2 (270°) for west. This convention is that recommended by the international 

organization for standardization ISO in geographic information (ISO 19115) and is used in this text. The 

following equations link S and S: 
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sinS sinS = - cos sin   (3-16) 

cosS sinS = sin cos - cos sin cos 

If S is different from 0 and if the latitude  is different from  ∕2, the solar azimuth S is given by the 

following equations: 

cos’ = [sin cos - cos sin cos] ∕ sinS (3-17) 

if sin ≤ 0, then S = cos
-1

(cos’’) 

if sin > 0, then S = 2 - cos
-1

(cos’) 

The following equations may have an interest in further calculations implying the solar azimuthal angle: 

sinS = -cos sin / sinS  (3-18) 

tanS = -sin / [sin cos - cos tan] in northern hemisphere 

tanS = sin / [sin cos - cos tan] in southern hemisphere 

These equations stand provided that S is not equal to 0 and not at the pole ( =  /2). When S is null, the 

azimuth is undetermined; it may be set to , i.e. to the south. At the poles, S is undetermined for any position of 

the sun; it may be set to any value. 

Several solar engineering publications have adopted another convention: the solar azimuth is measured from due 

south in the northern hemisphere and is positive towards the west. In this way, it behaves similarly to the solar 

hour angle : it is positive in the afternoon (west) and negative in the morning (east). Thus, the solar azimuth for 

solar engineers is equal to 0 to the south, /2 to the west,  to the north and -/2 to the east. In the southern 

hemisphere, the solar azimuth for solar engineers is counted from due north and still positive to the west. Thus, it 

is equal to 0 in the north, /2 to the west,  to the south and -/2 to the east. With this convention, the solar 

azimuth for solar engineers is equal to (S - ) in the northern hemisphere and (-S) in the southern hemisphere 

where S is defined by Eq. 3-17 with the ISO convention. 

 

Figure 3.6. The inclination (or tilt) angle  and the azimuth  describe the inclined plane.  is the incidence 

angle and is comprised between the normal to plane and the solar rays. 

An inclined plane can be described with two angles: the inclination angle , also called the tilt angle, and the 

azimuth  (Figure 3.6). The inclination angle  varies from 0 (horizontal plane) to /2 (vertical plane). The 

azimuth of a plane is defined as the angle between the projection of the normal to this plane on the horizontal 

plane and a reference direction. It is also called orientation or aspect in the case of natural slopes. The convention 

for the azimuth  should be the same as for the solar azimuth S. 
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Assume a solar engineer who has adopted the convention described above: the solar azimuth is measured from 

due south in the northern hemisphere and is positive towards the west. Then if the solar engineer describes the 

orientation of a photovoltaic panel (PV) as being 62°, i.e. the panel is orientated towards south-west, the azimuth 

is 242° (=180°+62°) in the ISO convention. If the orientation of the PV panel is -118°, i.e. the panel is orientated 

towards north-east, then it is 62° (=180°-118°) in the ISO convention. If the PV panel is located in the southern 

hemisphere with an orientation of 62°, i.e. the panel is orientated towards north-west, the orientation is 298° 

(=360°-62°) in the ISO convention. If the orientation of the PV panel is -118°, i.e. the panel is orientated towards 

south-east, the orientation is 118° in the ISO convention. 

The angle of incidence  of the solar rays is the angle formed by the normal to the plane and the rays (Figure 

3.6). It is given by: 

cos = cos cosS + sin sinS cos(S - ) (3-19) 

This equation and the following ones are valid whatever the convention for counting the azimuth. 

For further calculations, it is convenient to express  as an explicit function of . It will ease the computation of 

the radiation received by an inclined surface. By exploiting Eqs 3-15 to 3-19 and given that 

cos(S - ) = cosS cos + sinS sin (3-20) 

we obtain 

cos = A cos + B sin + C  (3-21) 

where 

A = cos (cos cos - sin sin cos) 

B = -cos sin sin  (3-22) 

C = sin (sin cos + cos sin cos) 

The integral of cos during any period of time [t1, t2] expressed by the hour angles 1 and 2, may be computed 

using Eqs 3-21 and 3-22: 

∫ 𝑐𝑜𝑠 𝜃  𝑑𝜔
𝜔2

𝜔1
 =[𝐴 𝑠𝑖𝑛𝜔 - 𝐵 𝑐𝑜𝑠𝜔 +  𝐶𝜔]

𝜔1

𝜔2
 (3-23) 

 = A (sin2 - sin1) - B (cos2 - cos1) + C (2 - 1) 

If the plane is horizontal ( = 0), then 

A = cos cos 

B = 0   (3-24) 

C = sin sin 

and the integral of cosS is: 

∫ 𝑐𝑜𝑠 𝜃𝑆 𝑑𝜔
𝜔2

𝜔1
  = [𝐴 𝑠𝑖𝑛𝜔 +  𝐶𝜔]𝜔1

𝜔2 = A (sin2 - sin1) + C (2 - 1) (3-25) 

 

 





4 THE DIFFERENT TIME SYSTEMS AND DAYTIME 

In summary 

Time is an essential element in solar radiation. It should be known with care. Its encoding in data exchange 

should follow ISO standards. 

The daily rotation of the earth on itself induces the notion of a mean solar day divided into 24 h of 60 min each. 

The time defined in this way is called the mean solar time (MST). The sun is approximately at its zenith when 

the mean solar time is equal to 12:00. Consequently, the mean solar time is not the same everywhere on the 

earth. It depends upon the longitude. A difference of 1 h corresponds to a difference of 15° in longitude. 

The difference between the true solar time and the mean solar time is as a function of the day in the year. The 

maximum is reached on 31
st
 October: the difference is equal to 0.276 h (17 min). The minimum is -0.242 h 

(15 min) on 13
th

 February. 

The reference for time is the mean solar time for the longitude 0°; it is called the Universal Time, abbreviated in 

UT. The legal time is the time used legally in a given country. It is also called local time, standard time, civil 

time or local clock time. 

The daily rotation of the earth on itself determines daytime and night-time. Daytime is the duration of the day 

during which the sun is above the horizon, i.e. the period of time between the sunrise and the sunset. The night-

time is the period of time comprised during the sunset and the sunrise when the sun is below the horizon. The 

duration of a day is 24 h; the sum of the durations of daytime and night-time is equal to 24 h. 

The astronomical daytime is defined as the period of time between the sunrise and the sunset in the case there is 

no obstruction in the line of sight. If obstructions are present such as in cities or in case of marked relief, the 

actual daytime may differ from the astronomical daytime. 

 

The sun-earth geometry has for long served as standards for defining time and its units. For the time being, the 

second is defined by electronic transitions in certain atoms in atomic clocks. The second is the international unit 

of time. Time is primordial for computing the sun-earth geometry and subsequently the solar radiation at the top 

of the atmosphere and at earth surface. 

4.1 THE TRUE SOLAR TIME, MEAN SOLAR TIME, UNIVERSAL TIME AND LEGAL TIME 

4.1.1 THE MEAN SOLAR TIME AND TRUE SOLAR TIME 

A day is the time duration for one rotation; a day is divided into 24 h, i.e. 24 times 3600 s, as an average. The 

time defined in this way is called the mean solar time (MST), noted tMST. The sun is approximately at its zenith 

when the mean solar time is equal to 12:00. Consequently, the mean solar time is not the same everywhere on 

the earth. It depends upon the longitude. 

One hour corresponds to an angle of (2/24) (=15°), because the earth rotates 2 in 24 h. This is equivalent to 

saying that 1° in longitude corresponds to 4 min. Consequently, the difference in time between longitude 0 and 

longitude  is given by (24 / 2), expressed in h: 

tMST() = tMST(=0) + (24 / 2)  (4-1) 

Because the orbit of the earth is an ellipse, the earth angular speed varies slightly throughout the year. Combined 

with the rotation of the earth on itself, which is very regular, it results that the sun does not reach its highest 

position in the sky at 12:00 MST every day. The time of solar noon may differ from 12:00 MST by up to 17 min. 

The time determined every day by the actual position of the sun in the sky is called true solar time (TST), or 

local apparent time; it is represented by tTST. It is important not to confuse this local apparent time with the legal 

local time. Solar noon is reached at 12:00 TST. The difference between tTST and tMST is sometimes called time 

equation; it is expressed in h and can be approximated by: 

tTST - tMST = -0.128 sin(j − 0.04887) - 0.165 sin(2 j + 0.34383) (4-2) 
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Figure 4.1 displays the variation of the difference between tTST and tMST as a function of the day in the year. The 

maximum is reached on 31
st
 October: the difference is equal to 0.276 h (17 min). The minimum is equal 

to -0.242 h on 13
th

 February. The difference is equal to 0 for days 16
th

 April, 14
th

 June, 31
st
 August and 25

th
 

December. One notes a secondary maximum of 0.061 h (4 min) on 14
th

 May and a secondary minimum 

of -0.106 h (6 min) on 27
th

 July. 

 

Figure 4.1. Difference between times in TST and MST as a function of the day in the year (tTST - tMST) 

4.1.2 THE UNIVERSAL TIME AND LEGAL TIME 

One hour corresponds to an angle of (2/24) in radian (=15°), because the earth rotates 2 in 24 h. This is 

equivalent to saying that 1° in longitude corresponds to 4 min. The earth is divided into 24 time zones; each 

differs from the other by adding 1 h eastwards. The width of each time zone is 15° in longitude. Consequently, 

the difference in time between longitude 0° and longitude , expressed in rad, is given by (24 / 2) h. If  is 

expressed in degrees, then the difference in time is (24 / 360) h. 

The reference for time is the mean solar time for the longitude 0°; it is called the Universal Time, abbreviated 

UT and represented by tUT. More exactly, the time standard is the Coordinated Universal Time, abbreviated 

UTC. It is the basis of legal time and is derived from International Atomic Time. The difference between UT and 

UTC is slight, approximately 1 s per day. Hence, the UT time is adopted here. 

Given a time tUT and a location of longitude , the mean solar time tMST is given in h by: 

tMST = tUT + (24 / 2) if  is in rad or = tUT + (24 / ) if  is in degree (4-3) 

At longitude 0°, the mean solar time is equal to the Universal Time. At longitude 180°, it is equal to the 

Universal Time plus 12 h, and at longitude 120°, it is equal to the Universal Time plus 8 h.  

The legal time, tlegal, is the time used legally in a given country. It is often called local time by the general public. 

Other terms are standard time, civil time and local clock time. The legal time at a given location is quite often the 

time of the time zone containing this location. However, the reality is more complex and is illustrated by a few 

examples below. 

Brazil is comprised approximately between the longitudes -35° and -73°. The mean solar times at each extreme 

longitude are respectively tUT-2.3 h and tUT-4.9 h. The legal time has been set to tUT-3 h for the whole country, 



The Different Time Systems and Daytime 21 

 

which corresponds to the longitude -45°. It could have been separated in two or three time zones. Russia spans 

approximately from 30° to 190° in longitude and is separated in eight time zones. 

China spans approximately from 75° to 135° in longitude. The mean solar times at each extreme longitude are 

respectively tUT+5 h and tUT+9 h. It could have been separated in several time zones. The legal time has been set 

the same over the whole China and is tUT+8 h, i.e. approximately the mean solar time at Beijing whose longitude 

is 116.36°. In this case, there may be considerable differences between the legal time and the mean solar time. 

Assume a legal time of 12.5 h. The corresponding UT time is tUT = (12.5 – 8) h = 4.5 h. According to Eq. 4-3, the 

mean solar time is 12.26 h. The city of Chengdu, China is located more to the West, with a longitude of 104.06°. 

Though the legal time is the same as in Beijing, i.e. 12.5 h, the mean solar time at Chengdu is 11.44 h; it is equal 

to 10.34 h for the city of Urumqi whose longitude is 87.62°. 

The Westernmost Africa countries such as Mauritania or Senegal could have adopted tUT+1 h as the legal time 

given their longitudes. The legal time was set to UT instead. On the opposite, the Iberian Peninsula (Portugal and 

Spain) exhibits the same longitudes than Ireland and the United Kingdom. While Portugal, Ireland and the 

United Kingdom share the same time zone, Spain is 1 h ahead. 

Several countries from mid- to high latitudes have adopted daylight saving time, which is usually one hour ahead 

with respect to the time zone during the local summer time. For example, legal time in Western Europe is equal 

to UTC+1 h, except in summer, when 1 h is added. To add to the complexity of handling legal time with respect 

to the UTC time, the dates of change for daylight saving time are not the same throughout the world. 

Detailed information on time zone is easily found on the Web and is of great help in understanding and handling 

the time that is associated to a measure for example. 

In summary, if one needs to compute the position of the sun for a given location at a given time, one must know 

accurately the true solar time. If the time is given in legal time, the following operations must be performed: 

 convert the legal time for the location under concern into UT time tUT, by taking into account the time 

zone and possibly the daylight saving time, 

 then, apply Eq. 4-3 to obtain tMST, 

 then, apply Eq. 4-2 to obtain tTST, 

 then, use equations of the previous Chapter to compute the solar angles. 

4.2 SUNRISE, SUNSET AND DAYTIME 

The daily rotation of the earth on itself determines daytime and night-time. Daytime is the duration of the day 

during which the sun is above the horizon, i.e. the period of time between the sunrise and the sunset. The night-

time is the period of time comprised during the sunset and the sunrise when the sun is below the horizon. The 

duration of a day is 24 h; the sum of the durations of daytime and night-time is equal to 24 h. 

The astronomical daytime is defined as the period of time between the sunrise and the sunset in the case there is 

no obstruction in the line of sight. If obstructions are present such as in cities or in case of marked relief, the 

actual daytime may differ from the astronomical daytime. 

4.2.1 THE SUNRISE AND SUNSET 

Remember that the hour angle  is 0 rad when the sun is at its highest, i.e. when tTST =12 h.  is counted 

negative in the morning and positive in the afternoon. The hour angles for sunrise (SR, negative) and sunset 

(SS, positive with SS = -SR) define the daytime. The following relationship holds (Eq. 3-14): 

tTST = 12 (1 +  / )  (3-14) 

where  is in rad and tTST in h. The sunset hour angle, SS, is calculated by setting the solar zenithal angle S to 

/2 in Eq. 3-15 provided there is no obstruction: 

cosS = sinsin coscos cos  (3-15) 

SS is the solution of this equation. It results 
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if  = /2, if  > 0 SS = , otherwise SS = 0 

if  = -/2, if  > 0 SS = 0, otherwise SS =  

if (-tan tan  1SS = 0   (4-4) 

if (-tan tan -1SS =   

otherwiseSS = arccos(-tan tan  

SS = 0 means that the sun is always below the horizon; SS =  means that the sun is always above the horizon. 

The sunrise hour angle, SR, is calculated from SS by: 

SR = -SS   (4-5) 

The azimuth for sunrise SR, respectively sunset SS, is computed by means of Eq. 3-17 where S is set to /2. 

SR is less than , while SS is greater than . 

The true solar times for sunrise tSR and sunset tSS are given in h by: 

tSR = 12 (1 + SR / )  (4-6) 

tSS = 12 (1 + SS / ) 

SS is always equal to 2 at the equator: the sunrise and sunset occur at the same time every day: tSR is equal to 

6 h and tSS to 18 h. SS is equal to 2 on 21 March and 23 September for all latitudes, except the poles. On these 

days, tSR is equal to 6 h and tSS to 18 h for any latitude. 

At the North Pole SS is equal to 0 during a period of six months centred on the winter solstice, i.e. around 22 

December: the sun is always below the horizon. SS is equal to  during the other six months centred around 21 

June: the sun is always above the horizon. It is the opposite at the South Pole. 

The polar circles are particular latitudes with respect to the sunrise and sunset and hence daytime. North of the 

northern polar circle, there is at least one day per year for which SS is , i.e. the sun is always above the 

horizon, and reciprocally at least one day per year for which SS is 0, i.e., the sun is always below the horizon. 

The period during which SS =  is centred around 21 June and that during which SS = 0 is centred around 22 

December. It is the opposite for the southern hemisphere. The latitudes of these polar circles are the complement 

to 2 of the inclination angle (0.4093 rad, i.e. 23.45°) of the axis of the daily rotation of the earth on the orbit 

plane (Figure 3.1) and are equal to 1.1615 rad (+66.55°) for the northern polar circle and -1.1615 rad (-66.55°) 

for the southern polar circle.  

There is no allowance for atmospheric refraction or angular size of the solar disc in the above equations. If these 

effects are to be taken into account, then the sunset hour angle SS is now the solution of the equation below: 

sin (-0.014544) = sinsin coscos cosSS (4-7) 

as the edge of the solar disk just appears, or disappears, on the horizon at sunrise, or sunset, when the solar 

elevation angle S is 0.0145 rad (0.8333°). The sunrise hour angle is computed by Eq. 4-5. These effects may be 

neglected as a first approximation. 

If one considers obstructions of the horizon, such as mountains, buildings or vegetation, the sunset and sunrise 

hour angles will correspond to a solar elevation angle greater than 0, or greater than -0.01454 rad if one 

considers the atmospheric refraction and the size of the solar disk. Assuming that the solar elevation angles for 

such an obstructed site are known and are noted SR at sunrise and SS at sunset, then the hour angles for sunrise 

SR and sunset SS are the solutions of the following equations: 

coscos cos(-SR) = sinSR - sinsin (4-8) 

coscos cosSS = sinSS - sinsin 
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4.2.2 THE DAYTIME 

The daytime Sday is given in h by: 

Sday = (tSS - tSR) = (12 / ) (SS - SR)  (4-9) 

If obstructions are not taken into account, then (SR = -SS). In this case, the daytime is also called the 

astronomical daytime and is noted S0. It is given in h by: 

S0 = (24 SS / )   (4-10) 

Figure 4.2 reports the astronomical daytime S0 as a function of the day of the year for various latitudes. Note that 

the shapes of variations in S0 are the same than those in SS since S0 is equal to SS multiplied by a constant 

(Eq. 4-10). S0 is always 12 h at the equator. For the days 21 March and 23 September, S0 is equal to 12 h for all 

latitudes, except the poles. Outside the equatorial belt, S0 changes considerably according to the time of year and 

latitude. For the northern hemisphere, the daytime is greater from April to September than from October to 

March. On the contrary, in the southern hemisphere, S0 is greater from October to March than from April to 

September. At any latitude in northern hemisphere, except equator, the daytime is the greatest at the summer 

solstice and the smallest at the winter solstice. This is opposite in the southern hemisphere, the daytime is the 

smallest at the summer solstice and the greatest at the winter solstice. 

 

Figure 4.2. The astronomical daytime S0 as a function of the day in the year and latitude.  

At the poles, daytime is either 24 h or 0 h. The sun is always above the horizon during the six months centred 

around the summer solstice –the famous midnight sun- and always below the horizon during the six months 

centred around the winter solstice –the polar night.- The midnight sun –and reciprocally the polar night– can be 

experienced for latitudes north of the northern polar circle or south of the southern polar circle.  

At the North Pole SS is equal to 0 during a period of six months centred on the winter solstice, i.e. around 22 

December: the sun is always below the horizon. SS is equal to  during the other six months centred around 21 

June: the sun is always above the horizon. It is the opposite at the South Pole. 

Table 4.1 reports on the yearly mean of the astronomical daytime at various latitudes. At the equator, the mean is 

12 h. The dissymmetry between the northern and southern hemispheres can be noted: the mean duration of the 

day is greater in the north than in the south. The mean reaches its maximum (12.30 h) at the North Pole; it 
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decreases towards the South Pole where it reaches a minimum of 11.70 h. The difference between these 

minimum and maximum is 0.6 h. 

 
Latitude Astronomical daytime (h)  Latitude Astronomical daytime (h) 

90° 12.30  -90° 11.70 

70° 12.20  -70° 11.80 

60° 12.11  -60° 11.89 

45° 12.06  -45° 11.94 

30° 12.03  -30° 11.97 

0° 12.00    

Table 4.1. The yearly mean of the astronomical daytime S0 for various latitudes 

4.3 ENCODING TIME IN ISO FORMAT 

As already stated, time is an essential element in solar radiation. Its encoding for exchange of data is crucial. 

There are several numeric representations of dates and time in different countries or different domains of 

activities. The purpose of an international standard is to avoid confusion and the misinterpretation. The authors 

have adopted the ISO format on time6 and strongly recommend it. 

The ISO format is applicable when dates are given in the Gregorian calendar and times in the 24-h system. It 

includes  

 calendar dates expressed in terms of calendar year, calendar month and calendar day of the month;  

 ordinal dates expressed in terms of calendar year and calendar day of the year;  

 week dates expressed in terms of calendar year, calendar week number and calendar day of the week;  

 local time based upon the 24-h timekeeping system;  

 Coordinated Universal Time (UTC) of day;  

 local time and the difference from UTC;  

 combination of date and time of day;  

 time intervals;  

 recurring time intervals.  

There are two types of format: one with separators and one without separators. Only the latter is dealt with as it 

allows handling the many cases that are encountered when exchanging information on solar radiation. The 

standard may appear complicated as it has been designed for interchange between machines. Several popular 

computer languages offer libraries that cope with this ISO standard, such as datetime for Python. 

4.3.1 ENCODING DATES AND WEEKS 

The encoding of a date is YYYY-MM-DD, where the year YYYY is given with four characters, the month MM is 

encoded from 01 (January) to 12 (December) with two characters, and the day DD is the day in the month, from 

00 up to 31 with two characters. For example, 

 31 October 2017 is encoded as 2017-10-31; 

 2 May 2017 is encoded 2017-05-02. 

Reduced representations are allowed. For example, 

 2017 alone means the year 2017 without specifying a specific day in this year; 

 2017-10 means October 2017 without specifying a specific day in this month. 

                                                           

6 ISO 8601:2004(E) Data elements and interchange formats – Information interchange – Representation of dates and times, 

2014, Third edition, 40 p., International Standard Organization, Geneva, Switzerland. [ISO 8601 specifies numeric 

representations of date and time.] 
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One may need to express the date with the year YYYY and the number of the day in the year DDD. In this case, 

DDD is encoded with three characters and ranges from 001 to 365 or 366 in case of a leap year. For example, 

 2017-122 corresponds to 2 May 2017. 

A week, or calendar week, is defined as the time interval of seven days starting with a Monday. The week 

number is the ordinal number which identifies a week within the year according to the rule that the first calendar 

week of a year is that one which includes the first Thursday of that year and that the last calendar week of a year 

is the week immediately preceding the first calendar week of the next year. In the encoding of a week, the week 

number ww is encoded with two characters starting from 01: YYYY-Www. For example, 

 2017-W03 means the third week of 2017 without specifying a specific day in this week; 

 2017-W01 denotes the first week of 2017 and starts on Monday 2 January. The 1
st
 January 2017 was a 

Sunday and belongs to the week #52 of 2016. 

If one wants to specify a day in the week, one may use the following encoding YYYY-Www-d where d is the 

number of the day in the week, starting from 1 (Monday) up to 7 (Sunday). For example, 

 2017-W03-3 means Wednesday of the third week of 2017, i.e. Wednesday 18 January 2017. 

 2017-W18-2 means Tuesday of the eighteenth week of 2017, i.e. Tuesday 2 May 2017. 

4.3.2 ENCODING TIME 

The encoding of a time is hh:mm:ss, where the hour hh ranges from 00 to 24, encoded with two characters, the 

minutes mm are encoded from 00 to 60 with two characters, and the seconds are encoded from 00 to 60 with two 

characters. For example, 

 13:34:21 means 13 h 34 min and 21 s; 

 13:34:00 means 13 h 34 min and 00 s; 

 13:34 means 13 h and 34 min irrespective of the number of seconds in this minute. 

The standard states that 00:00:00 is the beginning of the day and 24:00:00 is the end of the day. The authors 

draw attention to the reader that this may not be the case in all implementations of the standard. In some cases, 

24:00:00 may mean the beginning of the following day. 

Representation of time with decimal fraction is possible. For example; 

 13:34:21,023 means 13 h 34 min, 21 s and 23 thousandths, if the decimal sign is the comma (preferred 

sign); 

 13:34:21.023 means 13 h 34 min, 21 s and 23 thousandths, if the decimal sign is the full stop; 

 13:34,023 means 13 h 34 min, and 23 thousandths of 1 min; 

 fractional hour in decimal format is not allowed in this format, i.e. 13,023 (or 13.023) is not permitted. 

It has been seen that several time systems may be found. The ISO standard accommodates for that. The Z letter 

indicates the UTC system. For example, 

 13:34:21 means 13 h 34 min and 21 s in an unspecified time system; 

 13:34:21Z means 13 h 34 min and 21 s in the UTC system; 

 13:34Z means 13 h and 34 min in the UTC system irrespective of the number of seconds in this minute. 

If local time is used, it is possible to indicate the difference between the local time and UTC. The representation 

of the difference is appended to the representation of the local time. The difference between the time scale of 

local time and UTC shall be expressed in hours and minutes, or hours only independent of the accuracy of the 

local time expression. For example, 

 13:34:21+01:00 means 13 h 34 min and 21 s in the local time system, which is 1 h ahead of UTC; 

 13:34:21.023+01:00 means 13 h 34 min, 21 s and 23 thousandths in the local time system, which is 1 h 

ahead of UTC; 

 13:34:21-01:00 means 13 h 34 min and 21 s in the local time system, which is 1 h behind of UTC. 
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4.3.3 ENCODING DATE AND TIME OF DAY 

A time point can be identified through a date and time of day expression. The elements are written in the 

following sequence:  

 for calendar dates: year – month – day in the month – time designator – hour – minute – second – zone 

designator; 

 for ordinal dates: year – day in the year – time designator – hour – minute – second – zone designator; 

 for week dates: year – week designator – week – day in the week – time designator – hour – minute – 

second – zone designator. 

T is the time designator. For example, 

 2017-05-02T13:34 is the encoding for 2 May 2017 at 13 h and 34 min (no time system specified); 

 2017-05-02T13:34:21 is the encoding for 2 May 2017 at 13 h 34 min and 21 s (no time system 

specified); 

 2017-05-02T13:34:21Z is the encoding for 2 May 2017 at 13 h 34 min and 21 s UTC; 

 2017-05-02T13:34:21-01:00 is the encoding for 2 May 2017 at 13 h 34 min and 21 s in the local time 

system, which is 1 h behind of UTC; 

 2017-122T13:34:21 is the encoding for the day 122 in the year (2 May 2017) at 13 h 34 min and 21 s 

(no time system specified); 

 2017-W18-2T13:34:21 is the encoding for the day 122 in the year (2 May 2017) at 13 h 34 min and 21 s 

(no time system specified); 

Reduced representations of dates are not permitted. For example, it is not permitted to write 2017-05T13:34 nor 

2017-W18T13:34 because the day is undefined. 

4.3.4 ENCODING TIME INTERVALS AND DURATION 

A time interval may be expressed by a start and an end. In this case, the starting time point will be separated 

from the ending time point by a solidus [/]. A typical representation is YYYY-MM-DDThh:mm:ss/YYYY-MM-

DDThh:mm:ss. For example,  

 2017-05-02T13:34/2017-05-02T13:35 is the encoding for the time interval starting at 13 h 34 min and 

ending at 13 2 May 2017 with no specified time system; 

 2017-05-02/2017-05-03 is the encoding for the time interval starting  2 May 2017 and finishing on 3 

May 2017 with no indication of time at the start and end; 

 2017-05/2017-07 is the encoding for the time interval starting  May 2017 and finishing on July 2017 

with no indication of day and time at the start and end. 

A time interval may also be expressed by a start and a duration, or by a duration and an end. 

The duration is encoded by a string of characters beginning by P. A typical format is PYYYY-MM-

DDThh:mm:ss. For example,  

 P0001-02-15T12:25:21 is the duration of 1 year, 2 months, 15 days, 12 h, 25 min, and 21 s; 

 P0000-00-01 is the duration of 1 day. 

An alternative representation for encoding duration is PnnYnnMnnDTnnHnnMnnS. For example, 

 P1Y2M15DT12H25M21S is the duration of 1 year, 2 months, 15 days, 12 h, 25 min, and 21 s and is 

equivalent to P0001-02-15T12:25:21; 

 P1D is the duration of 1 day and is equivalent to P0000-00-01; 

 P10M is the duration of 10 months; 

 PT10M is the duration of 10 min; 

 PT1H30M is the duration of 1 h and 30 min; 

 P2W is a duration of 2 weeks. 

A time interval expressed by a start and a duration has a typical representation YYYY-MM-

DDThh:mm:ss/PYYYY-MM-DDThh:mm:ss or YYYY-MM-DDThh:mm:ss/PnnYnnMnnDTnnHnnMnnS. For 

example, 



The Different Time Systems and Daytime 27 

 

 2017-05-02T13:34/P0000-00-00T00:01 is the encoding for the time interval starting at 13 h 34 min and 

ending 1 min later  2 May 2017 with no specified time system; 

 2017-05-02T13:34/PT1M is an alternative encoding for the same time interval. 

A time interval expressed by a duration and an end has a typical representation PYYYY-MM-

DDThh:mm:ss/YYYY-MM-DDThh:mm:ss or PnnYnnMnnDTnnHnnMnnS/YYYY-MM-DDThh:mm:ss. 

 P0000-00-00T00:01/2017-05-02T13:35 is the encoding for the time interval starting at 13 h 34 min and 

ending 1 min later at 13 h 35 min 2 May 2017 with no specified time system; 

 PT1M/2017-05-02T13:35 is an alternative encoding for the same time interval. 

 

 





5 THE SOLAR RADIATION AT THE TOP OF THE ATMOSPHERE 

In summary 

The amount of solar radiation that is intercepted by the earth varies because of variations in sun-earth distance 

and, to a much lesser extent, day-to-day variations in the spectrum due to solar activity. The closer to the sun the 

earth, the greater the solar irradiance impinging on a plane normal to the sun rays and located at the top of the 

atmosphere. The total solar irradiance is the yearly average of this irradiance during a year and integrated over 

the whole spectrum. The variations within a year amount to ± 3 % of the total solar irradiance. 

The International Astronomical Union has recommended a value of 1361 W m
-2

 ± 1 W m
-2

 as the mean value for 

the solar cycle #23, i.e. for the period May 1996 to January 2008. Recent measurements in 2010 yield a total 

solar irradiance of 1362 W m
-2

. Day-to-day changes in the solar irradiance impinging on a plane normal to the 

sun rays may reach 5 W m
-2

, i.e. approximately 0.4 % of the total solar irradiance. 

The spectral distribution of the solar irradiance is such that it is peaked around 550 nm and that about half of it 

lies in the visible and near-infrared parts of the electromagnetic spectrum. The interval covered by the spectral 

distribution of the solar irradiance is not very wide. Approximately 98 % of the power is found between 0.3 m 

and 4 m, and 99.9 % is located between 0.2 m and 8 m. The amount of radiation integrated over the whole 

spectrum is called total radiation or broadband radiation. 

The spectral distribution of the total solar irradiance is actually not constant and varies in time. The visible and 

infrared parts of the spectrum are the least variable parts, while the UV (ultra-violet) part is highly variable. 

A series of equations is offered to compute the solar irradiance impinging on any inclined surface, including 

horizontal, located at the top of the atmosphere for any instant and any location. 

 

5.1 RADIANCE, IRRADIANCE AND IRRADIATION: DEFINITIONS AND UNITS 

Several quantities are necessary to describe radiation. The radiant energy Q is the amount of energy that is 

transferred by radiation. It is expressed in J (Joule). 

Power is an energy divided by a time interval t. The time interval may be called summarization in meteorology. 

The radiant flux F is the time rate of flow of the radiant energy: 

F=Q/t   (5-1) 

The radiant flux is expressed in W (Watt). The downward flux is the flux received on the upper face of a surface; 

the upward flux is the flux received on the lower face of this surface. 

The radiance L is the radiant flux per unit solid angle d per unit projected area of a surface dA cos: 

L=d²F / (dA cos d  (5-2) 

The radiance is expressed in W m
-2

 sr
-1

. If the surface is horizontal, L=d²F / (dA d 

The irradiance is defined as a power received per area. It is expressed in watt per square meter (W m
-2

). It is 

represented by E in this text, as recommended by the S.I. (système international d’unités). It is equal to the 

integral of a radiance distribution on the hemisphere above the point of interest (downward irradiance) or below 

this point (upward irradiance). Solar irradiance means the irradiance originating from the sun. It is also called 

shortwave irradiance because its most energetic wavelengths are less than 2 m. 

The irradiation is the energy received per area; unit is Joule per square meter (J m
-2

). The International Solar 

Energy Society recommends the symbol H. In commercial metering of electrical energy, a frequently used unit 

for irradiation is Watt-hour per square meter (Wh m
-2

) though this should not be used in scientific and technical 

work since it is not part of the S.I. The conversion is defined by: 

H = 1 Wh m
-2

 = 3 600 J m
-2

  (5-3) 

The conversion from irradiation into irradiance is performed by dividing irradiation by the duration of the 

measurement t, or summarization. Reciprocally, irradiance is converted into irradiation by multiplying by t:  



30 BASICS IN SOLAR RADIATION AT EARTH SURFACE 

 

E = H / t   (5-4) 

It is important to always mention the summarization. For example, one should write “hourly solar irradiation” to 

denote the solar irradiation collected during 1 h. The daily solar irradiation is the amount of energy collected by 

a surface during the daytime, i.e. the duration between sunrise and sunset. The yearly solar irradiation is the solar 

irradiation collected during one full year.  

If irradiance is used, one should write “hourly mean of irradiance” if the time scale of interest is 1 h. The case of 

day, and greater periods is different by convention in the climate domain. By convention, the daily mean of 

irradiance is the daily irradiation divided by the number of seconds in 24 h, i.e. 86400 s, irrespective of the actual 

daytime. The monthly mean of irradiance is the monthly irradiation divided by the number of days in this month 

and by the number of seconds in 24 h. The yearly mean of irradiance is the yearly irradiation divided by the 

number of days in this year and by the number of seconds in 24 h. 

The radiative energy is in the form of radiative waves of different wavelengths. The distribution of the irradiance 

with the wavelength is called the spectral distribution of the irradiance. The total irradiance is the irradiance 

integrated over the whole spectrum. 

The broadband solar irradiance is the irradiance integrated over a large spectrum. It is not well defined and is 

used as a current term to denote that the radiation is integrated over a certain range of wavelength. For example, 

it is used to denote the solar radiation measured by pyranometers, e.g. from 300 nm to 2200 nm. It may be used 

differently. For example, one may read in literature broadband UV that opposes to spectral UV. 

5.2 THE ENERGY EMITTED BY THE SUN AND THE TOTAL SOLAR IRRADIANCE 

The sun is the seat of thermonuclear processes and produces a vast amount of energy. The energy emitted by the 

sun is called solar energy or solar radiation. Despite the considerable distance between the sun and the earth, the 

amount of solar energy reaching the earth is substantial. It is the earth primary natural source of energy and by a 

long way. Other sources are: the geothermal heat flux generated by the earth interior, natural terrestrial 

radioactivity, and cosmic radiation, which are all negligible relative to solar radiation. 

Solar radiation is a key factor controlling the climate of the earth. There is a global radiative equilibrium between 

the earth and extra-terrestrial space. It means that the part of the incoming solar radiation that is absorbed by the 

earth and its atmosphere is equal to the outgoing longwave radiation from the earth and its atmosphere. The solar 

radiation has a specific spectral distribution which is dealt with in the second part of this chapter. 

5.2.1 THE TOTAL SOLAR IRRADIANCE  

The amount of solar radiation that is intercepted by the earth varies because of variations in sun-earth distance 

and to a much lesser extent, day-to-day variations in the spectrum due to solar activity. Let E0N denote the solar 

irradiance impinging on a plane normal to the sun rays located at the top of the atmosphere and integrated over 

the whole spectrum, i.e. the total irradiance. E0N depends on the distance from the earth to the sun. 

The total solar irradiance, often abbreviated in TSI, and noted ETSI, is the yearly average of E0N during a year. 

This term “total solar irradiance” may be confusing, especially because it does not bear any reference to the top 

of the atmosphere. However, it has been adopted here as it is widely used in scientific literature. 

E0N is a quadratic function of the distance between the sun and the earth: 

E0N = ETSI (r0/r)²   (5-5) 

The closer the earth to the sun, the greater E0N. It has been seen that the sun-earth distance r is given by: 

𝑟0/𝑟 =   √(1 + 𝜀)  (3-2)  

where  is given by Eq. 3-3 as a function of the day in the year. Hence: 

E0N = ETSI (1 + )  (5-6) 
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 is comprised between -0.03 and +0.03. In other words, E0N is comprised between 0.97 ETSI and 1.03 E0TSI. 

Neglecting the change in the sun-earth distance, i.e. writing E0N  ETSI, yields a relative uncertainty on E0N that is 

a function of the day in year and is comprised between -3 and +3 %.  

The total solar irradiance has been called solar constant for many years as it was thought to be fairly invariant. 

The value of ETSI has varied over the recent decades as the instrumentation was more and more accurate. In 1981, 

the World Radiometric Reference for ETSI was 1370 W m
-2

  6 W m
-2

. Accurately measuring ETSI is a difficult 

task. It is measured by space-borne sensors since 1979. Several values are found in literature; they are close to 

each other within a range of 5 W m
-2

. A value of 1367 W m
-2

 was proposed in the years 2000. Recent 

measurements of ETSI in 2010 yields 1362 W m
-2

 with an uncertainty of order of 2 W m
-2

 7. The International 

Astronomical Union has recommended a value of 1361 W m
-2

  1 W m
-2

 as the mean value for the solar cycle 

#23, i.e. for the period May 1996 to January 20088. 

The sun is an active star and its activity includes changes in the intensity of solar radiation and ejection of solar 

material and by its appearance. The solar activity exhibits a nearly periodic 11-year cycle, each cycle being 

characterized by the number and size of sunspots, flares, and other manifestations. The solar cycle has a limited 

influence on the total solar irradiance, of order of 0.1 %. In other words, average changes during a cycle are 

small and of order of 1 W m
-2

. Day-to-day changes in E0N are greater and may reach 5 W m
-2

, i.e. approximately 

0.4 % of the total solar irradiance9. 

5.2.2 THE SPECTRAL DISTRIBUTION OF THE SOLAR IRRADIANCE AT THE TOP OF THE ATMOSPHERE 

Any object emits electromagnetic radiation, provided its temperature is above 0 K. The emitted spectral radiance 

is entirely determined by temperature and the emitting properties of the surface of the object. The laws of 

Kirchhoff and Planck describe this process. The radiance emitted by the sun is approximately that of a blackbody 

(i.e., a perfect radiative body) at a temperature of 5780 K. The emitted radiation spans over a very large 

spectrum, from X-rays to far infrared. Nevertheless, most of the emitted radiation exhibits wavelengths in the 

visible and near-infrared domain.  

Let E0N() and ETSI() denote the value of E0N and ETSI at wavelength 

𝐸0𝑁 =  ∫ 𝐸0𝑁(𝜆)  𝑑𝜆
∞

0
   (5-7) 

𝐸𝑇𝑆𝐼 =  ∫ 𝐸𝑇𝑆𝐼(𝜆)  𝑑𝜆
∞

0
   (5-8) 

Figure 5.1 displays a typical spectral distribution ETSI() of the total solar irradiance ETSI for the wavelength 

intervals [200, 2000] nm (central graph) and [0, 4000] nm. The spectral distribution shows how much power is 

available for each wavelength. The surface under the curve is the irradiance integrated over the spectral range 

under concern. 

It can be seen that the interval covered by the spectral distribution of the solar irradiance is not very wide. The 

irradiance is not negligible from 200 nm (0.2 m) up to 4000 nm (4 m). Table 5.1 reports the irradiance ETSI() 

from Figure 5.1 integrated over various spectral ranges. Approximately 99 % of the total solar irradiance ETSI is 

found between 200 nm and 4000 nm. Pyranometers usually measure between 280 nm and 2800 nm; this range 

represents approximately 97 % of ETSI. 

                                                           

7 Meftah M., Dewitte S., Irbah A., Chevalier A., Conscience C., Crommelinck D., Janssen E., Mekaoui S., 2014. 

SOVAP/Picard, a spaceborne radiometer to measure the total solar irradiance. Sol. Phys., 289, 1885-1899. 

doi:10.1007/s11207-013-0443-0. 

8 The XXIXth International Astronomical Union General Assembly 2015. Resolution B3 on recommended nominal 

conversion constants for selected solar and planetary properties. Available at 

https://www.iau.org/static/resolutions/IAU2015_English.pdf, last accessed on 2017-05-07. 

9 Kopp G., Lean J.L., 2011. A new, lower value of total solar irradiance: evidence and climate significance. Geophys. Res. 

Lett., 38, L01706. doi:10.1029/2010GL045777. 
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The spectral distribution is well-peaked around 550 nm. About half of the radiation is in the visible part of the 

spectrum [380, 780] nm. The range of the photosynthetically available radiation (PAR), i.e. the light that is 

available to plants for the photosynthesis, is 400 nm to 700 nm. This range accounts for 39 % of ETSI. 

 

Figure 5.1. Typical spectral distribution of the solar irradiance at the top of the atmosphere at normal incidence 

for wavelengths from 200 nm to 2000 nm (central graph) and 0 nm to 4000 nm (upper right-hand corner). 

Note that the definition of specific spectral intervals may vary according to the domain of application, especially 

in the visible. For example, in scientific literature visible may refer to the interval [380, 780] nm, or [400, 

700] nm, or [400, 780] nm, or [400, 800] nm. 

The spectrum of the solar irradiance is not as smooth as a Planck spectral curve. It exhibits several departs from 

a smooth curve particularly at wavelengths below 800 nm. These numerous “lines” are due to wavelength-

dependent processes of absorption and emission in the sun. In these absorption lines, the sun does not emit as 

much as in the neighbouring wavelengths.  

 
Spectral range, in 

nm 

Irradiance 

(W m-2) 

Fraction of the 

total 

irradiance (%) 

 Spectral range, in nm Irradiance 

(W m-2) 

Fraction of the 

total 

irradiance (%) 

250 to 20 000 1361 100  280 to 315 (UV-B) 18 1 

250 to 4 000 1353 99  315 to 400 (UV-A) 86 6 

380 to 2 100 1206 89  250 to 400  108 8 

400 to 1 100 909 67  380 to 780 (visible 

CIE) 

663 49 

1 100 to 4 000 336 25  400 to 700 (PAR) 536 39 

1 100 to 20 000 344 25  400 to 800 663 49 

4 000 to 20 000 8 <1  330 to 2 200 (typical 

spectral band of 

pyranometers) 

1266 93 

Table 5.1. Typical values of irradiance at the top of atmosphere at normal incidence for various spectral ranges, 

from Figure 5.1. PAR stands for photosynthetically available radiation. CIE stands for Commission 

internationale de l’éclairage. 
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The spectral distribution of the solar irradiance is actually not constant and varies in time. It has been seen in the 

previous section that day-to-day changes in total solar irradiance may reach 5 W m
-2

. Such important changes do 

not affect the wavelength equally. The visible and infrared parts of the spectrum are the least affected, while the 

UV (ultra-violet) part is much affected. The amplitude of the variations is 1 to 3 orders of magnitude greater in 

the UV part of the spectrum than in the visible or infrared. The importance of such changes in UV may be 

illustrated by the fact that the UV radiation is an important driver of chemical and physical processes in the 

upper atmosphere of the earth. 

5.3 THE IRRADIANCE AND IRRADIATION AT THE TOP OF THE ATMOSPHERE 

Let E0 and H0 denote the total extra-terrestrial irradiance and irradiation impinging on a horizontal surface 

located at the top of the atmosphere: 

E0 = E0N cosS   (5-9) 

H0 = E0N t cosS  (5-10) 

where S is the solar zenithal angle and t is a period of time during which S may be considered as a constant, 

approximately 1 min or less. 

These relationships demonstrate that the solar zenithal angle plays a major role on the extra-terrestrial irradiance 

and irradiation, and subsequently on the solar irradiance and irradiation received at ground level as it will be seen 

in the next chapter. The greater this angle, the more inclined the sun rays on the horizontal surface and the lower 

the extra-terrestrial irradiance or irradiation. 

These equations also hold for any wavelength and not only for the total irradiance and irradiation. Let E0() and 

H0() denote the extra-terrestrial spectral irradiance and irradiation impinging on a horizontal surface located at 

the top of the atmosphere: 

E0() = E0N() cosS  (5-11) 

H0() = E0N() t cosS  (5-12) 

Figure 5.2 displays a typical spectral distribution of the solar irradiance E0() for three S (0°, 30°, 60°) for the 

wavelength intervals [200, 2000] nm. On may clearly see the influence of the solar zenithal angle. The greater 

this angle, the lower the spectral extra-terrestrial irradiance received by a horizontal surface. 
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Figure 5.2. Typical spectral distributions of the solar irradiance received by a horizontal surface at the top of 

the atmosphere for wavelengths from 200 nm to 2000 nm for three solar zenithal angles: 0°, 30°, and 60°. 

During a day, E0 and H0, as well as E0() and H0(), are at their maximum when the solar zenithal angle is at its 

lowest, i.e. at 12:00 TST. E0 and H0 are null when the sun is below the horizon. A seasonal cycle is 

superimposed on this daily cycle. It is due to the variations of E0N within the year due to the changes in the sun-

earth distance, and to changes in solar declination and the astronomical seasons. 

At a given instant, E0N does not depend on the latitude while E0 and H0 do because S does. Eq. 3-15 provides the 

variation of S with the latitude  and the solar declination ;  is the solar angle which is directly related to the 

true solar time (Eq. 3-14).  

cosS = sinsin coscos cos  (3-15) 

The extra-terrestrial daily irradiation H0day and the daily mean of irradiance E0day do not depend on the longitude 

and depend only on the latitude and the solar declination. It is easier to use the solar angle  than the time to 

demonstrate this point. If one denotes tSR and SR and tSS and SS respectively the times and solar angles for 

sunrise and sunset, H0day is defined by: 

H0day = ∫ 𝐸0𝑁 𝑐𝑜𝑠 𝜃𝑆 𝑑𝑡
𝑡𝑆𝑆

𝑡𝑆𝑅
   (5-13) 

By exploiting Eq 3-14 where the time is expressed in h, it comes: 

H0day = (
12

𝜋
) ∫ 𝐸0𝑁𝑐𝑜𝑠 𝜃𝑆 𝑑𝜔

𝜔𝑆𝑆

𝜔𝑆𝑅
   (5-14) 

At first approximation, one may assume that E0N does not depend on . It follows that: 

H0day = (
12

𝜋
) 𝐸0𝑁 ∫ 𝑐𝑜𝑠 𝜃𝑆 𝑑𝜔

𝜔𝑆𝑆

𝜔𝑆𝑅
  (5-15) 

By exploiting Eqs 3-22 to 3-25, and remembering that SS >0 and SS = -SR, it comes: 

H0day = (
24

𝜋
)  𝐸0𝑁 [𝑐𝑜𝑠𝜙 𝑐𝑜𝑠𝛿 𝑠𝑖𝑛𝜔𝑆𝑆  +   𝜔𝑆𝑆 𝑠𝑖𝑛𝜙 𝑠𝑖𝑛𝛿]  (5-16) 

or, introducing the daytime S0 (in h): 

H0day =  𝐸0𝑁  [(
24

𝜋
) 𝑐𝑜𝑠𝜙 𝑐𝑜𝑠𝛿 𝑠𝑖𝑛𝜔𝑆𝑆  +   𝑆0𝑠𝑖𝑛𝜙 𝑠𝑖𝑛𝛿]  (5-17) 
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Because the time in Eq 3-14 is expressed in h, H0day has a unit of Wh m
-2

. It is converted in J m
-2

 by multiplying 

the result of Eq. 5-16 by 3600 s. The daily mean of irradiance E0day is obtained by dividing H0day from Eq. 5-16, 

which is in Wh m
-2

, by 24 h. 

Figure 5.3 exhibits the daily mean of the irradiance at the top of the atmosphere E0day for various latitudes as a 

function of the day in the year and Table 5.2 reports the yearly mean of the extra-terrestrial irradiance at these 

same latitudes. 

 

Figure 5.3. Daily mean of irradiance collected on a horizontal plane located at the top of the atmosphere as a 

function of the day in the year and latitude.  

Figure 5.3 shows that the daily mean of irradiance offers a yearly cycle. In the northern hemisphere (full 

symbols), it exhibits a minimum on approximately 21 December and a maximum on approximately the 21 June, 

i.e. at the solstices. This is the opposite in the southern atmosphere (empty symbols). For the same latitudes but 

in opposite hemispheres the irradiances exhibit the same values with a dephasing of half a year. 

At the equator, the sun is high at noon all over the year and the solar zenithal angle at noon exhibits low values 

all over the year. The daytime is 12 h all over the year (cf. Figure 4.2). As a result, the equator exhibits the 

greatest yearly mean of the irradiance at the top of atmosphere, around 420 W m
-2

 (Table 5.2). The daily mean of 

irradiance is almost constant at the equator (dashed line in Figure 5.3); it varies at most by 13 % of the yearly 

mean throughout the year. 

The smallest yearly mean of the irradiance at the top of atmosphere is observed at high latitudes. The greater the 

latitude in absolute value, the smaller the yearly mean of the irradiance at the top of atmosphere (see Table 5.2). 

The magnitude of the variation during the year increases as the latitude increases. This is illustrated in Figure 

5.3. The changes in irradiance between winter and summer are approximately 200 W m
-2

 at latitude 25° 

(or -25°), i.e. 54% of the yearly mean; they amount to 480 W m
-2

 at latitude 65° (or -65°), i.e. 220% of the yearly 

mean, and up to 560 W m
-2

 at latitude 90° (or -90°), i.e. 325% of the yearly mean. 

The maximum of irradiance increases as the latitude increases in absolute value: it is for example, approximately 

440 W m
-2

 at the equator, 480 W m
-2

 at 35° and 530 W m
-2

 at 90°. However, the maximum is more or less the 

same from approximately 33° up 67° (respectively -33° to -67°). One may note that at a given latitude in 

absolute value, the maximum in irradiance is greater in the southern hemisphere than in the northern one. For 

example, it is 490 W m
-2

 for latitude 45° and 520 W m
-2

 for -45°, or 530 W m
-2

 for 90° and 560 W m
-2

 for -90°. 
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Latitude Year - Irradiance (W m-2)  Latitude Year - Irradiance (W m-2) 

 Mean Minimum Maximum   Mean Minimum Maximum 

90° 172 0 524  -90° 172 0 559 

65° 214 3 478  -65° 214 3 510 

60° 236 24 476  -60° 236 23 509 

45° 307 120 483  -45° 307 113 516 

30° 365 227 475  -30° 365 213 506 

25° 380 261 467  -25° 380 245 498 

23.45° 384 271 463  -23.45° 384 255 495 

11.5° 408 345 439  -11.5° 408 326 461 

0° 416 384 438      

Table 5.2. The yearly mean of total irradiance received by a horizontal plane located at the top of the 

atmosphere at various latitudes 

The equations above have been written for the total irradiance and irradiation. As there is no dependence of the 

solar angle and the solar zenithal angle with the wavelength, these equations are also valid for any wavelength 

and any spectral interval. 

5.4 THE IRRADIANCE AND IRRADIATION AT THE TOP OF THE ATMOSPHERE ON AN INCLINED 

SURFACE  

Let  and  be the inclination and azimuth angles of an inclined plane located at the top of the atmosphere at a 

given geographical site (Figure 3.6). The irradiance E0incl on that plane is given by: 

E0incl(, ) = E0N cos  (5-18) 

where the angle of incidence  of the solar rays is formed by the normal to the plane and the rays and is given by 

Eq 3-19. 

The solar irradiation H0(,  received during a period of time [t1, t2], expressed in TST, is computed by 

integrating Eq. 5-18 on the corresponding interval [1, 2]: 

H0(,  = 𝐸0𝑁 ∫ 𝑐𝑜𝑠𝜃  𝑑𝑡
𝑡2

𝑡1
 = (

12

𝜋
) 𝐸0𝑁 ∫ 𝑐𝑜𝑠𝜃  𝑑𝜔

𝜔2

𝜔1
  (5-19) 

By exploiting Eqs 3-21 to 3-23, it comes: 

H0(, ) = (12/) E0N [A(sin2 − sin1) − B(cos2 − cos1) + C(2 − 1)] (5-20) 

Interesting cases are those of the daily irradiation H0day(, ) received by the inclined plane: 

H0day(,  = (
12

𝜋
) 𝐸0𝑁 ∫ 𝑐𝑜𝑠𝜃  𝑑𝜔

𝜔2

𝜔1
   (5-21) 

where the integration limits, 1 and 2, are the solutions of 

cos = 0   (5-22) 

which is solved by the means of Eqs 3-21 and 3-22. 

In the case of a vertical plane orientated to the east (=/2; =/2), these limits 1 and 2 are 

1 = SR ; 2 = 0  (5-23) 

The sunrise angle SR is given by Eqs. 4-4 and 4-5. It follows: 

A = 0 ; B = -cos ; C = 0  

H0day(/2, /2) = (12/) E0N cos(1 - cosSR) (5-24) 

It may be observed that a vertical plane orientated to the west (=3/2) receives a similar quantity, though the 

limits are now: 1 = 0; 2 = SS: 
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H0day(/2, 3/2) = H0day(/2, /2)  (5-25) 

For planes orientated to the north or south, the first step is to compute the solar hour angle EW corresponding to 

the instant when the sun passes in the east-west plane containing the unit surface [This happens for S = /2 and 

the solution is found by exploiting Eq. 3-17 and 3-18 for tangent]: 

cosEW = tan / tan if not at pole  (5-26) 

ifSS > /2, i.e.,  and  are of opposite signs, EW =SS  

For a vertical plane orientated to the south and located in the northern hemisphere (=/2; =) 

1 = -EW ; 2 = EW 

A = cos sin ; B = 0 ; C = sin cos 

H0day(/2, ) = (24/) E0N [cos sinsinEW + EW sincos] (5-27) 

For a plane located in the northern hemisphere, orientated to the south and inclined by a tilt  equal to the 

latitude  (=; =): 

1 = -EW ; 2 = EW 

A = cos ; B = 0 ; C =0 

H0day(/2, ) = (24/) E0N cos sinEW  (5-28) 

The surface may change orientation during the day as is the case for tracking solar collectors. Such surfaces are 

concentrating collectors, with their axis aligned east-west or north-south with continuous adjustment to minimize 

the incidence angle , or two-axes trackers continuously facing the sun. In these cases, the incidence angle is 

given by: 

horizontal east-west axis cos = (1 - cos² sin²)1/2 (5-29) 

polar mounting (north-south axis, ) cos = cos 

two-axes trackers  cos = 1 

Because the time in Eq 3-14 is expressed in h, H0day(, ) has a unit of Wh m
-2

. It is converted in J m
-2

 by 

multiplying the result of one of the above equations by 3600 s. The daily mean of irradiance E0day(, ) is 

obtained by dividing H0day(, ) obtained by one of the above equations by 24 h. 

To illustrate this section, Figure 5.4 exhibits the daily mean of the irradiance at the top of the atmosphere 

E0day(, ) for a plate located at latitude 45° orientated towards the south and whose tilt in radian is equal to 

respectively 0 (horizontal), /4 (45°) and /2 (90°). 

The daily mean irradiance received by a vertical plate (=/2) is the same than that received on a horizontal 

surface during boreal winter, but is much lower during boreal summertime. The minimum irradiance is 

respectively 120 and 110 W m
-2

 for horizontal and vertical plates; the maximum is 490 W m
-2

, respectively 

410 W m
-2

. Though the maxima differ notably, the yearly means are fairly similar: 310 W m
-2

 for horizontal and 

respectively 290 W m
-2

 for the vertical plate. 

The same plate, but now inclined at /4, receives more radiation as a whole than the horizontal surface: the 

yearly mean irradiance is approximately 400 W m
-2

 for the inclined surface and 310 W m
-2

 when horizontal. The 

variation in irradiance during the year is also much less for the inclined surface: it has two maxima at 440 W m
-2

 

and a minimum at 350 W m
-2

, while the minimum and maximum are respectively 120 W m
-2

 and 490 W m
-2

 for 

the horizontal plate. 
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Figure 5.4. Daily mean of irradiance collected on a plane located at latitude 45° at the top of the atmosphere as 

a function of the day in the year, when the plane is horizontal, tilted at 45° and vertical facing south. 
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6 THE SOLAR RADIATION AT GROUND LEVEL 

In summary 

As the solar radiation makes its way from the top of the atmosphere downwards the ground, it is depleted when 

passing through the atmosphere due to interactions with the constituents of the atmosphere. On average, less than 

half of extra-terrestrial radiation reaches ground level.  

The description and modelling of the optical processes affecting the solar radiation within the atmosphere is 

called radiative transfer. Absorption is a process present in the atmosphere whereby the energy absorbed by a 

constituent at a given wavelength is converted into another form and is no longer present in the light. Absorption 

may occur at very specific wavelengths, called absorption lines or may occur over a wide continuum of 

wavelengths. Scattering is a physical process associated with light and its interaction with matter occurring at all 

wavelengths. Particles and molecules deflect the incident wave and re-radiate that energy in all directions, thus 

abstracting energy from the incident wave. The scattering pattern indicates the relative probability of a photon to 

be scattered in a given direction; it depends on the size of the particle or molecule, its shape and other properties, 

and on the incident wavelength. 

Whatever the sky conditions, cloud-free or cloudy, the solar zenithal angle plays a major role in the radiative 

transfer as it influences the optical path of the radiation. The smaller the solar zenithal angle, the smaller the 

optical path, and the smaller the extinction of the radiation. 

The clearness index is the ratio of the radiation received at ground level to that received at the top of the 

atmosphere. It is a dimensionless quantity that may be defined for any wavelength or a spectral interval and for 

any time duration. Typical values are 0.1 for very cloudy conditions and 0.7-0.8 for cloud-free conditions. 

In clear skies, i.e. cloud-free skies, aerosols and water vapour are the main contributors to depletion. In such 

conditions, approximately 20 % to 30 % of the total extra-terrestrial radiation is lost during its downwelling path 

by scattering and absorption phenomena by aerosols and molecules. This amount differs with wavelength and 

the spectral distribution of the solar radiation is modified as the radiation crosses the atmosphere downwards. 

Clouds have a major importance as a whole; they are the major depleting constituents in the atmosphere. Clouds 

are diverse: optically thin clouds allow a noticeable proportion of radiation to reach the ground whereas optically 

thick clouds create obscurity by stopping the radiation downwards. In a first approximation, clouds may be 

considered as spectrally neutral, i.e. their presence does not alter the shape of the spectral distribution of the 

radiation. 

The direct radiation is the radiation coming from the direction of the sun. Only direct radiation is present at the 

top of the atmosphere. A horizontal surface at ground level receives a depleted part of this direct radiation. It also 

receives the radiation that has been scattered by the constituents of the atmosphere and that originates from the 

sky vault in all directions, except that of the sun which is already accounted for. This multi-source radiation is 

called the diffuse radiation. The global radiation is the sum of the direct and diffuse radiation. 

If the receiving plane is inclined, it may receive the direct radiation only partly and the fraction of sky viewed by 

the plane must be considered for computing the diffuse part impinging on the plane. The plane may also receive 

a part of the radiation that is reflected by the surrounding landscape towards the plane. 

 

A good knowledge of the optical properties of the atmosphere is necessary to understand and further model the 

depletion of the radiation. The description and modelling of the optical processes affecting the solar radiation 

within the atmosphere is called radiative transfer. The main processes in radiative transfer are discussed, and 

especially the effects of molecules, aerosols, gases and clouds that are depicted by absorption and scattering 

phenomena. 

6.1 THE ABSORPTION AND SCATTERING PHENOMENA 

Absorption is a process present in the atmosphere. The energy absorbed by a constituent at a given wavelength is 

converted into another form and is no longer present in the light. Absorption may occur at very specific 

wavelengths, which may be denoted absorption lines or may occur over a wide continuum of wavelengths. 
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Scattering is a physical process associated with light and its interaction with matter. It occurs at all wavelengths. 

In this process, a particle or a molecule is in the path of an incoming light; it deflects the incident wave and re-

radiates that energy in all directions. In that way, the scattering process continuously abstracts energy from the 

incident wave. 

If the scattering is isotropic, then the energy is radiated equally in all directions. Usually, the scattering is not 

isotropic and how it radiates the energy in a given direction is described by the scattering pattern. The pattern 

indicates the relative probability of a photon to be scattered in a given direction. The pattern depends on the size 

of the particle or molecule, its shape and other properties, and on the incident wavelength. 

Figure 6.2 exhibits the schematic scattering pattern in the case where particles or molecules are much smaller 

than the incident wavelength. Given an incident light (black arrow), the radiation is scattered in all possible 

directions, indicated by the several arrows. The further the limit of the pattern from the particle or molecule (in 

grey), the greater the probability the light may be scattered in that direction. Here, the scattering pattern is almost 

an ellipse. One notes that the probability of the light to be scattered forward, i.e. in the direction of the incident 

light, or to be reflected (backward scattering) is greater than the probability of being scattered at 90° or -90°. 

Such a scattering pattern is the case of the scattering of the solar radiation by molecules in the atmosphere. 

 

Figure 6.1. Schematic scattering patterns in the case where particles or molecules are much smaller than the 

incident wavelength. The thick black arrow denotes the incident light. The further the limit of the pattern from 

the particle or molecule (in grey), the greater the probability the light may be scattered in that direction. 

Other schematic scattering patterns are shown in Figure 6.2 according to the size of the particle. Given an 

incident light (black arrow), the radiation is scattered in several possible directions. In many cases, the pattern is 

elongated along the direction of the incoming light, which means that the probability of finding photons in 

directions perpendicular to that of the incident beam is small. When the particle size increases, the amount of 

scattered energy is greater in the forward directions with possible complex patterns like the lowermost pattern. 

The patterns given in this Figure 6.2 are schematic; the actual scattering patterns are much more complex 

without symmetry and depend on the nature, shape and size of the particle. 

 

Figure 6.2. Schematic scattering patterns according to the size of the anisotropic scattering particle. The black 

arrow denotes the incident light. The further the limit of the pattern from the particle or molecule (in grey), the 

greater the probability the light may be scattered in that direction. 

The atmosphere contains many particles and molecules and it occurs that one particle or molecule scatters the 

light that has been scattered by another particle or molecule and so on. This is called multiple scattering and is 

illustrated in Figure 6.3. A photon is diverted from the incident beam and is scattered in another direction. It may 

be further scattered and so on. For a beam light such as in Figure 6.3, it happens that a ray that has been scattered 
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in a direction away from that of the beam may be scattered by other particles and may reappear in the direction 

of the beam. 

 

Figure 6.3. Illustration of multiple scattering 

When particles are much smaller than the incident wavelength, the scattering may be described by Rayleigh’s 

law. Under this law, the amount of scattering is inversely proportional to the fourth power of the wavelength. It 

follows that the smallest wavelengths are much more scattered by the particle than the longest ones. This is the 

case for the air molecules whose sizes are much smaller than the wavelengths of the incident light. In the visible 

range, the blue wavelengths are more scattered than the red ones.  

For particles whose sizes are comparable to or slightly greater than the wavelength, the Mie’s law may apply. It 

describes the scattering by a homogeneous sphere. Actual particles are not spheroids and the Mie’s law offers a 

first approximation. It may depict the scattering effects due to the so-called aerosols, i.e. particles that are in 

suspension in the atmosphere, usually in the lower part, i.e. within a few km above the ground.  

Both scattering and absorption remove energy from the light crossing the atmosphere. The depletion of the 

radiation is called extinction or attenuation. Absorption, scattering and extinction are wavelength-dependent. The 

optical depth is a measure of the extinction of the radiation during its vertical travel through a layer of molecules 

or particles or clouds, with a solar zenithal angle equal to 0. The optical depth is the natural logarithm (ln) of the 

ratio of the incident power to the transmitted one through a layer. The greater the optical depth, the greater the 

extinction. The optical depth is positive and unitless. It ranges from 0 to 5 for the aerosols while the cloud optical 

depth of clouds may be greater than 100. The optical depth may be called optical thickness. 

The extinction of a beam depends also upon the length of its travel, i.e. its optical path within the atmosphere. 

The length of the optical path is called the air mass. The lower the sun above the horizon or equivalently the 

greater the solar zenithal angle, the greater the air mass and the greater the extinction by the atmosphere.  

Absorption of energy by particles and molecules leads to emission because the temperature of these constituents 

is not null. This is the same physical process than that occurring in the sun leading to the emission of the solar 

radiation. The ground and the ocean emit energy at longer wavelengths than solar radiation. This longwave 

energy is also absorbed and scattered by the atmosphere. The atmosphere itself emits energy because its 

temperature is not null. 

A surface at ground level receives solar radiation in short wavelengths (0.3 to 4) m, either in a direct form, i.e., 

as a beam from the direction of the sun, or in a diffuse form. The sum of these direct and diffuse components 

forms the global irradiance. The term global may be omitted if no confusion is possible. 

Because their surface temperature is not null, the various constituents of the earth: solids, liquids and gases, emit 

radiation with longer wavelengths (4 to 80) m. The terrestrial radiation is always in diffuse form. The surface 

receives part of this the terrestrial radiation which should be taken into account if an energy budget is made on 

this surface. 

6.2 THE DEPLETION OF THE SOLAR RADIATION BY THE ATMOSPHERE 

When the solar radiation penetrates into the atmosphere, whether cloud-free or cloudy, it is absorbed and 

scattered. Only the longer wavelengths reach the lower layers of the atmosphere. The downwelling solar energy 

at ground level is mostly comprised in the range [0.3, 4] m. Most of the ultraviolet rays whose wavelengths are 

Beam
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less than 300 nm are absorbed by ozone. Radiation with wavelengths greater than 4 m is largely absorbed by 

water vapour. 

All the atmospheric components contribute to a greater or lesser degree to the extinction of solar radiation on its 

downwelling path towards the ground. The extinction takes place as a result of the mechanisms of absorption 

and scattering that affect the whole solar spectrum. In the upper layers of the atmosphere, the main processes are 

the absorption of the X-ray and ultraviolet regions of the solar spectrum, and scattering in the violet and blue 

ranges. As the radiation penetrates further downwards, the extinction affects the longer wavelength portions of 

solar radiation. The variations in the concentrations of water vapour and ozone, and in the concentrations and 

optical characteristics of aerosols under the influence of various processes of interaction between the solar 

radiation field, the atmosphere and the underlying surface, result in constant fluctuations with time in spectral 

extinction in the atmosphere. This is why it is so difficult to assess precisely the effect of atmosphere on 

radiation. 

In the upper layers of the atmosphere, the absorption of solar radiation is caused by oxygen, ozone and nitrogen 

oxides and, in the lower stratosphere and troposphere, by water vapour, carbon dioxide, aerosols and other minor 

components. 

The basic atmospheric gases –nitrogen and oxygen– mainly attenuate radiation in ultraviolet and visible regions 

of the spectrum through molecular scattering. Solar radiation is also scattered by gas molecules and water vapour 

and by solid aerosol particles, liquid drop components (cloud particles, fog) and ice crystals. The scattering 

process in the atmosphere results in the production of scattered radiation, part of which goes back into space. 

Absorption is mostly caused by ozone, which depletes radiation strongly at wavelengths of less than 0.3 m and 

weakly between (0.5 and 0.7) m, and by water vapour, which exhibits numerous and wide absorption lines 

above 0.65 m. 

The length of the geometrical path from the top of the atmosphere down to the ground is equal to the inverse of 

the cosine of solar zenithal angle S. The greater S, the greater the length that the light should travel. The optical 

path is the optical equivalent but taking into account the optical effects of the atmosphere on the radiation. The 

more turbid or cloudy the atmosphere, the longer the optical path for the same S. The longer the optical path, the 

greater the depletion. The optical depth is a function of the wavelength. 

The relative air mass, often abbreviated in air mass, is the ratio of the optical path for a given S to that for S =0. 

It may be approximated by the inverse of the cosine of S which is fairly accurate when S <60°; otherwise, 

correction must be brought10. The air mass is a function of the wavelength. 

The clearness index, often noted KT, is defined as the ratio of the solar radiation received at ground level and 

that received at the top of the atmosphere for the same geographical location, same instant and on a similar 

surface. It is the fraction of the radiation received at the top of the atmosphere passing through the atmosphere. 

In the case of a horizontal surface receiving the irradiance E at ground level, KT is defined as: 

KT = E / E0N cosS  (6-1) 

where S is the solar zenithal angle and E0N cosS is the irradiance received on a horizontal surface at the top of 

atmosphere. The clearness index is a dimensionless quantity. It can be computed as a ratio of irradiances or 

irradiations, and will yield the same value in both cases. It may be defined for any wavelength or a spectral 

interval and for any time duration: (KT)h, or day (KT)day etc. 

As it will be seen in the following section, the clearness index may greatly vary during a day with the solar 

zenithal angle, and may also greatly vary with the wavelength. However, when used for duration greater than the 

day, and for the total radiation, and more generally for any spectral interval that contributes significantly to the 

total radiation, it is a convenient quantity to express the overall transmittance of the atmosphere and to compare 

different situations, e.g. at different latitudes as it removes the effect of the changes in cosine of the solar zenithal 

angle. Typical values are 0.1 for very cloudy conditions and greater than 0.7 for cloud-free conditions.  

                                                           

10 Greif et al., op. cited 



The Solar Radiation at the Top of the Atmosphere 43 

 

6.3 THE RADIATIVE TRANSFER IN THE CLOUD-FREE ATMOSPHERE 

This section deals with the clear skies, i.e. cloud-free skies, also said cloud-free atmosphere, or cloud-free 

conditions, or clear-sky conditions. The effects of clouds are treated in a further section. A cloud-free sky may be 

said pure or turbid, depending on its load in atmospheric constituents, such as water vapour or aerosols. 

As seen above, gas molecules scatter the radiation and this process may be described by Rayleigh’s law. It 

follows that the smaller the wavelength, the greater the optical thickness of the atmosphere containing only these 

molecules. This atmosphere is said to be dry and clean and is sometimes called a Rayleigh atmosphere. For 

visible light, blue photons are more scattered than the others, the least scattered being the red ones. In addition, 

the probability of any scattering direction is noticeable as shown in Figure 6.2. This is why the sky is blue: the 

blue photons are scattered several times in all directions, and consequently form an important fraction of the 

diffuse radiation which originates from all areas of the sky vault. When the water vapour content increases, this 

process is less visible: wavelengths are scattered more uniformly and the sky vault appears white. On the 

contrary, in the case of a dry atmosphere, the sky vault appears deep blue. 

Aerosols play an important role in the scattering of radiation and to absorption in a lesser extent. Their exact role 

depends upon the chemical composition, concentration and size distribution. Nowadays, Ångström’s law is often 

used to describe the optical depth or thickness of the aerosols, aer() as a function of the wavelength : 

𝜏𝑎𝑒𝑟(𝜆) =  𝛽  (𝜆
𝜆1

⁄ )
−𝛼

  (6-2) 

where  and  are two coefficients, and  and  two wavelengths.  characterizes the magnitude of the aerosol 

optical thickness; it is equal to aer for . If  is the 1 m wavelength, then  is called the Ångström turbidity 

coefficient and it comes: 

𝜏𝑎𝑒𝑟(𝜆) =  𝛽 𝜆−𝛼   (6-3) 

where is in m. Typically, the aerosol optical depth ranges from 0 (no aerosol) up to 5. 

 is called the Ångström exponent. It characterizes the spectral behaviour of the optical thickness and further, 

the influence of the aerosols on the radiation. It is related to the dimensions of the particles and the nature of the 

statistical distribution of their sizes: the smaller the particles, the larger the exponent. Observations show a 

considerable range of variations for . Negative values are possible;  ranges typically from -1 to 4 and. If the 

Ångström exponent is equal to 0, there is no dependence of the optical depth with the wavelength. If  is 

positive, the optical depth decreases with the wavelength. Inversely if negative, the aerosol optical depth 

increases with the wavelength. 

If one has a measure of the aerosol optical depth at one wavelength and knows the Ångström exponent, then one 

may compute the aerosol optical depth for any wavelength using Eq 6-2. Reciprocally, one may compute the 

Ångström exponent knowing the aerosol optical depth at two wavelengths. 

𝛼 =  − 𝑙𝑜𝑔 (
𝜏𝑎𝑒𝑟(𝜆1)

𝜏𝑎𝑒𝑟(𝜆2)⁄ ) 𝑙𝑜𝑔 (
𝜆1

𝜆2
⁄ )⁄  (6-4) 

Usually, the optical effect of the aerosols only is called turbidity. If the aerosol load in the atmosphere in cloud-

free conditions is small, then the extinction effect is small and the sky is said very clear. When the aerosol load is 

noticeable, the sky is said turbid. 

One may report here on another quantity called the Linke turbidity factor that summarizes the atmospheric 

extinction in cloud-free conditions. The Linke turbidity factor is a very convenient approximation to model the 

atmospheric absorption and scattering of solar radiation. It describes the optical thickness of the atmosphere due 

to both absorption by the water vapour and absorption and scattering by the aerosol particles relative to a dry and 

clean atmosphere. The greater the Linke turbidity factor, the greater the attenuation of the radiation by the clear 

sky atmosphere. This factor is often given for an air mass equal to 2, i.e. approximately for a solar zenithal angle 

of 30°, or equivalently a solar elevation angle of 60°. If the atmosphere were dry and clean, the Linke turbidity 

factor would be equal to 1. A value of 3 is typical for Africa and Europe; it can amount to 7 or more in the case 

of a polluted area, e.g., a city with heavy traffic. It is a convenient quantity to summarize the turbidity of the 
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atmosphere and is often used by engineers and other practitioners. It is a key input to several models that assess 

the downwelling solar radiation received at ground under clear skies. 

The atmospheric extinction is sometimes conveniently expressed by the visibility, which is the maximum 

distance at which a black object, of sufficient angular dimensions, can be distinguished by an observer at ground 

level against the luminous background of the sky on the horizon. The visibility is expressed in km. It is clearly 

linked to the content of particles in the atmosphere: dust, droplets etc. In foggy weather the visibility is less than 

1 km and increases as the purity of the atmosphere increases. For example, from the authors’ office on the 

French Riviera, high mountains located in the Corsica island 200 km away can be distinguished when the 

atmosphere is pure and dry, usually in early morning in winter. The visibility is often reported in meteorological 

reports, especially at airports. Note that it is a measure of the horizontal extinction at surface level, whereas the 

extinction of the solar radiation due to the atmosphere occurs along a vertical or oblique path. 

Table 6.1 summarizes the contribution of the various atmospheric constituents to the extinction of the solar 

radiation impinging at the top of the atmosphere during its downward path towards the ground under cloud-free 

conditions. 

 
Type of constituent Scattering Absorption 

Ozone Can be neglected Strong for  less than 300 nm 

Gases (other than ozone) 
Strong (-4). Increases as the wavelength 

decreases 
Small 

Water vapour Can be neglected Noticeable for  greater than 650 nm 

Aerosols - with -1 ≤  ≤ 4 Small 

Table 6.1. Summary of the contribution of atmospheric constituents to the extinction of the solar radiation 

during its downward path under cloud-free conditions ( is the wavelength) 

6.4 THE SPECTRAL DISTRIBUTION AT GROUND LEVEL IN THE CLOUD-FREE ATMOSPHERE 

Several graphs of typical spectral distributions of the downwelling solar irradiance received by a horizontal plane 

at mean sea level are now presented to illustrate the spectral effects of the cloud-free atmosphere on the 

radiation. They result from a numerical model for radiative transfer in the atmosphere. The simulations were 

made for the day June 19 –day number 170 in the year– and for a typical atmosphere encountered in summer at 

mid-latitudes. The receiving surface is horizontal.  

Figure 6.4 exhibits a typical spectral distribution for three conditions: i) no atmosphere, i.e. at top of the 

atmosphere (in black), ii) clear sky (visibility of 50 km, dark grey), and iii) turbid cloud-free conditions 

(visibility of 10 km, light grey). The solar zenithal angle is 30°. The spectral distribution shows how much power 

is available for each wavelength. The surface under the curve is the irradiance integrated over the spectral range 

under concern. 

As a whole, one may note a tendency of the spectral irradiance to decrease as the turbidity increases: the 

irradiance at the top of the atmosphere is greater than that of the very clear sky which in turn is greater than that 

in turbid conditions, at any wavelength. In this example, the total irradiance is 1174, 885, and 803 W m
-2

 at 

respectively the top of the atmosphere, the surface in clear sky and the surface in cloud-free but turbid 

conditions. Respectively 75 % and 68 % of the solar radiation impinging the horizontal surface at the top of the 

atmosphere went through the atmosphere, i.e. the total clearness index is respectively 0.75 and 0.68. 
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Figure 6.4. Typical spectral distribution of irradiance received by a horizontal surface at the top of the 

atmosphere and at ground level for very clear sky conditions and turbid cloud-free conditions. The solar zenithal 

angle is 30°. 

The shape of the spectral distribution at sea level is fairly similar to that at the top of the atmosphere. The 

spectral distribution is well-peaked around 550 nm and about half of the radiation is found within the visible part 

[380, 780] nm. 

However, several changes are noticeable as one may observe spikes and gaps compared to the spectral 

distribution at the top of the atmosphere. One notes the extinction of the radiation at the shortest wavelengths: 

the radiation impinging on the ground is small. This is due to absorption by ozone and to scattering by air 

molecules backwards outside the atmosphere. The irradiance for the shortest wavelengths is more depleted by 

the atmosphere than for wavelengths greater than 600 nm. 

Between 700 and 800 nm are located absorption lines by oxygen and water vapour. The absorption is very large 

compared to the other wavelengths, yielding spikes in the distribution. At 900 nm and greater wavelengths, the 

radiation is absorbed by water vapour. This is not done uniformly but by absorption ranges as seen by the 

departures from the spectrum at the top of the atmosphere. Apart these large gaps due to absorption, the 

irradiance is the same in the three conditions at wavelengths greater than 1200 nm. The black and grey lines are 

superimposed. The scattering effects are very limited and the difference is due to the absorption effect.  

Table 6.2 reports the contribution of the irradiance observed for various wavelengths to the total irradiance, i.e. 

integrated over the spectral range [250, 20000] nm for the three spectral distributions in Figure 6.4. One may 

note that the contributions are very similar for all intervals for the two cases at surface: clear conditions, and 

cloud-free but turbid conditions. One may see that the contribution is the same for the three distributions for the 

UV-B, UV-A, or the [280, 2800] nm interval which the typical range covered by a pyranometer. It greatly differs 

between the top of the atmosphere and the surface in the range [400, 1100] nm, [1100, 4000] nm, or the visible 

or PAR intervals. The visible band contributes to almost 60 % of the total irradiance at surface compared to 50 % 

at the top of the atmosphere. 
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Spectral range, in nm TOA Clear Turbid  Spectral range, in nm TOA Clear Turbid 

250 to 20000 100 100 100  280 to 315 (UV-B) 1 <1 <1 

400 to 1100 67 77 76  315 to 400 (UV-A) 7 7 6 

1100 to 4000 25 18 19  380 to 780 (visible CIE) 49 57 56 

280 to 2800 (pyranometer) 97 99 99  400 to 700 (PAR) 40 46 45 

Table 6.2. Fraction of the total irradiance in percent, for various intervals of wavelength for the spectral 

distribution shown in Figure 6.4. PAR stands for photosynthetically available radiation. CIE stands for 

Commission internationale de l’éclairage. 

The following example illustrates the influence of the solar zenithal angle S on the total irradiance and on the 

spectral distribution. The case of a horizontal surface located at ground level for clear sky conditions (visibility 

of 50 km) is simulated for three solar zenithal angles: 0°, 30°, and 60°. Table 6.3 reports the total irradiance and 

the clearness index for this specific example, at respectively the top of the atmosphere and at the surface in clear 

sky conditions for each solar zenithal angle.  

 
 0° 30° 60° 

Irradiance at the top of atmosphere (W m-2) 1354 1174 673 

Irradiance at ground level (W m-2) 1045 885 464 

Clearness index 0.77 0.76 0.69 

Table 6.3. Example of the total irradiance received by a horizontal surface at the top of the atmosphere and at 

ground level in clear sky conditions, and clearness index for three solar zenithal angles: 0°, 30° and 60°.  

From this Table, one observes that the total irradiance decreases as S increases as expected. One may observe 

that the decrease is greater at surface than at the top of the atmosphere; this is shown by the fact that the 

clearness index decreases as S increases. Actually, the optical path increases with S thus increasing the 

magnitude of the absorption and scattering phenomena. A crude approximation of the total irradiance E in clear 

sky conditions is given by11:  

E = E0N cosS
1.15

   (6-5) 

or equivalently: 

KT = cosS
0.15

   (6-6) 

where there is an additional influence of S other than cosS on the modelling of the depletion via the term 

cosS
0.15

. Such an approximation may be useful as a rule of thumb. There are several other models and several 

web services that provide accurate estimates of the irradiance or irradiation in cloud-free conditions; see e.g. 

www.soda-pro.com. 

The following Figure 6.5 exhibits the spectral distribution of the irradiance for this example for the three solar 

zenithal angles: 0° (black line), 30° (dark grey line) and 60° (light grey line). This Figure is similar to Figure 5.2 

that deals with the spectral distribution but at the top of the atmosphere. 

                                                           

11 Perrin de Brichambaut and Vauge (op. cited) 
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Figure 6.5. Typical spectral distribution of solar irradiance received by a horizontal surface at ground level for 

wavelengths from 200 nm to 2000 nm in clear sky conditions for three solar zenithal angles: 0°, 30° and 60°. 

The influence of S on the depletion of the solar radiation by the atmosphere can be seen at all wavelengths. As 

discussed above, the influence is more pronounced at the shorter wavelengths. The irradiance for the shortest 

wavelengths is more depleted as S increases than for wavelengths greater than 600 nm. 

To illustrate the extinction of radiation by the atmosphere, one may look at the changes of the clearness index KT 

with the wavelength. Figure 6.6 exhibits the spectral distribution of KT. If the atmosphere were completely 

transparent, KT would be equal to 1 for all wavelengths and any S. KT is small for the shortest wavelengths 

because of absorption by ozone and scattering by air molecules. KT then increases as the wavelength increases 

and reaches a significant value for wavelengths greater than 350 nm. KT decreases as S increases; the effects are 

more pronounced for greater solar zenithal angles. 
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Figure 6.6. Clearness index KT as a function of the wavelength for the example shown in Figure 6.5. 

6.5 THE ROLE OF CLOUDS 

Clouds consist of a large number of water drops or ice crystals. Consequently, they produce intensive scattering 

of radiation passing through them and create a strong extinction of radiation in its way towards the ground. The 

amount of radiation passing downwards through a cloud decreases rapidly as the geometrical thickness of the 

cloud increases. The optical depth of the cloud characterizes the strength of the depletion. It is a unitless 

quantity. Value 0 means no extinction. A value of 3-4 is usually enough to make it hard to see the sun clearly 

from the ground through the cloud. The optical depth is related to the geometrical thickness of the cloud but 

depends on the type of cloud and the size of the water drops or ice crystals. There are various types of clouds. 

Consequently, their effects on the radiation vary greatly, from low extinction by thin cirrus to complete 

extinction by thick cumulus. The extinction by clouds is also a function of the wavelength: the spectral 

distribution observed in cloud-free conditions is changed by the presence of clouds. 

If clouds deplete radiation on the one hand, on the other hand they reflect the radiation because their albedo is 

large. Two effects are of particular interest here because they increase the amount of solar radiation received at 

ground level. The first effect is that part of the radiation reflected by the ground is reflected back to the ground 

by the bottom of the clouds. The second effect is that clouds of finite size may concentrate light because the 

radiation may reflect on their sides towards the surface of interest. This latter phenomenon may explain why it is 

possible to observe hourly irradiation, or intra-hourly irradiation, greater than the corresponding extra-terrestrial 

irradiation. 

The following example illustrates the depletion of the radiation by a cloud as a function of the wavelength. The 

solar zenithal angle is 30°. Two optical depths are given: a thin cloud of optical depth set to 5 and a thick cloud 

whose optical depth is 15. Also drawn is the spectral distribution for a clear sky (visibility of 50 km). Figure 6.7 

exhibits the spectral distribution of irradiance and Figure 6.8 exhibits that for the clearness index.  
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Figure 6.7. Typical spectral distribution of solar irradiance for wavelengths from 200 nm to 2000 nm for a solar 

zenithal angle of 30°. The surface is horizontal at ground level. Clear sky conditions (visibility of 50 km, black 

line) and cloudy conditions with two optical depths: 5 (dark grey line) and 15 (light grey line). 

One observes that the irradiance in cloudy conditions (grey lines) is much less than that for clear skies (black 

line). As expected, the irradiance decreases as the optical depth of the cloud increases at all wavelengths. The 

clearness index KT is less than 0.7 at all wavelengths for the cloud optical depth 5 and less than 0.4 for the cloud 

optical depth 15. 

The total irradiance is 1174 W m
-2

 at the top of the atmosphere. It amounts to 885, 637 and 387 W m
-2

 

respectively for clear sky, and cloud optical depth 5 and 15 at ground level. The total clearness index is 0.76, 

0.55, and 0.33 respectively for clear sky, and cloud optical depth 5 and 15. These numbers illustrate the major 

influence of the clouds on the solar radiation. The presence of a thin cloud of optical depth 5 is much more 

important than a low visibility of 10 km: the total irradiance is 637 for the cloud and 803 W m
-2

 for the visibility 

10 km, and the clearness index is 0.55 for the cloud and 0.69 for the visibility 10 km. 
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Figure 6.8. Typical spectral distribution of clearness index for wavelengths from 200 nm to 2000 nm for a solar 

zenithal angle of 30°. The surface is horizontal at ground level. Clear sky conditions (visibility of 50 km, black 

line) and cloudy conditions with two optical depths: 5 (dark grey line) and 15 (light grey line). 

6.6 THE RADIATIVE COMPONENTS AT GROUND LEVEL 

As already mentioned a horizontal plane at ground level receives radiation in direct -also called beam- or diffuse 

form. The global radiation is the sum of the direct and diffuse radiation. 

The direct radiation is the radiation coming from the direction of the sun. Only direct radiation is present at the 

top of the atmosphere. A horizontal surface at ground level receives a depleted part of this direct radiation. The 

direct radiation may comprise photons that have been scattered once or more and that have re-joined the beam. 

Depending on the exact definition used for the direct component or of the system used to measure the direct 

radiation12, it may include part of the radiation originating from the circumsolar region. 

The diffuse radiation is the radiation that has been scattered by the constituents of the atmosphere and that 

originates from the sky vault in all directions, except that of the sun which is already accounted for through the 

direct component. It also comprises the part of the radiation that has been reflected by the ground and which is 

scattered by the atmosphere back towards the horizontal plane. 

If the receiving plane at ground level is inclined, it may receive the direct radiation only partly and the fraction of 

sky viewed by the plane must be considered for computing the diffuse part impinging on the plane. The plane 

may also receive a part of the radiation that is reflected by the surrounding landscape towards the plane. This 

component is called the reflected component. The three components are illustrated in Figure 6.9. 

                                                           

12 Blanc P., Espinar B., Geuder N., Gueymard C., Meyer R., Pitz-Paal R., Reinhardt B., Renne D., Sengupta M., Wald L., 

Wilbert S., Direct normal irradiance related definitions and applications: the circumsolar issue. Solar Energy, 110, 561-577, 

2014. doi: 10.1016/j.solener.2014.10.001. 
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Figure 6.9. Scheme showing the various components composing global irradiance received by an inclined plane. 

The global irradiance is the sum of these three components: direct B, diffuse D and reflected R: 

E(, , t) = B(, , t) + D(, , t) + R(, , t) (6-7) 

In the case of a horizontal surface, the reflected component is null. Similarly, the global irradiation is the sum of 

three components: direct, diffuse and reflected irradiations. These relationships hold for any wavelength or 

ranges of wavelengths. 

Figure 6.10 exhibits the global, direct and diffuse irradiances at ground level as a function of wavelength for a 

solar zenithal angle of 30° and two cases of cloud-free conditions: clear sky (visibility of 50 km) and turbid 

(visibility of 10 km). As already seen, the global irradiance is greater for the clear sky case than for the turbid 

case as a whole and at all wavelengths. This is different for the direct and diffuse irradiances. 

For the clear sky case, the scattering by the atmospheric constituents is weak: the direct irradiance is much larger 

than the diffuse one. However, this is not true for shorter wavelengths where molecular scattering occurs. For 

wavelengths shorter than 350 nm, the two components are equal. As the wavelength increases, the influence of 

the molecular scattering decreases and the diffuse irradiance decreases after a peak at approximately 450 nm. 

There is no scattering by aerosols to contribute significantly to the diffuse irradiance. The diffuse irradiance 

peaks at a shorter wavelength than the global irradiance; it shows low values for wavelengths greater than 

800 nm and is close to 0 for wavelengths greater than 1100 nm. Accordingly, the direct irradiance is the major 

contributor to the global irradiance for wavelengths greater than 350 nm and the sole contributor for wavelengths 

greater than 1100 nm. 

The turbid case shows a fairly similar behaviour (grey lines) though the magnitude of the effects may be 

different. As there are more scatterers than in the clear sky case, the magnitude of the scattering effect increases 

and the diffuse irradiance is by far the major contributor to the global irradiance for the shorter wavelengths. The 

diffuse irradiance is greater than that for the clear sky case as a whole and at all wavelengths. It peaks at 450 nm 

and then decreases to reach values close to 0 for wavelengths greater than 1300 nm. The diffuse and direct 

irradiances are equal at approximately 600 nm. The direct irradiance is less than that for the clear sky case as a 

whole and at all wavelengths. It peaks between 600 and 700 nm and then decreases. It remains the major 
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contributor to the global irradiance for wavelengths greater than 700 nm and the sole contributor for wavelengths 

greater than 1400 nm. 

 

Figure 6.10. Global, direct and diffuse irradiances at ground as a function of wavelength for a solar zenithal 

angle of 30° and two cases of cloud-free conditions: clear sky (visibility of 50 km) and turbid (visibility of 10 

km).  

The spectral behaviour of the relative contribution of the diffuse irradiance to the global irradiance is illustrated 

in Figure 6.11. It reports the ratio of the diffuse irradiance to the global irradiance for the two cases. An 

additional case of a cloudy situation with a cloud optical depth of 5 is also drawn. As a whole and at each 

wavelength, the ratio is greater for the turbid case than for the clear sky case: the contribution of the diffuse is 

more pronounced when the optical turbidity increases. As already discussed, the ratio is the greatest for the 

shorter wavelengths. It amounts to 0.6 for the clear sky case and up to 0.85 for the turbid case.  

In each case, the ratio decreases as the wavelength increases. The decrease is more pronounced when the sky is 

clear. As the turbidity increases or as the cloud optical depth increases in the case of cloudy atmosphere, the ratio 

tends to be constant with the wavelength. For the cloud case, the ratio is 1, meaning that the direct irradiance is 

null at all wavelengths and that the diffuse irradiance is the sole contributor to the global irradiance. 
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Figure 6.11. Ratio of the diffuse irradiance to the global irradiance as a function of wavelength for a solar 

zenithal angle of 30° and two cases of cloud-free conditions: clear sky (visibility of 50 km) and turbid (visibility 

of 10 km) as well as a cloudy situation with an optical depth of 5. 

Several models or web services (see e.g. www.soda-pro.com) are proposed to estimate the global, direct and 

diffuse irradiances, or irradiations, for any type of sky. Typical inputs are the instant (day, hour), geographical 

location (latitude, longitude, elevation) and one or more variables describing the optical state of the atmosphere. 

Most often, measurements are made of global irradiation on the horizontal plane. Measurements of direct and 

diffuse irradiations are less frequent. Consequently, models should be exploited for estimating the direct and 

diffuse irradiations for a horizontal surface from the global irradiation measured on this surface. Many 

publications are devoted to such problems. It is beyond the scope of this textbook to deal with such models. 

They are numerous and depend also on the data available. Nevertheless, a first insight is provided. The typical 

approach to obtain the irradiation on an inclined surface is to firstly split the horizontal global irradiation H(0, 0) 

into direct B(0, 0) and diffuse D(0, 0) irradiations on a horizontal plane. Computation is then made on each 

irradiation separately to obtain direct irradiation B(, ) and diffuse irradiation D(, ) on an inclined surface. 

The reflected irradiation R(, ) is added and the sum provides the global irradiation H(, ). 

Once the direct irradiance B(0, 0, t) is known on a horizontal surface, the irradiance on an inclined plane 

B(, , t) is given by: 

B(, , t) = B(0, 0, t) cost / cosSt  (6-8) 

Assuming there is no shade during the period of integration, the direct irradiation B(, ) is easily computed for 

any inclined surface by exploiting Eq. 5-19: 

B(, ) = B(0, 0) [ H0(, ) / H0(0, 0]  (6-9) 

A simple model for reflected irradiation R(, ) is based on the assumption that the reflection from the ground is 

isotropic, i.e., the irradiation is the same whatever the direction from which the reflected rays are coming. In this 

case, the fraction of ground viewed by this plane is: 

rg() = (1 - cos) / 2  (6-10) 

and the reflected irradiation is given by: 
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R(, ) = g H(0, 0) rg()  (6-11) 

where g is the ground albedo, i.e., the fraction of irradiation that is reflected by the ground. 

The major difficulty when assessing irradiation on inclined surfaces lies in the estimation of the diffuse 

irradiation. The major cause of difficulty arises from the fact that the distribution of radiances on the sky vault is 

not simple. It is anisotropic, with a marked circumsolar effect around the direction of the sun, and is closer to 

isotropy when the sky becomes completely overcast. Clouds scattered in the sky or grouped in a particular 

direction increase the anisotropy. It is also evident from previous figures that this distribution depends upon the 

spectral distribution of the irradiation and therefore on the optical properties of the sky, including cloud effects. 

A very simple model consists in considering the sky vault as a source with uniform radiance. This model is 

inaccurate and is not recommended at all, but its presentation may improve understanding of diffuse irradiation. 

In this case, as for reflected irradiation, the fraction of sky viewed by the plane may be considered as: 

ri() = (1+ cos) / 2  (6-12) 

and the diffuse irradiation is given by: 

D(, ) = D(0, 0) ri()  (6-13) 

where D(0, 0) is the diffuse irradiation received on the horizontal surface. 
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