
HAL Id: hal-02175760
https://hal.science/hal-02175760

Preprint submitted on 6 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mixed Causal-Noncausal Autoregressions: Bimodality
Issues in Estimation and Unit Root Testing *

Frédérique Bec, Heino Bohn Nielsen, Sarra Saïdi

To cite this version:
Frédérique Bec, Heino Bohn Nielsen, Sarra Saïdi. Mixed Causal-Noncausal Autoregressions: Bimodal-
ity Issues in Estimation and Unit Root Testing *. 2019. �hal-02175760�

https://hal.science/hal-02175760
https://hal.archives-ouvertes.fr


Mixed Causal-Noncausal Autoregressions:
Bimodality Issues in Estimation

and Unit Root Testing ∗

Frédérique Bec† Heino Bohn Nielsen‡ Sarra Säıdi§
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Abstract

This paper stresses the bimodality of the widely used Student’s t likelihood func-
tion applied in modelling Mixed causal-noncausal AutoRegressions (MAR). It first
shows that a local maximum is very often to be found in addition to the global
Maximum Likelihood Estimator (MLE), and that standard estimation algorithms
could end up in this local maximum. It then shows that the issue becomes more
salient as the causal root of the process approaches unity from below. The conse-
quences are important as the local maximum estimated roots are typically inter-
changed, attributing the noncausal one to the causal component and vice-versa,
which severely changes the interpretation of the results. The properties of unit root
tests based on this Student’s t MLE of the backward root are obviously affected
as well. To circumvent this issues, this paper proposes an estimation strategy
which i) increases noticeably the probability to end up in the global MLE and
ii) retains the maximum relevant for the unit root test against a MAR stationary
alternative. An application to Brent crude oil price illustrates the relevance of the
proposed approach.
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1 Introduction

As emphasized by Hanfelt [2000] in his comment on Small, Wang and Yang [2000]’s pa-
per, most statisticians doubt the proposition that multiple roots pose a serious problem
in data analyses. Also, very few published data analyses in scientific journals mention
the existence of multiple roots or describe what methods are used to select among them.
Our paper is devoted to fill this gap for the case of mixed causal-noncausal autoregres-
sive (MAR) models, and as a by-product we propose an improvement to the test for a
unit root against MAR stationary alternatives. Basically, a maximum likelihood esti-
mation strategy is proposed, which has the desirable feature that it selects the relevant
maximum for the topic at hand.

Introduced decades ago in the literature of statistics (see for instance Weiss [1975],
Findley [1986], Lawrance [1991], Breidt and Davis [1991], Breidt, Davis, Lh and Rosen-
blatt [1991], Breidt, Davis and Dunsmuir [1992], Rosenblatt [1993], Cambanis and
Fakhre-Zakeri [1994], Cambanis and Fakhre-Zakeri [1996] or Rosenblatt [2000]), mixed
causal-noncausal autoregressions have recently known a revival of interest amongst re-
searchers in economics and econometrics (see e.g. Lanne and Saikkonen [2011], Lanne,
Luoma and Luoto [2012], Lanne and Saikkonen [2013], Hencic and Gouriéroux [2015],
Gouriéroux and Zakoian [2015], Gouriéroux and Jasiak [2016], Gouriéroux and Zakoian
[2017] or Fries and Zakoian [2019]).

To fix ideas, let us introduce the MAR(r,s) model as formulated by Lanne and
Saikkonen [2011],

φ(B)ϕ(B−1)yt = εt, (1)

where B is the backward shift operator (Bkyt = yt−k for k = 0,±1, ...) and φ(B) =
1−φ1B− ...−φrBr, ϕ(B−1) = 1−ϕ1B

−1− ...−ϕsB−s. Finally, εt is a sequence of non-
Gaussian independent, identically distributed random variables with mean zero, density
function f(εt | λ) where λ is a set of parameters to be specialized later, and E(ε2t ) <∞
unless otherwise mentioned. Indeed, if the error terms were Gaussian distributed, the
model could be written indifferently as a backward or a forward autoregression, as these
two representations are observationally equivalent asymptotically in this case.1

Under the assumption that the polynomials φ(z) and ϕ(z) (z ∈ C) have roots outside
the unit circle, it is well-known that yt has a stationary solution in terms of the two-sided
moving average representation:

yt =
∞∑

j=−∞

ψjεt−j. (2)

As can be seen from equation (2), MAR models allow for dependence on both the past
and the future, by contrast with the well-known backward-looking autoregression which
rules out dependence on future observations. If r > 0 and s = 0, the process defined in
equation (1) becomes a purely causal process, namely the MAR(r,0) or AR(r):

φ(B)yt = εt. (3)

If s > 0 and r = 0 in equation (1), one obtains the following purely noncausal process
MAR(0,s):

ϕ(B−1)yt = εt. (4)

1See e.g. the discussion in Cambanis and Fakhre-Zakeri [1996].
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Papers by Hencic and Gouriéroux [2015], Gouriéroux and Zakoian [2015], Gouriéroux
and Jasiak [2016], Gouriéroux and Zakoian [2017] or Fries and Zakoian [2019], assume
Cauchy distributed disturbances in (1), i.e. very fat tailed distributions needed to cap-
ture bubble-like dynamics. For other macroeconomic variables such as the inflation or
interest rates, a popular choice is the Student’s t-distribution with scale parameter σ > 0
and ν > 2 degrees of freedom, see inter alia Lanne and Saikkonen [2011], Nyberg, Lanne
and Saarinen [2012], Lanne and Saikkonen [2013], Lof [2013] or Lof and Nyberg [2017].
With these Student’s t-disturbances, the approximate maximum likelihood estimation
(MLE) approach has been advocated by Breidt et al. [1991], Andrews, Davis and Breidt
[2006] and further promoted by Lanne and Saikkonen [2011]. The last two papers have
derived conditions under which the MLE is consistent and asymptotically normal. The
least absolute deviation (LAD) estimator has been proposed and its properties studied
by Huang and Pawitan [2000] and Wu and Davis [2010] for the cases of unknown den-
sity function of the εt’s in (1): they have characterized the properties of the Quasi-MLE
when the objective function is the Laplace likelihood, which gives the LAD estimator.
Alternative possible distributions include the Gaussian mixture or the generalized error
distribution.

More recently, Hecq, Lieb and Telg [2016] have compared the MLE and LAD esti-
mators in finite sample. There are signs of bimodality in their simulated illustration of
finite sample likelihood estimation, see Figures 2 and 32. For sample sizes of 200 and
800, two peaks can be seen in the distribution of both LAD and ML estimates when
the underlying disturbances are Student’s t-distributed with 10 degrees of freedom. To
our knowledge, this kind of issue has hardly been discussed so far in the literature. Yet,
as noticed by Small et al. [2000], estimating functions such as the first order conditions
of the likelihood function or likelihood equations can have more than one root. Unfor-
tunately, in practice it is often not obvious to determine which root is appropriate as a
parameter estimate.

In what follows, we will specialize to the MAR(1,1) model to unveil the bimodality
issue for ML estimators. Section 2 presents results to evaluate the magnitude of the
bimodality phenomenon. Section 3 will evaluate two consequences of the issue, both
stemming from the fact that the global and local maxima have approximately the same
roots, but their location is interchanged between the causal and noncausal components:
First, the interpretation of the processes generated from the global and local maxima are
quite different. Second, the size and power of Saikkonen and Sandberg [2016]’s unit root
test against a stationary MAR alternative can be strongly impacted by the confusion
in the location of the estimated roots. Section 4 proposes an estimation strategy which
circumvents this bimodality issue and a modification of Saikkonen and Sandberg [2016]’s
unit root test so that its size and power are restored. Section 5 illustrates the benefits
of the proposed approach using the Brent crude oil price while Section 6 concludes.

2 The bimodality issue

Let us first present the likelihood function to maximize in the remainder of the paper.
We assume that εt, t = 1, 2, ..., T , is a sequence of non Gaussian i.i.d. random variables

2See pages 317-318 therein.
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with density function f(εt | λ). Lanne and Saikkonen [2011] propose to estimate the
MAR model in (1) from the approximate log-likelihood function given by:

logLT (θ) =
T−s∑
t=r+1

log f(εt | λ), (5)

where εt = φ(B)ϕ(B−1)yt and θ = (φ, ϕ, λ). For the Student’s t-case, considered in
most of the paper, λ consists of the scale and the degree of freedom parameter, and the
density is given by

f(εt | λ) =
Γ(ν+1

2
)

Γ(ν
2
)

(
πνσ2

)− 1
2

(
1 +

ε2t
σ2ν

)− ν+1
2

, (6)

with θ = (φ, ϕ, σ2, ν). The maximisation of logLT (θ) over permissible values of θ, θ ∈ Θ,
gives the approximate MLE of θ.

Throughout this paper, we focus on a characterization of the shape of the likelihood
function and let the parameter space for estimation, Θ, be unrestricted apart from
σ2 > 0 and ν > 0. An alternative would be to impose the assumptions for the analysis
of the stationary case as in Lanne and Saikkonen [2011], |φ| < 1, |ϕ| < 1 and ν > 2, or the
assumptions for the unit-root case as in Saikkonen and Sandberg [2016], allowing φ = 1.
This may be preferable for some empirical analyses, but to illustrate that bimodality
often occurs with interchanged roots, in particular when the true backward root is unity,
φ0 = 1, we prefer to maximize the likelihood function for (φ, ϕ) unrestricted.

2.1 Limiting behaviour

First, Figure 1 reports the concentrated log-likelihood function as a function of ϕ, the
noncausal parameter of the MAR(1,1) model, for different cases3

The simulated MAR processes are of length T = 50, 000 or larger, so as to consider
the limiting behaviour of the likelihood.

Figure (A)-(D) report results for the Student’s t-likelihood for a set of true values
(ϕ0, φ0, ν0). Figure (A) is characterized by a unit root in the backward lag polynomial,
φ0 = 1, and it shows very clearly that two maxima can be reached by maximizing the
likelihood function—no matter the degrees of freedom of the Student’s t-distribution.
Moreover, the global maximum is reached for the true value of ϕ, namely ϕ0 = 0.6,
while the second local maximum is reached for ϕ ≈ 1, so that the unit root is wrongly
located as the forward component of the MAR model. Finally, it is worth noticing that
when ν0 goes to infinity, corresponding to the Gaussian case, the two maxima reach
exactly the same likelihood value. This is the well-known non-identification result, see
Cambanis and Fakhre-Zakeri [1994] and Remark 1 below. By contrast, for smaller ν0
values, the second maximum, interchanging the roots, is a local one only.

Figure (B) repeats the experiments in a stationary case which can still be considered
as close to the unit root case: φ0 = 0.9. The same conclusions hold, but it can be seen

3Throughout this paper we consider non-zero mean processes and follow Saikkonen and Sandberg
[2016] by demeaning the series before estimation. All results below do not depend on the demeaning
or detrending of the data.
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Figure 1: Profile likelihood function, logLc(ϕ), for the Student’s t, Gaussian mixture,
and Laplace likelihood for different values of φ0 and ϕ0. Calculated for T=50,000 or
larger. The Gaussian mixture in (E) is given by an N(0,1) with provability 0.9 and
N(0, σ2

0) with probability 0.1, for different values of σ2
0. To make comparison easy, the

plotted likelihood values are the deviations from the maximum close to the true values of
the parameters.

that the width of the set of starting values which will lead to the wrong optimum is
much larger than in the unit root case4.

The simulation experiments reported in Figure (C) reveal that the bimodality issue
may disappear for particular parameter combinations. Actually, with an even lower
backward root, here set to φ0 = 0.7, fat-tailed Student’s t-distributions make the profile
likelihood unimodal. Nevertheless, the bimodality reappears as ν0 increases.

Figure (D) illustrate the likelihood surface for the opposite case, ϕ > φ. The profile

4This stems from the convergence of the estimator at rate T if φ0 = 1 and at rate
√
T if |φ0| < 1.
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Figure 2: Bimodality occurence as a function of the parameters values, T=5,000.

is close to being a mirror image of Figure (B).
To emphasize that the bimodality issue is related to the MAR model per se, and

not to the particular choice of a Student’s t-distribution, Figure (E) shows the profile
likelihood for the case where f(εt | λ) is chosen as a mixture of Gaussian distributions
(which is also guaranteed to be leptokurtic). The three cases have been chosen to mimic
the shape of the tails of the Student’s t-distribution with ν0 ∈ {4, 10,∞}, and the results
are very similar to the results for the Student’s t-likelihood.

Finally, Figure (F) shows the profile likelihood when f(εt | λ) is chosen as a Laplace
distribution, leading to the LAD estimator. We generate the data using the Student’s
t-distribution to emphasize the role of LAD estimation as a robust QML estimator
when the true distribution of the errors is unknown. Again we observe a pronounced
bimodality.

The two following remarks sum up these simulation experiments and give conditions
on the parameters for bimodality to occur. We first establish analytically the bimodality
of the likelihood function in the Gaussian case. Here the bimodality is a reflection
of φ and ϕ being unidentified as T → ∞, which has already been stressed from the
simulations experiments reported in Figure 1 above. We next emphasize some conditions
on the parameters of the MAR(1,1) DGP which increase the probability of bimodality
occurence.

Let us begin with the following remark, whose derivations are given in the Appendix:

Remark 1 Consider the MAR(1,1) model in (1) with Gaussian errors and |ϕ0| < 1,
|φ0| < 1. Let logL∞(φ, ϕ) denote the limit of the Gaussian likelihood function as T →
∞. If (ϕ, φ) = (ϕ0, φ0) is a local maximum of logL∞(φ, ϕ), then the interchanged param-
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eter point, (ϕ, φ) = (φ0, ϕ0), is also a maximum, and logL∞(ϕ0, φ0) = logL∞(φ0, ϕ0).

Let us now figure out what are the conditions of the MAR(1,1) model parameters which
increase the bimodality case probability. Figure 2 plots in red, for ν0 ∈ {4, 10, 50,∞}, all
the couples (φ0,ϕ0) ∈ {0.0, 0.01, · · · , 0.99, 1.00}2 for which bimodality with interchanged
roots occurs. It amounts to 10,000 gridpoints (φ0,ϕ0) for each ν0. This is done with
T=5,000 in order to approximate the limiting likelihood function.

Remark 2 As can be seen from Figure 2, the frequency of bimodality occurence in-
creases if:

i) the fatness of the tails decreases,

ii) the causal and/or noncausal roots approach one from below,

iii) the difference between the causal and non causal roots increases.

2.2 Finite sample behaviour

Let us now have a look at the finite-sample properties of the likelihood function and the
MLE. First, Figure 3 shows profile likelihoods for smaller samples, T ∈ {100, 250, 1000},
corresponding to some of the limiting cases in Figure 1. Unlike the limiting case, here
approximated by T=50,000, the profile likelihood for finite T depends on the specific
realization of the simulated MAR time series. As such these are only illustrative exam-
ples.

It is worth noting in Figure 3, that in small samples the global maximum might
correspond to the case of interchanged roots. This can be seen from the examples in
panels (A), (B), and (C), where the likelihood for T = 100 is larger for the interchanged
parameter points than for points close to the true values.

Also observe that even if the limiting likelihood function is bimodal, the finite sample
likelihood may be unimodal. This happens for one realization for T = 100 in panel (B).
Panel (C) illustrates the reverse case, where the limiting likelihood is unimodal, while
the small sample likelihoods for T = 100 and T = 250 are bimodal.

To illustrate the occurrence of these issues, Table 1 reports the results of simulation
experiments for ν0 = 4 or ν = 10. The same DGPs as the ones considered in Figure 1
have been simulated 5,000 times for smaller sample sizes: T ∈ {100, 250, 500, 1000, 10000}.
The global maximum is found using a grid search over initial values, which will be de-
scribed in Section 4 below. The columns labelled “% Bimodal” report the percentage
of the corresponding model estimates leading to two or more maxima. The columns
labelled “% Roots interchanged” report the percentage of global maxima which yields
interchanged roots, ϕ̂ > φ̂.

We observe that the finite sample likelihood function is frequently bimodal, also in
cases where the limiting likelihood is unimodel. Even fat tailed disturbances associated
with clearly stationary roots (φ0 = 0.7 and ϕ0 = 0.4, or φ0 = 0.4 and ϕ0 = 0.7 ) raise
bimodality and interchanged roots issues in small samples, but the issue disappears
as T → ∞. For instance, when T = 100 and ν0 = 4, 20.4% of the DGPs display
two maxima, and the roots are interchanged in around 15% of the global MLE. With
ν0 = 10, these percentages are much higher, even for T = 500 where bimodality is found
in about 42% of the cases and still around 15% of the global maxima interchange the
roots location. As φ0 ↑ 1, the bimodality occurrences strongly increase — it reaches
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Figure 3: Profile likelihood function, logLc(ϕ), for the Student’s t likelihood for finite
samples, with ν0 = 10. To make comparison easy, the plotted likelihood values are the
deviations from the maximum close to the true values of the parameters.

100% or so as T increases — while the percentage of the interchanged roots is not so
much affected. Besides, the latter is a decreasing function of the sample size.

3 Its consequences

As discussed earlier, the roots obtained from global and local maxima are often inter-
changed between backward and forward components. Interpretation is strongly affected
and so is Saikkonen and Sandberg [2016]’s unit root test.

3.1 Impact on interpretation

As already mentioned, an obvious consequence of the roots interchange concerns the
interpretation of the series at hand. To illustrate this very simply, let us consider two
MAR(1,1) processes with T=200, the scale parameter σ2

0 = 1, and ν0 = 4 degrees of
freedom. In Model 1 we set (φ0, ϕ0) = (0.9, 0.4) while for Model 2 we interchange the
roots, (φ0, ϕ0) = (0.4, 0.9). These simulated processes, submitted to the exact same
sequence of t-distributed shocks, are plotted in Figure 4.

Figure (A) represents the process with a large (respectively small) backward (resp.
forward) root and as such, one may recognize the usual behaviour of AR processes.
Following the strong negative shock which occurs a little bit before the 70th realization,
it plunges deeply from a slightly positive value to around -30, and then progressively
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Table 1: The extent of the bimodality issue in finite sample

ν0 = 4 ν0 = 10

% % Roots % % Roots
T φ0 ϕ0 Bimodal interchanged Bimodal interchanged

100 1 0.6 60.6 14.6 74.3 37.7
250 1 0.6 85.1 2.6 97.8 27.5
500 1 0.6 97.4 0.1 99.9 15.8

1000 1 0.6 99.9 0.0 100.0 4.7
10000 1 0.6 100.0 0.0 100.0 0.0

100 0.9 0.4 58.3 12.1 71.8 37.4
250 0.9 0.4 61.2 1.6 90.0 24.4
500 0.9 0.4 63.0 0.1 97.2 12.1

1000 0.9 0.4 65.9 0.0 99.7 3.5
10000 0.9 0.4 82.2 0.0 100.0 0.0

100 0.7 0.4 20.4 15.0 42.9 39.1
250 0.7 0.4 6.4 3.2 45.6 27.7
500 0.7 0.4 1.0 0.3 41.7 15.0

1000 0.7 0.4 0.0 0.0 32.7 6.0
10000 0.7 0.4 0.0 0.0 0.6 0.0

100 0.4 0.7 20.4 14.6 42.6 38.0
250 0.4 0.7 6.7 2.8 45.8 26.9
500 0.4 0.7 0.9 0.4 41.6 15.4

1000 0.4 0.7 0.0 0.0 32.4 6.0
10000 0.4 0.7 0.0 0.0 0.7 0.0

Notes: “% Bimodal” refers to the percentage of the model estimates leading to at least two

maxima. “% Roots interchanged” reports the percentage of global maxima which yields

interchanged roots, ϕ̂ > φ̂. All figures are computed from 5,000 drawings of the Student’s

t MAR DGPs.

absorbs the shock over the thirty next periods.
For Model 2, in Figure 4 (B), where the roots are interchanged, the process an-

ticipates the shock by decreasing steadily almost from 20 periods before on, and then
recovers immediately after the adverse shock occurs. For the positive large shock which
occurs around the 130th realization, Model 2 again anticipates it and build up a bub-
ble like dynamics since the 110th realization approximately, and then burst right after
the shock happens. Again, a mirroring dynamics is generated by model one which is
“surprised” by the occurrence of the favourable shock and increases abruptly instanta-
neously, before the shock effect slowly vanishes with the time passing by.

This difference has already been widely commented on when comparing pure causal
and non causal dynamics. What we want to emphasize here, is that the same can be
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Figure 4: Simulated MAR(1,1) processes. Model 1 has (φ0, ϕ0) = (0.9, 0.4) while model
2 has (φ0, ϕ0) = (0.4, 0.9).

observed in mixed causal-noncausal processes.
The uncertainty in the location of the forward and backward roots implied by the

bimodality issue does not only affect the direct interpretation of the dynamics, e.g. the
likelihood of bubble-like dynamics occuring, but may also have severe consequences for
forecasts based on the estimated MAR models.

3.2 Impact on unit root testing

Another severe consequence is related to the size and power of Saikkonen and Sandberg
[2016]’s unit root test. Their test statistic is given by:

τT =
T (φ̂− 1)√
Gφ
T (θ̂)

,

where Gφ
T (θ̂) is the element of the inverse standardized Hessian matrix corresponding to

φ̂. Their Proposition 3, p.107, derives the limiting distribution of this statistics under
the unit root null φ0 = 1 and shows that it is not nuisance parameters free. For the
Student’s t-case, the limiting distribution depends on

J =
ν0(ν0 + 1)

(ν0 − 2)(ν0 + 3)
,

where ν0 > 2 is the degrees of freedom parameter.
With this in mind, the issue raised by bimodality and interchanged roots can be

easily explained. Intuitively, every time the largest root is wrongly located in the forward
component, such that ϕ̂ ≈ 1 and φ̂� 1, the unit root test rejects the null φ0 = 1. Hence,
the test’s size and power will be spuriously increased.

This is illustrated in Table 2, which reports in the empirical rejection rates of the
null by the τT statistics for Saikkonen and Sandberg [2016]’s unit root test. The authors
consider three cases depending on the deterministic specification, and we focus here
on case 2, for which the series is demeaned before estimation and unit root testing is
performed. The critical values used in this Table have been computed using Table 1,
p.110, in Saikkonen and Sandberg [2016].
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Table 2: Impact of bimodality on Saikkonen-Sandberg’s unit root test size

T Global maximum Preferred maximum

% Roots τT ERF in % % Roots τT ERF in %

interchanged 1% 5% 10% interchanged 1% 5% 10%

(φ0, ϕ0, ν0) = (1,0.6,4)

100 14.6 11.8 16.3 20.5 3.8 2.5 6.0 9.9
250 2.6 3.5 6.2 11.1 0.0 0.9 3.6 8.5
500 0.1 1.1 4.5 9.0 0.0 1.0 4.4 9.0

1000 0.0 0.8 4.6 9.6 0.0 0.8 4.6 9.6

(φ0, ϕ0, ν0) = (1,0.6,10)

100 37.7 28.0 33.5 37.2 11.3 4.8 8.5 11.4
250 27.5 27.5 28.8 31.5 0.4 0.5 1.8 4.5
500 15.8 16.0 18.5 22.9 0.1 0.3 2.8 7.3

1000 4.7 5.2 8.2 12.8 0.0 0.5 3.6 8.4

Notes: ERF stands for empirical rejection frequency. All figures are computed from 5,000 simulated

MAR models. The critical values for the unit root test have been calculated from Table 1 in

Saikkonen and Sandberg [2016] using the estimated degrees of freedom in each replication, ν̂.

Top and bottom panels of Table 2 show the results obtained when ν0 = 4 and ν0 = 10,
respectively. The left panel reports the empirical rejection frequency (ERF) when the
global maximum estimates are used to perform the τT unit root test.

The right panel labelled “Preferred maximum” performs the unit root test after the
maximum with ϕ̂ close to one is eliminated, when there is more than one maximum.
Indeed, this case doesn’t make sense from an economic point of view, as will be further
discussed in Section 4.2. below. Again, the MLE is obtained using a grid search over
initial values which will be described in the next section. The impact of interchanged
roots on this unit root test size is of course bigger when the percentage of reversed roots
is higher, which can be seen from the fourth columns under the “Global maximum”
label: In the case where ν0 = 4, with T=100, 14.6% of the global maximum interchange
the roots which yields ERFs well above their nominal levels. For instance, considering
the τT unit root test at the 5% level gives an ERF of 16.3% instead of 5%. The issue
becomes worse in the bottom panel when ν0 = 10, since at the 5% level and for T=100,
one obtains an ERF of 33.5%. With this ν0, the issue persists for larger samples too.
For instance, when T=500, the ERF corresponding to the nominal 5% level of the test
is still 18.5%.

Regarding power, Table 3 compares the empirical rejection rates of the null obtained
from our estimation method — column labeled “Preferred maximum ERF” — to the
ones given in Saikkonen and Sandberg [2016], Fig.2, p.114 therein. As expected, it
can be seen from the last two columns that for small sample sizes, the Saikkonen and
Sandberg [2016]’s ERFs are larger than the ones of our modified version of the test by
10 to 15 percentage points. Nevertheless, this power issue becomes smaller and vanishes
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Table 3: Impact of bimodality on Saikkonen-Sandberg’s unit root test power

T Preferred maximum, ERF in % SS, ERF in %

(φ0, ϕ0, ν0) = (0.85,0.5,4)

100 58 73
250 98 100
500 100 100

(φ0, ϕ0, ν0) = (0.9,0.5,4)

100 39 54
250 96 99
500 100 100

(φ0, ϕ0, ν0) = (0.95,0.5,4)

100 18 27
250 68 80
500 99 100

Notes: ERF stands for empirical rejection frequency. All figures are computed

from 5,000 simulated MAR models. The ERFs for Saikkonen and Sandberg

[2016] unit root test are the ones reported in Fig.2, p.114 therein.

when the sample size increases, as does the bimodality issue. In Section 5, we illustrate
the benefits from implementing our approach by applying it to the Brent crude oil price
series.

4 The proposed approach

4.1 Estimation strategy

The issue of parameter estimation based on multimodal criteria functions has a long
history in the statistical literature. Barnett [1966] reviews different approaches, and
although the computational possibilities have changed enormously over the last fifty
years, the main principles of the possible approaches are still the same.

It is well-known that gradient ascent methods, such as the Newton estimation algo-
rithm, will converge to a local maximum of the criteria function — highly depending on
the initial values for the estimation, θ(0) say. One approach in the literature is therefore
to use estimation procedures that seek the global maximum by using algorithms allow-
ing also downhill movements. Examples of such algorithms include simulated annealing
(e.g. Kirkpatrick, Gelatt and Vecchi [1983]), genetic algorithms (e.g. Goldberg [1989]),
or particle swarm methods (e.g. Zhang, Wang and Ji [2015]).

In some cases, however, it is of interest to characterize the entire likelihood surface,
and to list the different local maxima. An example of this case is the MAR model with
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a root close to unity, where a forward root in the vicinity of unity can be excluded
by economic reasoning, see e.g. Saikkonen and Sandberg [2016]. Selection between
local maxima is also sometimes done in Markov-Switching modelling where a preferred
“reasonable” model is chosen among the set of local maxima.

To obtain all local maxima for a given criteria function the standard approaches
are either i) the use of randomized initial values, e.g. with θ(0) drawn uniformly over a
subset of the parameter space or ii) the use of a deterministically specified grid on the
parameter space. In this paper we opt for the grid-search, and based on the insight from
the characterization of the likelihood function for finite T as well as the limit T → ∞
above, we choose a coarse but wide grid. In particular, we choose5

(ϕ(0), φ(0), σ2(0), ν(0)) ∈ {0.05, ..., 0.95}2 × {0.5q, ..., 2q} × {3, ..., 50}, (7)

where q is a robust measure of the scale, here taken to be the inter-quartile range of the
residuals obtained from a causal AR(2). For the simulations, we use four points for the
grid on ϕ and φ and three points on σ and ν, as it has proven to be a good compromise
between a quickly increasing number of starting values and the need to have enough
of them to detect the bimodality. Because of the striking tendency of the likelihood
estimation to produce interchanged roots, we consider — in addition — a sequence of
initial values given by

(ϕ(0), φ(0), σ2(0), ν(0)) = (φ̂, ϕ̂, σ̂2, sν̂), with s ∈ {0.1, 0.5, 1, 2, 5}, (8)

where (φ̂, ϕ̂, σ̂2, ν̂) are the (possibly local) estimates obtained from our standard initial
values: Note that the backward and forward estimates are interchanged on purpose
to initialize the new starting values. In total, this design of starting values covers
B = 4232 + 6 = 150 points in the parameter space6. For each starting point we apply
the quasi-Newton optimization algorithm BFGS, see e.g. Nocedal and Wright [2006],
and record the unique maxima.

As documented in Table 1, the grid-search algorithm often finds two maxima cor-
responding to cases with interchanged roots. In addition, it sometimes identifies local
maxima with very large ν, corresponding to the maxima of the Gaussian likelihood
function. The Gaussian local maxima have much lower likelihood in all cases, and will
not be discussed further in this paper7.

4.2 A modified unit root test

For estimation of the MAR model in Sections 2 and 3, we used this grid-search over
initial values in order to characterize the entire likelihood surface and identify the global
maximum. The grid-search procedure yields a list of unique maxima, and the MLE
is taken to be the candidate with the highest maximum. As T → ∞, this global
maximization would obviously produce a consistent estimator.

5None of the models in this paper have negative roots, but if negative roots are likely, the grid could
be easily extended.

6We have also considered alternative and less computationally expensive grid-designs, e.g. the
interchanged roots in (8) alone, but it did not consistently locate all local maxima.

7Anyway, remind that in this case φ and ϕ are unidentified as T →∞.
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For very persistent processes, however, where one root is in the vicinity of unity,
the situation is slightly different. According to Table 1, there is a large probability of
observing interchanged roots in finite samples, meaning that even if the true parameter
set induces a causal unit root, φ0 = 1 and ϕ0 � 1, both case (a) : φ̂ ≈ 1 and ϕ̂ � 1
and case (b) : φ̂� 1 and ϕ̂ ≈ 1 are likely to occur. Case (b), however, is not reasonable
from an economic point of view, because as ϕ̂ ↑ 1 it implies that the behavior of the
estimated model would be given by

yt = φ̂yt−1 + vt, with vt =
∞∑
i=0

εt+i, (9)

with the interpretation that agents would have to look into the infinite future without
discounting.

In light of this lack of a reasonable economic interpretation when ϕ̂ ≈ 1 and in light
of the tendency towards interchanged roots, we therefore suggest to select amongst the
local maxima whenever max(ϕ̂, φ̂) ≈ 1. In this case we prefer models with φ̂ > ϕ̂, even
if this maximum is only local and there exists a maximum with φ̂ < ϕ̂ ≈ 1 and a higher
likelihood. This is similar to the approach sometimes retained in Markov switching
models, where a “reasonable” solution is chosen within the set of local maxima.

To be precise, we suggest the following procedure:

Estimation procedure: Do a full search of local maxima for the MAR model, see
Section 4.1 above.

i) If there is only one maximum of the likelihood function, it is selected as the
preferred.

ii) If there are multiple maxima, and max(ϕ̂, φ̂) ≈ 1, the maxima with φ̂ > ϕ̂ is the
preferred one.

Based on this preferred maximum, we implement the unit root test of Saikkonen and
Sandberg [2016] — thereby avoiding the spurious rejections whenever the roots are inter-
changed by random finite-sample estimation uncertainty. Remark that this procedure is
feasible in practice and that the simulated size and power properties for the Saikkonen
and Sandberg [2016] unit root test reported above are the ones to be expected in empir-
ical applications. This is unlike the reported results from the simulations in Saikkonen
and Sandberg [2016], where the correct maximum is obtained in the majority of repli-
cations because the estimation has been initialized at the true values of the DGP, such
that the issue of bimodality is unsubstantial. This approach is obviously infeasible in
practice.

Right part of Table 2 shows the empirical rejection frequencies for the unit root test
based on our chosen maximum with φ̂ > ϕ̂. It can be seen that our proposed estimation
and test strategy clearly outperforms the results obtained from the global maximum
estimation — left panel of the Table. This is especially the case for small sample sizes
T ∈ {100, 250} and ν0 = 10. It is also worth noticing that the size gets close to the
nominal as T →∞.
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Figure 5: Brent crude oil prices, US dollars per barrel.

5 Application to Brent crude oil prices

In what follows, we provide an example which illustrates the bimodality-induced weak-
nesses of Saikkonen and Sandberg [2016]’s unit root test and the benefits of our proposed
approach.

5.1 The data and unit root test

The data we analyse are monthly Brent crude oil prices, expressed in US dollars per
barrel, from January 2004 to December 2018. The series8 is plotted in Figure 5.

First, we find out that an AR(2) model is enough to eliminate any serial correlation
in the residuals up to order 24. Then, the normality of the residuals is strongly rejected
according to the Jarque and Bera statistics, with a test statistics of 8.44, which rejects
the null of normality at the 1% level.9

Let us now turn to the unit root tests. From an ADF unit root test with two lags in
levels and including an intercept, we find a statistics value of -2.63, corresponding to a
p−value of 9%. Hence, the unit root is not rejected at the 5% level, but the conclusion
is not so clear cut either. Let us now turn to Saikkonen and Sandberg [2016] unit root
test. The results reported in Table 4 illustrate the bimodality of the Student’s t ML
estimation and the misleading conclusions it can induce.

Actually, as can be seen from this Table, two maxima co-exist for this series from the
ML estimation. For this application, we have not used the method described earlier first,
but have purposely started from the most intuitive (or neutral) values for the two roots,
i.e. 0.5 for each of them. As can be seen from the first line of the results, this leads to
a local maximum, with a lower log-likelihood than the one of the global maximum, and
interchanged roots. As a result, Saikkonen and Sandberg [2016]’s unit root test wrongly
concludes to a strong rejection of the null. As a matter of fact, the global maximum is
reached when the values of φ and ϕ are initialized to 0.05 instead. In this case, reported

8The time series is taken from FRED Economic Data website and is named MCOILBRENTEU.
9All results regarding normality tests have been double-checked using the robust version of the

Jarque and Bera statistic proposed by Gel and Gastwirth [2008] and the classical Anderson-Darling
statistic: all conclusions are confirmed.
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Table 4: Modified τT unit root test for demeaned series

Starting values Estimation results Unit root test

φ(0) ϕ(0) Log-lik φ̂ ϕ̂ τT 5% c.v. 10% c.v.

0.5 0.5 -555.70 0.46 0.92 -5.26 -2.83 -2.54
0.05 0.05 -551.44 0.94 0.40 -2.26 -2.81 -2.51

Notes: All estimations use the 176 observations between 2004m3 and 2018m10. Starting values

for the scale and ν parameters are 2.5 and 10 respectively. The critical values reported here have

been computed using case 2 of Table 1, p.110, in Saikkonen and Sandberg [2016].

in the second line of the results, the largest root is located in the backward component
which in turn leads the unit root test not to reject the null. This is also the maximum
which is found by our modified version of Saikkonen and Sandberg [2016]’s unit root
test.

5.2 MAR models estimates

Table 5 reports the estimation results for all Student’s t distributed MAR models where
r + s = 2, namely the purely backward AR(2,0), the purely forward AR(0,2), and both
the global and local ML estimates, denoted respectively MARG(1,1) and MARL(1,1).
Fries and Zakoian [2019] suggest to select between candidate models based on the inde-
pendence of residuals from estimated causal and noncausal models, see also Cavaliere,
Nielsen and Rahbek [2019]. As an alternative to the maximum likelihood criterion, we
have also tried several independence tests applied to estimated residuals in order to
select between models with interchanged roots. For larger samples, some independence
tests, e.g. the BDS test, see Brock, Dechert, Scheinkman and LeBaron [1996] were found
to do rather well, but the overall conclusion was that for small and moderate sample
sizes (with less than 500 observations, say) the model selection based on maximizing
the likelihood outperforms any independence test. Accordingly, all candidate models
have been estimated from the exactly same period so that their estimated likelihoods
are perfectly comparable, i.e. from 2004m3 to 2018m10.

These results confirm the mixed nature of this autoregressive process, with an esti-
mated backward root smaller than the estimated forward root. Even though smaller,
the latter is still significantly different from zero. This noncausal component might
be interpreted as capturing the epochs of bubble build-up and burst, as well as non-
fundamentalness of shocks. The latter can in turn be seen as evidence that the econo-
metrician uses less information than economic agents do.

6 Conclusion

This paper aimed at emphasizing and circumventing the undesirable consequences of bi-
modality of the widely used Student’s t likelihood function applied in modelling mixed
causal-noncausal autoregressions. The main consequence is that the MLE can end up
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Table 5: MAR estimation results for demeaned Brent crude oil price series.

Specifications
AR(2,0) AR(0,2) MARG(1,1) MARL(1,1)

φ1 1.36 0.94 0.46
(0.07) (0.03) (0.10)

φ2 -0.39
(0.07)

ϕ1 1.35 0.40 0.92
(0.07) (0.08) (0.04)

ϕ2 -0.38
(0.07)

σ 27.74 25.17 22.46 25.83
(4.54) (4.64) (4.59) (4.49)√

ν 4.26 2.88 2.56 3.02
(2.39) (0.89) (0.71) (0.94)

Log-lik -551.98 -555.39 -551.44 -555.70
J-B p-val. 0.03 <0.01 <0.01 <0.01

Notes: Estimations use 176 effective observations. MARG and MARL refer to global and local

MLE respectively. Standard errors are given in () and J-B p-val. gives the p-value of the Jarque

and Bera normality test.

in a local maximum where the backward and forward roots are interchanged, hence
impacting severely the interpretation of the series dynamics. Another important conse-
quence of this bimodality concerns the unit root test procedure developed by Saikkonen
and Sandberg [2016], as interchanged roots will mislead the test: any time the largest
root is wrongly located in the forward component of the MAR model’s estimate, the test
on the backward root will wrongly reject the unit root null. This affects significantly
both the size and power of the test. For this reason, an estimation strategy relying on
grid search is proposed so as to characterize the entire likelihood surface and list all
local maxima. In the particular context of unit backward root testing, this can in turn
be used to eliminate the meaningless maxima where ϕ̂ ≈ 1. This proposed strategy is
shown to correct both size and power of Saikkonen and Sandberg [2016] unit root test
very efficiently. The relevance of our proposed approach is illustrated from the Brent
crude oil price for which a naive choice of starting values for the roots would have led
to a local minimum with interchanged roots, hence leading to reject the unit root null
wrongly.

Of course, this paper is only a first insight into this bi- or multi-modality issue in
the MAR estimation and testing literature. The extension of our results to the more
general MAR(r,s) model is on our research agenda.
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A Derivations for Remark 1

The density of the Gaussian distribution is given by

f(εt|σ2) =
1√

2πσ2
exp

(
− ε2t

2σ2

)
, (A.1)

where
εt = (1− φL)(1− ϕL−1)yt = (1 + φϕ)yt − φyt−1 − ϕyt+1, (A.2)

and the approximate average likelihood function for the Gaussian MAR(1,1) model is

logLT (φ, ϕ, σ2) = −1

2
log(2πσ2)− 1

2σ2

1

T

T∑
t=1

((1− φL)(1− ϕL−1)yt)2.

For simplicity we focus on (φ, ϕ) and fix σ2 = σ2
0 , such that

logLT (φ, ϕ) = −1

2
log(2πσ2

0)− 1

2σ2
0

1

T

T∑
t=1

((1 + φϕ)yt − φyt−1 − ϕyt+1)
2.

Under the stationarity condition, |ϕ0| < 1 and |φ0| < 1, it holds that

1

T

T∑
t=1

y2t
p→ γ0,

1

T

T∑
t=1

ytyt−1
p→ γ1, and

1

T

T∑
t=1

yt−1yt+1
p→ γ2, (A.3)

and the limit of the likelihood per observation is

logL∞(φ, ϕ) = −1
2

log(2πσ2
0)−

(
1 + φ2ϕ2 + φ2 + ϕ2 + 2φϕ

)
γ0

+
(
2φ2ϕ+ 2φϕ2 − 2φ− 2ϕ

)
γ1 − 2φϕγ2. (A.4)

The limiting likelihood function in (A.4) is symmetric in φ and ϕ, which gives the results
i Remark 1.
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